

Certificate #4298.01

FCC RADIO TEST REPORT FCC ID: 2ASMC-OBS-TAIL-01

Product: Tail Auto-Director Al Camera Trade Mark: OBSBOT Model No.: Tail Auto-Director Al Camera Family Model: Red OAR-1609, Black OAB-1609 Report No.: S18122902102001 Issue Date: 05 May. 2019

Prepared for

Remo Tech Co.,Ltd Room 220,Building 6,Qianhai Shenzhen-Hong Kong Youth Innovation and Entrepreneur Hub,Shenzhen,China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 9388 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

Report No.: S18122902102001

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	.3
2	SUMMARY OF TEST RESULTS	.4
3	FACILITIES AND ACCREDITATIONS	.5
	3.1 FACILITIES 3.2 LABORATORY ACCREDITATIONS AND LISTINGS 2.3 MEASUREMENT UNCERTAINTY	.5
4	GENERAL DESCRIPTION OF EUT	.6
5	DESCRIPTION OF TEST MODES	.8
6	SETUP OF EQUIPMENT UNDER TEST1	10
	6.1BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	11 12
7	TEST REQUIREMENTS 1	4
	7.1CONDUCTED EMISSIONS TEST17.2RADIATED SPURIOUS EMISSION17.36DB BANDWIDTH27.4DUTY CYCLE37.5MAXIMUM OUTPUT POWER37.6POWER SPECTRAL DENSITY37.7CONDUCTED BAND EDGE MEASUREMENT47.8SPURIOUS RF CONDUCTED EMISSIONS47.9ANTENNA APPLICATION5	19 28 32 34 36 40 44

1 TEST RESULT CERTIFICATION

Applicant's name:	Remo Tech Co.,Ltd				
Address:	Room 220,Building 6,Qianhai Shenzhen-Hong Kong Youth Innovation and Entrepreneur Hub,Shenzhen,China				
Manufacturer's Name1:	Remo Tech Co.,Ltd				
Address:	Room 220,Building 6,Qianhai Shenzhen-Hong Kong Youth Innovation and Entrepreneur Hub,Shenzhen,China				
Product description					
Product name:	Tail Auto-Director AI Camera				
Model and/or type reference:	Tail Auto-Director AI Camera				
Family Model:	Red OAR-1609, Black OAB-1609				
Measurement Procedure Used:					
APPLICABLE STANDARDS					
	ALL LICADLE OTANDANDO				
APPLICABLE STAND	ARD/ TEST PROCEDURE	TEST RESULT			

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 18 Jan. 2019 ~ 05 Apr. 2019	
Testing Engineer	: Eileen Liu.	
Technical Manager	Jason chen	
	(Jason Chen)	
	Sam. Chen	
Authorized Signatory	:	
	(Sam Chen)	

FCC Part15 (15.247), Subpart C							
Standard Section	Test Item	Verdict	Remark				
15.207	Conducted Emission	PASS					
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b) Maximum Output Power							
15.247 (c) Radiated Spurious Emission		PASS					
15.247 (e) Power Spectral Density							
15.205 Band Edge Emission PASS							
15.203	Antenna Requirement	PASS					

emark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

J.Z LADONATONT AOO		
Site Description		
EMC Lab.	:	Accredited by CNAS, 2014.09.04
		The Laboratory has been assessed and proved to be in compliance with
		CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
		The Certificate Registration Number is L5516.
		Accredited by Industry Canada, August 29, 2012
		The Certificate Registration Number is 9270A-1.
		Accredited by FCC, September 6, 2013
		The Certificate Registration Number is 238937.
Name of Firm	:	Shenzhen NTEK Testing Technology Co., Ltd
Site Location	:	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

2.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment Tail Auto-Director AI Camera					
Trade Mark	OBSBOT				
FCC ID	2ASMC-OBS-TAIL-01				
Model No.	Tail Auto-Director AI Camera				
Family Model	Red OAR-1609, Black OAB-1609				
Model Difference	All models are the same circuit and RF module, except the appearance and color.				
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20); 2422-2452 MHz for 802.11n(HT40)				
Modulation DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;					
Number of Channels11 channels for 802.11b/g/11n(HT20); 7 channels for 802.11n(HT40);					
Antenna Type Antenna A: FPC Antenna B: FPC					
Smart system	SISO for 802.11b/g MIMO for 802.11n20/n40				
Antenna Gain Antenna A: 2.79dBi Antenna B: 2.79dBi					
	☑DC supply: DC 11.1V/1900mAh from Battery or DC 5V from USB Port				
Power supply	Adapter supply: Model:A824-120200U-UK2 Input: 100-240V~50/60Hz 0.7A Output: 5V3A/9V2.7A/12V2A				
HW Version V1.0					
SW Version 1.0.15					

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
S18122902102001	Rev.01	Initial issue of report	May. 05, 2019

5 DESCRIPTION OF TEST MODES

NTEK北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

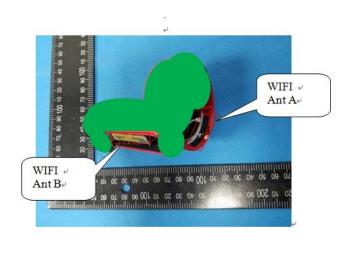
The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0); 802.11n (HT40): MCS0) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20/HT40):


Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

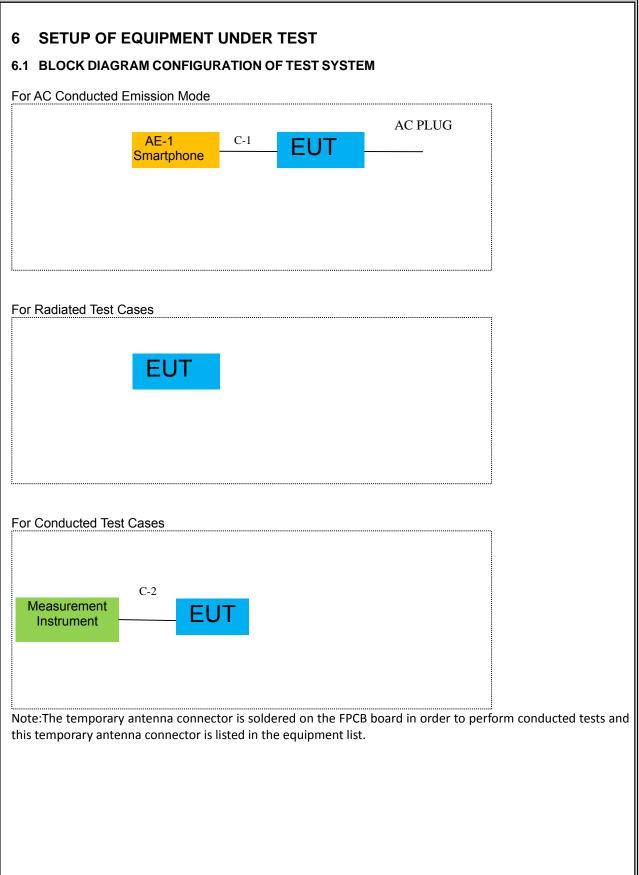
Note: fc=2412MHz+(k-1)×5MHz k=1 to 11

AC power line Conducted Emission was tested under maximum output power.

EUT has two antennas, and different modes support different transmit mode what describe as Following form:

Mode	Tx/Rx
802.11b/g	1TX, 1RX
802.11n	1TX/2TX, 1RX/2RX

Report No.: S18122902102001


For MIMO mode, Directional gain= $[10\log(10^{GA/20}+10^{GB/20})^2/N_{ANT}]$ dBi =5.80dbi in 2.4GHz 802.11n(20/40) 2.4GHz has MIMO mode.

Note: GA means antenna gain for ANT A in dBi. GB means antenna gain for ANT B in dBi.. NANT means the number of Antennas.

Test Mode:

Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
Maximum Conducted Output Power	11b/CCK	1 Mbps	1/6/11	A/B
	11g/BPSK	6 Mbps	1/6/11	A/B
	11n HT20	MCS0	1/6/11	A/B
	11n HT40	MCS0	3/6/9	A/B
	11b/CCK	1 Mbps	1/6/11	A/B
Power Spectral Density	11g/BPSK	6 Mbps	1/6/11	A/B
Tower opectial Density	11n HT20	MCS0	1/6/11	A/B
	11n HT40	MCS0	3/6/9	A/B
6dB Spectrum Bandwidth	11b/CCK	1 Mbps	1/6/11	A/B
	11g/BPSK	6 Mbps	1/6/11	A/B
	11n HT20	MCS0	1/6/11	A/B
	11n HT40	MCS0	3/6/9	A/B
Radiated Emissions Below 1GHz	Normal Link	-	-	-
Radiated Emissions Above 1GHz				
	11b/CCK	1 Mbps	1/6/11	A/B
	11g/BPSK	6 Mbps	1/6/11	A/B
	11n HT20	MCS0	1/6/11	A/B
	11n HT40	MCS0	3/6/9	A/B
Dond Edge Emissions	11b/CCK	1 Mbps	1/6/11	A/B
Band Edge Emissions	11g/BPSK	6 Mbps	1/6/11	A/B
	11n HT20	MCS0	1/6/11	A/B
	11n HT40	MCS0	3/6/9	A/B

6.2 SUPPORT EQUIPMENT

NTEK北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Smartphone	N/A	N/A	N/A	

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.5m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

uuluu	on rest equipme			1		•	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2018.05.19	2019.05.18	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2018.10.08	2019.10.07	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2018.10.08	2019.10.07	1 year
4	Test Receiver	R&S	ESPI7	101318	2018.05.19	2019.05.18	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2018.04.08	2019.04.07	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2018.04.08	2019.04.07	1 year
8	Amplifier	EMC	EMC051835 SE	980246	2018.08.05	2019.08.04	1 year
9	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2018.11.03	2019.11.02	1 year
10	Power Meter	DARE	RPR3006W	15I00041SN 084	2018.08.05	2019.08.04	1 year
11	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
12	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
13	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
15	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
17	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2018.11.03	2019.11.02	1 year

Note:

We will use the temporary antenna connector (soldered on the FPCB board) When conducted test And this temporary antenna connector is listed within the instrument list

NTEKICION Certificate #4298.01 Report No.: S18122902102001								001		
	AC Conduction Test equipment									
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
	1	Test Receiver	R&S	ESCI	101160	2018.05.19	2019.05.18	1 year		
	2	LISN	R&S	ENV216	101313	2018.04.18	2019.04.19	1 year		
	3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2018.05.19	2019.05.18	1 year		
	4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year		
	5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year		
	6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year		
	7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year		

Note: Each piece of equipment is scheduled for calibration once a year except the Test Cable which is scheduled for calibration every 3 years.

7 TEST REQUIREMENTS

NTEK北测

7.1 CONDUCTED EMISSIONS TEST

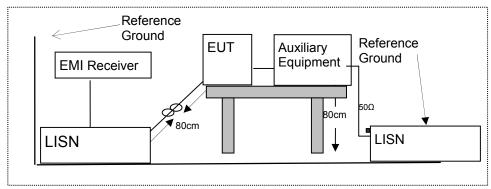
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Frequency(MHz)	Conducted Emission Limit				
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56*	56-46*			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

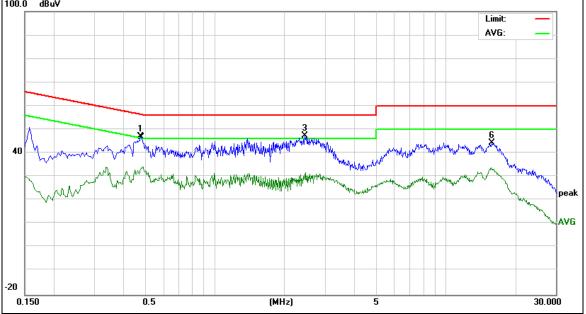
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.6 Test Results

NTEK北测

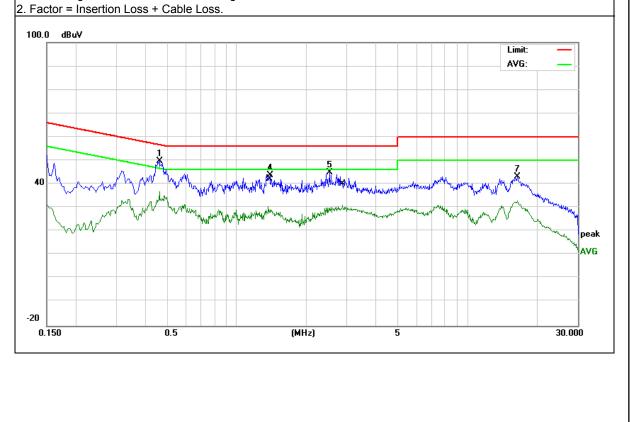
EUT:	Tail Auto-Director Al Camera	Model Name	Tail Auto-Director Al Camera		
Temperature:	26 ℃	Relative Humidity:	54%		
Pressure:	1010hPa	Phase :	L		
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link		


Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4780	37.18	9.74	46.92	56.37	-9.45	QP
0.4860	24.33	9.74	34.07	46.24	-12.17	AVG
2.4500	37.51	9.79	47.30	56.00	-8.70	QP
2.4860	21.98	9.79	31.77	46.00	-14.23	AVG
15.7940	23.72	10.12	33.84	50.00	-16.16	AVG
15.8060	34.32	10.12	44.44	60.00	-15.56	QP

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

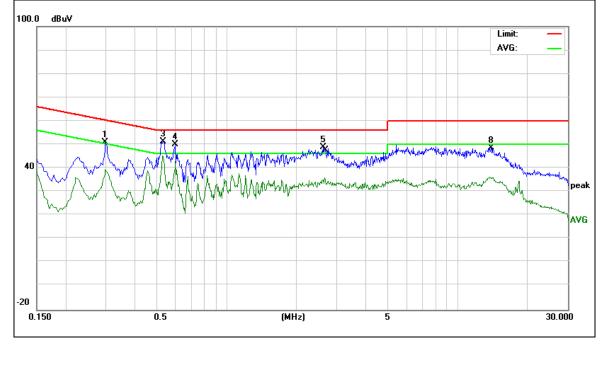

Report No.: S18122902102001

EUT:	Tail Auto-Director Al Camera	Model Name :	Tail Auto-Director Al Camera		
Temperature:	26 ℃	Relative Humidity:	54%		
Pressure:	1010hPa	Phase :	N		
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link		

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4620	40.12	9.75	49.87	56.66	-6.79	QP
0.4620	27.21	9.75	36.96	46.66	-9.70	AVG
1.3700	20.82	9.76	30.58	46.00	-15.42	AVG
1.3900	34.12	9.76	43.88	56.00	-12.12	QP
2.5220	35.08	9.82	44.90	56.00	-11.10	QP
2.8699	21.25	9.86	31.11	46.00	-14.89	AVG
16.4020	33.14	10.13	43.27	60.00	-16.73	QP
16.4020	22.73	10.13	32.86	50.00	-17.14	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

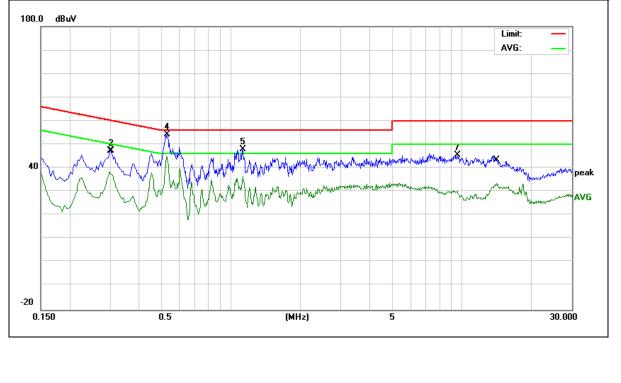

EUT:	Tail Auto-Director AI Camera	Model Name. :	Tail Auto-Director Al Camera
Temperature:	26 ℃	Relative Humidity:	56%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

		1	T	1		
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2980	41.23	9.74	50.97	60.30	-9.33	QP
0.2980	29.59	9.74	39.33	50.30	-10.97	AVG
0.5299	41.56	9.74	51.30	56.00	-4.70	QP
0.5980	40.17	9.74	49.91	56.00	-6.09	QP
2.6180	38.95	9.80	48.75	56.00	-7.25	QP
2.6619	26.14	9.80	35.94	46.00	-10.06	AVG
13.8340	26.24	10.08	36.32	50.00	-13.68	AVG
13.9540	38.35	10.09	48.44	60.00	-11.56	QP

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

NTEK北测



EUT:	Tail Auto-Director AI Camera			Model	Name. :	Tail Auto-Dire	ctor Al Camera
Temperature:	26 ℃			Relativ	e Humidity:	56%	
Pressure:	1010hPa	1010hPa			:	Ν	
Test Voltage : DC 5V from Adapter AC 240V/60Hz			Test Mode:		Mode 1		
Frequency	Reading Level	Correct Eactor	Measure	ment	Limits	Margin	

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2980	28.61	9.74	38.35	50.30	-11.95	AVG
0.3020	37.60	9.74	47.34	60.19	-12.85	QP
0.5260	35.05	9.75	44.80	46.00	-1.20	AVG
0.5300	44.61	9.75	54.36	56.00	-1.64	QP
1.1260	38.07	9.75	47.82	56.00	-8.18	QP
1.1260	26.75	9.75	36.50	46.00	-9.50	AVG
9.6380	35.49	10.04	45.53	60.00	-14.47	QP
14.1580	23.44	10.09	33.53	50.00	-16.47	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art 13.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)					
	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

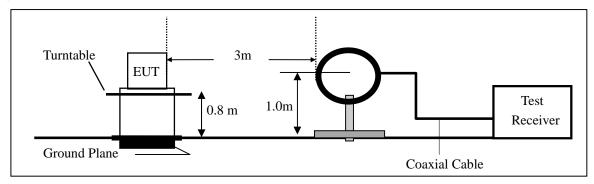
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

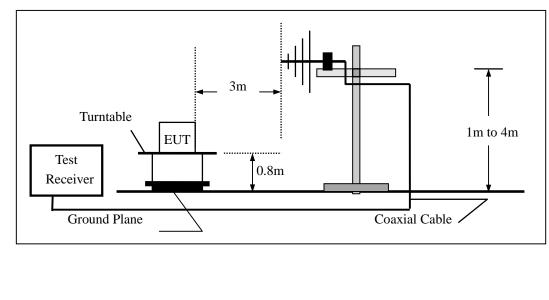
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings	b
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=100 kHz for f < 1 GHz; VBW=120KHz; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

Spurious Emission bolow 20ML Iz (OKL Iz to 20ML Iz)

VBW \ge 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

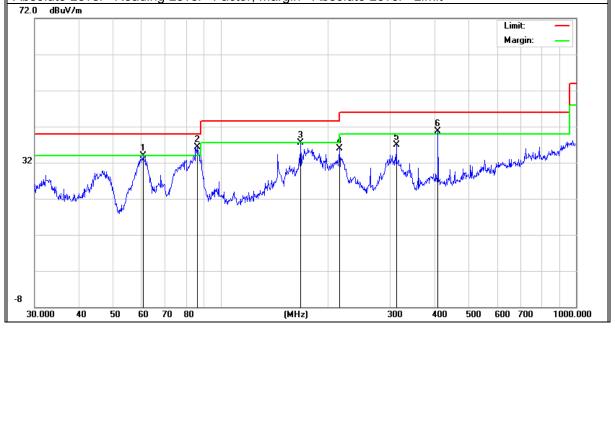
7.2.6 Test Results

Spunous Emission	1 DEIOW JUIVIEZ (9KHZ to JUIVIE	1Z)	
EUT:	Tail Auto-Director AI Camera	Model No.:	Tail Auto-Director Al Camera
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4/Mode5	Test By:	Eileen Liu

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV		PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

NTEK北测


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Tail Auto-Director Al Camera	Model Name :	Tail Auto-Director Al Camera
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Normal Link
Test Voltage :	DC 5V from Adapter AC 1	20V/60Hz	

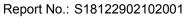
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	60.4919	27.40	6.46	33.86	40.00	-6.14	QP
V	85.8984	26.36	10.00	36.36	40.00	-3.64	QP
V	167.8243	26.15	11.38	37.53	43.50	-5.97	QP
V	216.0240	24.72	11.10	35.82	46.00	-10.18	QP
V	312.1793	20.57	16.38	36.95	46.00	-9.05	QP
V	408.9460	20.66	19.95	40.61	46.00	-5.39	QP

Remark:

Absolute Level= Reading Level+ Factor, Margin= Absolute Level - Limit

Pola		Frequ	lenc	у		Net ead		I	Facto	or		issior evel	า	Lim	its	Ma	argi	n	Rei	mark
(H/\	v)	(M	Hz)		(0	dBu	ıV)		(dB)	(dE	BuV/m)	(dBu	V/m)	((dB)			nan
Н		87. <i>*</i>	1117		1	8.9	96		9.98	3	2	8.94		40.	00	-1	1.06	6	0	ΩP
Н		216.	0240)	2	21.4	19		11.1	0	3	2.59		46.	00	-1	3.41	1	(ΩP
Н		315.	4808	\$	1	17.5	57		16.4	3	3	4.00		46.	00	-1	2.00)	(ΩP
Н		174.	4241		1	15.7	76		10.8	6	2	6.62		43.	50	-1	6.88	3	C	ΩP
Н		929.	0081			8.8	5		30.5	7	3	9.42		46.	00	-6	6.58		0	λb
-																	Ma	rgin:		•
																	Ma	rgin:		
32												2	ll all	3 Muluh	h	with	Verburnet	Western] ^^_
		Halen Vinnen	Margare and	w ^{MA} WY	un/Hh	/	"\\\\\ 	ede.org.org	Louihu	,luy/V47yl										
-8																				

NTEK北测


EUT:		Tail Aut	o-Director	AI Camera	Model N	0.:	Tail Auto	o-Director	Al Camera			
Temperatur	e:	20 °C			Relative	Humidity:	48%					
Test Mode:		802.11	o/g/n20/n4	0	Test By:		Eileen L	Eileen Liu				
All the modu shown Ante			been test	ed, EUT ha	s two ante	nna A and I	B, the wo	rst data is	Antenna A, o			
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment			
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)					
			Low Chanr	nel (2412 MF	lz)(802.11b)Above 1G						
4824.615	60.94	5.21	35.59	44.30	57.44	74.00	-16.56	Pk	Vertical			
4824.615	42.81	5.21	35.59	44.30	39.31	54.00	-14.69	AV	Vertical			
7235.596	60.10	6.48	36.27	44.60	58.25	74.00	-15.75	Pk	Vertical			
7235.596	41.36	6.48	36.27	44.60	39.51	54.00	-14.49	AV	Vertical			
4824.683	60.99	5.21	35.55	44.30	57.45	74.00	-16.55	Pk	Horizontal			
4824.683	39.37	5.21	35.55	44.30	35.83	54.00	-18.17	AV	Horizontal			
7235.089	62.82	6.48	36.27	44.52	61.05	74.00	-12.95	Pk	Horizontal			
7235.089	41.25	6.48	36.27	44.52	39.48	54.00	-14.52	AV	Horizontal			
		Ν	/liddle Char	nel (2437 M	Hz)(802.11	b)Above 10	G					
4873.559	60.14	5.21	35.66	44.20	56.81	74.00	-17.19	Pk	Vertical			
4873.559	39.22	5.21	35.66	44.20	35.89	54.00	-18.11	AV	Vertical			
7310.726	62.62	7.10	36.50	44.43	61.79	74.00	-12.21	Pk	Vertical			
7310.726	39.07	7.10	36.50	44.43	38.24	54.00	-15.76	AV	Vertical			
4873.572	61.68	5.21	35.66	44.20	58.35	74.00	-15.65	Pk	Horizontal			
4873.572	42.55	5.21	35.66	44.20	39.22	54.00	-14.78	AV	Horizontal			
7310.519	60.14	7.10	36.50	44.43	59.31	74.00	-14.69	Pk	Horizontal			
7310.519	41.81	7.10	36.50	44.43	40.98	54.00	-13.02	AV	Horizontal			
			High Chan	nel (2462 MI	Hz)(802.11b)Above 1G	i	1				
4923.392	60.19	5.21	35.52	44.21	56.71	74.00	-17.29	Pk	Vertical			
4923.392	41.90	5.21	35.52	44.21	38.42	54.00	-15.58	AV	Vertical			
7385.781	61.80	7.10	36.53	44.60	60.83	74.00	-13.17	Pk	Vertical			
7385.781	39.44	7.10	36.53	44.60	38.47	54.00	-15.53	AV	Vertical			
4923.281	61.88	5.21	35.52	44.21	58.40	74.00	-15.60	Pk	Horizontal			
4923.281	41.32	5.21	35.52	44.21	37.84	54.00	-16.16	AV	Horizontal			
7386.157	63.52	7.10	36.53	44.60	62.55	74.00	-11.45	Pk	Horizontal			
7386.157	41.32	7.10	36.53	44.60	40.35	54.00	-13.65	AV	Horizontal			

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor
(2) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(3) "802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

■ Spurious Emission in Restricted Band 2310MHz -18000MHz

All the modulation modes have been tested, EUT has two antenna A and B, the worst data is Antenna A, only shown Antenna A data below:

ACCRED

Certificate #4298.01

· · · · · · · · · · · · · · · · · · ·	enna A data		A	Dee	Ends 1			1	
Frequenc	Meter Reading	Cable	Antenna	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
y (MHz)	(dBµV)	Loss (dB)	Factor dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
(10112)	(ubµv)	(ub)	dD/m		.11b	(ubµv/m)	(48)	турс	
2310.00	63.52	2.97	27.80	43.80	50.49	74	-23.51	Pk	Horizontal
2310.00	39.71	2.97	27.80	43.80	26.68	54	-27.32	AV	Horizontal
2310.00	63.41	2.97	27.80	43.80	50.38	74	-23.62	Pk	Vertical
2310.00	41.85	2.97	27.80	43.80	28.82	54	-25.18	AV	Vertical
2390.00	59.04	3.14	27.21	43.80	45.59	74	-28.41	Pk	Vertical
2390.00	41.67	3.14	27.21	43.80	28.22	54	-25.78	AV	Vertical
2390.00	61.75	3.14	27.21	43.80	48.30	74	-25.70	Pk	Horizontal
2390.00	41.14	3.14	27.21	43.80	27.69	54	-26.31	AV	Horizontal
2483.50	61.23	3.58	27.70	44.00	48.51	74	-25.49	Pk	Vertical
2483.50	39.13	3.58	27.70	44.00	26.41	54	-27.59	AV	Vertical
2483.50	61.86	3.58	27.70	44.00	49.14	74	-24.86	Pk	Horizontal
2483.50	42.06	3.58	27.70	44.00	29.34	54	-24.66	AV	Horizontal
		_			.11g				I
2310.00	62.84	2.97	27.80	43.80	49.81	74	-24.19	Pk	Horizontal
2310.00	41.25	2.97	27.80	43.80	28.22	54	-25.78	AV	Horizontal
2310.00	59.18	2.97	27.80	43.80	46.15	74	-27.85	Pk	Vertical
2310.00	39.89	2.97	27.80	43.80	26.86	54	-27.14	AV	Vertical
2390.00	61.30	3.14	27.21	43.80	47.85	74	-26.15	Pk	Vertical
2390.00	40.70	3.14 3.14	27.21	43.80	27.25	54 74	-26.75	AV Pk	Vertical
2390.00 2390.00	63.47 40.70	3.14	27.21 27.21	43.80 43.80	50.02 27.25	74 54	-23.98 -26.75	AV	Horizontal Horizontal
2390.00	62.93	3.14	27.21	43.80	50.21	- 54 74	-23.79	Pk	Vertical
2483.50	39.63	3.58	27.70	44.00	26.91	54	-27.09	AV	Vertical
2483.50	60.52	3.58	27.70	44.00	47.80	74	-26.20	Pk	Horizontal
2483.50	40.66	3.58	27.70	44.00	27.94	54	-26.06	AV	Horizontal
		0.00			1n20	01	_0.00		
2310.00	59.36	2.97	27.80	43.80	46.33	74	-27.67	Pk	Horizontal
2310.00	42.92	2.97	27.80	43.80	29.89	54	-24.11	AV	Horizontal
2310.00	61.54	2.97	27.80	43.80	48.51	74	-25.49	Pk	Vertical
2310.00	39.97	2.97	27.80	43.80	26.94	54	-27.06	AV	Vertical
2390.00	60.57	3.14	27.21	43.80	47.12	74	-26.88	Pk	Vertical
2390.00	40.39	3.14	27.21	43.80	26.94	54	-27.06	AV	Vertical
2390.00	61.74	3.14	27.21	43.80	48.29	74	-25.71	Pk	Horizontal
2390.00	39.89	3.14	27.21	43.80	26.44	54	-27.56	AV	Horizontal
2483.50	60.73	3.58	27.70	44.00	48.01	74	-25.99	Pk	Vertical
2483.50	41.25	3.58	27.70	44.00	28.53	54	-25.47	AV	Vertical
2483.50	62.26	3.58	27.70	44.00	49.54	74	-24.46	Pk	Horizontal
2483.50	41.37	3.58	27.70	44.00	28.65 1n40	54	-25.35	AV	Horizontal
2210.00	60.00	2.07	27.90			74	24.65	Pk	Horizoptal
2310.00 2310.00	62.38 41.57	2.97 2.97	27.80 27.80	43.80 43.80	49.35 28.54	74 54	-24.65 -25.46	AV	Horizontal Horizontal
2310.00	60.35	2.97	27.80	43.80	47.32	54 74	-25.46	AV Pk	Vertical
2310.00	42.56	2.97	27.80	43.80	29.53	74 54	-20.08	AV	Vertical
2390.00	60.29	3.14	27.21	43.80	46.84	74	-27.16	Pk	Vertical
2390.00	41.57	3.14	27.21	43.80	28.12	54	-25.88	AV	Vertical
2390.00	60.28	3.14	27.21	43.80	46.83	74	-27.17	Pk	Horizontal
2390.00	41.57	3.14	27.21	43.80	28.12	54	-25.88	AV	Horizontal
2483.50	61.26	3.58	27.70	44.00	48.54	74	-25.46	Pk	Vertical
2483.50	41.45	3.58	27.70	44.00	28.73	54	-25.27	AV	Vertical
2483.50	62.38	3.58	27.70	44.00	49.66	74	-24.34	Pk	Horizontal
2483.50	42.25	3.58	27.70	44.00	29.53	54	-24.47	AV	Horizontal

Spurious Emission in Restricted Bands 3260MHz- 18000MHz

NTEK北测

All the modulation modes have been tested, EUT has two antenna A and B, the worst data is Antenna A, only shown Antenna A data as below:

Frequenc y	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	59.85	4.04	29.57	44.70	48.76	74	-25.24	Pk	Vertical
3260	48.97	4.04	29.57	44.70	37.88	54	-16.12	AV	Vertical
3260	61.88	4.04	29.57	44.70	50.79	74	-23.21	Pk	Horizontal
3260	48.57	4.04	29.57	44.70	37.48	54	-16.52	AV	Horizontal
3332	61.97	4.26	29.87	44.40	51.70	74	-22.30	Pk	Vertical
3332	49.23	4.26	29.87	44.40	38.96	54	-15.04	AV	Vertical
3332	61.31	4.26	29.87	44.40	51.04	74	-22.96	Pk	Horizontal
3332	48.01	4.26	29.87	44.40	37.74	54	-16.26	AV	Horizontal
17797	45.04	10.99	43.95	43.50	56.48	74	-17.52	Pk	Vertical
17797	29.47	10.99	43.95	43.50	40.91	54	-13.09	AV	Vertical
17788	46.13	11.81	43.69	44.60	57.03	74	-16.97	Pk	Horizontal
17788	29.84	11.81	43.69	44.60	40.74	54	-13.26	AV	Horizontal

"802.11 b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \ge 3*RBW Sweep = auto Detector function = peak

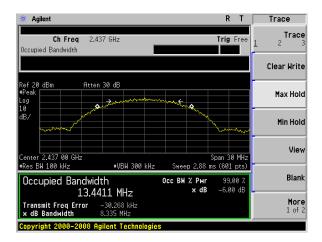
Trace = max hold

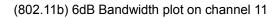
7.3.6 Test Results

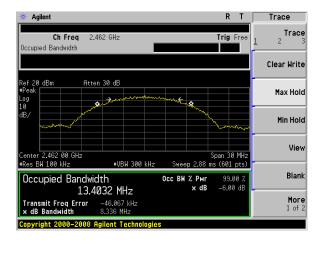
EUT:	Tail Auto-Director AI Camera	Model No.:	Tail Auto-Director Al Camera
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Eileen Liu

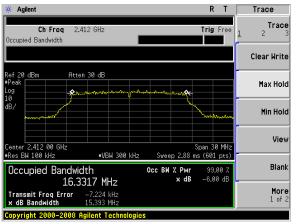
Note: A(B) Represent the value of antenna A and B, The worst data is Antenna A, only shown Antenna A Plot.

Mada	Channel	Frequency	6dB bandwid	Limit	Decult	
Mode	Channel	(MHz)	Antenna A	Antenna B	(kHz)	Result
	Low	2412	8.339	8.242	500	Pass
802.11b	Middle	2437	8.335	8.313	500	Pass
	High	2462	8.336	8.346	500	Pass
	Low	2412	15.393	15.211	500	Pass
802.11g	Middle	2437	15.181	15.102	500	Pass
	High	2462	15.176	15.005	500	Pass
	Low	2412	15.165	15.025	500	Pass
802.11n20	Middle	2437	16.042	16.014	500	Pass
	High	2462	15.169	15.064	500	Pass
	Low	2422	35.746	35.547	500	Pass
802.11n40	Middle	2437	35.271	35.042	500	Pass
	High	2452	35.262	35.124	500	Pass

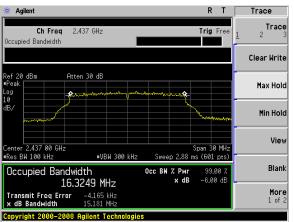

Report No.: S18122902102001

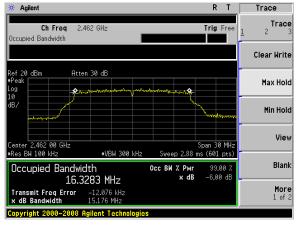

Test plot


R Т Trace Ch Freq 2.412 GHz Trig Free ccupied Bandwidth Clear Write Atten 30 dB ef 20 dBm Max Hold Min Hold View ter 2.412 00 GHz s BW 100 kHz oan 30 MH (601 pts ≢VBW 300 kHz Sweep 2.88 Blank Occupied Bandwidth Occ BW % Pwr x dB -6.00 dE 13.4826 MHz More 1 of 2 Transmit Freq Error -41.302 kHz x dB Bandwidth 8.339 MHz Copyright 2000-2008 Agilent Tec

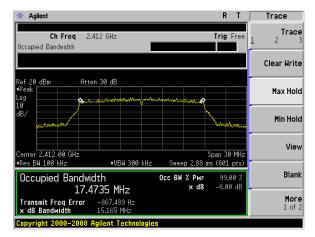

(802.11b) 6dB Bandwidth plot on channel 1

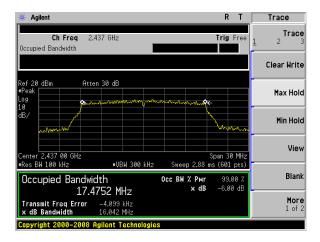
(802.11b) 6dB Bandwidth plot on channel 6



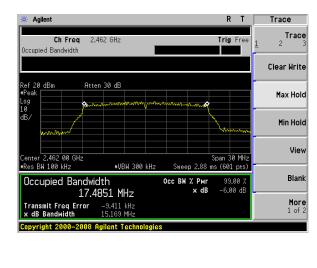


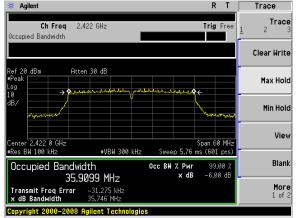
(802.11g) 6dB Bandwidth plot on channel 6

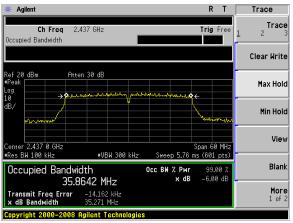

(802.11g) 6dB Bandwidth plot on channel 1

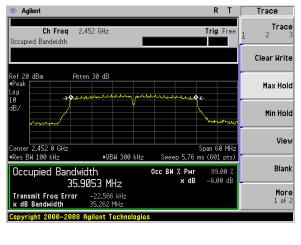

Test plot

(802.11n20) 6dB Bandwidth plot on channel 1


NTEK北测


(802.11n20) 6dB Bandwidth plot on channel 6


(802.11n20) 6dB Bandwidth plot on channel 11



(802.11n40) 6dB Bandwidth plot on channel 3

(802.11n40) 6dB Bandwidth plot on channel 6

(802.11n40) 6dB Bandwidth plot on channel 9

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Tail Auto-Director AI Camera	Model No.:	Tail Auto-Director AI Camera
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Eileen Liu

Antenna A

Mode	Data rate	Channel	T _{on}	T _{total}	Duty Cycle	Duty Cycle Factor (dB)	VBW Setting
802.11b	1Mbps	6	-	-	100%	0	10Hz
802.11g	6Mbps	6	-	-	100%	0	1KHz
802.11n HT20	MCS0	6	-	-	100%	0	1KHz
802.11n HT40	MCS0	6	-	-	100%	0	3KHz

Antenna B

Mode	Data rate	Channel	T _{on}	T _{total}	Duty Cycle	Duty Cycle Factor (dB)	VBW Setting
802.11b	1Mbps	6	-	-	100%	0	10Hz
802.11g	6Mbps	6	-	-	100%	0	1KHz
802.11n HT20	MCS0	6	-	-	100%	0	1KHz
802.11n HT40	MCS0	6	-	-	100%	0	3KHz

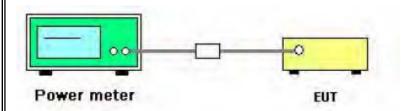
Note: All the modulation modes were tested, the data of the worst mode are described in the following table.

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05 Section 8.3.2.3.

7.5.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting
Detector	Peak

7.5.4 Test Setup

7.5.5 Test Procedure

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the *DTS bandwidth* and shall utilize a fast-responding diode detector.

7.5.6 EUT opration during Test

The EUT was programmed to be in continuously transmitting mode.

7.5.7 Test Results

EUT:	Tail Auto-Director AI Camera	Model No.:	Tail Auto-Director AI Camera
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Eileen Liu

Note: EUT has two antennas, and different modes support different transmit mode what describe as Following form:

Mode	Tx/Rx
11b, 11g	1Tx, 1Rx
11n(HT20/HT40)	2Tx, 2Rx

Test	Frequency	Power Setting	Duty Cycle Factor	Factor Power(dBm)		Total			Verdict		
Channel	(MHz)		(dB)	ANT A	ANT B	(dB	m)	(dBm)			
				802.11b							
1	2412	Default	0	15.2	14.9	-	-	30	PASS		
6	2437	Default	0	14.5	14.4	-	-	30	PASS		
11	2462	Default	0	14.9	14.4	-	-	30	PASS		
	802.11g										
1	2412	Default	0	13.2	11.5	-	-	30	PASS		
6	2437	Default	0	12.5	11.9	-	-	30	PASS		
11	2462	Default	0	12.9	12.3	-	-	30	PASS		
			80	2.11n HT20							
1	2412	Default	0	12.5	12.3	15.4	41	30	PASS		
6	2437	Default	0	11.6	10.7	14.	18	30	PASS		
11	2462	Default	0	12.3	11.7	15.	02	30	PASS		
	802.11n HT40										
3	2422	Default	0	11.9	11.8	14.	86	30	PASS		
6	2437	Default	0	11.2	11.0	14.	11	30	PASS		
9	2452	Default	0	11.7	11.4	14.	56	30	PASS		

Note: For 802.11n has MIMO mode. Directional gain=5.80dbi 5.80dbi<6.0 dbi so power limit= 30.00dBm

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

d) Set the VBW \geq 3 *RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

		1	1	
EUT:	Tail Auto-Director AI Camera	Model No.:	Tail Auto-Director AI Camera	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	802.11b/g/n20/n40	Test By:	Eileen Liu	

Note:

A(B) Represent the value of antenna A and B, The worst data is Antenna A, only shown Antenna A Plot.

EUT has two antennas, and different modes support different transmit mode what describe as Following form:

Mode	Tx/Rx
11b, 11g	1Tx, 1Rx
11n(HT20/HT40)	2Tx, 2Rx

Test Channel	Frequency (MHz)	Power Setting	Duty Cycle Factor (dB)	Peak Powe (dBm/3 ANT A		Total (dBm)	LIMIT (dBm/3KHz)	Verdict
	802.11b							
1	2412	Default	0	-8.00	-9.71	-	8	PASS
6	2437	Default	0	-8.34	-8.34	-	8	PASS
11	2462	Default	0	-8.52	-9.31	-	8	PASS
	802.11g							
1	2412	Default	0	-9.30	-10.20	-	8	PASS
6	2437	Default	0	-10.31	-10.67	-	8	PASS
11	2462	Default	0	-10.34	-10.14	-	8	PASS
			802. ⁻	11n HT20				
1	2412	Default	0	-11.27	-11.14	-8.19	8	PASS
6	2437	Default	0	-11.38	-11.61	-8.48	8	PASS
11	2462	Default	0	-11.46	-11.92	-8.67	8	PASS
802.11n HT40								
3	2422	Default	0	-13.11	-13.49	-10.29	8	PASS
6	2437	Default	0	-14.18	-14.71	-11.43	8	PASS
9	2452	Default	0	-13.92	-14.21	-11.05	8	PASS

Note: For 802.11n has MIMO mode. Directional gain=5.80dbi 5.80db<6.0 dbi so power limit= 8dBm

R Т

Span 12 MH: (8192

RΤ

2.438 729 5 GH -8.34 dBm

Span 12 MH. (8192 pts

en 1.266

2.413 728 0 GH -8.01 dBm

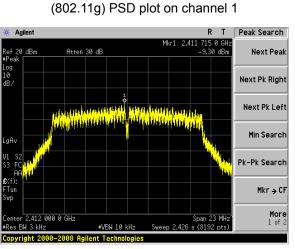
Atten 30 dE

dBn

lun

2.412 00 GHz

⊧s BW 3 kHz


dBn

lun

es BW 3 kHz

2.437 000 0 GHz

Copyright 2000-2008 Agilent Techno

(802.11g) PSD plot on channel 6

Peak Search

Next Pk Right

Next Pk Left

Min Search

Pk-Pk Search

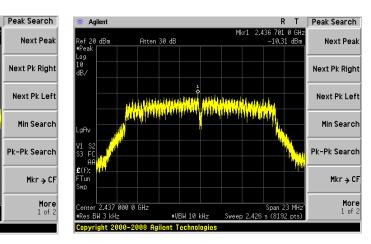
Mkr→CF

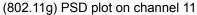
More 1 of 2

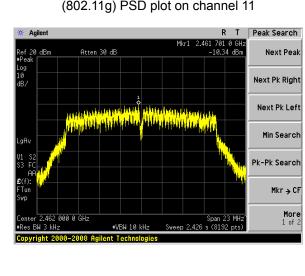
Next Peak

Test plot

(802.11b) PSD plot on channel 1

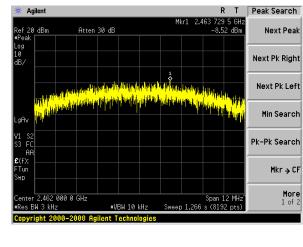


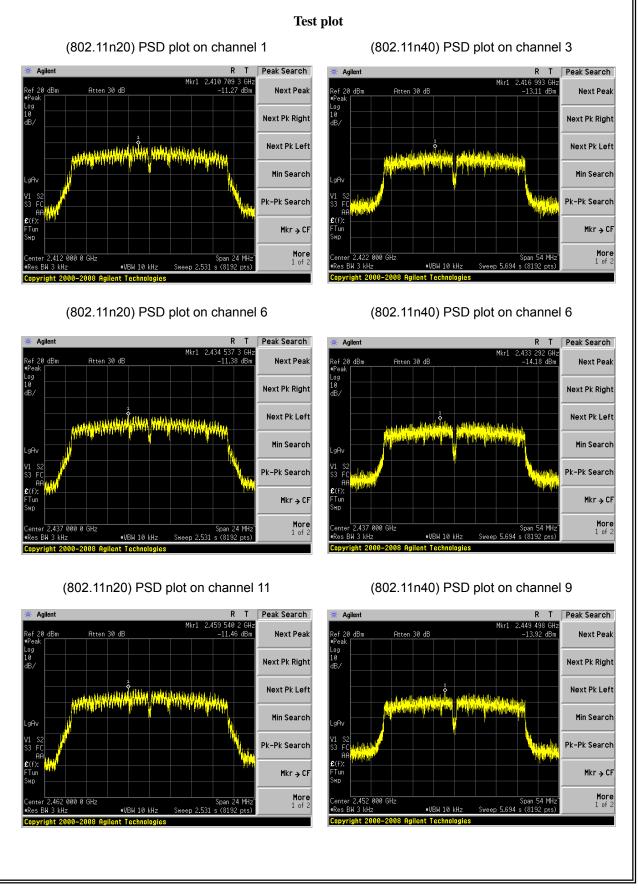

∗VBW 10 kHz


Atten 30 dE

(802.11b) PSD plot on channel 6

Mkr1





■VBW 10 kHz

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

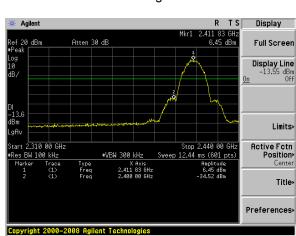
The EUT was operating in controlled its channel.

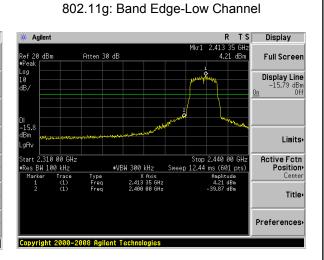
Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

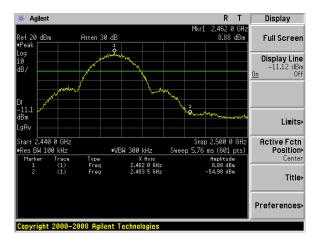
Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

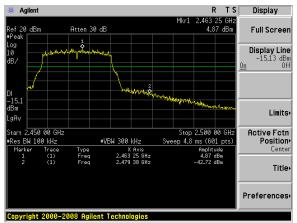
7.7.6 Test Results


EUT:	Tail Auto-Director AI Camera	Model No.:	Tail Auto-Director AI Camera
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Eileen Liu

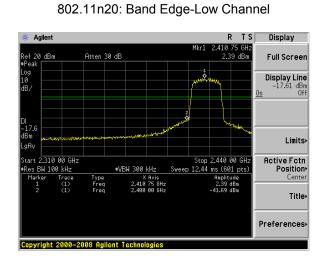

Note: A(B) Represent the value of antenna A and B, The worst data is Antenna A, only shown Antenna A Plot.


Test plot For

Report No.: S18122902102001

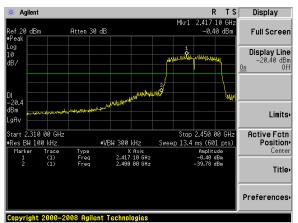


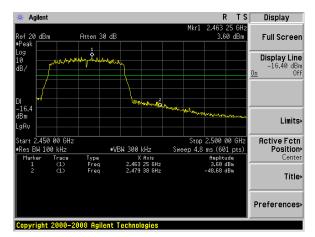
802.11b: Band Edge-High Channel



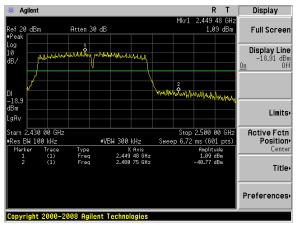
802.11g: Band Edge-High Channel

802.11b: Band Edge-Low Channel




NTEK北测

Test plot For


802.11n40: Band Edge-Low Channel

802.11n20: Band Edge-High Channel

802.11n40: Band Edge-High Channel

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

NTEK北测

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

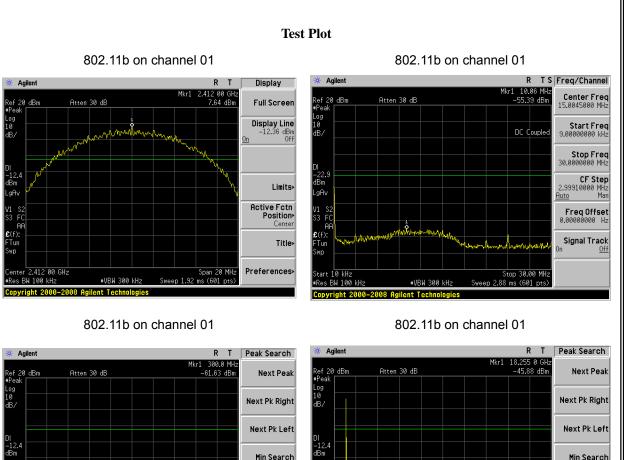
7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure


The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 9KHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Note: A(B) Represent the value of antenna A and B, The worst data is Antenna A, only shown Antenna A Plot.

V1

Tur

Start

000 0 GHz

Copyright 2000–2008 Agilent Technologie

Res BW 100 kHz

More 1 of 2

Stop 1.000 0 GHz 92.72 ms (601 pts)

Min Search ıA، V1 Pk-Pk Search AF 60 Mkr→CF Tur ٨n

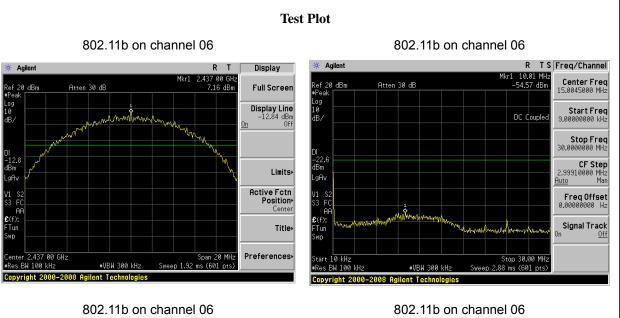
#VBW 300 kHz

n In-

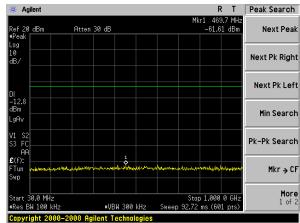
Start 30.0 MHz #Res BW 100 kHz

Copyright 2000-2008 Agilent Tech

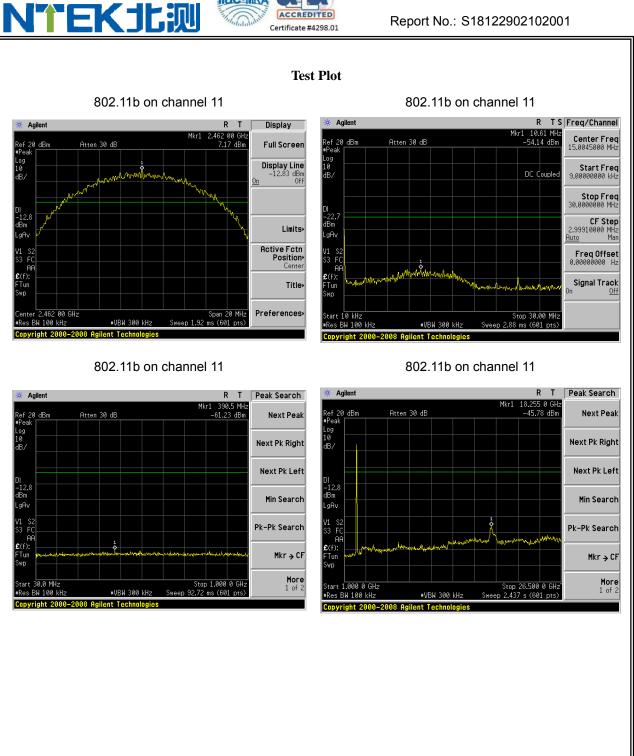
Pk-Pk Search

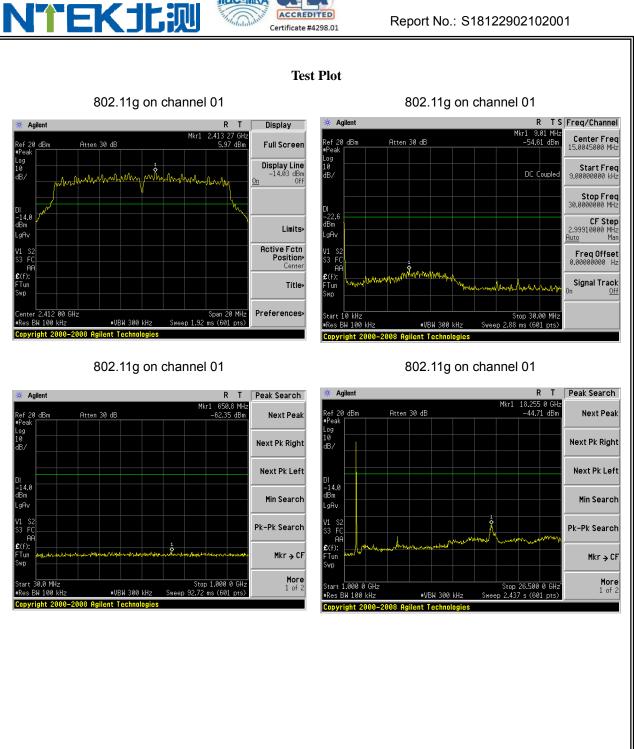

Stop 26.500 0 GHz Sweep 2.437 s (601 pts)

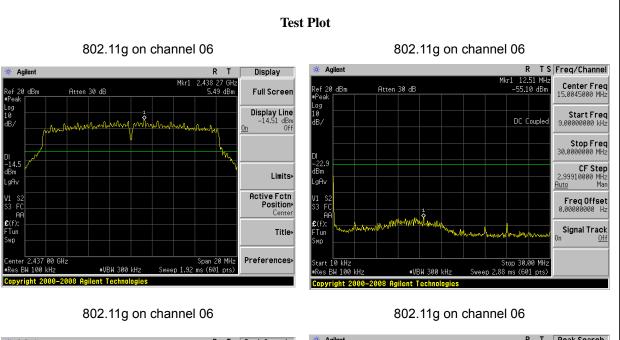
#VBW 300 kHz

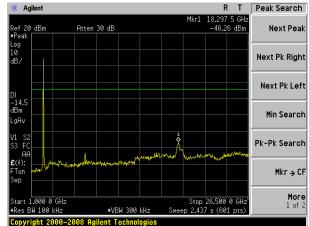

Mkr→CF

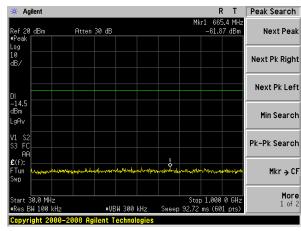
More 1 of 2

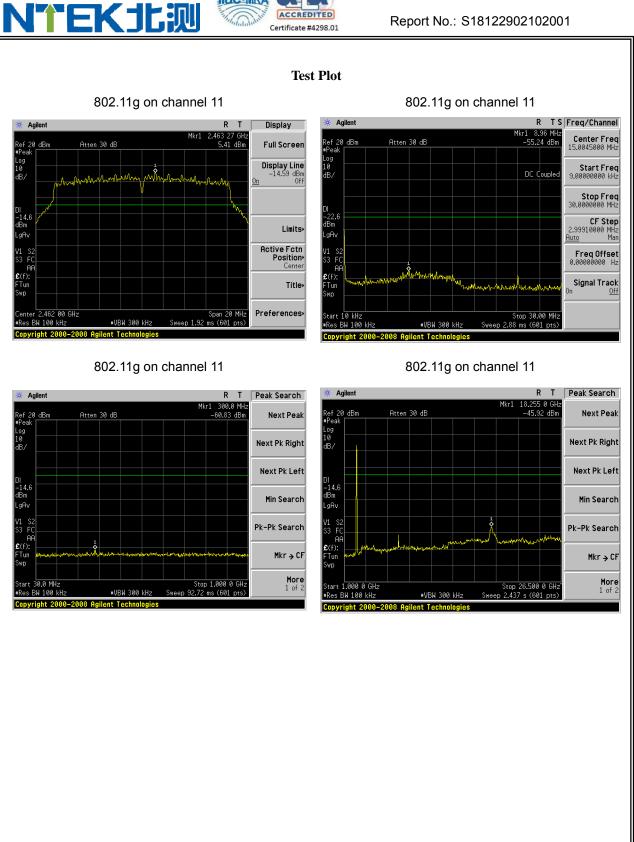




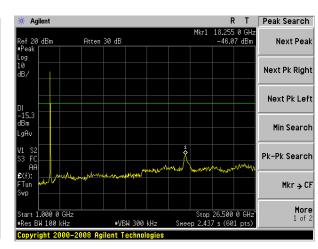


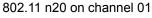


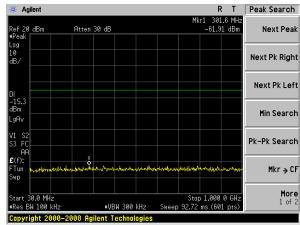




Test Plot


Agilent


20 dBm


aAs

enter 2.412 00 GHz les BW 100 kHz

802.11n20 on channel 01 802.11n20 on channel 01 🔆 Agilent R TS Freg/Channel Display Mkr1 2.413 27 GHz 4.74 dBm Mkr1 10.06 MH -54.38 dBm Center Freq 15.0045000 MHz Ref 20 dBm #Peak Atten 30 dB Atten 30 dB Full Screen Log 10 dB/ Display Line -15.26 dBm Off Start Freq 9.0000000 kHz 1 DC Coupled AA AA 0n Stop Freq 30.000000 MHz -22.4 dBm LgAv CF Step 2.99910000 MHz <u>Auto</u> Man Limits Auto Active Fctn Position• Center Freq Offset 0.00000000 Hz \$ AP €(f): FTun Signal Track Title, Span 20 MHz 15 (601 pts) Preferences Stop 30.00 MHz Start 10 kHz ≢VBW 300 kHz 1.92 m #VBW 300 kHz BW 100 kH 2 88 ... (601 Copyright 2000-2008 Agilent Technologies Co ovright 2000-2008 Agilent Tech 802.11 n20 on channel 01

Test Plot 802.11 n20 on channel 06 802.11 n20 on channel 06 🔆 Agilent R TS Freg/Channel Display Agilent Mkr1 2.438 27 GHz 4.41 dBm Mkr1 14.35 MH -54.36 dBm Center Freq 15.0045000 MHz Ref 20 dBm #Peak Atten 30 dB Atten 30 dB Full Screen 20 dBm Log 10 dB/ Display Line -15.59 dBm Off Start Freq 9.0000000 kHz 10 DC Coupled مالہ اللہ 0n Stop Freq 30.000000 MHz –22.6 dBm CF Step 2.99910000 MHz <u>Auto</u> Man Limits aAv aAs Auto Active Fctn Position• Center V1 S3 Freq Offset 0.00000000 Hz \$ A) AP della **£**(f) Signal Track Title, Tun Span 20 MHz is (601 pte) enter 2.437 00 GHz les BW 100 kHz Preferences Stop 30.00 MHz Start 10 kHz ≢VBW 300 kHz 1.92 m #VBW 300 kHz BW 100 kH 2 88 . (601 Co ovright 2000-2008 Agilent Tech 802.11 n20 on channel 06 802.11 n20 on channel 06 R T Peak Search 🔆 Agilent R T Peak Search Mkr1 18.255 0 GH: -43.97 dBm Mkr1 387.3 MH: -61.89 dBm Atten 30 dB Next Peak ef 20 dBm Atten 30 dB Next Peak Next Pk Right Next Pk Right

Copyright 2000–2008 Agilent Technologie 🔆 Agilent ef 20 dBr Log 10 dB/ Next Pk Left Min Search ıA، V1 Pk-Pk Search AF

#VBW 300 kHz

nt Tech nin Stop 1.000 0 GHz 92.72 ms (601 pts)

NTEK北测

Copyright 2000–2008 Agilent Technologie


60

Tur

٨n

Start 30.0 MHz #Res BW 100 kHz

Copyright 2000-2008 Agile

R TS Freg/Channel

Center Freq 15.0045000 MHz

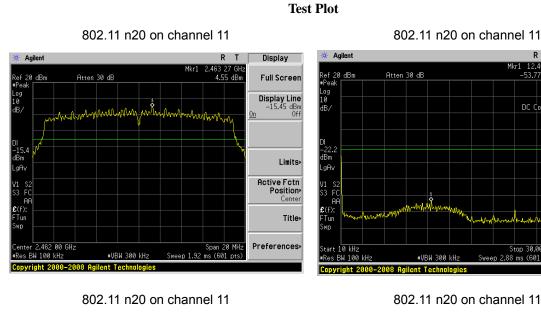
Start Freq 9.0000000 kHz

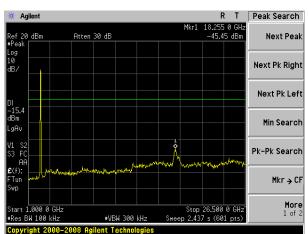
Stop Freq 30.000000 MHz

CF Step 2.99910000 MHz <u>Auto</u> Man

Freq Offset 0.00000000 Hz

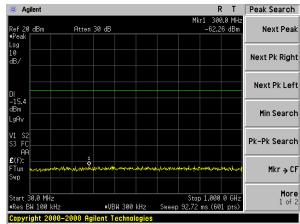
Signal Track


Mkr1 12.46 MH -53.77 dBm


DC Coupled

Stop 30.00 MHz

2 88 . (601



-Avol-

#VBW 300 kHz

Agilent

20 dBm

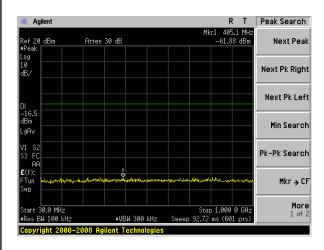
Log 10 dB/

aAs

ĤΙ €(f

Center 2.422 00 GHz #Res BW 100 kHz

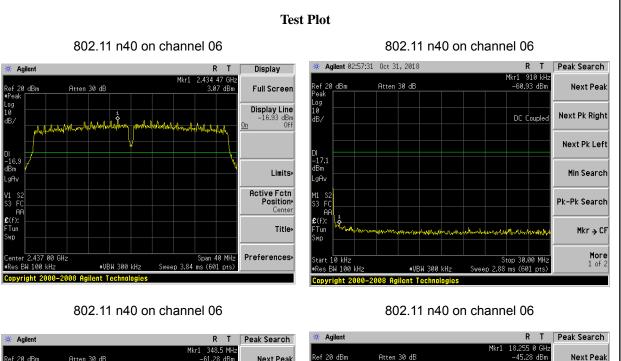
Tur

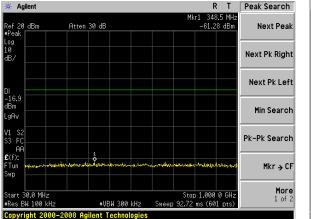

ηp

Report No.: S18122902102001

Test Plot 802.11n40 on channel 03 802.11n40 on channel 03 ₩ Agilent 05:41:08 Oct 31, 2018 R T Freq/Channel Display R Т 1kr1 560 kH -50.35 dBm 2.424 53 GH: 3.54 dBm 1kr1 Center Freq 15.0045000 MHz Ref 30 Peak Atten 30 dB dBr Atten 40 dB Full Screen Log 10 dB/ Display Line -16.46 dBm Off Start Freq 9.0000000 kHz DC Couple Stop Freq 30.0000000 MHz –20.6 dBm **CF Step** 2.99910000 MHz <u>Auto</u> Man Limits .aAv Active Fctn Position Center M1 \$3 Freq Offset 0.00000000 Hz FC Af **£**(f) Signal Track Title, Tun Span 40 MHz eep 3.84 ms (601 pts) Preferences Stop 30.00 MHz 8 ms (601 pts) Start 10 kHz ≢VBW 300 kHz Św BW 100 kH #VBW 300 kHz 2 88 ... Copyright 2000-2008 Agilent Technologies yright 2000-2008 Agilent Tech Co

802.11 n40 on channel 03



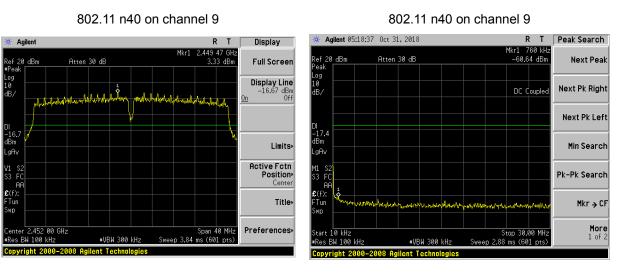

🔆 Agilent R T Peak Search Mkr1 18.297 5 GH: -46.41 dBm Atten 30 dB Next Peak Ref 20 dBm Peal 10 dB, Next Pk Right Next Pk Left -16.5 #Bm Min Search ъĤ V1 Pk-Pk Search Mkr→CF Tur Stop 26.500 0 GHz Sweep 2.437 s (601 pts) More 1 of 2 000 0 GHz tar Res BW 100 kHz #VBW 300 kHz

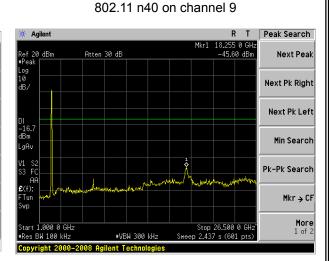
Copyright 2000–2008 Agilent Technologie

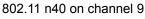
802.11 n40 on channel 03

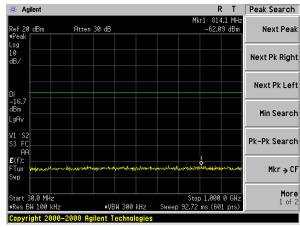
NTEK北测

Mkr1 18.255 0 GH: -45.28 dBm Atten 30 dB Next Peak Next Pk Right Next Pk Left Min Search V1 Pk-Pk Search Mkr→CF More 1 of 2 Stop 26.500 0 GHz Sweep 2.437 s (601 pts) tart 000 0 GHz Res BW 100 kHz ₩VBW 300 kHz Copyright 2000–2008 Agilent Technologie


Test Plot

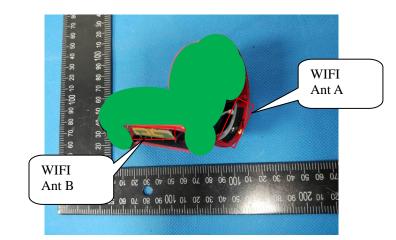



Agilent


20 dBm

αĤ

7.9 ANTENNA APPLICATION


7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

EUT has two antennas, and different modes support different transmit mode what describe as Following form:

Mode	Tx/Rx
802.11b/g	1TX, 1RX
802.11n	1TX/2TX, 1RX/2RX

It comply with the standard requirement.

END OF REPORT