

Report No: CCISE190904907V01

FCC REPORT

Applicant:	Neusoft Corporation		
Address of Applicant:	No.2 Xinxiu Street, Hunnan New District, Shenyang, Liaoning, China Shenyang Liaoning CN 110179		
Equipment Under Test (E	EUT)		
Product Name:	Wireless Digital Terminal		
Model No.:	S611G		
Trade mark:	Neusoft		
FCC ID:	2ASMA-S611G		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B		
Date of sample receipt:	17 Sep., 2019		
Date of Test:	18 Sep., to 15 Oct., 2019		
Date of report issued:	13 Nov., 2019		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description		
00	16 Oct., 2019	Original		
01	13 Nov., 2019	Update page 6, 11, 12		

Tested by:

Mike.DU Test Engineer Date:

13 Nov., 2019

Reviewed by:

Date: Proiect Engine

13 Nov., 2019

3 Contents

			Page
1	С	COVER PAGE	1
2	v	/ERSION	2
3	С	CONTENTS	
4	_	EST SUMMARY	-
1 5		GENERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	Test Mode	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	Related Submittal(s) / Grant (s)	
	5.7 5.8	DESCRIPTION OF CABLE USED	
	5.8 5.9	Additions to, deviations, or exclusions from the method	
	5.10		
	5.11		
6	т	TEST RESULTS AND MEASUREMENT DATA	
	6.1	CONDUCTED EMISSION	
	6.2	RADIATED EMISSION	11
7		TEST SETUP PHOTO	
8	E	EUT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result			
Conducted Emission	Part 15.107	Pass			
Radiated Emission	Part 15.109	Pass			
Remark:					
1. Pass: The EUT complies with the essen	1. Pass: The EUT complies with the essential requirements in the standard.				
2. N/A: The EUT not applicable of the test item.					
Test Method: ANSI C63.4:2014					

5 General Information

5.1 Client Information

Applicant:	Neusoft Corporation
Address:	No.2 Xinxiu Street, Hunnan New District, Shenyang, Liaoning, China Shenyang Liaoning CN 110179
Manufacturer:	Neusoft Corporation
Address:	No.2 Xinxiu Street, Hunnan New District, Shenyang, Liaoning, China Shenyang Liaoning CN 110179

5.2 General Description of E.U.T.

Product Name:	Wireless Digital Terminal
Model No.:	S611G
Power supply:	Rechargeable Lithium polymer Battery DC3.85V-4600mAh
AC adapter :	Model: ICP12-050-2000B Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description		
PC mode	Keep the EUT in Downloading mode(Worst case)		
Charging+Recording mode	Keep the EUT in Charging+Recording mode		
Charging+Playing mode	Keep the EUT in Charging+Playing mode		
GPS mode	Keep the EUT in GPS receiver mode		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Model Serial Number	
DELL	PC	OPTIPLEX745 N/A		DoC
DELL	MONITOR	E178FPC N/A		DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC
HP	Printer	CB495A	05257893	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Unshielded	1.2m	EUT	PC/Adapter

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.10 Laboratory Location

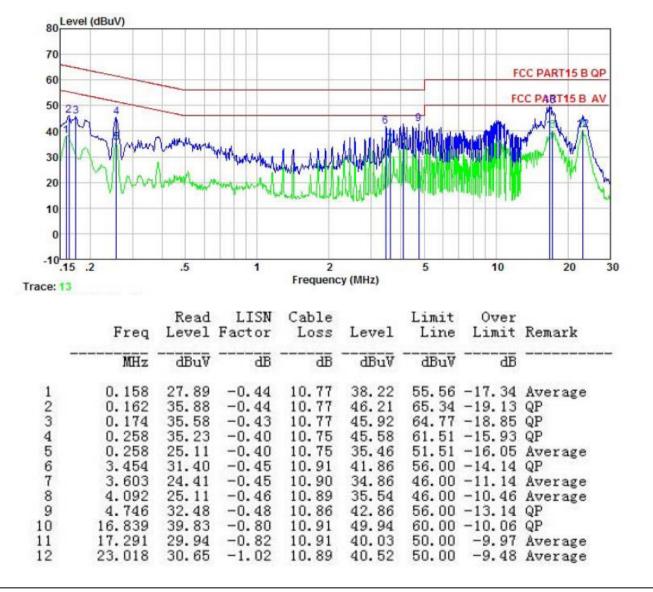
Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10)7				
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range (MHz)	Limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	0.5-30	60	50			
	* Decreases with the logarith	m of the frequency.				
Test setup:	Reference Plan 40cm 80cr 40cm 80cr Equipment E.U.T Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	LISN Filter AC pr EMI Receiver				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 					
Test Instruments:	Refer to section 5.11 for deta	ails				
Test mode:	Refer to section 5.3 for detail	s				
Test results:	Pass					

Measurement data:

Product name:	Wireless Digital Terminal	Product model:	S611G
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

roduct na	me:	Wireless Digital Terminal				del:	S611G	S611G			
est by:		Mike		г	est mode:		PC mode				
est freque	ncy:	150 kHz ~	- 30 MHz	F	hase:		Neutral	Neutral			
est voltage	e:	AC 120 V	/60 Hz	Hz Environment:			Temp: 2	2.5℃ Huni: 55%			
70 60 50 40 30 20 10 0 -10	5 .2	Manus and	5 1 1	7 Martin Martin 2 Frequence	WAA words	5		C PART15 B QP			
Trace: 1	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark			
	MHz	dBu∛	dB	dB	dBu∛	dBu∛					
								Average			

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B S	ection 15.1	09				
Test Frequency Range:	30MHz to 30000	MHz					
Test site:	Measurement Dis	stance: 3m	(Sen	ni-Anechoic	Chamber)		
Receiver setup:	Frequency	Detect	or	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-pe	eak 120kHz 300		300kHz	Quasi-peak Value	
	Above 1GHz				3MHz	Peak Value	
		RMS		1MHz	3MHz	Average Value	
Limit:	Frequenc		Lin	nit (dBuV/m	@3m)	Remark	
	30MHz-88N		40.0		Quasi-peak Value		
	88MHz-216			43.5		Quasi-peak Value	
	216MHz-960			46.0		Quasi-peak Value	
	960MHz-10	θHZ		54.0		Quasi-peak Value	
	Above 1G	Hz		54.0		Average Value	
Test setup:				74.0		Peak Value	
	Below 1GHz	4m 4m - • • • • • • • • • • • • • • • • • • •			Antenna Tower Search Antenna Test ceiver		
				Horn Antenna	Antenna Towe		
Test Procedure:		meter sem	i-ane	choic cambe	r. The table	3 meters above the e was rotated 360	
	-		•		-		
				•		e-receiving antenna,	
	which was mounted on the top of a variable-height antenna tower.3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.						

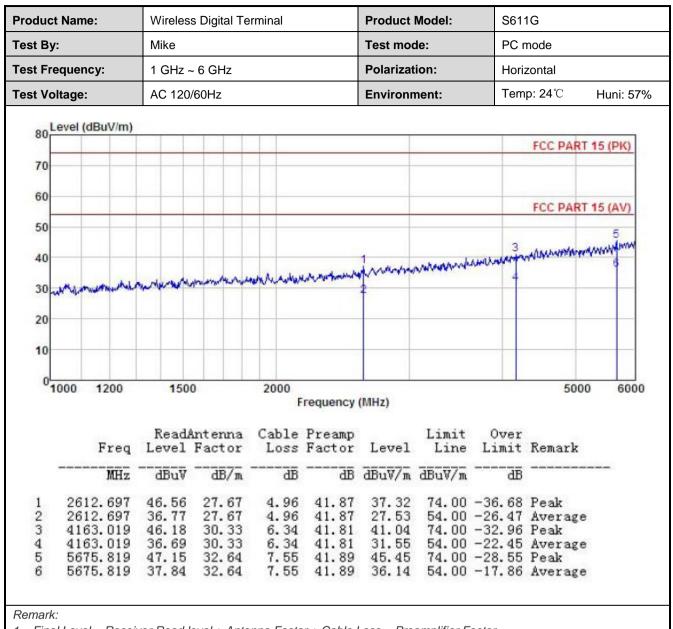
	 For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB
	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor and more than 20dB below the limit, which were no recorded

Measurement Data:

Below	1GHz:
-------	-------

ame:	Wireless	Digital Terr	ninal		Product Model: S611G					
	Mike				Test mode: PC mode			ode		
ency:	30 MHz -	MHz ~ 1 GHz			Polarization:		Vertica	Vertical		
je:	AC 120/6	60Hz			Environme	ent:	Temp:	24 ℃	Huni: 57%	
al (dDu)/m)										
el (aBuv/m)										
		_								
							FCC P	ART15 CL	ASSB	
					4	-	E	e	3	
	1		3		A		1		hubber	
	2		1	1	VISI	1 heren and	Ludal	halphange		
	14	d 1 mars	wind	had alle	w w	-Vn	Warter			
Val. (n. n. ner nameda	erwr V	"haden"		ant/M						
									11	
50		10		20 equency (N			500		1000	
50			FI							
			ri							
	Read	Intenna	Cable	Preamp		Limit	Over			
Freq	Read	Intenna Factor	Cable		Level	Limit Line		Remark	¢	
	Read		Cable	Preamp Factor		Line		Remark	τ	
Freq MHz 54.261	Read/ Level dBuV 49.20	Factor 	Cable Loss dB 1.34	Preamp Factor dB 29.80	Level dBuV/m 32.41	Line dBuV/m 40.00	Limit 	QP	τ	
Freq MHz 54.261 62.871	Read/ Level dBuV 49.20 42.64	Factor 	Cable Loss dB 1.34 1.38	Preamp Factor dB 29.80 29.76	Level dBuV/m 32.41 24.62	Line <u>dBuV/m</u> 40.00 40.00	Limit dB -7.59 -15.38	QP QP	¢	
Freq MHz 54.261 62.871 134.559	Read/ Level dBuV 49.20 42.64 45.81	Factor dB/m 11.67 10.36 9.88	Cable Loss dB 1.34 1.38 2.34	Preamp Factor dB 29.80 29.76 29.30	Level dBuV/m 32.41 24.62 28.73	Line dBuV/m 40.00 40.00 43.50	Limit -7.59 -15.38 -14.77	QP QP QP	c	
Freq MHz 54.261 62.871	Read/ Level dBuV 49.20 42.64	Factor 	Cable Loss dB 1.34 1.38	Preamp Factor dB 29.80 29.76 29.30 28.61	Level dBuV/m 32.41 24.62	Line dBuV/m 40.00 40.00 43.50 46.00	Limit dB -7.59 -15.38	QP QP QP QP	t 	
	el (dBuV/m)	ency: 30 MHz - je: AC 120/6 el (dBuV/m)	ency: 30 MHz ~ 1 GHz je: AC 120/60Hz el (dBuV/m)	ency: 30 MHz ~ 1 GHz je: AC 120/60Hz el (dBuV/m)	and the second	ency: 30 MHz ~ 1 GHz Polarization ge: AC 120/60Hz Environme el (dBuV/m)	ency: 30 MHz ~ 1 GHz Polarization: je: AC 120/60Hz Environment: el (dBuV/m)	ency: 30 MHz ~ 1 GHz Polarization: Vertica je: AC 120/60Hz Environment: Temp: el (dBuV/m) FCC P	ency: 30 MHz ~ 1 GHz Polarization: Vertical je: AC 120/60Hz Environment: Temp: 24°C el (dBuV/m) FCC PART15 CI FCC PART15 CI 1 3 4 5 1 3 4 5 1 3 4 4	

Product N	ame:	Wireless Digital Terminal				Product Mo	S611G			
Fest By:		Mike			1	est mode:	PC mode			
Fest Frequ	iency:	30 MHz	~ 1 GHz		Polarization:			Horizontal		
Fest Volta	ge:	AC 120/	60Hz		E	Environme	nt:	Temp: 2	24 ℃	Huni: 57%
80 Leve	el (dBuV/m)									1
70										
60										
Control Control								FCC PA	RT15 CL	ASSB
50					2	2				
40		-				Å			6	
30				2		MIA		5	Haraba for	what what what what what has a work of the second s
20		AL			h		muntum	marcher	Hedra.	
	Antonina	free the	a demander	harthand	Vendlaw ven					
10										
0 ³⁰	50		100		200			500		1000
				Fre	quency (MH	łz)				
	Freq		Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remai	ck
<u></u>	MHz	dBu∛		ā	āĒ	dBu∛/m	dBu∛/m	āĒ		
1 2 2	54.261 143.830	41.42	11.67 9.27	1.34	29.25	24.63	43.50	-15.37	1	
2 3 4 5	241.676 290.017	54.58 43.69	12.38 13.43	2.82 2.91	28.47	41.19 31.56		-4.81	QP	
5 6	480.528 750.108	38.24 37.59	17.52 20.60	3.46 4.36	28.92 28.48	30.30 34.07		-15.70 -11.93		
Remark:										
	evel = Receiv	or Dood la	ual Anton	na Faatar	0-1-1-1-	-				



Above 1GHz:

oduct Na	me:	Wireless	Digital Ter	rminal		Product I	ct Model: S611G							
st By:		Mike		Test mode:				PC m	PC mode					
st Freque	ency:	1 GHz ~	1 GHz ~ 6 GHz Polarization: Vertical						Vertical			/ertical		
st Voltag	e:	AC 120/6	60Hz			Environm	nent:	Temp	Temp: 24℃ Hu					
Lava	(dDuil/m)													
80 Leve	l (dBuV/m)							F	CC PART 15	(PK)				
70														
60														
_								F	CC PART 15	(AV)				
50										5				
40						1	2 & X a hall the	mound	www.www.	(Marine				
20	A. John Martin	an and a second	annah	whenever	aturned	an a	Address of the second second	4		Ť.				
30	March 1													
20														
10								_						
01000	1200	1500		2000	equency (M			12	5000	6000				
				ri,	equency (n	(112)								
		ReadA	ntenna	Cable	Preamp		Limit	Over						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark					
	MHz	dBu∛	dB/m	dB	dB	dBuV/m	dBuV/m	dB						
1 2	669.481	47.10	27.80	5.01				-35.89						
	669.481	37.90	27.80	5.01					Average					
2 2	UVII 656	47.52 37.48	30.23	6.11			74.00	-31.95						
2 2	980.656		30.23	6.11	41.81 41.89			-21.99	Average					
2 2 3 3 4 3	980.656		32 64			40.00	14.00	20.92	T POIN					
2 2 3 3 4 3 5 5	980.656 685.998	46.78	32.64	7.55	41.89	35.04								
2 2 3 3 4 3 5 5	980.656		32.64 32.64	7.55	41.89	35.04			Average					

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
 The emission levels of other frequencies are very lower than the limit and not show in test report.