

FCC RADIO TEST REPORT FCC ID: 2ASMA-S611

Product: Wireless Digital Terminal

Trade Mark: Neusoft Model No.: S611 Family Model: N/A Report No.: S18122500501005 Issue Date: 23 Apr. 2019

Prepared for

Neusoft Corporation No.2 XinxiuStreet,Hunnan New District,ShenyangCity,LiaoningProvince,China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1	TE	ST RESULT CERTIFICATION	3				
2	2 SUMMARY OF TEST RESULTS						
3	FA	CILITIES AND ACCREDITATIONS	5				
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5				
4	GE	NERAL DESCRIPTION OF EUT	6				
5	DE	SCRIPTION OF TEST MODES	8				
6	SE	TUP OF EQUIPMENT UNDER TEST	9				
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS					
7	TE	ST REQUIREMENTS	12				
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	FIELD STRENGTH OF SPURIOUS RADIATION EFFECTIVE RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED POWER CONDUCTED OUTPUT POWER FREQUENCY STABILITY PEAK-TO-AVERAGE RATIO	23 29 35 42 49 56				

1 TEST RESULT CERTIFICATION

Applicant's name:	Neusoft Corporation		
Address:	No.2 XinxiuStreet,Hunnan New District,ShenyangCity,LiaoningProvince,China		
Manufacturer's Name:	Neusoft Corporation		
Address:	No.2 XinxiuStreet,Hunnan New District,ShenyangCity,LiaoningProvince,China		
Product description			
Product name:	Wireless Digital Terminal		
Model and/or type reference:	S611		
Family Model:	N/A		

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
47 CFR Part 2, Part 22H, Part 24E, Part 27L	
ANSI/TIA-603-E-2016	Complied
FCC KDB 971168 D01 Power Meas License Digital Systems v03	Complied
ANSI C63.26:2015	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	26 Dec. 2018 ~ 05 Mar. 2019
Testing Engineer :	knowny. Hu
	(Mary Hu)
Technical Manager :	Jason chen
	(Jason Chen)
	Sam. Chen
Authorized Signatory :	20.0
<u> </u>	(Sam Chen)

2 SUMMARY OF TEST RESULTS FCC Part22, Subpart H/ FCC Part24, Subpart E, FCC Part27, Subpart L,						
KDB 971168 D01 Power Meas License Digital Systems v03						
FCC Rule	Test Item	Verdict	Remark			
2.1046	Conducted Output Power	PASS				
24.232(d) KDB 971168 D01 Clause 5.7	Peak-to-Average Ratio	PASS				
2.1049 22.917(b) 24.238(b) KDB 971168 D01 Clause 4.2	Occupied Bandwidth	PASS				
2.1051 22.917(a) 24.238(a) KDB 971168 D01 Clause 6	Band Edge	PASS				
22.913(a)(2) KDB 971168 D01 Clause 5.6	Effective Radiated Power	PASS				
24.232(c) KDB 971168 D01 Clause 5.6	Equivalent Isotropic Radiated Power	PASS				
2.1053 22.917(a) 24.238(a) KDB 971168 D01 Clause 7	Field Strength of Spurious Radiation	PASS				
2.1055 22.355 24.235 KDB 971168 D01 Clause 9	Frequency Stability for Temperature & Voltage	PASS				
2.1051 22.917(a) 24.238(a) KDB 971168 D01 Clause 6	Conducted Emission	PASS				
the test.	plicable in this Test Report. and recorded according to the standards a to the EUT during all test items.	nd without any d	eviation durir			

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description CNAS-Lab.	The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A-1.
FCC- Accredited	Test Firm Registration Number: 463705. Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01 This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

tainty

Product Feature and Specification					
Equipment Wireless Digital Terminal					
Trade Mark	Neusoft				
FCC ID	2ASMA-S611				
Model No.	S611				
Family Model	N/A				
Model Difference	N/A				
Operating Frequency	GSM850: TX824.2MHz~848.8MHz /RX869.2MHz~893.8MHz; UMTS FDD Band V: TX826.4MHz~846.6MHz /RX871.4MHz~891.6MHz; PCS1900: TX1850.2MHz~1909.8MHz /RX1930.2MHz~1989.8MHz; UMTS FDD Band II: TX1852.4MHz~1907.6MHz /RX1932.4MHz~1987.6MHz; UMTS-FDD Band II: TX1710MHz~1755MHz /RX2110MHz~2155MHz				
Modulation	 □GMSK for GSM/GPRS; □8PSK for EGPRS; □QPSK for UMTS bands; 				
GPRS Class	⊠Multi-Class12 ⊠Only 4 timeslots are used for GPRS				
SIM CARD	The Equipment has one SIM Card socket				
Antenna Type	FPCB Antenna				
Antenna Gain	-0.72dBi				
	DC supply: DC 3.85V/4600mAh from Battery or DC 5V.				
Power supply	Adapter supply: Model: ICP12-050-2000B Input: 100-240V~50/60Hz 0.5A Output: 5V2000mA				
HW Version	PD510_MB_V1.3				
SW Version Ubione-user_#17					

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual. The High Voltage 4.43V and Low Voltage 3.27V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage.

Revision History

Revision History					
Report No.	Version	Description	Issued Date		
S18122500501005	Rev.01	Initial issue of report	23 Apr. 2019		

5 DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester(CMU 200) to ensure max power transmission and proper modulation. Three channels (The low channel, the middle channel and the high channel) were chosen for testing on all frequency band.

Note: GSM/GPRS/EGPRS 850, GSM/GPRS/EGPRS 1900, WCDMA/HSDPA/HSUPA band II,

WCDMA/HSDPA/HSUPA band V, HSDPA band IV, HSUPA band IV modes have been tested during the test. the worst condition (GSM850, GSM1900, RMC 12.2k) be recorded in the test report if no other modes test data.

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v03 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 10th harmonic for GSM850/UMTS FDD Band V/ UMTS FDD Band IV.

2. 30 MHz to 10th harmonic for GSM1900/UMTS FDD Band II.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

	l est Modes					
Band	For Conducted Test Cases	For Radiated Test Cases				
GSM 850	GSM Link	GSM Link				
GSM 1900 GSM Link		GSM Link				
UMTS Band II RMC 12.2Kbps Link		RMC 12.2Kbps Link				
UMTS Band V RMC 12.2Kbps Link		RMC 12.2Kbps Link				

TestMedee

Test Frequency and Channels:

Frequency	🖾 GSM 850		⊠GSM 1900		UMTS Band II		UMTS Band V	
Band	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
CH_H	251	848.8	810	1909.8	9538	1907.6	4233	846.6
CH_M	190	836.6	661	1880.0	9400	1880.0	4183	836.6
CH_L	128	824.2	512	1850.2	9262	1852.4	4132	826.4

Frequency	UMTS Band IV			
Band	Channel	Frequency (MHz)		
CH_H	1513	1752.6		
CH_M	1412	1732.6		
CH_L	1312	1712.4		

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

For Radiated Test Cases
EUT
For Conducted Output Power
Measurement Instrument Attenuator EUT
For Peak-to Average Ratio, Occupied Bandwidth, Conducted Band edge and Conducted Spurious Emission
System Simulator
Spectrum Analyzer Attenuator
C4
For Frequency Stability
Measurement Instrument C5 C6 DC Power Source
Thermal Chamber
······································

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m
C-2	RF Cable	YES	NO	0.1m
C-3	RF Cable	YES	NO	0.1m
C-4	RF Cable	YES	NO	0.2m
C-5	RF Cable	YES	NO	0.2m
C-6	DC Cable	NO	NO	1.0m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

0.5 L										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period			
1	MXA Signal Analyzer	Agilent	N9020A	MY49100060	2018.10.08	2019.10.07	1 year			
2	Test Receiver	R&S	ESPI	101318	2018.05.19	2019.05.18	1 year			
3	Bilog Antenna	TESEQ	CBL6111D	31216	2018.04.08	2019.04.07	1 year			
4	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2019.05.18	1 year			
5	Horn Antenna	EM	EM-AH-1018 0	2011071402	2018.05.19	2019.05.18	1 year			
6	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2018.04.08	2019.04.07	1 year			
7	Amplifier	EM	EM-30180	060538	2018.08.05	2019.08.04	1 year			
8	Loop Antenna	ARA	PLA-1030/B	1029	2018.05.19	2019.05.18	1 year			
9	Power Meter	R&S	NRVS	100696	2018.08.05	2019.08.04	1 year			
10	Power Sensor	R&S	URV5-Z4	0395.1619.0 5	2018.05.19	2019.05.18	1 year			
11	Test Cable	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year			
12	Test Cable	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year			
13	Test Cable	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year			
14	Test Receiver	R&S	ESCI	101160	2018.05.19	2019.05.18	1 year			
15	LISN	R&S	ENV216	101313	2018.04.19	2019.04.18	1 year			
16	LISN	EMCO	3816/2	00042990	2018.05.19	2019.05.18	1 year			
17	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2018.05.19	2019.05.18	1 year			
18	Passive Voltage Probe	R&S	ESH2-Z3	100196	2017.04.21	2020.04.20	3 year			
19	Test Cable	N/A	C01	N/A	2017.04.21	2020.04.20	3 year			
20	Test Cable	N/A	C02	N/A	2017.04.21	2020.04.20	3 year			
21	Test Cable	N/A	C03	N/A	2018.04.19	2019.04.18	1 year			
22	Attenuator	MCE	24-10-34	BN9258	2018.04.08	2019.04.07	1 year			
23	Spectrum Analyzer	agilent	e4440a	us44300399	2018.05.19	2019.05.18	1 year			
24	test receiver	R&S	ESCI	a0304218	2018.05.19	2019.05.18	1 year			
25	Communication Tester	R&S	CMU200	A0304247	2018.10.08	2019.10.07	1 year			
26	Thermal Chamber	Ten Billion	TTC-B3C	TBN-960502	2018.05.19	2019.05.18	1 year			
27	DC Power Source	N/A	PS-6005D	2017040292 3	2017.06.06	2020.06.05	3 year			
	Each piece of ec				year except the	e Test Cable&	DC Power			

Source which is scheduled for calibration every 3 years.

7 TEST REQUIREMENTS

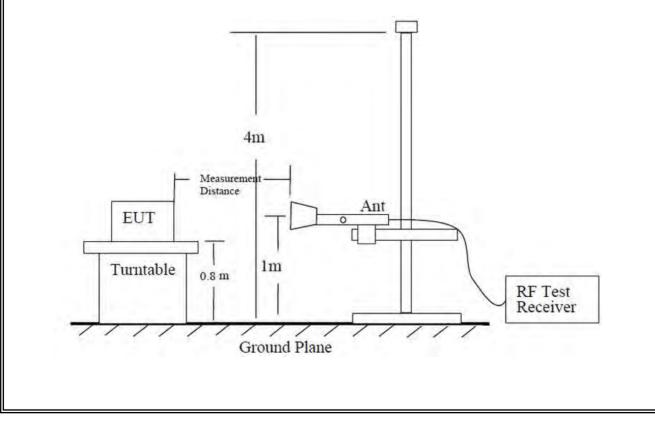
7.1 FIELD STRENGTH OF SPURIOUS RADIATION

7.1.1 Applicable Standard

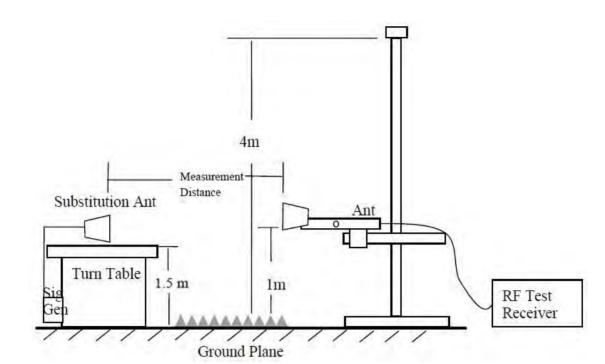
According to FCC KDB 971168 D01 v03 Section 5.8 and ANSI/TIA-603-E-2016 Section 2.2.12

7.1.2 Conformance Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.


7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.


7.1.4 Test Configuration

According to the ANSI/TIA-603-E-2016 test method, The Receiver or Spectrum was scanned from 9 KHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz The resolution bandwidth is set as outlined in Part 24.238, Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II / WCDMA Band V / GSM 850 / GSM 1900.

TEST CONFIGURATION

7.1.5 Test Procedure

- EUT was placed on a 0.8 meter(For frequency above 1G, EUT should be placed on 1.5m) high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 meter. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (SG Level) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (SG Level) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Cable Loss) ,the Substitution Antenna Gain should be recorded after test. The measurement results are obtained as described below: Power(EIRP)= SG Level- Cable Loss+ Antenna Gain
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

7.1.6 Test Results

EUT:	Wireless Digital Terminal	Model No.:	S611
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	GSM/GPRS/EGPRS 850/ GSM/GPRS/EGPRS 1900 UMTS band II/ UMTS band V/ UMTS band IV	Test By:	Mary Hu

Radiated Spurious Emission

			GSN	/ 850					
Frequency	SG Level	Cable Loss	Antenna Gain	Absolute Level	Limit	Over Limit	Polarity		
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dBm)			
	Test Results for Channel 128/824.2 MHz								
1648.4	-52.23	2.80	27.50	-27.53	-13	-14.53	Vertical		
1648.4	-54.91	2.80	27.50	-30.21	-13	-17.21	Horizontal		
2472.6	-50.62	2.91	27.80	-25.73	-13	-12.73	Vertical		
2472.6	-53.91	2.91	27.80	-29.02	-13	-16.02	Horizontal		
3296.8	-53.88	4.02	29.87	-28.03	-13	-15.03	Vertical		
3296.8	-52.61	4.02	29.87	-26.76	-13	-13.76	Horizontal		
		Test Res	sults for Cha	nnel 190/83	6.6 MHz				
1673.2	-52.00	2.80	27.48	-27.32	-13	-14.32	Vertical		
1673.2	-52.80	2.80	27.48	-28.12	-13	-15.12	Horizontal		
2509.8	-53.00	2.91	27.70	-28.21	-13	-15.21	Vertical		
2509.8	-52.57	2.91	27.70	-27.78	-13	-14.78	Horizontal		
3346.4	-54.37	4.02	29.82	-28.57	-13	-15.57	Vertical		
3346.4	-54.05	4.02	29.82	-28.25	-13	-15.25	Horizontal		
		Test Res	sults for Cha	nnel 251/84	8.8 MHz				
1697.6	-52.96	2.80	27.42	-28.34	-13	-15.34	Vertical		
1697.6	-53.04	2.80	27.42	-28.42	-13	-15.42	Horizontal		
2546.4	-52.08	2.91	27.68	-27.31	-13	-14.31	Vertical		
2546.4	-55.55	2.91	27.68	-30.78	-13	-17.78	Horizontal		
3395.2	-52.96	4.02	29.80	-27.18	-13	-14.18	Vertical		
3395.2	-52.88	4.02	29.80	-27.10	-13	-14.10	Horizontal		

Remark:

1. We were tested all Configuration refer 3GPP TS134 121.

2. Absolute Level = SG Level- Cable Loss+ Antenna Gain

	GPRS 850									
Frequency	SG Level	Cable Loss	Antenna Gain	Absolute Level	Limit	Over Limit	Polarity			
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dBm)				
	Test Results for Channel 128/824.2 MHz									
1648.4	-52.11	2.80	27.50	-27.41	-13	-14.41	Vertical			
1648.4	-52.55	2.80	27.50	-27.85	-13	-14.85	Horizontal			
2472.6	-52.37	2.91	27.80	-27.48	-13	-14.48	Vertical			
2472.6	-53.69	2.91	27.80	-28.80	-13	-15.80	Horizontal			
3296.8	-53.47	4.02	29.87	-27.62	-13	-14.62	Vertical			
3296.8	-53.02	4.02	29.87	-27.17	-13	-14.17	Horizontal			
		Test Res	sults for Cha	nnel 190/83	6.6 MHz					
1673.2	-52.26	2.80	27.48	-27.58	-13	-14.58	Vertical			
1673.2	-53.62	2.80	27.48	-28.94	-13	-15.94	Horizontal			
2509.8	-52.77	2.91	27.70	-27.98	-13	-14.98	Vertical			
2509.8	-53.54	2.91	27.70	-28.75	-13	-15.75	Horizontal			
3346.4	-52.09	4.02	29.82	-26.29	-13	-13.29	Vertical			
3346.4	-53.43	4.02	29.82	-27.63	-13	-14.63	Horizontal			
		Test Res	sults for Cha	nnel 251/848	8.8 MHz					
1697.6	-49.79	2.80	27.42	-25.17	-13	-12.17	Vertical			
1697.6	-51.38	2.80	27.42	-26.76	-13	-13.76	Horizontal			
2546.4	-53.10	2.91	27.68	-28.33	-13	-15.33	Vertical			
2546.4	-52.37	2.91	27.68	-27.60	-13	-14.60	Horizontal			
3395.2	-52.35	4.02	29.80	-26.57	-13	-13.57	Vertical			
3395.2	-53.18	4.02	29.80	-27.40	-13	-14.40	Horizontal			

Remark:

We were tested all Configuration refer 3GPP TS134 121.
 Absolute Level = SG Level- Cable Loss+ Antenna Gain

	EGPRS 850								
			-						
Frequency	SG Level	Cable Loss	Antenna Gain	Absolute Level	Limit	Over Limit	Polarity		
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dBm)			
	Test Results for Channel 128/824.2 MHz								
1648.4	-51.84	2.80	27.50	-27.14	-13	-14.14	Vertical		
1648.4	-51.70	2.80	27.50	-27.00	-13	-14.00	Horizontal		
2472.6	-51.78	2.91	27.80	-26.89	-13	-13.89	Vertical		
2472.6	-52.85	2.91	27.80	-27.96	-13	-14.96	Horizontal		
3296.8	-54.35	4.02	29.87	-28.50	-13	-15.50	Vertical		
3296.8	-51.87	4.02	29.87	-26.02	-13	-13.02	Horizontal		
		Test Res	sults for Cha	nnel 190/83	6.6 MHz				
1673.2	-52.59	2.80	27.48	-27.91	-13	-14.91	Vertical		
1673.2	-53.19	2.80	27.48	-28.51	-13	-15.51	Horizontal		
2509.8	-51.59	2.91	27.70	-26.80	-13	-13.80	Vertical		
2509.8	-53.93	2.91	27.70	-29.14	-13	-16.14	Horizontal		
3346.4	-52.12	4.02	29.82	-26.32	-13	-13.32	Vertical		
3346.4	-53.29	4.02	29.82	-27.49	-13	-14.49	Horizontal		
		Test Res	sults for Cha	nnel 251/848	8.8 MHz				
1697.6	-48.82	2.80	27.42	-24.20	-13	-11.20	Vertical		
1697.6	-50.76	2.80	27.42	-26.14	-13	-13.14	Horizontal		
2546.4	-52.87	2.91	27.68	-28.10	-13	-15.10	Vertical		
2546.4	-51.95	2.91	27.68	-27.18	-13	-14.18	Horizontal		
3395.2	-51.01	4.02	29.80	-25.23	-13	-12.23	Vertical		
3395.2	-52.50	4.02	29.80	-26.72	-13	-13.72	Horizontal		

Remark:

We were tested all Configuration refer 3GPP TS134 121.
 Absolute Level = SG Level- Cable Loss+ Antenna Gain

			GSM	1900			
Frequency	SG Level	Cable Loss	Antenna Factor	Absolute Level	Limit	Over Limit	Polarity
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dBm)	
		Test Res	ults for Cha	nnel 512/18	50.2MHz		
3700.4	-52.87	4.04	33.51	-23.40	-13	-10.40	Vertical
3700.4	-49.89	4.04	33.51	-20.42	-13	-7.42	Horizontal
5550.6	-51.85	5.24	35.84	-21.25	-13	-8.25	Vertical
5550.6	-52.47	5.24	35.84	-21.87	-13	-8.87	Horizontal
		Test Res	sults for Cha	nnel 661/188	30.0MHz		
3760	-51.35	4.04	33.56	-21.83	-13	-8.83	Vertical
3760	-54.13	4.04	33.56	-24.61	-13	-11.61	Horizontal
5640	-53.97	5.24	35.91	-23.30	-13	-10.30	Vertical
5640	-51.83	5.24	35.91	-21.16	-13	-8.16	Horizontal
		Test Res	sults for Cha	nnel 810/190	09.8MHz		
3819.6	-53.36	4.04	34.00	-23.40	-13	-10.40	Vertical
3819.6	-52.19	4.04	34.00	-22.23	-13	-9.23	Horizontal
5729.4	-52.08	5.24	36.04	-21.28	-13	-8.28	Vertical
5729.4	-54.46	5.24	36.04	-23.66	-13	-10.66	Horizontal

Remark:

We were tested all Configuration refer 3GPP TS134 121.
 Absolute Level = SG Level- Cable Loss+ Antenna Gain

	GPRS 1900									
Frequency	SG Level	Cable Loss	Antenna Factor	Absolute Level	Limit	Over Limit	Polarity			
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dBm)				
		Test Res	sults for Cha	nnel 512/18	50.2MHz					
3700.4	-54.81	4.04	33.51	-25.34	-13	-12.34	Vertical			
3700.4	-53.16	4.04	33.51	-23.69	-13	-10.69	Horizontal			
5550.6	-53.40	5.24	35.84	-22.80	-13	-9.80	Vertical			
5550.6	-52.47	5.24	35.84	-21.87	-13	-8.87	Horizontal			
		Test Res	sults for Cha	nnel 661/188	30.0MHz					
3760	-56.45	4.04	33.56	-26.93	-13	-13.93	Vertical			
3760	-55.45	4.04	33.56	-25.93	-13	-12.93	Horizontal			
5640	-52.62	5.24	35.91	-21.95	-13	-8.95	Vertical			
5640	-52.01	5.24	35.91	-21.34	-13	-8.34	Horizontal			
		Test Res	sults for Cha	nnel 810/190)9.8MHz					
3819.6	-51.95	4.04	34.00	-21.99	-13	-8.99	Vertical			
3819.6	-52.73	4.04	34.00	-22.77	-13	-9.77	Horizontal			
5729.4	-54.91	5.24	36.04	-24.11	-13	-11.11	Vertical			
5729.4	-53.69	5.24	36.04	-22.89	-13	-9.89	Horizontal			

Remark:

1. We were tested all Configuration refer 3GPP TS134 121.

2. Absolute Level = SG Level- Cable Loss+ Antenna Gain

	EGPRS 1900								
Frequency	SG Level	Cable Loss	Antenna Factor	Absolute Level	Limit	Over Limit	Polarity		
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dBm)			
		Test Res	sults for Cha	nnel 512/18	50.2MHz				
3700.4	-53.90	4.04	33.51	-24.43	-13	-11.43	Vertical		
3700.4	-53.27	4.04	33.51	-23.80	-13	-10.80	Horizontal		
5550.6	-54.26	5.24	35.84	-23.66	-13	-10.66	Vertical		
5550.6	-52.59	5.24	35.84	-21.99	-13	-8.99	Horizontal		
		Test Res	sults for Cha	nnel 661/188	30.0MHz				
3760	-56.16	4.04	33.56	-26.64	-13	-13.64	Vertical		
3760	-54.98	4.04	33.56	-25.46	-13	-12.46	Horizontal		
5640	-53.92	5.24	35.91	-23.25	-13	-10.25	Vertical		
5640	-52.06	5.24	35.91	-21.39	-13	-8.39	Horizontal		
		Test Res	sults for Cha	nnel 810/190	09.8MHz				
3819.6	-52.15	4.04	34.00	-22.19	-13	-9.19	Vertical		
3819.6	-53.82	4.04	34.00	-23.86	-13	-10.86	Horizontal		
5729.4	-54.76	5.24	36.04	-23.96	-13	-10.96	Vertical		
5729.4	-54.09	5.24	36.04	-23.29	-13	-10.29	Horizontal		

ACCREDITED

Remark:

1. We were tested all Configuration refer 3GPP TS134 121.

2. Absolute Level = SG Level- Cable Loss+ Antenna Gain

	WCDMA Band II								
Frequency	SG Level	Cable Loss	Antenna Factor	Absolute Level	Limit	Over Limit	Polarity		
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dBm)			
		Test Res	ults for Char	nel 9262/18	52.4MHz				
3700.8	-55.95	4.04	33.51	-26.48	-13	-13.48	Vertical		
3700.8	-55.68	4.04	33.51	-26.21	-13	-13.21	Horizontal		
5551.2	-54.47	5.24	35.84	-23.87	-13	-10.87	Vertical		
5551.2	-52.23	5.24	35.84	-21.63	-13	-8.63	Horizontal		
		Test Res	sults for Cha	nnel 9400/1	880MHz				
3760	-55.43	4.04	33.56	-25.91	-13	-12.91	Vertical		
3760	-53.58	4.04	33.56	-24.06	-13	-11.06	Horizontal		
5640	-51.42	5.24	35.91	-20.75	-13	-7.75	Vertical		
5640	-53.48	5.24	35.91	-22.81	-13	-9.81	Horizontal		
		Test Res	ults for Char	nel 9538/19	07.6MHz				
3819.2	-54.83	4.04	34.00	-24.87	-13	-11.87	Vertical		
3819.2	-51.10	4.04	34.00	-21.14	-13	-8.14	Horizontal		
5728.8	-55.25	5.24	36.04	-24.45	-13	-11.45	Vertical		
5728.8	-53.71	5.24	36.04	-22.91	-13	-9.91	Horizontal		

Remark:

We were tested all Configuration refer 3GPP TS134 121.
 Absolute Level = SG Level- Cable Loss+ Antenna Gain

			WCDMA	Band V				
Frequency	SG Level	Cable Loss	Antenna Gain	Absolute Level	Limit	Over Limit	Polarity	
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dBm)		
Test Results for Channel 4233/846.6MHz								
1673.2	-52.47	2.80	27.50	-27.77	-13	-14.77	Vertical	
1673.2	-51.86	2.80	27.50	-27.16	-13	-14.16	Horizontal	
2509.8	-50.91	2.91	27.80	-26.02	-13	-13.02	Vertical	
2509.8	-55.45	2.91	27.80	-30.56	-13	-17.56	Horizontal	
3346.4	-51.06	4.02	29.87	-25.21	-13	-12.21	Vertical	
3346.4	-51.76	4.02	29.87	-25.91	-13	-12.91	Horizontal	
		Test Res	sults for Cha	nnel 4182/83	36.6MHz			
1672.8	-49.50	2.80	27.48	-24.82	-13	-11.82	Vertical	
1672.8	-53.11	2.80	27.48	-28.43	-13	-15.43	Horizontal	
2509.2	-53.02	2.91	27.70	-28.23	-13	-15.23	Vertical	
2509.2	-52.14	2.91	27.70	-27.35	-13	-14.35	Horizontal	
3345.6	-50.16	4.02	29.82	-24.36	-13	-11.36	Vertical	
3345.6	-52.68	4.02	29.82	-26.88	-13	-13.88	Horizontal	
		Test Res	sults for Cha	nnel 4132/82	26.4MHz			
1652.8	-56.54	2.80	27.42	-31.92	-13	-18.92	Vertical	
1652.8	-50.19	2.80	27.42	-25.57	-13	-12.57	Horizontal	
2479.2	-53.21	2.91	27.68	-28.44	-13	-15.44	Vertical	
2479.2	-54.22	2.91	27.68	-29.45	-13	-16.45	Horizontal	
3305.6	-53.37	4.02	29.80	-27.59	-13	-14.59	Vertical	
3305.6	-53.15	4.02	29.80	-27.37	-13	-14.37	Horizontal	

ACCREDITED

Certificate #4298.01

Remark:

We were tested all Configuration refer 3GPP TS134 121.
 Absolute Level = SG Level- Cable Loss+ Antenna Gain

	WCDMA Band IV								
Frequency	SG Level	Cable Loss	Antenna Factor	Absolute Level	Limit	Over Limit	Polarity		
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dBm)			
		Test Res	ults for Char	nel 1312/17	12.4MHz				
3424.8	-55.69	4.01	33.51	-26.19	-13	-13.19	Vertical		
3424.8	-55.68	4.01	33.51	-26.18	-13	-13.18	Horizontal		
5137.2	-54.62	5.13	35.84	-23.91	-13	-10.91	Vertical		
5137.2	-54.29	5.13	35.84	-23.58	-13	-10.58	Horizontal		
		Test Res	ults for Char	nel 1412/17	32.4MHz		-		
3465.2	-55.19	4.02	33.56	-25.65	-13	-12.65	Vertical		
3465.2	-54.48	4.02	33.56	-24.94	-13	-11.94	Horizontal		
5197.8	-53.69	5.19	35.91	-22.97	-13	-9.97	Vertical		
5197.8	-53.28	5.19	35.91	-22.56	-13	-9.56	Horizontal		
		Test Res	ults for Char	nel 1513/17	52.6MHz				
3505.2	-54.18	4.03	34.00	-24.21	-13	-11.21	Vertical		
3505.2	-53.61	4.03	34.00	-23.64	-13	-10.64	Horizontal		
5257.8	-54.49	5.18	36.04	-23.63	-13	-10.63	Vertical		
5257.8	-54.66	5.18	36.04	-23.80	-13	-10.80	Horizontal		

Remark:

1. We were tested all Configuration refer 3GPP TS134 121.

2. Absolute Level = SG Level- Cable Loss+ Antenna Gain3. Over Limit= Absolute Level (dBm)-Limit(dBm)

7.2 EFFECTIVE RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED POWER

7.2.1 Applicable Standard

According to FCC KDB 971168 D01 v03 Section 5.2.1/ Section 5.2.2.2 and ANSI/TIA-603-E-2016 Section 2.2.17

7.2.2 Conformance Limit

The substitution method, in ANSI/TIA-603-E-2016, was used for ERP/EIRP measurement, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems v03. The ERP of mobile transmitters must not exceed 7 Watts (Cellular Band) and the EIRP of mobile transmitters are limited to 2 Watts (PCS Band).

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For E.R.P and E.I.R.P Measurements Please refer to the section 7.1.4 in this report.

7.2.5 Test Procedure

The measurements procedures specified in ANSI/TIA-603-E-2016 were applied.

In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.

The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

ERP/EIRP = SGLevel -Pcl +Ga

where:

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as SGLevel, typically dBW or dBm);

SGLevel = Signal generator output power or PSD, in dBm or dBW;

Ga = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

Pcl = signal attenuation in the connecting cable between the transmitter and antenna, in dB.²

The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.

From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.

The EUT is then put into continuously transmitting mode at its maximum power level.

Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.

This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Subst	Substitution antenna and Receiving Antenna:									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Character	Note				
1	Bilog Antenna	TESEQ	CBL6111D	31216	30MHz~2GHz	Receiving Antenna				
2	Horn Antenna	EM	EM-AH-10180	2011071402	1GHz~18GHz	Receiving Antenna				
3	Bilog Antenna	TESEQ	CBL6111D	31216	30MHz~2GHz	Substitution antenna				
4	Horn Antenna	EM	EM-AH-10180	2011071402	1GHz~18GHz	Substitution antenna				

Use the following spectrum analyzer settings:

	GSM/GPRS/EGPRS	UMTS band
Span	500KHz	10MHz
RBW	10KHz	300KHz
VBW	30KHz	1MHz
Detector	RMS	RMS
Trace	Average	Average
Average Type	Power	Power
Sweep Count	100	100

7.2.6 Test Results

EUT:	Wireless Digital Terminal	Model No.:	S611
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	GSM/GPRS/EGPRS 850/ GSM/GPRS/EGPRS 1900 UMTS band II/ UMTS band V/ UMTS band IV	Test By:	Mary Hu

Effective Radiated Power

	Radiated Power (ERP) for GSM850									
Frequency	Polarization	SG	Pcl	Ga Antenna	Correction	ERP	ERP			
		Level		Gain						
(MHz)		(dBm)	(dB)	(dB)	(dB)	(dBm)	(W)			
824.2	Н	13.52	2.11	23.84	2.15	33.10	2.03953			
836.6	Н	13.07	2.13	23.15	2.15	31.94	1.56375			
848.8	Н	13.64	2.13	23.06	2.15	32.42	1.74393			
824.2	V	14.27	2.11	23.11	2.15	33.12	2.04952			
836.6	V	13.60	2.13	23.07	2.15	32.39	1.73518			
848.8	V	13.18	2.13	23.25	2.15	32.15	1.63994			

	Radiated Power (ERP) for GPRS850									
Frequency	Polarization	SG	Pcl	Ga Antenna	Correction	ERP	ERP			
	r olanzation	Level		Gain						
(MHz)		(dBm)	(dB)	(dB)	(dB)	(dBm)	(W)			
824.2	Н	12.39	2.11	23.84	2.15	31.97	1.57351			
836.6	Н	12.49	2.13	23.15	2.15	31.36	1.36631			
848.8	Н	13.78	2.13	23.06	2.15	32.56	1.80401			
824.2	V	13.82	2.11	23.11	2.15	32.67	1.85053			
836.6	V	12.91	2.13	23.07	2.15	31.70	1.47865			
848.8	V	13.89	2.13	23.25	2.15	32.86	1.93100			

	Radiated Power (ERP) for EGPRS850									
Frequency	Polarization	SG Level	Pcl	Ga Antenna Gain	Correction	ERP	ERP			
(MHz)		(dBm)	(dB)	(dB)	(dB)	(dBm)	(W)			
824.2	Н	12.63	2.11	23.84	2.15	32.21	1.66530			
836.6	Н	13.25	2.13	23.15	2.15	32.12	1.62756			
848.8	Н	13.38	2.13	23.06	2.15	32.16	1.64363			
824.2	V	13.68	2.11	23.11	2.15	32.53	1.78926			
836.6	V	13.63	2.13	23.07	2.15	32.42	1.74414			
848.8	V	13.08	2.13	23.25	2.15	32.05	1.60181			

	Radiated Power (ERP) for UMTS band V									
Frequency	Polarization	SG Level	Pcl	Ga Antenna Gain	Correction	ERP	ERP			
(MHz)		(dBm)	(dB)	(dB)	(dB)	(dBm)	(W)			
826.4	Н	3.12	2.11	23.84	2.15	22.7	0.18621			
835	Н	3.24	2.13	23.15	2.15	22.11	0.16255			
846.6	Н	3.46	2.13	23.06	2.15	22.24	0.16749			
826.4	V	3.72	2.11	23.11	2.15	22.57	0.18072			
835	V	3.74	2.13	23.07	2.15	22.53	0.17906			
846.6	V	3.69	2.13	23.25	2.15	22.66	0.18450			

Note: SG Level= Signal generator output Pcl= cable loss Ga= Antenna Gain Peak EIRP(dBm)= SGLevel -Pcl +Ga ERP(dBm)=EIRP-2.15

Effective Isotropic Radiated Power

NTEK北测

ilac-M

	Radiated Power (E.I.R.P) for GSM1900								
Frequency	Polarization	SG Level	Pcl	Ga Antenna Gain	EIRP	EIRP			
(MHz)		(dBm)	(dB)	(dB)	(dBm)	(W)			
1850.2	Н	4.86	3.76	28.24	29.34	0.85922			
1880	Н	4.93	3.91	28.22	29.24	0.84020			
1909.8	Н	5.53	3.93	28.20	29.80	0.95477			
1850.2	V	5.17	3.76	27.32	28.73	0.74588			
1880	V	4.98	3.91	27.33	28.40	0.69214			
1909.8	V	5.84	3.93	27.31	29.22	0.83469			

ACCREDITED

Certificate #4298.01

	Radiated Power (E.I.R.P) for GPRS1900								
Frequency	Polarization	SG Level	Pcl	Ga Antenna Gain	EIRP	EIRP			
(MHz)		(dBm)	(dB)	(dB)	(dBm)	(W)			
1850.2	Н	4.91	3.76	28.24	29.39	0.86948			
1880	Н	4.98	3.91	28.22	29.29	0.84990			
1909.8	Н	5.73	3.93	28.20	30.00	0.99974			
1850.2	V	5.54	3.76	27.32	29.10	0.81335			
1880	V	5.17	3.91	27.33	28.59	0.72209			
1909.8	V	4.99	3.93	27.31	28.37	0.68628			

	Radiated Power (E.I.R.P) for EGPRS1900								
Frequency	Polarization	SG Level	Pcl	Ga Antenna Gain	EIRP	EIRP			
(MHz)		(dBm)	(dB)	(dB)	(dBm)	(W)			
1850.2	Н	5.68	3.76	28.24	30.16	1.03748			
1880	Н	4.66	3.91	28.22	28.97	0.78962			
1909.8	Н	5.32	3.93	28.20	29.59	0.91034			
1850.2	V	5.41	3.76	27.32	28.97	0.78800			
1880	V	5.35	3.91	27.33	28.77	0.75293			
1909.8	V	4.98	3.93	27.31	28.36	0.68523			

	Radiated Power (E.I.R.P) for UMTS band II					
Frequency	Polarization	SG Level	Pcl	Ga Antenna Gain	EIRP	EIRP
(MHz)		(dBm)	(dB)	(dB)	(dBm)	(W)
1852.4	Н	-2.01	3.76	28.24	22.47	0.17660
1880	Н	-2.15	3.91	28.22	22.16	0.16444
1907.6	Н	-2.08	3.93	28.20	22.19	0.16558
1852.4	V	-1.68	3.76	27.32	21.88	0.15417
1880	V	-1.62	3.91	27.33	21.8	0.15136
1907.6	V	-1.68	3.93	27.31	21.7	0.14791

	Radiated Power (E.I.R.P) for UMTS band IV					
Frequency	Polarization	SG Level	Pcl	Ga Antenna Gain	EIRP	EIRP
(MHz)		(dBm)	(dB)	(dB)	(dBm)	(W)
1712.4	Н	-2.56	3.72	28.24	21.96	0.15704
1732.4	Н	-2.34	3.90	28.22	21.98	0.15776
1752.6	Н	-2.28	3.91	28.20	22.01	0.15885
1712.4	V	-2.37	3.76	27.32	21.19	0.13152
1732.4	V	-2.29	3.89	27.33	21.15	0.13032
1752.6	V	-2.35	3.92	27.31	21.04	0.12706

Note:

SG Level= Signal generator output Pcl= cable loss Ga= Antenna Gain Peak EIRP(dBm)= SGLevel –Pcl+Ga.

7.3 CONDUCTED OUTPUT POWER

7.3.1 Applicable Standard

According to FCC Part 2.1046 and FCC Part 22.913(a)(2) and FCC Part 24.232(c) and FCC KDB 971168 D01 v03 Section 5.2

7.3.2 Conformance Limit

Extend coverage on a secondary basis into cellular unserved areas, as those areas are defined in §22.949, the ERP of base transmitters and cellular repeaters of such systems must not exceed 1000 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts(38.5dBm).

Mobile and portable stations are limited to 2 watts (33dBm)EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications..

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

Connect the EUT to Universal Radio Communication Tester CMU200 or CMU500 via the antenna connector. A call is set up by the SS according to the generic call set up procedure on a channel with ARFCN in the ARFCN range, power control level set to Max power. The frequency band is set as selected frequency, The RF output of the transmitter was connected to base station simulator.

Set EUT at maximum average power by base station simulator.

Set RBW = 1-5% of the OBW, not to exceed 1 MHz.

Set VBW \geq 3 × RBW.

Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)

Sweep time = auto.

Detector = RMS (power averaging).

Set sweep trigger to "free run".

Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.

Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is a constant 25%.

Measure lowest, middle, and highest channels for each bandwidth and different modulation. Measure and record the results in the test report.

7.3.6 Test Results

EUT:	Wireless Digital Terminal	Model No.:	S611
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	GSM/GPRS/EGPR S850/ GSM/GPRS/EGPRS 1900 UMTS band II/ UMTS band V/ UMTS band IV	Test By:	Mary Hu

Output Power for GSM850

Mode	Frequency (MHz)	Maximum Burst-Average Output Powe
	824.2	31.68
GSM850	836.6	31.80
	848.8	31.75
GPRS850	824.2	31.72
(1 Slot)	836.6	31.75
	848.8	31.78
GPRS850	824.2	29.61
(2 Slot)	836.6	29.82
	848.8	29.91
GPRS850	824.2	28.70
(3 Slot)	836.6	28.72
	848.8	28.61
GPRS850	824.2	27.92
(4 Slot)	836.6	27.80
	848.8	27.85
EGPRS850	824.2	26.86
(1 Slot)	836.6	26.88
	848.8	26.75
EGPRS850	824.2	25.94
(2 Slot)	836.6	25.96
	848.8	25.87
EGPRS850	824.2	25.65
(3 Slot)	836.6	25.41
	848.8	25.40
EGPRS850	824.2	24.85
(4 Slot)	836.6	24.86
	848.8	24.91

Output Power for PCS1900

Mode	Frequency (MHz)	Maximum Burst-Average Output Power
	1850.2	28.00
GSM1900	1880	27.73
	1909.8	27.68
GPRS1900	1850.2	27.92
(1 Slot)	1880	27.60
	1909.8	27.74
GPRS1900	1850.2	27.40
(2 Slot)	1880	27.09
	1909.8	27.09
GPRS1900	1850.2	25.91
(3 Slot)	1880	26.12
	1909.8	26.09
GPRS1900	1850.2	25.90
(4 Slot)	1880	25.82
	1909.8	25.87
EGPRS1900	1850.2	24.43
(1 Slot)	1880	24.34
	1909.8	24.27
EGPRS1900	1850.2	23.39
(2 Slot)	1880	23.38
	1909.8	23.46
EGPRS1900	1850.2	22.15
(3 Slot)	1880	22.07
	1909.8	22.24
EGPRS1900	1850.2	21.36
(4 Slot)	1880	21.12
	1909.8	21.00

N/A: Not Applicable

Output Power for UMTS BAND I	
------------------------------	--

1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1852.4 1852.4	22.27 22.50 22.45 21.38 21.41 20.89 21.14 21.09 20.98 20.70 21.14 20.98 20.70 21.14 20.98 20.70 21.14 20.94 21.19 21.08
1880 1907.6 1852.4 1880 1907.6 1852.4 180 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 180 1907.6 1852.4 1800 1907.6	22.50 22.45 21.38 21.48 21.41 20.89 21.14 21.09 20.98 20.70 20.70 21.14 20.94 21.19
1852.4 1880 1907.6 1852.4 180 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1800 1907.6 187.4 1880 1907.6	21.38 21.48 21.41 20.89 21.14 21.09 20.98 20.70 21.14 20.70 21.14 20.94 21.19
1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 18907.6 18907.6 1907.6	21.48 21.41 20.89 21.14 21.09 20.98 20.70 21.14 20.70 21.14 20.94 21.19
1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 18907.6 18907.6 1907.6	21.41 20.89 21.14 21.09 20.98 20.70 21.14 20.94 21.19
1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 180 1907.6 1852.4 1800 1907.6 1852.4 1800 1907.6	20.89 21.14 21.09 20.98 20.70 21.14 20.94 21.19
1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6	21.14 21.09 20.98 20.70 21.14 20.94 21.19
1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6	21.09 20.98 20.70 21.14 20.94 21.19
1852.4 1880 1907.6 1852.4 1880 1907.6	20.98 20.70 21.14 20.94 21.19
1880 1907.6 1852.4 1880 1907.6	20.70 21.14 20.94 21.19
1907.6 1852.4 1880 1907.6	21.14 20.94 21.19
1852.4 1880 1907.6	20.94 21.19
1880 1907.6	21.19
1907.6	
	21 08
1050 1	
1852.4	21.18
1880	21.16
1907.6	21.18
1852.4	21.09
1880	21.10
1907.6	21.12
1852.4	21.13
1880	21.07
	21.14
	21.14
1880	21.14
	21.09
1852 /	21.48
1880	21.50
	1907.6 1852.4

Output Power for UMTS BAND V

Mode	Frequency(MHz)	Maximum Burst-Average Output Pov
WCDMA 850	826.4	22.30
RMC	835	22.33
	846.6	22.39
HSDPA	826.4	21.50
Subtest 1	835	21.46
	846.6	21.47
HSDPA	826.4	20.75
Subtest 2	835	20.79
	846.6	20.62
HSDPA	826.4	20.63
Subtest 3	835	20.69
	846.6	20.52
HSDPA	826.4	20.46
Subtest 4	835	20.60
	846.6	20.55
HSUPA	826.4	20.64
Subtest 1	835	20.54
	846.6	20.46
HSUPA	826.4	20.57
Subtest 2	835	20.47
	846.6	20.50
HSUPA	826.4	20.64
Subtest 3	835	20.48
	846.6	20.59
HSUPA	826.4	20.48
Subtest 4	835	20.54
	846.6	20.67
HSUPA	826.4	21.43
Subtest 5	835	21.42
	846.6	21.39

Node	Frequency(MHz)	Maximum Burst-Average Output Power
	1712.4	22.04
WCDMA Band IV	1732.4	22.08
RMC	1752.6	22.09
	1712.4	21.11
HSDPA – Subtest 1 –	1732.4	21.10
	1752.6	21.12
HSDPA	1712.4	20.37
Subtest 2	1732.4	20.48
Sublest 2	1752.6	20.50
HSDPA	1712.4	20.24
Subtest 3	1732.4	20.27
Sublest 3	1752.6	20.29
HSDPA	1712.4	20.21
Subtest 4	1732.4	20.24
Sublest 4	1752.6	20.31
HSUPA	1712.4	20.39
Subtest 1	1732.4	20.49
Sublest	1752.6	20.50
HSUPA	1712.4	20.37
Subtest 2	1732.4	20.45
	1752.6	20.49
HSUPA -	1712.4	20.42
Subtest 3	1732.4	20.44
Sublest 5	1752.6	20.47
HSUPA	1712.4	20.29
Subtest 4	1732.4	20.35
	1752.6	20.42
HSUPA	1712.4	21.13
Subtest 5	1732.4	21.11
Oublear J	1752.6	21.10

7.4 FREQUENCY STABILITY

7.4.1 Applicable Standard

According to FCC Part 2.1055 and FCC Part 22.355 and FCC Part 24.235 and FCC KDB 971168 D01 Section 9.0

7.4.2 Conformance Limit

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

Connect the EUT to Universal Radio Communication Tester CMU200 or CMU500 via the antenna connector. A call is set up by the SS according to the generic call set up procedure on a channel with ARFCN in the ARFCN range, power control level set to Max power. MS TXPWR_MAX_CCH is set to the maximum value supported by the Power Class of the Mobile under test.

EUT was placed at temperature chamber and connected to an external power supply.

Temperature and voltage condition shall be tested to confirm frequency stability.

For Temperature Variation

- 1. The testing follows FCC KDB 971168 D01 v03 Section 9.0.
- 2. The EUT was set up in the thermal chamber and connected with the system simulator.
- 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

For Voltage Variation

- 1. The testing follows FCC KDB 971168 D01 v03 Section 9.0.
- 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.
- 3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 4. The variation in frequency was measured for the worst case.

7.4.6 Test Results

EUT:	Wireless Digital Terminal	Model No.:	S611	
Temperature:	20 °C	Relative Humidity:	48%	
Test Mode:	GSM/GPRS/EGPRS 850/ GSM/GPRS/EGPRS 1900 UMTS band II/ UMTS band V/ UMTS band IV	Test By:	Mary Hu	
Results: PASS				

F	Frequency Error Against Voltage for GSM 850 band				
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)			
3.27	20	0.0239			
3.85	16	0.0191			
4.43	17	0.0203			

Frequency Error Against Temperature for GSM 850 band				
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)		
-30	21	0.0251		
-20	23	0.0275		
-10	18	0.0215		
0	13	0.0155		
10	19	0.0227		
20	16	0.0191		
30	20	0.0239		
40	16	0.0191		
50	13	0.0155		

Frequency Error Against Voltage for GPRS850 band		
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.27	16	0.0191
3.85	13	0.0155
4.43	16	0.0191

Frequency Error Against Temperature for GPRS850 band		
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	17	0.0203
-20	15	0.0179
-10	13	0.0155
0	20	0.0239
10	16	0.0191
20	17	0.0203
30	13	0.0155
40	16	0.0191
50	10	0.0120

Fr	Frequency Error Against Voltage for EGPRS850 band		
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	
3.27	15	0.0179	
3.85	12	0.0143	
4.43	16	0.0191	

Frequency Error Against Temperature for EGPRS850 band		
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	15	0.0179
-20	12	0.0143
-10	17	0.0203
0	23	0.0275
10	12	0.0143
20	14	0.0167
30	18	0.0215
40	12	0.0143
50	19	0.0227

Note:

1. Normal Voltage = 3.85V; Battery End Point (BEP) = 3.27V; Maximum Voltage =4.43V

2. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Frequency Error Against Voltage for PCS 1900 band		
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.27	16	0.0085
3.85	13	0.0069
4.43	15	0.0080

Frequency Error Against Temperature for PCS 1900 band		
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	14	0.0074
-20	13	0.0069
-10	16	0.0085
0	18	0.0096
10	13	0.0069
20	11	0.0059
30	13	0.0069
40	14	0.0074
50	16	0.0085

Frequency Error Against Voltage for GPRS1900 band		
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.27	20	0.0106
3.85	22	0.0117
4.43	17	0.0090

Frequency Error Against Temperature for GPRS1900 band		
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	19	0.0101
-20	15	0.0080
-10	21	0.0112
0	16	0.0085
10	14	0.0074
20	17	0.0090
30	23	0.0122
40	22	0.0117
50	19	0.0101

Frequency Error Against Voltage for EGPRS1900 band		
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.27	21	0.0112
3.85	16	0.0085
4.43	15	0.0080

Frequency Error Against Temperature for EGPRS1900 band		
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	16	0.0085
-20	17	0.0090
-10	21	0.0112
0	14	0.0074
10	16	0.0085
20	13	0.0069
30	15	0.0080
40	14	0.0074
50	11	0.0059

Note:

- 1.
- Normal Voltage = 3.85V; Battery End Point (BEP) = 3.27V; Maximum Voltage =4.43V The frequency fundamental emissions stay within the authorized frequency block based on the 2. frequency deviation measured is small.

Frequency Error Against Voltage for UMTS band II		
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.27	15	0.0080
3.85	13	0.0069
4.43	14	0.0074

Frequency Error Against Temperature for UMTS band II		
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	20	0.0106
-20	15	0.0080
-10	12	0.0064
0	15	0.0080
10	16	0.0085
20	19	0.0101
30	12	0.0064
40	12	0.0064
50	14	0.0074

Frequency Error Against Voltage for UMTS band V		
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.27	11	0.0131
3.85	13	0.0155
4.43	17	0.0203

Frequency Error Against Temperature for UMTS band V		
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	15	0.0179
-20	14	0.0167
-10	16	0.0191
0	13	0.0155
10	15	0.0179
20	19	0.0227
30	13	0.0155
40	12	0.0143
50	16	0.0191

Frequency Error Against Voltage for UMTS band ${ m IV}$					
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)			
3.27	14	0.0081			
3.85	15	0.0087			
4.43	12	0.0069			

Fre	Frequency Error Against Temperature for UMTS band IV						
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)					
-30	20	0.0115					
-20	15	0.0087					
-10	16	0.0092					
0	11	0.0063					
10	13	0.0075					
20	12	0.0069					
30	19	0.0110					
40	15	0.0087					
50	16	0.0092					

Note:

- 1.
- Normal Voltage = 3.85V; Battery End Point (BEP) = 3.27V; Maximum Voltage =4.43V The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small. 2.

7.5 PEAK-TO-AVERAGE RATIO

7.5.1 Applicable Standard

According to FCC 22.913 and FCC 24.232(d) and FCC KDB 971168 D01 Section 5.7.1

7.5.2 Conformance Limit

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The EUT was connected to Spectrum Analyzer and Base Station via power divider.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set the number of counts to a value that stabilizes the measured CCDF curve.

Set the measurement interval to 1 ms.

Record the maximum PAPR level associated with a probability of 0.1%.

a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;

c) Set the number of counts to a value that stabilizes the measured CCDF curve;

d) Set the measurement interval as follows:

1) for continuous transmissions, set to 1 ms,

2) for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

e) Record the maximum PAPR level associated with a probability of 0.1%.

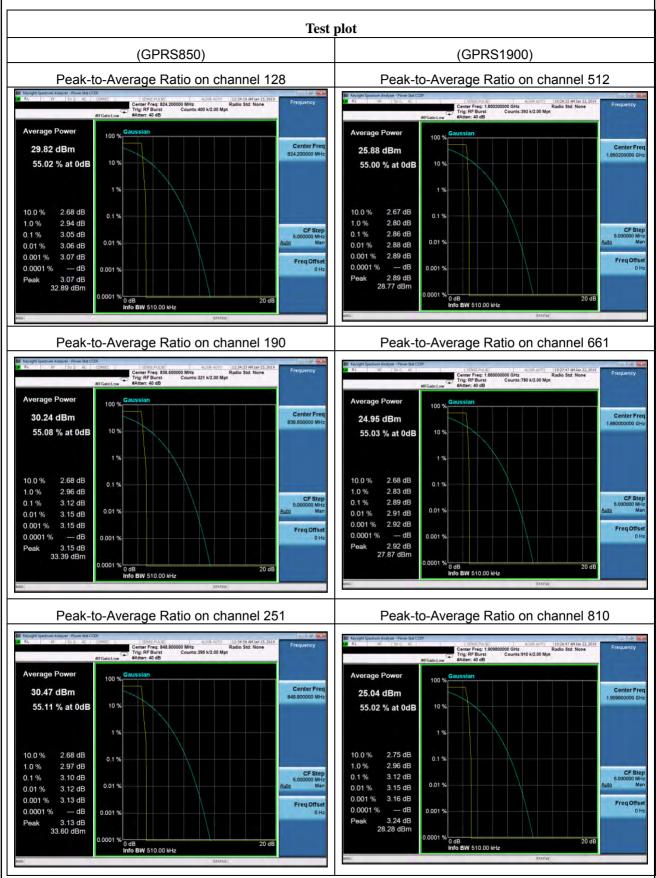
7.5.6 Test Results

EUT:	Wireless Digital Terminal	Model No.:	S611		
Temperature:	20 ℃	Relative Humidity:	48%		
Test Mode:	GSM/GPRS/ EGPRS 850/ GSM/GPRS/ EGPRS 1900 /UMTS band II/ UMTS band V/ UMTS band IV	Test By:	Mary Hu		
Results: PASS					

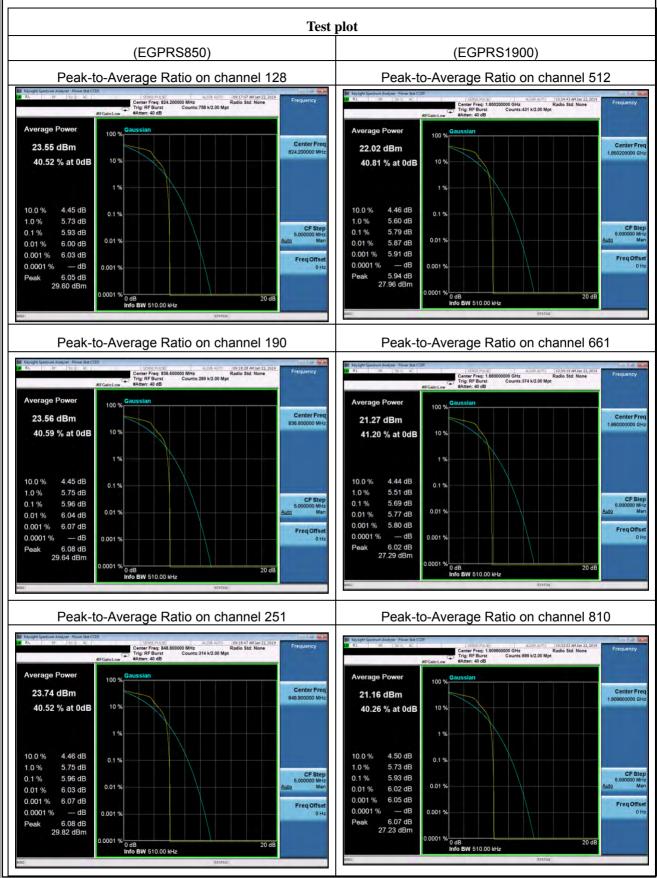
Cellular Band						
Modes		GSM850			GSM1900	
Channel	128 (Low)	190 (Mid)	251 (High)	512 (Low)	661 (Mid)	810 (High)
Frequency(MHz)	824.2	836.6	848.8	1850.2	1880	1909.8
Peak-to-Average Ratio (dB)	3.07	3.12	3.14	2.87	2.90	2.96

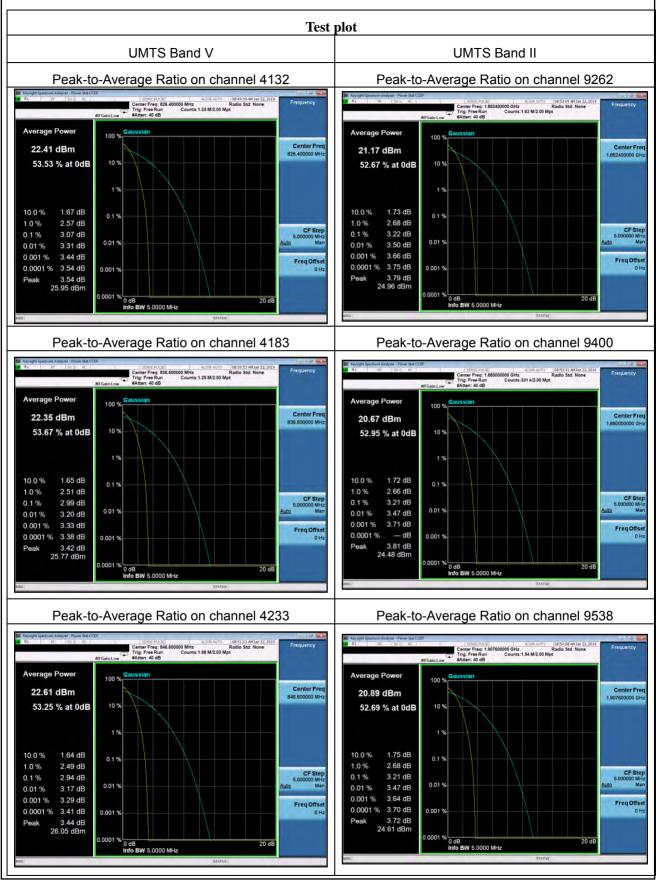
Cellular Band							
Modes		GPRS850			GPRS1900		
Channel	128 (Low)	190 (Mid)	251 (High)	512 (Low)	661 (Mid)	810 (High)	
Frequency(MHz)	824.2	836.6	848.8	1850.2	1880	1909.8	
Peak-to-Average Ratio (dB)	3.05	3.12	3.10	2.86	2.89	3.12	

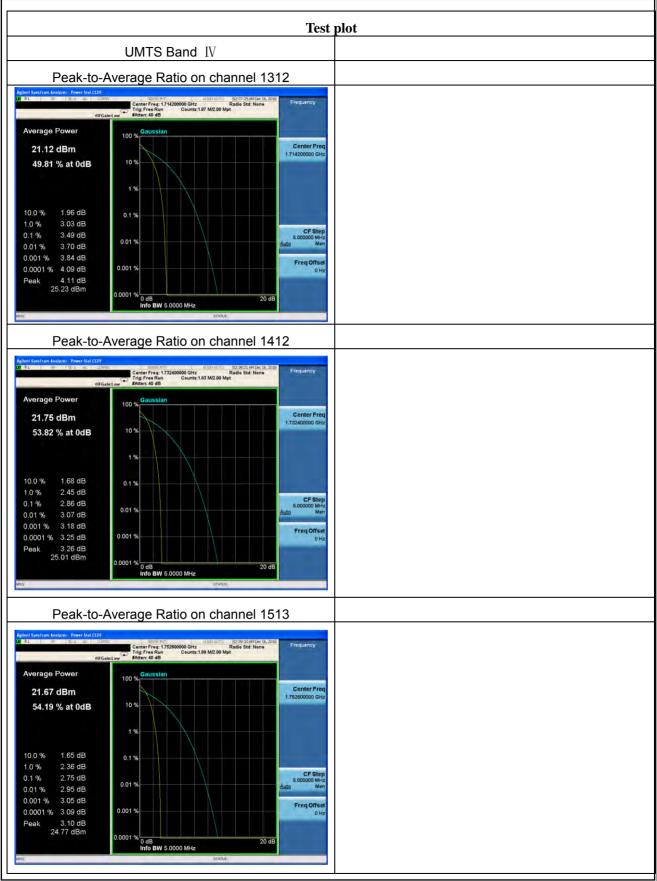
Cellular Band							
Modes		EGPRS850			EGPRS1900		
Channel	128 (Low)	190 (Mid)	251 (High)	512 (Low)	661 (Mid)	810 (High)	
Frequency(MHz)	824.2	836.6	848.8	1850.2	1880	1909.8	
Peak-to-Average Ratio (dB)	5.93	5.96	5.96	5.79	5.69	5.93	


	UMTS Band						
Modes	WCDMA Band II (RMC 12.2Kbps)			WCDMA Band V (RMC 12.2Kbps)			
Channel	9262 (Low)	9400 (Mid)	9538 (High)	4132 (Low)	4175 (Mid)	4233 (High)	
Frequency(MHz)	1852.4	1880	1907.6	826.4	836.6	846.6	
Peak-to-Average Ratio (dB)	3.22	3.21	3.21	3.07	2.99	2.94	

Modes	WCDMA Band IV (RMC 12.2Kbps)		
Channel	1312 (Low)	1412 (Mid)	1513 (High)
Frequency(MHz)	1712.4	1732.6	1752.6
Peak-to-Average Ratio (dB)	3.49	2.86	2.75







7.6 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

7.6.1 Applicable Standard

According to FCC Part 2.1049 and FCC Part 22H and FCC Part 24E and FCC KDB 971168 D01 Section 4.0

7.6.2 Conformance Limit

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows FCC KDB 971168 v03 Section 4.0.

The EUT was connected to Spectrum Analyzer and Base Station via power divider.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.

The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

Set the detection mode to peak, and the trace mode to max hold.

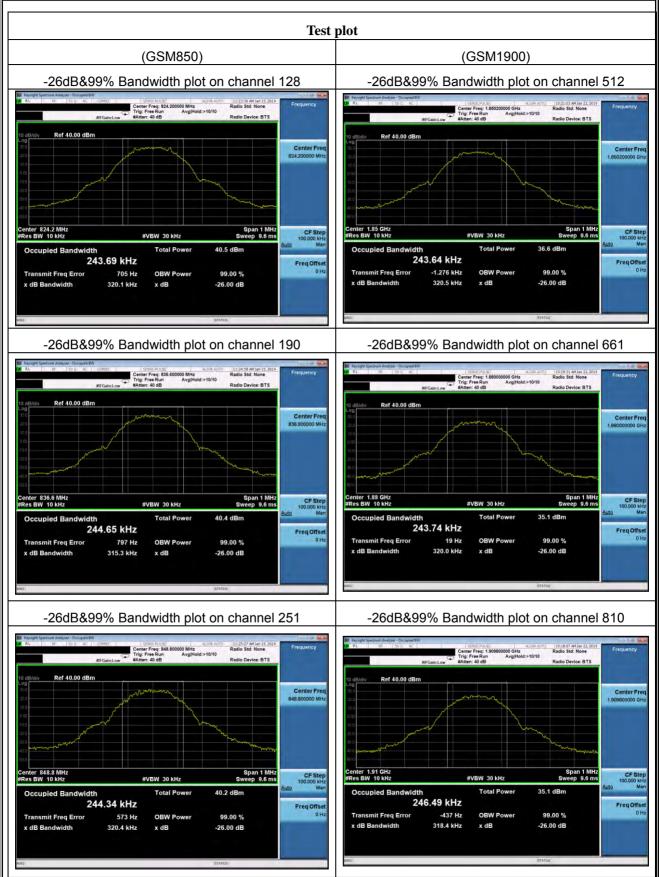
Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace.

(this is the reference value)

Determine the "-26 dB down amplitude" as equal to (Reference Value – X).

Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "–X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.

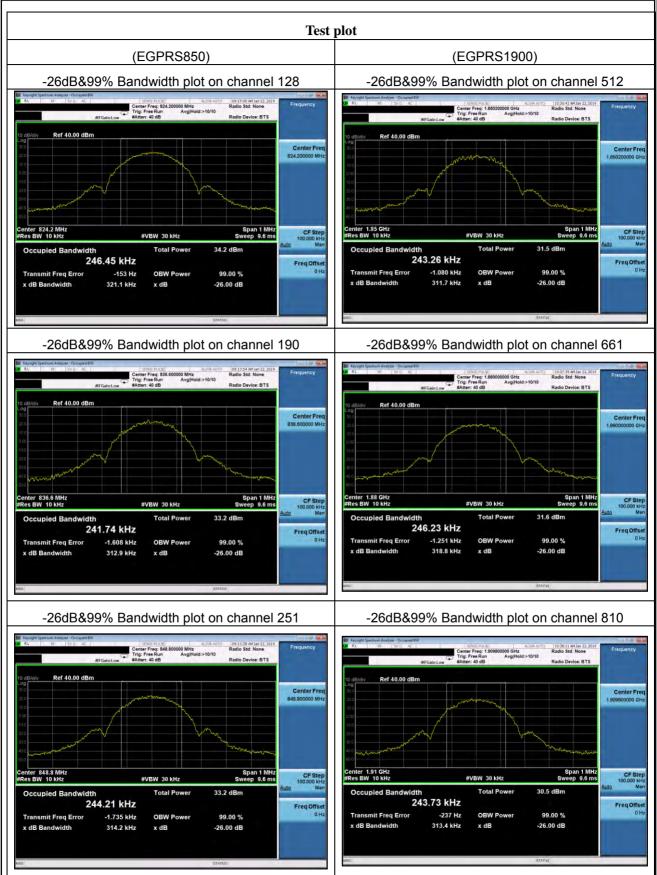
Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

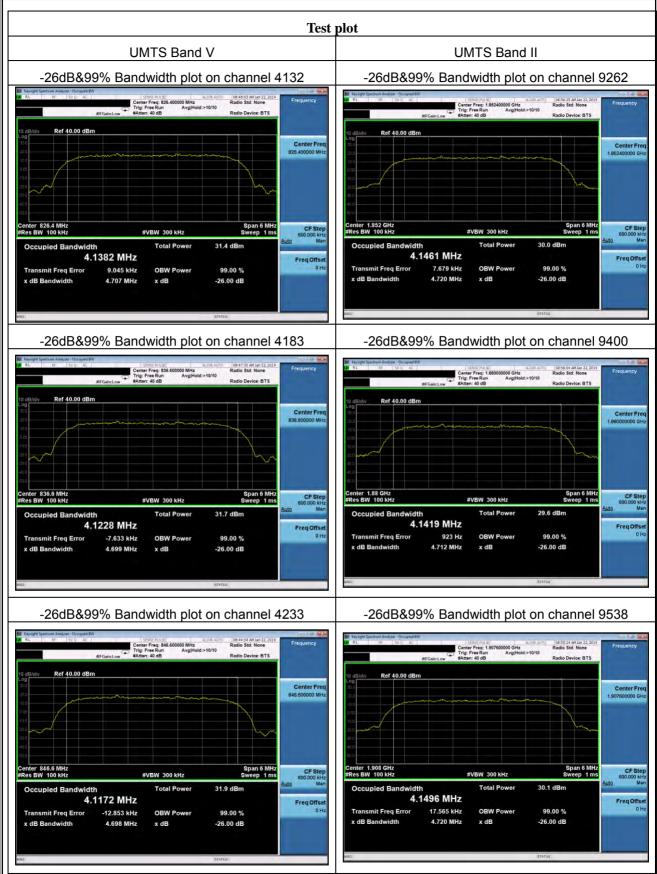


7.6.6 Test Results

EUT:	Wireless Digital Terminal	Model No.:	S611
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	GSM/GPRS/EGPRS 850/ GSM/GPRS/EGPRS 1900 /UMTS band II/ UMTS band V/ UMTS band IV	Test By:	Mary Hu
Results: PASS			

Operation Mode	Channel Number	Channel Frequency (MHz)	26dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)	Limit (kHz)	Verdict
	128	824.2	320.1	243.69	N/A	PASS
GSM 850	190	836.6	315.3	244.65	N/A	PASS
	251	848.8	320.4	244.34	N/A	PASS
	512	1850.2	320.5	234.64	N/A	PASS
GSM 1900	661	1880.0	320.0	243.74	N/A	PASS
	810	1909.8	318.4	246.49	N/A	PASS
	128	824.2	319.9	245.25	N/A	PASS
GPRS 850	190	836.6	315.6	246.03	N/A	PASS
	251	848.8	314.6	243.78	N/A	PASS
	512	1850.2	314.9	242.92	N/A	PASS
GPRS 1900	661	1880.0	316.3	244.36	N/A	PASS
	810	1909.8	318.8	244.09	N/A	PASS
	128	824.2	321.1	246.45	N/A	PASS
EGPRS 850	190	836.6	312.9	241.74	N/A	PASS
	251	848.8	314.2	244.21	N/A	PASS
	512	1850.2	311.7	243.26	N/A	PASS
EGPRS 1900	661	1880.0	318.8	246.23	N/A	PASS
	810	1909.8	313.4	243.73	N/A	PASS
UMTS Band	4132	826.4	4707	4138.2	N/A	PASS
V V	4183	836.6	4699	4122.8	N/A	PASS
V	4233	846.6	4698	4117.2	N/A	PASS
UMTS Band	9262	1852.4	4720	4146.1	N/A	PASS
	9400	1880.0	4712	4141.9	N/A	PASS
	9538	1907.6	4720	4149.6	N/A	PASS
UMTS Band	1312	1712.4	4737	4172.8	N/A	PASS
IV IV	1412	1732.6	4704	4173.5	N/A	PASS
1V	1513	1752.6	4698	4167.8	N/A	PASS





Test	plot
UMTS Band IV	
-26dB&99% Bandwidth plot on channel 1312	
Adverage Control Freq. 171200000 GHz Span 6 MHz Span 6 MHz Span 6 MHz Span 6 MHz Control Freq. 1712 GHz Span 6 MHz Span 6 MHz	
4.1728 MHz Transmit Freq Error -1.106 kHz OBW Power 99.00 % x dB Bandwidth 4.737 MHz x dB -26.00 dB	
-26dB&99% Bandwidth plot on channel 1412 Agteni Spectrum Analyzer - Discoped SW	
Ref Office (1) 5 dB Clear Write Ref Ref Office (1) 5 dB Ref Office (1) 5 dB Ref Ref Office (1) 5 dB Ref Ref Ref Ref Red	
-26dB&99% Bandwidth plot on channel 1513	

7.7 CONDUCTED BAND EDGE

7.7.1 Applicable Standard

According to FCC Part 2.1051 and FCC Part 22.917(a) and 24.238(a) and FCC KDB 971168 D01 Section6.0

7.7.2 Conformance Limit

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

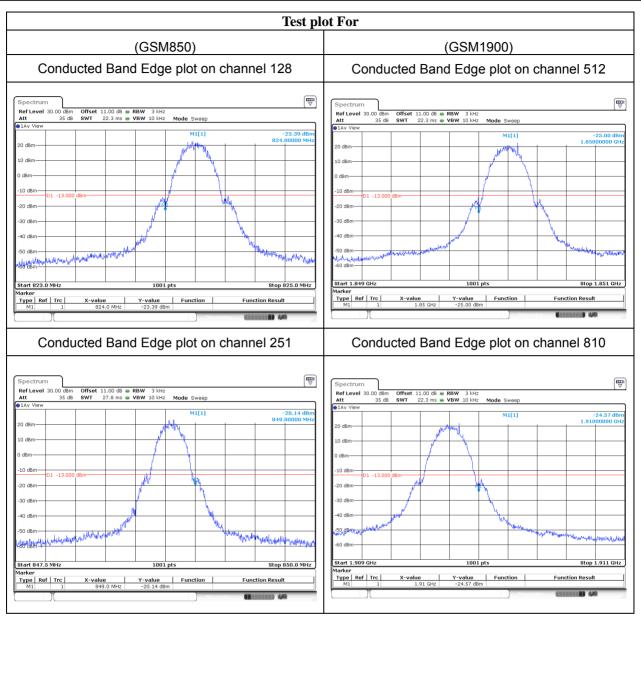
The testing follows FCC KDB 971168 v03 Section 6.0.

The EUT was connected to Spectrum Analyzer and Base Station via power divider.

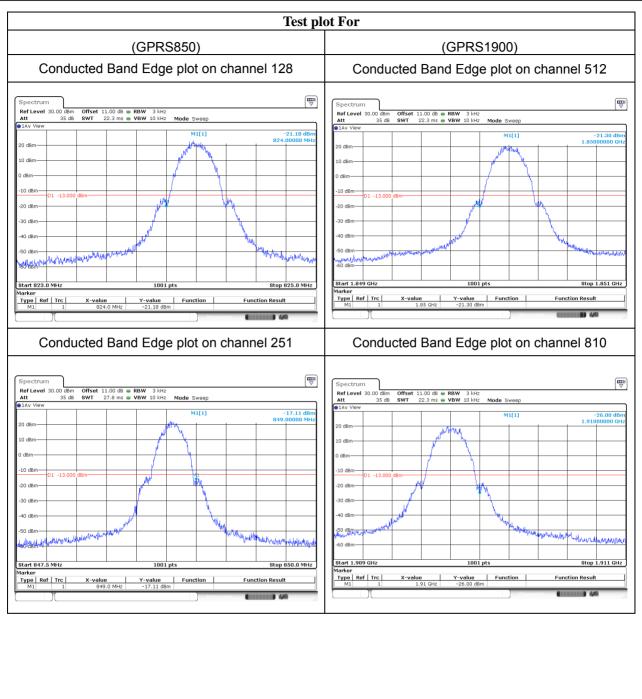
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

The band edges of low and high channels for the highest RF powers were measured.

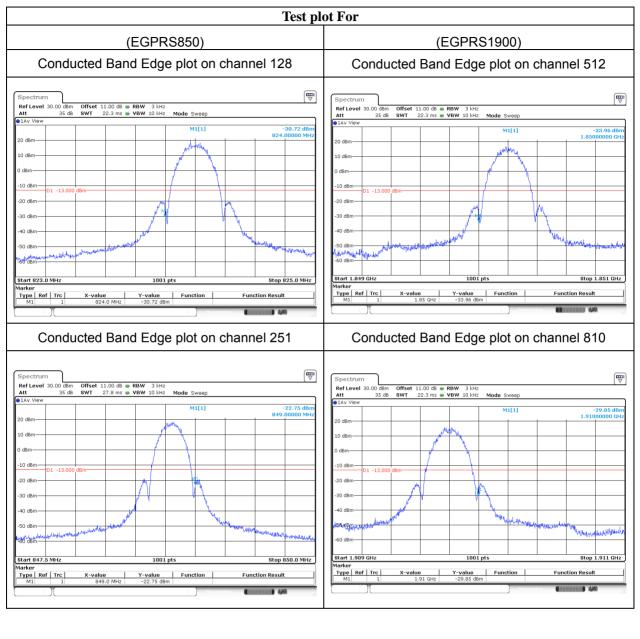

The RF fundamental frequency should be excluded against the limit line in the operating frequency band. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

- = P(W) [43 + 10log(P)] (dB)
- $= [30 + 10\log(P)] (dBm) [43 + 10\log(P)] (dB)$
- = -13dBm.


7.7.6 Test Results

EUT:	Wireless Digital Terminal	Model No.:	S611		
Temperature:	20 ℃	Relative Humidity:	48%		
Test Mode:	GSM/GPRS/EGPRS 850/ GSM/GPRS/EGPRS 1900/ UMTS band II/ UMTS band V/ UMTS band IV	Test By:	Mary Hu		
Results: PASS					

NTEKICION ACCREDITED Certificate #4298.01



NTEKJLIM

Report No.:S18122500501005

Report No.:S18122500501005

Test plot Fo UMTS Band IV Conducted Band Edge plot on channel 1312 Spectrum Ref Level 40.00 dem Offset 10.50 de e RBW 30 kHz Market Auto FFT AV View O dem Market Auto FFT AV View O dem Market Auto FFT AV View O dem Sectrum O dem O dem O dem O dem O dem Sectrum O O dem O dem O dem O dem O dem O dem	or	
UMTS Band IV Conducted Band Edge plot on channel 1312 Spectrum Ref Level 40.00 dem Offset 10.50 de RBW 30 kHz Mode Auto FFT Adv View 0 dem 0 d		
Conducted Band Edge plot on channel 1312 Spectrum Ref Level 40.00 dem Offset 10.50 db @ RBW 30 kHz Nife 10.50 db @ RBW 30 kHz Node Auto FFT 30 dbm Nife 10.50 db @ RBW 30 kHz Node Auto FFT 30 dbm 0 dbm -20.06 dbm -20 dbm <		
Spectrum Image: Spectrum Spectrum Image: Spectrum		
Ref Level 40.00 dbm Offset 10.50 db RBW 30 kHz Mode Auto FFT 914V View -20.06 dbm -20.06 dbm -20.06 dbm 90 dbm -1.70981040 GHz -20.06 dbm -20.06 dbm 10 dbm -0.1-13.000 dbm -0.1-13.000 dbm -1.10 dbm -20 dbm -0.1-13.000 dbm -0.1-13.000 dbm -0.1-13.000 dbm -20 dbm		
Att 45 dB SWT 63.1 µs VBW 30 kHz Mode Auto FFT 30 dBm 90 dBm 91.47 VBW -20.06 dBm 1.70981040 GHz 20 dBm 91.47 VBW 91.47 VBW 1.70981040 GHz -20.06 dBm 20 dBm 91.47 VBW 91.47 VBW 1.70981040 GHz -20.06 dBm 20 dBm 91.47 VBW 91.47 VBW 91.47 VBW -20.06 dBm 10 dBm 91.47 VBW 91.47 VBW 91.47 VBW 91.47 VBW -20 dBm 91.47 VBW 91.47 VBW 91.47 VBW 91.47 VBW -20 dBm 91.47 VBW 91.47 VBW 91.47 VBW 91.47 VBW -20 dBm 91.47 VBW 91.47 VBW 91.47 VBW 91.47 VBW -20 dBm 91.47 VBW 91.47 VBW 91.47 VBW 91.47 VBW -20 dBm 91.47 VBW 90.447 VBW Mode Auto FFT 91.47 VBW -20 dBM 91.47 VBW 90.447 VBW Mode Auto FFT 91.47 VBW -20 dBM 91.47 VBW 90.447 VBW Mode Auto FFT 91.47 VBW		
30 dBm 20		
20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 d		
o d8m- 10 d8m 01 -13.000 d8m 01 -13		
-10 dBm 01 - 13.000 dBm -20 dBm 01 - 13.000 dBm -20 dBm -20 dBm -40 dBm -50 dBm		
20 dBm 01 - 13.000 dBm 01 - 13		
40 dBm 40 dBm 50 dBm		
-40 dBm -50 dBm Stort 1.708 GHz 691 pts Stop 1.71 GHz Stort 1.708 GHz 691 pts Stop 1.71 GHz Conducted Band Edge plot on channel 1513 Spectrum Ref Level 40.00 dBm Offset 10.50 dB RBW 30 kHz Att 45 dB SWT 63.1 µ5 VBW 30 kHz Att 55 dB WT 63.1 µ5 VBW 30 kHz Att 55 dB SWT 63.1 µ5 VBW 30 kHz		
Stort 1.708 GHz 691 pts Stop 1.71 GHz Conducted Band Edge plot on channel 1513 Spectrum Ref Level 40.00 dBm Offset 10.50 dB @ RBW 30 kHz Att 45 dB SWT 63.1 µs @ VBW 30 kHz Att 65 dB SWT 63.1 µs @ VBW 30 kHz Att 05 dB SWT 63.1 µs @ VBW 30 kHz		
Conducted Band Edge plot on channel 1513		
Spectrum Imp Ref Level 40.00 dBm Offset 10.50 dB @ RBW 30 kHz Att 45 dB @WT 63.1 µs @ VBW 30 kHz		
Spectrum Ref Level 40.00 dBm Offset 10.50 dB		
RefLevel 40.00 dBm Offset 10.50 dB ⊜ RBW 30 kHz Att 45 dB SWT 63.1 µs ⊜ VBW 30 kHz Mode AutoFFT ∎TAV View		
RefLevel 40.00 dBm Offset 10.50 dB ⊜ RBW 30 kHz Att 45 dB SWT 63.1 µs ⊜ VBW 30 kHz Mode AutoFFT ∎TAV View		
●1Av View		
M1[1] -21.17 dBm		
30 d8m		
20 d8m-		
0 d8m		
-10 dBm 01 -13.000 dBm		
-20 dBm		
-40 dBm		
-50 dBm		
Start 1.755 GHz 691 pts Stop 1.757 GHz		
ate- 4 JUL 2018 14-09-19		

7.8 CONDUCTED SPURIOUS EMISSION AT ANTENNA TERMINAL

7.8.1 Applicable Standard

According to FCC Part 2.1051 and FCC Part 22.917(a) and Part 24.238(a) and FCC KDB 971168 D01 Section6.0

7.8.2 Conformance Limit

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows FCC KDB 971168 v03 Section 6.0.

The EUT was connected to Spectrum Analyzer and Base Station via power divider.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

The middle channel for the highest RF power within the transmitting frequency was measured.

The conducted spurious emission for the whole frequency range was taken.

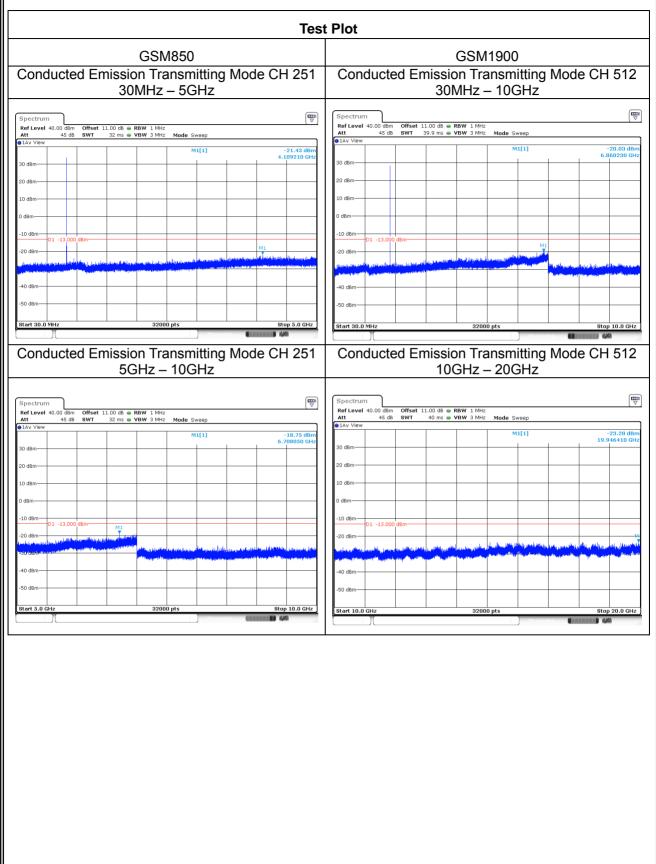
The RF fundamental frequency should be excluded against the limit line in the operating frequency band. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB) = -13dBm.

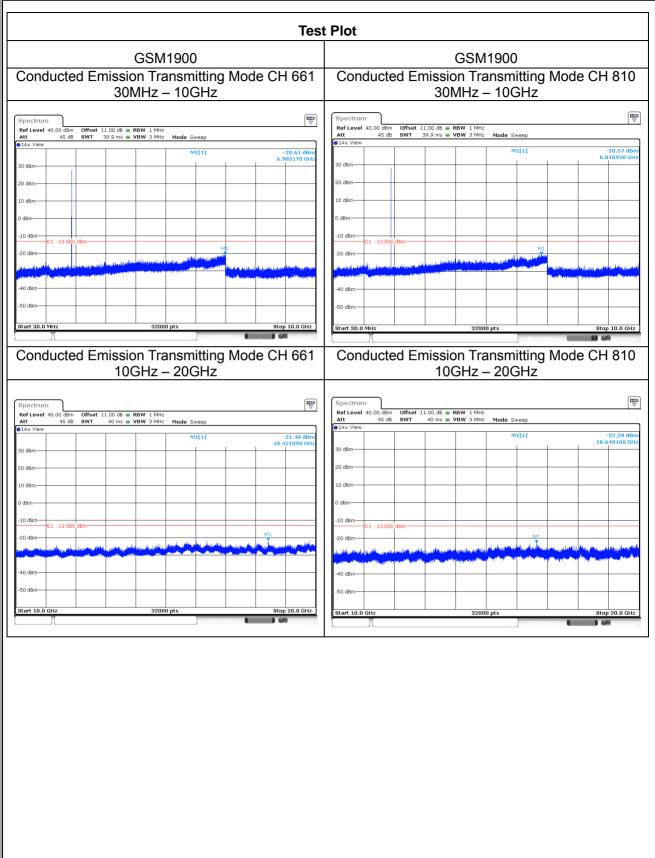
7.8.6 Test Results

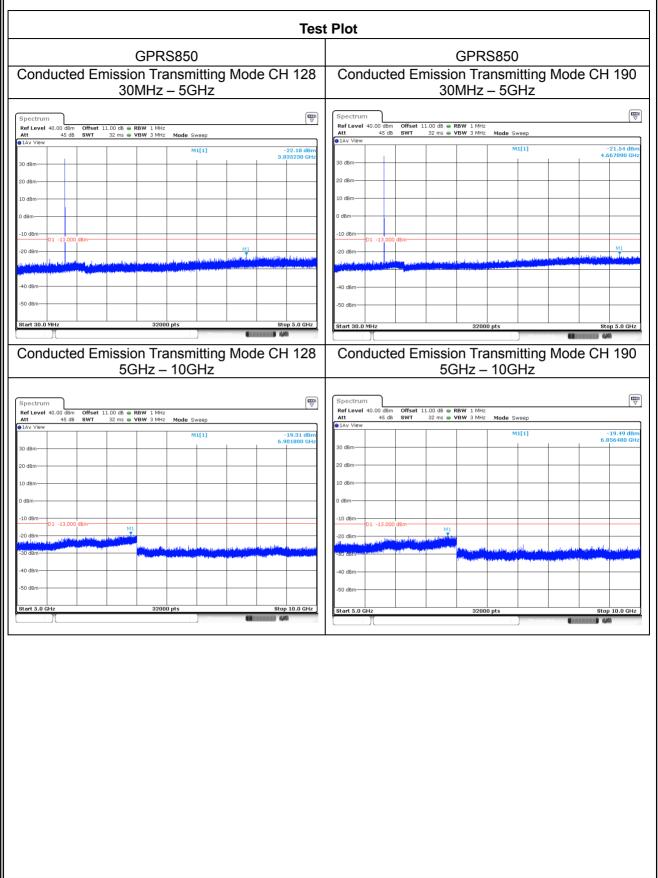
EUT:	Wireless Digital Terminal	Model No.:	S611	
Temperature:	20 °C	Relative Humidity:	48%	
Test Mode:	GSM/GPRS/EGPRS 850/ GSM/GPRS/EGPRS 1900/ UMTS band II/ UMTS band V/ UMTS band IV	Test By:	Mary Hu	
Results: PASS	Results: PASS			

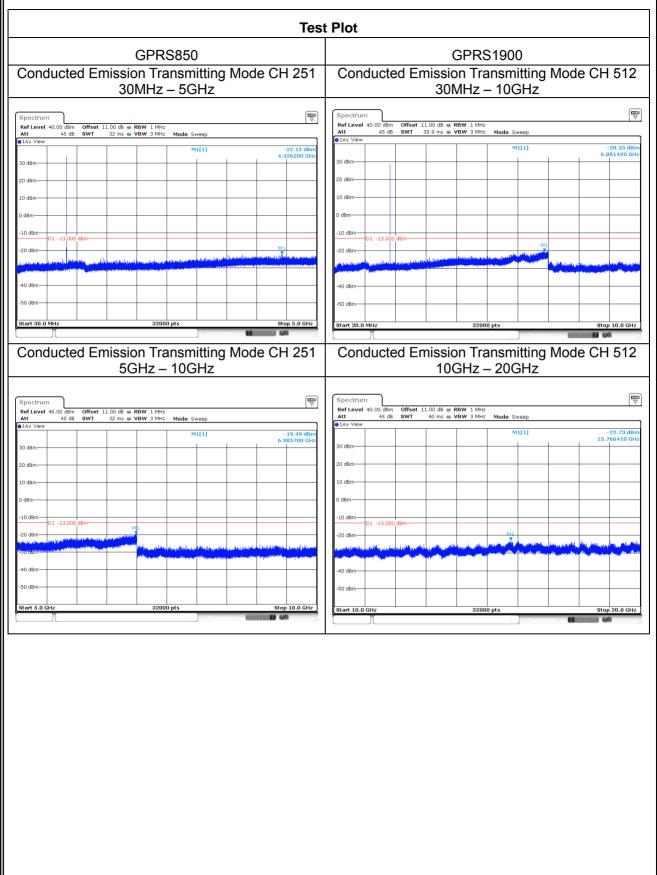


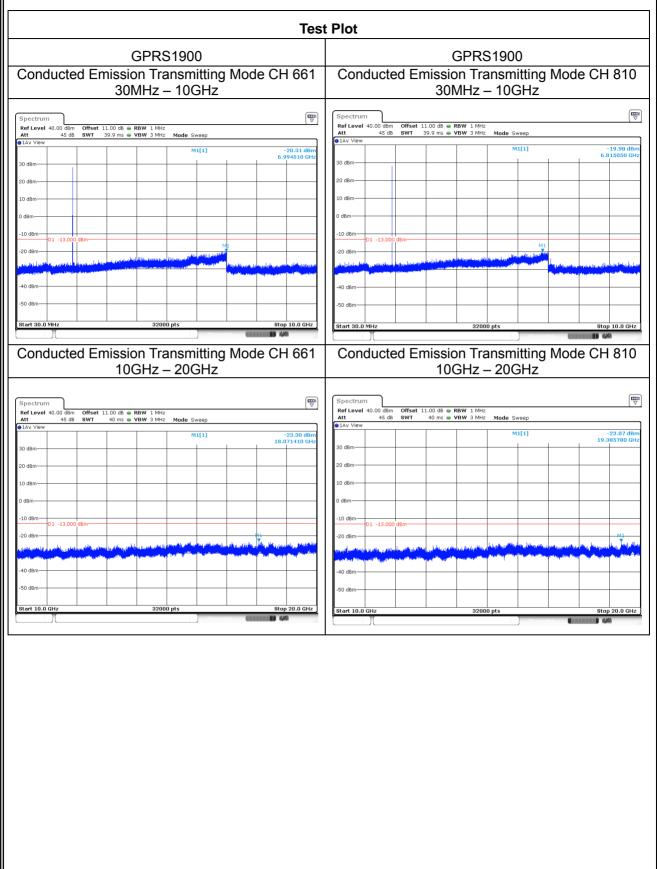
F

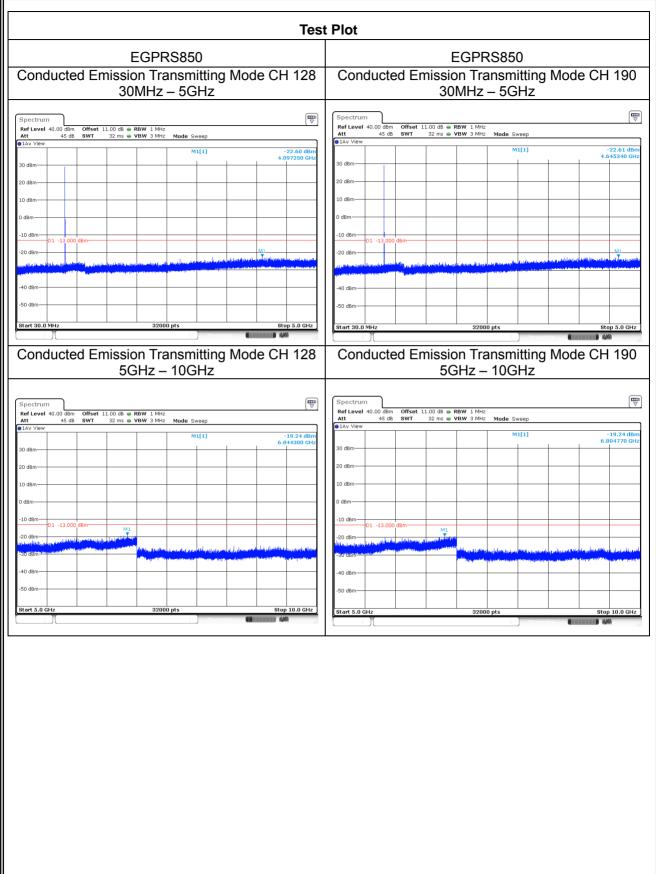
Test Plot				
GSM850	GSM850			
Conducted Emission Transmitting Mode CH 128 30MHz – 5GHz	Conducted Emission Transmitting Mode CH 190 30MHz – 5GHz			
Spectrum The second secon	Spectrum Image: Constraint of the second secon			
Conducted Emission Transmitting Mode CH 128 5GHz – 10GHz	Conducted Emission Transmitting Mode CH 190 5GHz – 10GHz			
Spectrum Image: Construct of the second	Spectrum The sector of the secto			
-50 d8m	-50 dBm			

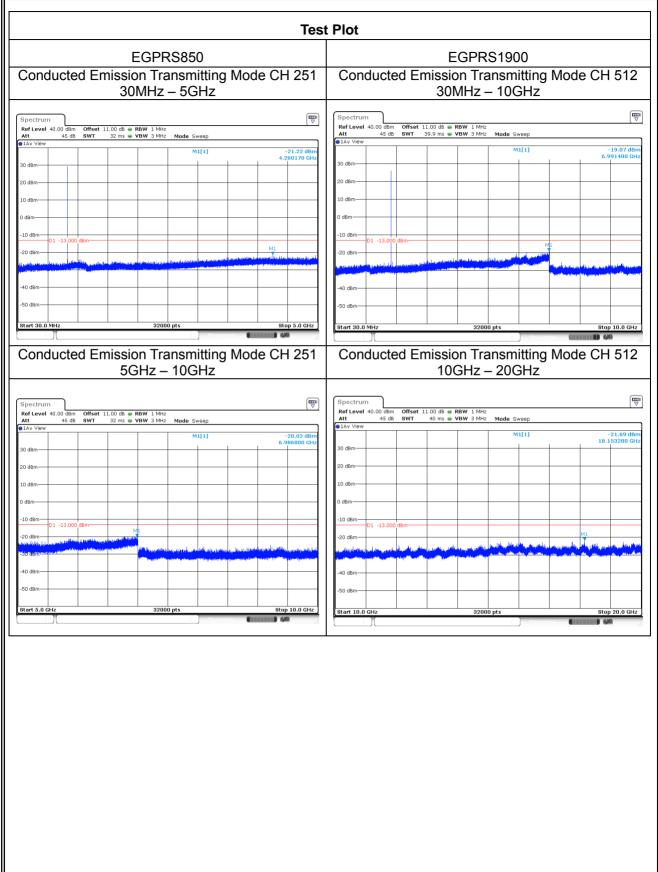




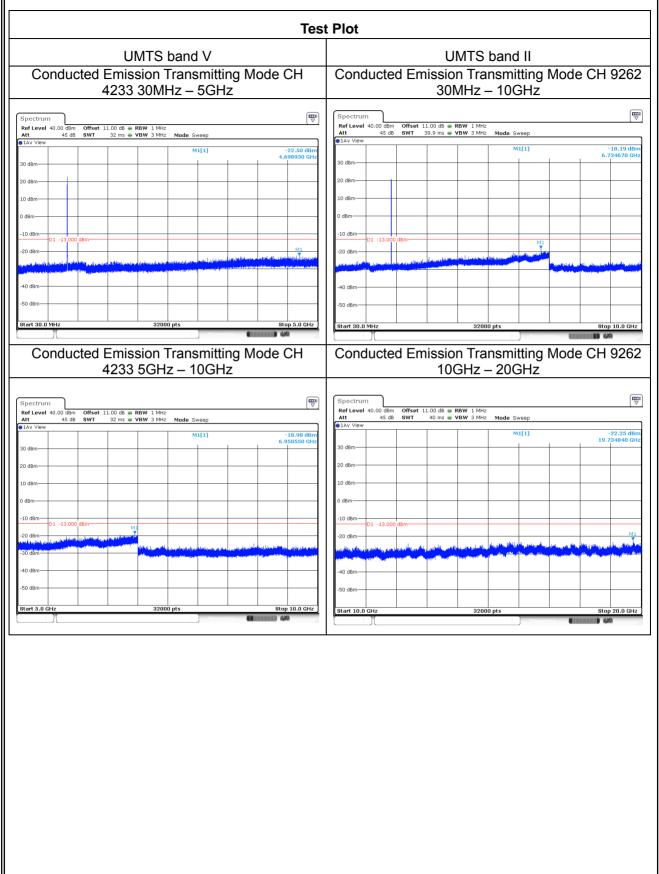




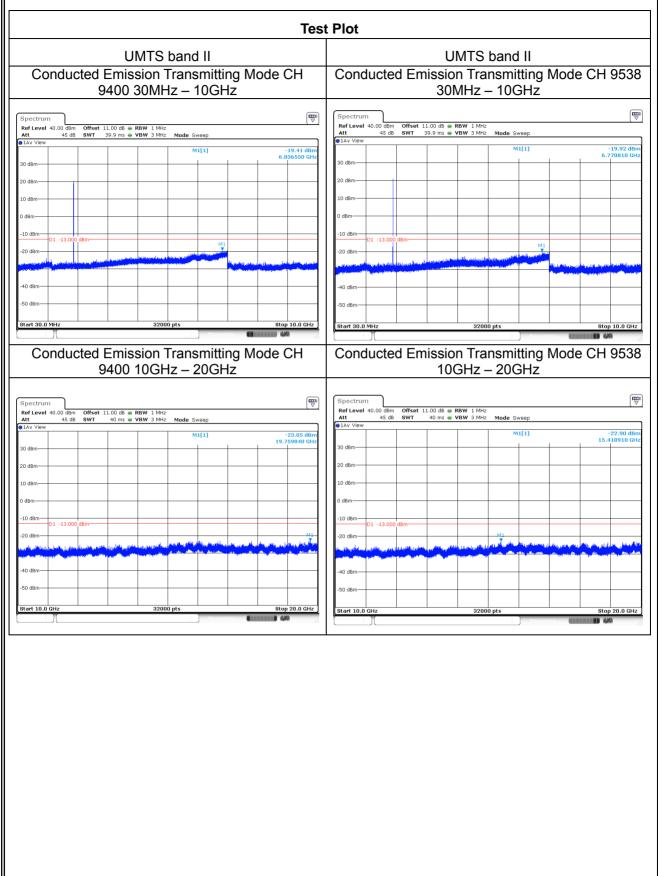




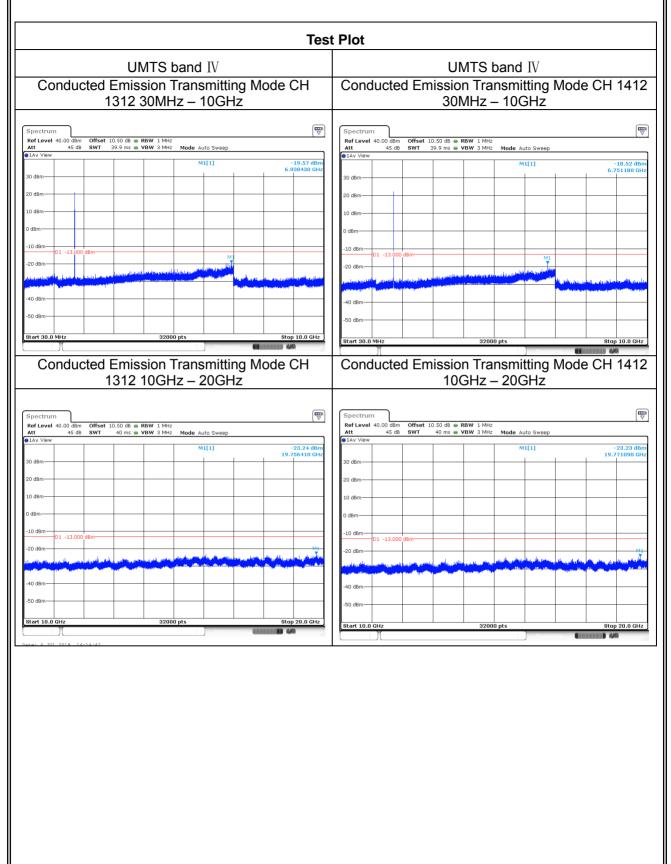
Conducted Emission Transmitting Mode CH 661 10GHz – 20GHz Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode Sweep Spectrum Image: Conducted Emission Transmitting Mode Sweep Spectrum Image: Conducted Emission Transmitting Mode Sweep <	CH 810
30MHz – 10GHz 30MHz – 10GHz 100 000 </th <th>-18.85 dP</th>	-18.85 dP
No. Office 100 der Office 100 der Office 100 der Mode Sweep 120 Ver 6/0 evr 9/0 evr	-18.85 dE
No. Vew NILLI	
a dam	6.816920 GI
0 d8m 0 d8m <td< td=""><td></td></td<>	
dBm d	
in dam	
01 1.3.000 @m 1.3.000 @m 1.3.000 @m 1.3.000 @m 1.4.1 @m 1.4.1 @m 20 @m 1.3.000 @m 1.4.1 @m 1.4	
20 dBm	
50 dBm store 10.0 MHz 32000 pts store 10.0 GHz tart 30.0 MHz 32000 pts store 10.0 GHz store 10.0 GHz Conducted Emission Transmitting Mode CH 661 10GHz - 20GHz Conducted Emission Transmitting Mode CH 661 10GHz - 20GHz Conducted Emission Transmitting Mode C 10GHz - 20GHz Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Ref Level 40.00 dBm Offset 11.00 dB & RBW 1 MHz tatt Milli -29.23 dBm Lav View Milli -29.23 dBm Image: Spectrum 0 dBm Milli -29.23 dBm Milli	
50 dBm store 10.0 MHz 32000 pts store 10.0 GHz tart 30.0 MHz 32000 pts store 10.0 GHz store 10.0 GHz Conducted Emission Transmitting Mode CH 661 10GHz - 20GHz Conducted Emission Transmitting Mode CH 661 10GHz - 20GHz Conducted Emission Transmitting Mode C 10GHz - 20GHz Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Ref Level 40.00 dBm Offset 11.00 dB & RBW 1 MHz tatt Milli -29.23 dBm Lav View Milli -29.23 dBm Image: Spectrum 0 dBm Milli -29.23 dBm Milli	a had a start second
tert 30.0 MHz 32000 pts Stop 10.0 GHz Conducted Emission Transmitting Mode CH 661 10GHz – 20GHz Conducted Emission Transmitting Mode CH 661 10GHz – 20GHz Spectrum Spectrum stert 40.0 dBm Offset 11.00 dB • RBW 1 MHz 45 dB • SWT • 40 ms • VBW 3 MHz Mode Sweep Lav View M1[1] -23.23 dBm 0 dBm M1[1] -23.23 dBm 20 dBm M1[1] -23.23 dBm 20 dBm M1[1] -23.23 dBm	
Conducted Emission Transmitting Mode CH 661 10GHz – 20GHz Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode C 10GHz – 20GHz Spectrum Image: Conducted Emission Transmitting Mode Sweep Intervent Image: Conducted Emission Transmitting Mode Sweep Intervent Image: Conducted Emission Transmiting Mode Sweep	
10GHz – 20GHz ipectrum Spectrum Spectrum Ref Level 40.00 dbm Offset 11.00 db @ RBW 1 MHz Atv Yew MIL1	Stop 10.0 GH:
10GHz – 20GHz ipectrum Spectrum Spectrum Ref Level 40.00 dbm Offset 11.00 db @ RBW 1 MHz Atv Yew MIL1	4,49
Ver Ver Mode Sweep Att 45 db SWT 40 ms VBW 3 MHz Mode Sweep Att 45 db SWT 40 ms VBW 3 MHz Mode Sweep Att 45 db SWT 40 ms VBW 3 MHz Mode Sweep 0 dbm 0 dbm 15.595470 GHz M1[1] -23.23 dbm M1[1] 0 dbm	;H 810
Ver Ver Mode Sweep Att 45 db SWT 40 ms VBW 3 MHz Mode Sweep Att 45 db SWT 40 ms VBW 3 MHz Mode Sweep Att 45 db SWT 40 ms VBW 3 MHz Mode Sweep 0 dbm 0 dbm 15.595470 GHz M1[1] -23.23 dbm M1[1] 0 dbm	G
Mit 1 -23.23 dBm Mit 1 -23.23 dBm 0 dBm	
0 dBm 15.595470 GHz 30 dBm 30 dBm 10	-22.78 dB
	19.090470 GH
d8m	
10 dBm	
01 -13.000 dBm 01 - 13.000 dBm 01 - 13.0000 dBm 01 - 13.000000 dBm 01 - 13.0000000000000000000000000000000	- 10
	t des lageboard
50 dBm	
tart 10.0 GHz 32000 pts Stop 20.0 GHz Start 10.0 GHz 32000 pts Store content of the content of t	Stop 20.0 GHz



Test	Plot		
UMTS band V	UMTS band V	_	
Conducted Emission Transmitting Mode CH 4132 30MHz – 5GHz	Conducted Emission Transmitting Mode CH 4183 30MHz – 5GHz		
ectrum (v)	Spectrum RefLevel 40.00 dbm Offset 11.00 dB • RBW 1 MHz		
if Level 40.00 dBm Offset 11.00 dB ⊕ RBW 1 MHz t 45 dB SWT 32 ms ⊕ VBW 3 MHz Mode Sweep ∆v View	Att 45 dB SWT 32 ms ● VBW 3 MHz Mode Sweep ● 1Av View		
M1[1] -22.26 dBm 4.843060 GHz	30 dBm	2.31 dB 9350 GF	
d8m	20 dBm		
d8m	10 dBm		
5m	0 dBm		
u dBm	-10 dBm		
01 -13.000 dBm	D1 -13.000 dBm		
d8m-	-40 dBm		
d8m	-50 dBm		
art 30.0 MHz 32000 pts Stop 5.0 GHz	Start 30.0 MHz 32000 pts Stop 5	5.0 GH	
Conducted Emission Transmitting Mode CH 4132 5GHz – 10GHz	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz	18	
4132 5GHz – 10GHz rectrum filevel 40.00 dBm Offset 11.00 dB RBW 1 MHz 4 5 dB SWT 32 ms Waw 3 MHz Mode Sweep	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz		
4132 5GHz – 10GHz Image: Sectrum Image: Sectrum <th cols<="" td=""><td>Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz Spectrum Ref Level 40.00 dem Offset 11.00 de RBW 1 MH2 45 dB SWT 32 ms • VBW 3 MH2 Mode Sweep • IAV View MI[13] -19. 6.6660</td><td>0.41 dB</td></th>	<td>Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz Spectrum Ref Level 40.00 dem Offset 11.00 de RBW 1 MH2 45 dB SWT 32 ms • VBW 3 MH2 Mode Sweep • IAV View MI[13] -19. 6.6660</td> <td>0.41 dB</td>	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz Spectrum Ref Level 40.00 dem Offset 11.00 de RBW 1 MH2 45 dB SWT 32 ms • VBW 3 MH2 Mode Sweep • IAV View MI[13] -19. 6.6660	0.41 dB
4132 5GHz – 10GHz Image: Colspan="2">Image: Colspan="2" Image: Colspa=""2" Image: Colspan="2" Image: Colspan="2" Image:	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz	0.41 dB	
4132 5GHz – 10GHz Image: Sectrum Image: Sectrum <th cols<="" td=""><td>Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz</td><td>0.41 dB</td></th>	<td>Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz</td> <td>0.41 dB</td>	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz	0.41 dB
4132 5GHz – 10GHz Image: Colspan="2">Image: Colspan="2" Image: Colspa=""2" Image: Colspan="2" Image: Colspan="2" Image:	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz	0.41 dB	
4132 5GHz – 10GHz Image: Secture of the sec	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz	0.41 dB	
4132 5GHz – 10GHz rectrum rectrum <th< td=""><td>Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz Spectrum Ref Level 40.00 dbm Offset 11.00 db @ RBW 1 MH2 45 db SWT 32 ms @ VBW 3 MH2 Mode Sweep 1AV View 10 dbm 10 dbm</td><td>0.41 dB</td></th<>	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz Spectrum Ref Level 40.00 dbm Offset 11.00 db @ RBW 1 MH2 45 db SWT 32 ms @ VBW 3 MH2 Mode Sweep 1AV View 10 dbm 10 dbm	0.41 dB	
4132 5GHz – 10GHz Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" I	Conducted Emission Transmitting Mode CH 4 SGHz – 10GHz Spectrum Ref Level 40.00 dbm Offset 11.00 db @ RBW 1 MHz 45 db SWT 32 ms @ VBW 3 MHz Mode Sweep @1Av View Milli 0 dbm 0 20 dbm 0 10 dbm 0	0.41 dB	
4132 5GHz – 10GHz Image: Section of the se	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz Spectrum Ref Level 40.00 dbm Offset 11.00 db @ RBW 1 MH2 45 dB BWT 32 ms @ VBW 30 Mt2 Mode Sweep IN View © IAV View M113 6.9930 30 dbm 0 10 dbm 10 dbm 10 dbm 10 dbm 0 113 0 10 dbm 10 dbm	0.41 dB	
4132 5GHz – 10GHz Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" I	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz Spectrum Ref Level 40.00 dbm Offset 11.00 db @ RBW 1 MH2 45 db BWT 32 ms @ VBW 3 MH2 Mode Sweep I AV View I AV View MI[13] 6.960 30 dBm I AV View MI[13] 6.960 20 dBm I AV View III AV View III AV View I av View III AV View III AV View III AV View I av View III AV View III AV View III AV View I av View III AV View III AV View III AV View I av View III AV View III AV View III AV View I av View III AV View III AV View III AV View I av View III AV View III AV View III AV View I av View III AV View III AV View III AV View I av View III AV View III AV View III AV View I av View III AV View III AV View III AV View I av View III AV View III AV View III AV View I	0.41 dB	
4132 5GHz – 10GHz Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" I	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz Spectrum Ref Level 40.00 dbm Offset 11.00 db @ RBW 1 MHz Att 40.00 dbm Offset 11.00 db @ RBW 1 MHz Att 32 ms @ VBW 3 MHz Mode Sweep ©1Av View	0.41 dB	
4132 5GHz – 10GHz Image: Section of the section of t	Conducted Emission Transmitting Mode CH 4 5GHz – 10GHz Spectrum Ref Level 40.00 dbm Offset 11.00 db • RBW 1 MHz 32 ms • VBW 3 MHz Made Sweep Male 61Av View -19 61Av View -19 0 dbm -19 30 dbm -19 -10 dbm -10 -10 dbm -11 -10 dbm -12 -10 dbm -13 -10 dbm -14 -14 -14 -14 -14 -14 -14	(q	




Certificate #4298.01



Certificate #4298.01

Test	Plot
UMTS band IV	
Conducted Emission Transmitting Mode CH	
1513 30MHz – 10GHz	
Spectrum	
Att 45 dB SWT 39.9 ms ♥ UBW 3 MHz Mode Auto Sweep ●1Av View	
30 d8m 6.959620 GHz	
20 dBm	
10 dBm	
-10 dBm01 -13,000 dBm	
-20 dBm	
-40 dbm	
Start 30.0 MHz 32000 pts Stap 10.0 GHz	
Measuring.	
Conducted Emission Transmitting Mode CH 1513 10GHz – 20GHz	
Spectrum	
Att 45 dB SWT 40 ms VBW 3 MHz Mode Auto Sweep ●1Av View	
30 dBm	
20 dBm	
10 dBm	
-10 dBm 01 -13.000 dBm	
-40 d8m	
Start 10.0 GHz 32000 pts Stap 20.0 GHz	
END OF RI	EPORT