

CERTIFICATION TEST REPORT

Report Number. : 12727679-E1V2

- Applicant : WARMBOARD INC 8035 SOQUEL DR APTOS, CA 95003, U.S.A.
 - Model : WBR-01
 - FCC ID : 2ASM7-WBR01
 - IC : 24839-WBR01
- EUT Description : BRIDGE WITH LORA WIRELESS COMMUNICATION
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5

Date Of Issue: April 08, 2019

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	4/3/2019	Initial Issue	
V2	4/8/2019	Updated report to address TCB's questions	Tina Chu

Page 2 of 48

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	. 5
2.	TES	ST METHODOLOGY	. 7
3.	FAG	CILITIES AND ACCREDITATION	. 7
4.	CA	LIBRATION AND UNCERTAINTY	. 8
4	1.	MEASURING INSTRUMENT CALIBRATION	. 8
4.	2.	SAMPLE CALCULATION	. 8
4.	3.	MEASUREMENT UNCERTAINTY	. 8
5.	EQ	UIPMENT UNDER TEST	. 9
5.	1.	EUT DESCRIPTION	. 9
5.	2.	MAXIMUM OUTPUT POWER	. 9
5.	З.	DESCRIPTION OF AVAILABLE ANTENNAS	. 9
5.	4.	SOFTWARE AND FIRMWARE	. 9
5.	5.	WORST-CASE CONFIGURATION AND MODE	. 9
5.	6.	DESCRIPTION OF TEST SETUP	10
6.	ME	ASUREMENT METHOD	13
7.	TES	ST AND MEASUREMENT EQUIPMENT	14
7. 8.		ST AND MEASUREMENT EQUIPMENT	
8.			15
8. 8.	AN'	TENNA PORT TEST RESULTS	15 15
8. 8. 8.	AN 1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	15 15 16
8. 8. 8. 8.	AN 1. 2.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH	15 15 16 17
8. 8. 8. 8. 8. 8.	AN 1. 2. 3.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 6 dB BANDWIDTH	15 15 16 17 18
8. 8. 8. 8. 8. 8. 8.	AN 1. 2. 3. 4.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 6 dB BANDWIDTH OUTPUT POWER	15 16 17 18 19
8. 8. 8. 8. 8. 8. 8. 8.	AN 1. 2. 3. 4. 5.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 99% BANDWIDTH	15 16 17 18 19 20
8. 8. 8. 8. 8. 8. 8. 8. 8.	AN 2. 3. 4. 5. 6. 7.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 99% BANDWIDTH	15 15 16 17 18 19 20 21
8. 8. 8. 8. 8. 8. 8. 8. 9.	AN 2. 3. 4. 5. 6. 7.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 6 dB BANDWIDTH 0UTPUT POWER AVERAGE POWER POWER SPECTRAL DENSITY CONDUCTED SPURIOUS EMISSIONS	 15 16 17 18 19 20 21 23
8. 8. 8. 8. 8. 8. 8. 8. 9. 9.	AN 1. 2. 3. 4. 5. 6. 7. RA	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 99% BANDWIDTH. 6 dB BANDWIDTH. OUTPUT POWER. AVERAGE POWER. POWER SPECTRAL DENSITY. CONDUCTED SPURIOUS EMISSIONS.	 15 16 17 18 19 20 21 23 23
8. 8. 8. 8. 8. 8. 8. 8. 8. 9. 9.	AN [*] 1. 2. 3. 4. 5. 6. 7. RA 1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 6 dB BANDWIDTH 0UTPUT POWER AVERAGE POWER POWER SPECTRAL DENSITY CONDUCTED SPURIOUS EMISSIONS DIATED TEST RESULTS LIMITS AND PROCEDURE	 15 16 17 18 19 20 21 23 25
8. 8. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9.	AN [*] 1. 2. 3. 4. 5. 6. 7. RA 1. 2.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 6 dB BANDWIDTH 0UTPUT POWER AVERAGE POWER POWER SPECTRAL DENSITY CONDUCTED SPURIOUS EMISSIONS DIATED TEST RESULTS LIMITS AND PROCEDURE TRANSMITTER BELOW 1 GHz	 15 16 17 18 19 20 21 23 25 35

11.	SETUP PHOTOS	.45	j
-----	--------------	-----	---

Page 4 of 48

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	WARMBOARD INC 8035 SOQUEL DR APTOS, CA 95003, U.S.A.					
EUT DESCRIPTION:	BRIDGE WITH LORA W	IRELESS COMMUNICATION				
MODEL:	WBR-01	WBR-01				
SERIAL NUMBER:	(027C91 (CONDUCTED) 027C80, 027C69 (RADIATED)				
DATE TESTED:	MARCH 19, 2019 TO MA	ARCH 28, 2019				
	APPLICABLE STANDA	RDS				
S	TANDARD	TEST RESULTS				
CFR 47	Part 15 Subpart C	Complies				
ISED F	RSS-247 Issue 2	Complies				
ISED R	SS-GEN Issue 5 Complies					

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

porino de Quok

FRANCISCO DE ANDA PROJECT LEAD UL Verification Services Inc.

Reviewed By:

TINA CHU SENIOR PROJECT ENGINEER UL Verification Services Inc.

Prepared By:

ERIC YU TEST ENGINEER UL Verification Services Inc.

Page 6 of 48

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, RSS-GEN Issue 5 Amendment 1, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd.	
□ Chamber A (ISED:2324B-1)	Chamber D (ISED:22541-1)	□ Chamber I (ISED: 2324A-5)	
□ Chamber B (ISED:2324B-2)	Chamber E (ISED:22541-2)	Chamber J (ISED: 2324A-6)	
□ Chamber C (ISED:2324B-3)	Chamber F (ISED:22541-3)	□ Chamber K (ISED: 2324A-1)	
	Chamber G (ISED:22541-4)	Chamber L (ISED: 2324A-3)	
	Chamber H (ISED:22541-5)		

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

Page 7 of 48

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.24 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a bridge with LoRa 915MHz wireless communication, it acts as a portal to connect the Warmboard Comfort System to home network and is categorized as Digital Transmission System (DTS).

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
903 - 927	LoRa	17.68	58.61

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PCB type antenna with a maximum gain of 1.9dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was Version 030719 The firmware installed in the EUT during testing was Version 030719

5.5. WORST-CASE CONFIGURATION AND MODE

Band edge and radiated emissions were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

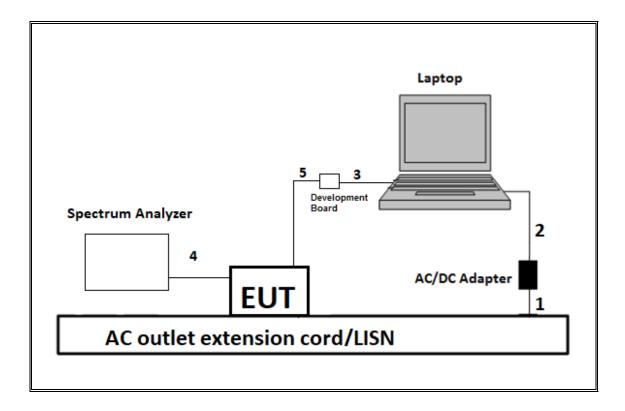
The fundamental of the EUT was investigated in three orthogonal orientations X/Y/Z, it was determined that Y-Landscape orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in Y-Landscape orientation.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Description	Manufacturer	Model	Serial Number	FCC ID/DoC
Laptop	Sony	PCG-31113L	54042658 0003472	DoC
Laptop AC/DC adapter	Sony	VGP-AC19V32	148095531 0289840	DoC
Development Board	Warmboard	N/A	N/A	N/A

I/O CABLES (CONDUCTED TEST)

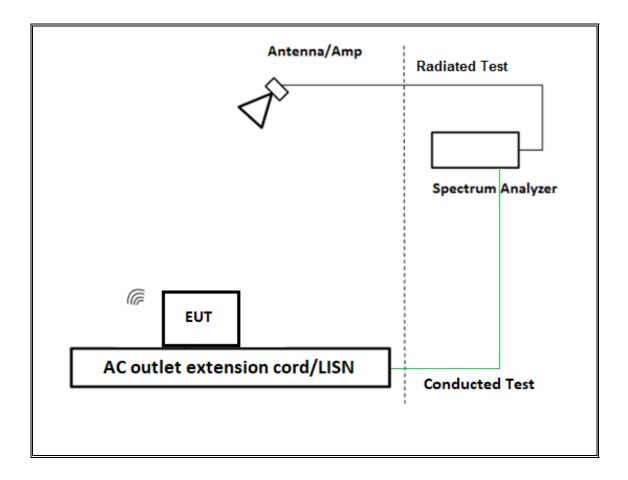

I/O CABLE LIST								
Cable	Port	Port # of Connector Cable		Cable	Remarks			
No.		Identical	Туре	Туре	Length			
		Ports			m			
1	AC	1	AC	Unshielded	1.5	AC Mains to AC/DC adapter		
2	DC	1	DC	Unshielded	1.8	AC/DC adapter to laptop		
3	USB	1	Serial ports	Shielded	0.05	Laptop to development board		
4	Antenna	1	SMA	Unshielded	0.18	To spectrum analyzer		
5	Ribbon Cable	1	8 pins	Unshielded	0.15	development board to EUT- USB to EUT interface		

I/O CABLES (RADIATED TEST AND AC POWER LINE TEST)

None. EUT includes connection to AC mains.

TEST SETUP-CONDUCTED TEST

The EUT is AC powered. Test software exercised the EUT. **SETUP DIAGRAM**



Page 11 of 48

TEST SETUP- RADIATED TEST AND AC POWER LINE TEST

The EUT is AC powered. Test software exercised the EUT. Laptop was removed after test script was started.

SETUP DIAGRAM

Page 12 of 48

6. MEASUREMENT METHOD

6 dB BW: ANSI C63.10 Subclause -11.8.1

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter

<u>Average Output Power:</u> ANSI C63.10 Subclause -11.9.2.3.2 Method AVGPM-G (Measurement using a gated RF average-reading power meter)

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Subclause -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

<u>Band-edge:</u> ANSI C63.10 Subclause -11.13.3.4 Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal			
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T1262	1/31/2020	1/31/2019			
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Agilent (Keysight) Technologies	N1921A	T1223	2/25/2020	2/25/2019			
Loop Antenna 30Hz-1MHz	Electro Metrics	EM-6871	PRE0179465	5/22/2019	5/22/2018			
Loop Antenna 100KHz-30MHz	Electro Metrics	EM-6872	PRE0179467	5/22/2019	5/22/2018			
Amplifier, 9KHz to 1GHz, 32dB	Sonoma Instrument	310	PRE0180174	5/31/2019	5/31/2018			
Hybrid Antenna, 30MHz to 3GHz	SunAR rf motion	JB3	PRE0181575	8/1/2019	8/1/2018			
Antenna, Horn 1-18GHz AR		AMPL- ATH1G18	PRE0189055	4/20/2019	4/20/2018			
Amplifier, 1 to 18GHz, 35dB	AMPLICAL	AMP1G18-35	T1571	7/30/2019	7/30/2018			
EMI TEST RECEIVER	ST RECEIVER Rohde & Schwarz		PRE0179372	5/4/2019	5/4/2018			
Spectrum Analyzer, PXA, 3Hz to 44GHz			T917	1/24/2020	1/24/2019			
Filter, BRF 902 to 928MHz	MICRO-TRONICS	BRC50722	T1846	8/16/2019	8/16/2018			
Filter, Highpass 1.2GHz	MICRO-TRONICS	HPM50108	PRE0182423	9/4/2019	9/4/2018			
	AC Line Co	nducted						
EMI Receiver	Rohde & Schwarz	ESR	T1436	2/14/2020	2/14/2019			
LISN for Conducted Emissions CISPR-16	FCC INC.	FCC LISN 50/250	T1310	6/15/2019	6/15/2018			
Test Software List								
Radiated Software UL UL EMC Ver 9.5, Jan 11								
Antenna Port Software	UL	UL RF Ver 9.4.1, Feb 19, 2			b 19, 2019			
AC Line Conducted Software	UL	UL E	MC	Ver 9.5, May	26, 2015			

Page 14 of 48

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

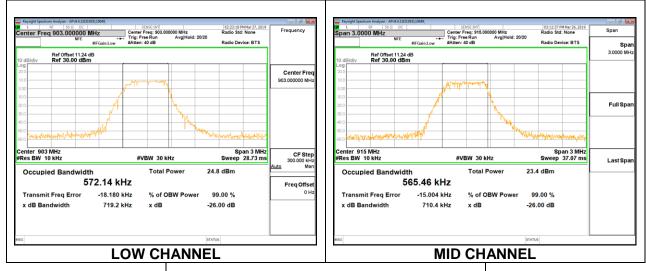
KDB 558074 Zero-Span Spectrum Analyzer Method.

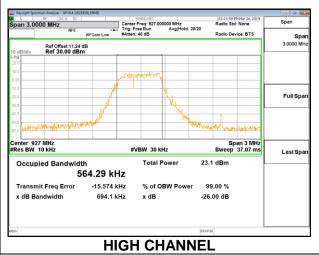
RESULTS

Date:	3/19/2019
Test Engineer:	10649 JR

ON TIME AND DUTY CYCLE RESULTS								
Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B		
	В		x	Cycle	Correction Factor	Minimum VBW		
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)		
LoRa	30.900	41.600	0.743	74.28%	1.29	0.032		
APv9.3.2(010719),452								
MultiView 😁 Spectrum	<u></u>							
RefLevel 0.00 dBm Att 10 dB ● SWT 100 m		MHz MHz			SGL	y 903.0000000 MHz		
	ff Notch	Off			riequeire	• 1AP Clrw		
1 2010 30411						D3[1] 0.03 dB		
-10 dBm						41.6000 ms		
						M1[1] -41.79 dBm 31.5000 ms		
-20 dBm								
-30 dBm								
-50 060								
-40 dBm	M1				<u>D3</u>	~		
				*				
-50 dBm								
-60 dBm								
-70 dBm					ana ana ana			
-80 dBm	wheeling and the start				Minere algebrand front f			
-90 dBm	-							
CF 903.0 MHz 2 Marker Table			1001 pts			10.0 ms/		
Type Ref Trc	X-Value		Y-Value	Fun	ction	Function Result		
	1.5 ms 0.9 ms	-4:	L.79 dBm 0.03 dB					
	1.6 ms		0.03 dB					
re deviation from self alignment. Consider 0.3 dB additional level ur 🔹 Ready 🗰 19.03.2019 (Ref Level RBW)								
14:52:30 19.03.2019								
DUTY CYCLE PLOTS								

Page 15 of 48


8.2. 99% **BANDWIDTH**


LIMITS

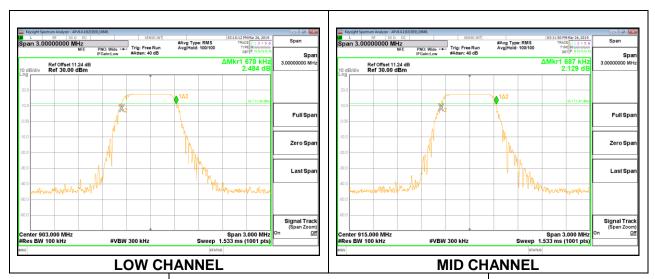
None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	903	0.5721
Middle	915	0.5655
High	927	0.5643

Page 16 of 48

8.3. 6 dB BANDWIDTH


LIMITS

FCC §15.247 (a) (2) RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)		
Low	903	0.678	0.5		
Middle	915	0.687	0.5		
High	927	0.711	0.5		

Page 17 of 48

8.4. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247 (b) (3) RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.24 dB (including 10 dB pad and 1.24 dB cable) was entered as an offset in the power meter to allow for a gated peak reading of power.

RESULTS

Tested By:	10649 JR
Date:	3/22/2019

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	903	17.68	30	-12.32
Middle	915	17.61	30	-12.39
High	927	17.51	30	-12.49

Page 18 of 48

8.5. AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.24 dB (including 10 dB pad and 1.24 dB cable) was entered as an offset in the power meter to allow for a gated average reading of power.

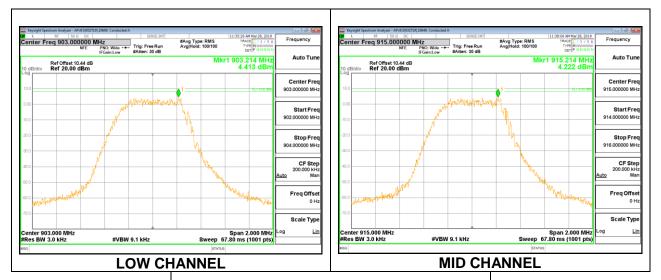
RESULTS

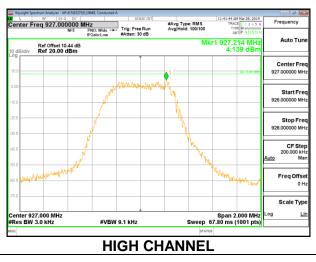
	10649 JR
Date:	3/22/2019

Channel	Frequency (MHz)	AV power (dBm)
Low	903	17.55
Middle	915	17.48
High	927	17.38

Page 19 of 48

8.6. POWER SPECTRAL DENSITY


LIMITS


FCC §15.247 (e) RSS-247 (5.2) (b)

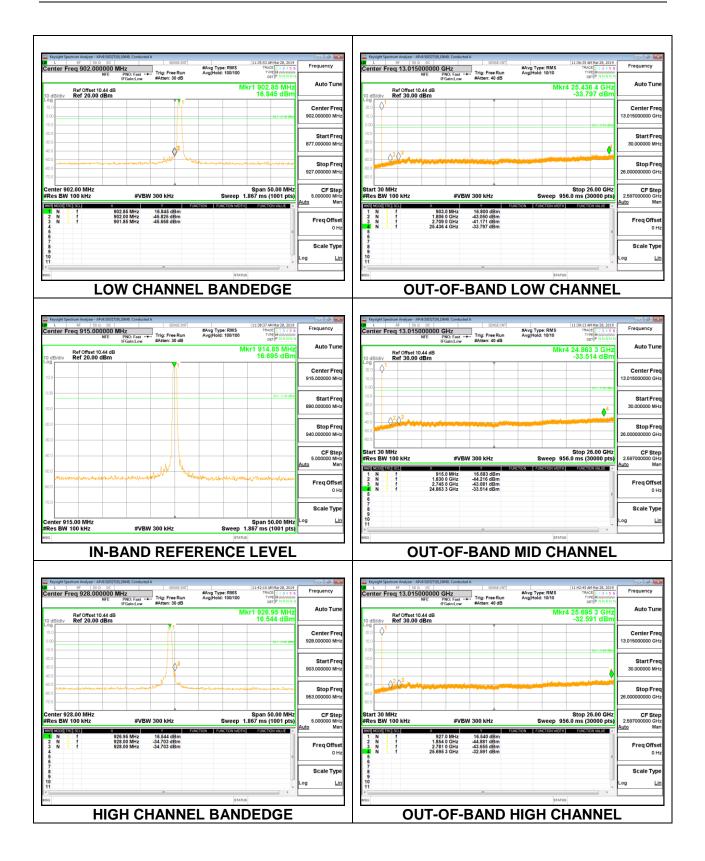
The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)
Low	903	4.41	8	-3.59
Middle	915	4.22	8	-3.78
High	927	4.14	8	-3.86

8.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS


FCC §15.247 (d)

RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 22 of 48

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209 RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only.

Page 23 of 48

KDB 414788 Open Field Site(OFS) and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Page 24 of 48

9.2. TRANSMITTER BELOW 1 GHz

-20 dBc BANDEDGE WITHOUT NOTCH FILTER AND PRE-AMPLIFIER (LOW CHANNEL)

AultiView 🗄	Spectrur	n						
Ref Level -10. Att			00 kHz 00 kHz Mode Auto	Sween		Freque	ency 900.00	
Input	1 DC PS		Off	oncop		ineque	Jucy 500.00	
Frequency Sw	eep							●1Pk Max
							M5[1]	-79.20 dB
20 dBm								929.800 MH
							M1[1]	-36.91 dB 902.800 MF
30 dBm								902.800 MF
				M1				
10 dBm								
50 dBm								
	1 -56.910 dBm -							
i0 dBm	1 30.910 dbm							
70 dBm								
			M4	MD	M5 M3			
80/d9m ^{ulu}	historia de la constante de la	o di kana ka na kata ka	and the construction of the second	to many many land	and the contraction of the state of the stat	mon more our solo	ana ta constant const	mandatura
90 dBm								
100 dBm								
F 900.0 MHz			1001 pts		20.0 MHz/	I I	Sp	an 200.0 MH
Marker Table								
Type Ref	Trc	X-Value	Y-Valu		Function		Function Re	esult
M1	1	902.8 MHz 902.0 MHz	-36.91 (
M2 M3	1	928.0 MHz	-81.45					
M4	1	869.43 MHz	-78.29 (dBm				
M5	1	929.8 MHz	-79.20 (dBm				
	ire deviatio	n from self alignment. Co	nsider 0.3 dB addition	al level ur 🔻	Measuring	## 21.03.20 13:27		RBW
						13:27	29	

HORIZONTAL RESULT

Page 25 of 48

VERTICAL RESULT

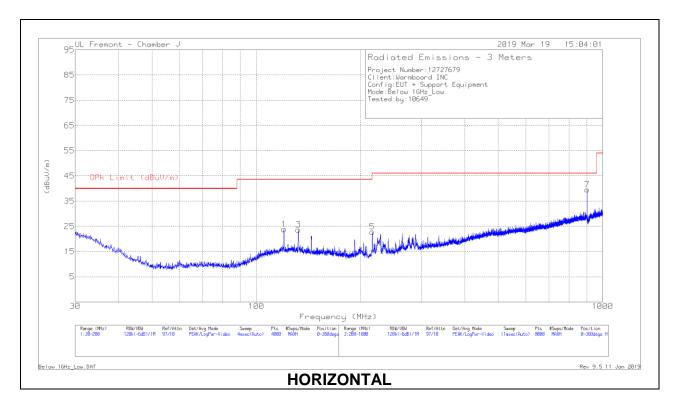
APv9.3.2(01071	L9),452								
MultiView 8	Spectrum								
Ref Level -10 Att Input		● RBV 100 ms ● VBV Off Not		Mode Auto Sweep			Freque	ency 900.00	000000 MHz
1 Frequency Sv		011 1000	un on						●1Pk Max
	Поср							M5[1]	-79.64 dBm 931.400 MHz
-20 dBm								M1[1]	-44.64 dBm
-30 dBm									903.000 MHz
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm	H1 -64.640 dBm								
"z80,d8m ,reistanteder	- Anno-war ward	ereter and a construction	alternation the	M4	M2	M3 M5	moundandor	www.handowyperan	motherman
-90 dBm									
-100 dBm									
CF 900.0 MHz			1001 p	ots	2	0.0 MHz/		Sp	an 200.0 MHz
2 Marker Table Type Ref M1 M2 M3		X-Value 903.0 MHz 902.0 MHz 928.0 MHz		Y-Value -44.64 dBm -80.63 dBm -80.43 dBm		Function		Function Re	esult
M4 M5	1	887.41 MHz 931.4 MHz	<u> </u>	-78.57 dBm -79.64 dBm			21.03.2	019 Ref Level	RBW
13:32:17 21.03		from self alignmei	nt. Consider 0.3	dB additional level	ur 🔨 Measurin	g 48888888	13:32		

Page 26 of 48

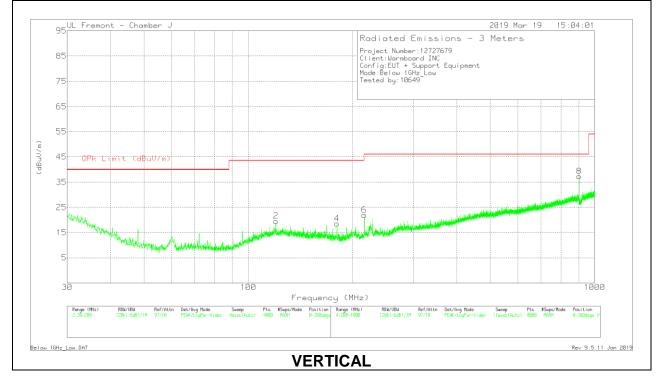
-20 dBc BANDEDGE WITHOUT NOTCH FILTER AND PRE-AMPLIFIER (HIGH CHANNEL)

HORIZONTAL RESULT

APv9.3.2(010719	9),452										
MultiView 88	Spectrum										
Ref Level -10.0 Att Input	00 dBm 10 dB • SWT 1 DC PS			100 kHz 300 kHz Off	Mode Auto Swee	þ			Frequ	ency 900.00	00000 MHz
1 Frequency Sw	еер										●1Pk Max
-20 dBm										M4[1]	-77.94 dBm 885.410 MHz
										M1[1]	-40.43 dBm 926.970 MHz
-30 dBm											
-40 dBm							1	11			
-50 dBm								/			
-60 dBmH1	59.350 dBm <u>—</u>										
-70 dBm					M4	M2		M5			
urBQ.dBm ajburatio	the three has a second the			alanga ang ang ang ang ang ang ang ang ang		Marin Marrie	Mur	M3T	w.w.w.w.	and and the second	munn
-90 dBm											
-100 dBm											
CF 900.0 MHz				1001	pts		20.0 M	Hz/		Sp	an 200.0 MHz
2 Marker Table Type Ref M1 M2 M3 M4	1 1	X-Valu 926.97 902.0 928.0 885.41	MHZ MHZ MHZ MHZ		Y-Value -40.43 dBm -79.72 dBm -81.49 dBm -77.94 dBm		Fur	nction		Function Re	sult
M5	1 Ire deviation f	930.4		Consider 0.3	-79.08 dBm 3 dB additional leve	lur - Measur	ing		41.03	2019 Ref Level	RBW
13:43:16 21.03.2									13:4	3:15	


Page 27 of 48

VERTICAL RESULT


APv9.3.2(010719),452				
MultiView 😁 Spectrum				
Ref Level -10.00 dBm ● RBV ● Att 10 dB ● SWT 100 ms ● VBV	♥ 100 kHz ♥ 300 kHz Mode Auto Sv	veen	Frequency 000	.0000000 MHz
Input 1 DC PS Off Not		теер	Trequency 900	
1 Frequency Sweep				●1Pk Max
			M1	[1] -50.92 dBm 926.970 MHz
-20 dBm			M2	
			WI2	902.000 MHz
-30 dBm				5021000 11112
-40 dBm				
		M1		
-50 dBm		1		
-60 dBm-				
-70 dBm				
17 80., dBrathanse v see "14 and a standard and a standard and a standard a	M.		M5	
ىلىمىم بىرىغىيىيە يىرىكى يەرىيە يەرىپەر بىرىيىتى بىرىكى بىكى يەرىپىيە بىرىكى بىكى بىكى بىكى بىكى بىكى بىكى بى		and a second and the second and a second		- Marganga walana and
-90 dBm				
90 dom				
-100 dBm-				
	1001			
CF 900.0 MHz	1001 pts	20.0 MHz/		Span 200.0 MHz
2 Marker Table Type Ref Trc X-Value	Y-Value	Function	Eupetio	n Result
M1 1 926.97 MHz			1 difedo	Intesuit
M2 1 902.0 MHz				
M3 1 928.0 MHz M4 1 893.41 MHz		m m		
M4 1 893.41 MA M5 1 956.37 MHz				
ire deviation from self alignme	nt Consider 0.3 dB additional	evel ur 🔻 Measuring 🔳 💷	21.03.2019 Ref L	evel RBW
		nedsung	13:38:12	
13:38:13 21.03.2019				

Page 28 of 48

HARMONICS AND SPURIOUS EMISSIONS WITH A NOTCH FILTER

LOW CHANNEL RESULTS

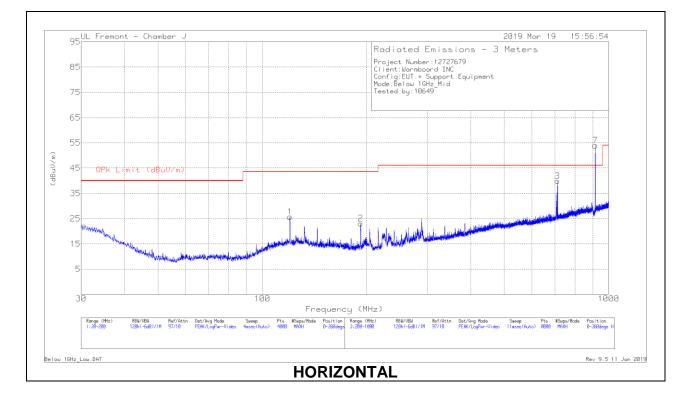
Page 29 of 48

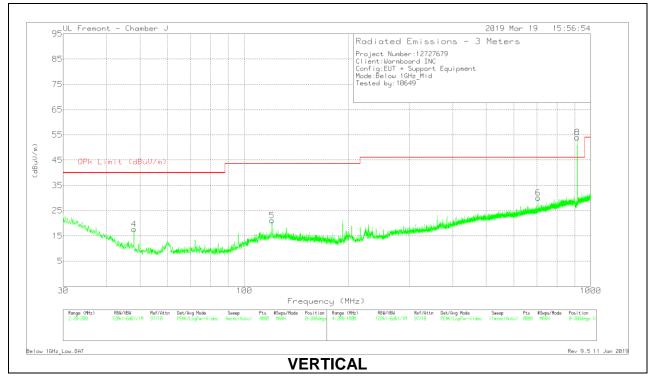
RADIATED EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181575 (dB/m)	Amp Cbl (dB)	Filter T1846 (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 120.2083	34.93	Pk	19.7	-30.8	0.5	24.33	43.52	-19.19	0-360	198	Н
	* 120.2097	32.66	Qp	19.7	-30.8	0.5	22.06	43.52	-21.46	59	141	Н
3	* 132.2815	34.98	Pk	19.5	-30.8	0.5	24.18	43.52	-19.34	0-360	198	Н
	* 132.3515	31.01	Qp	19.5	-30.8	0.5	20.21	43.52	-23.31	82	229	Н
2	* 120.2509	30.68	Pk	19.7	-30.8	0.5	20.08	43.52	-23.44	0-360	101	V
4	180.3614	31.83	Pk	17.1	-30.4	0.5	19.03	43.52	-24.49	0-360	101	V
5	216.4021	36.73	Pk	16.4	-30.3	0.5	23.33	46.02	-22.69	0-360	198	Н
	216.5023	35.16	Qp	16.5	-30.3	0.5	21.86	46.02	-24.16	204	154	Н
6	216.3021	35.87	Pk	16.4	-30.3	0.5	22.47	46.02	-23.55	0-360	199	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector


Qp - Quasi-Peak detector


Note:

1. Marker 7 and 8 are fundamental signal of EUT.

Page 30 of 48

MID CHANNEL RESULTS

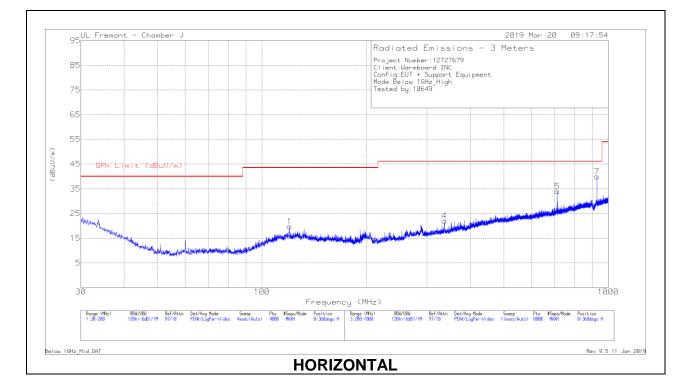
Page 31 of 48

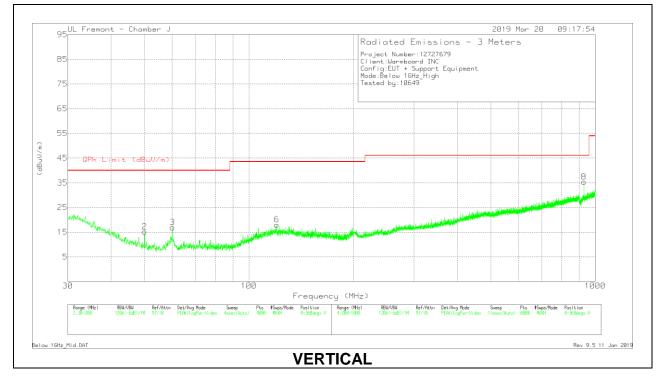
RADIATED EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181575 (dB/m)	Amp Cbl (dB)	Filter T1846 (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 120.2083	36.79	Pk	19.7	-30.8	0.5	26.19	43.52	-17.33	0-360	198	Н
	* 120.0251	32.63	Qp	19.7	-30.8	0.5	22.03	43.52	-21.49	59	141	Н
2	192.3495	36.14	Pk	17.4	-30.5	0.5	23.54	43.52	-19.98	0-360	198	Н
	192.4713	23.12	Qp	17.4	-30.5	0.5	10.52	43.52	-33	82	229	Н
4	48.0672	34.54	Pk	14.5	-31.4	0.5	18.14	43.52	-25.38	0-360	101	V
5	* 120.2083	32.21	Pk	19.7	-30.8	0.5	21.61	43.52	-21.91	0-360	101	V
3	711.2665	42.34	Pk	26.3	-28.8	0.5	40.34	46.02	-5.68	0-360	198	Н
	711.1792	21.05	Qp	26.3	-28.8	0.5	19.05	46.02	-26.97	204	154	Н
6	704.8656	32.65	Pk	26.2	-28.8	0.5	30.55	46.02	-15.47	0-360	199	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector


Qp - Quasi-Peak detector


Note:

1. Marker 7 and 8 are fundamental signal of EUT.

Page 32 of 48

HIGH CHANNEL RESULTS

Page 33 of 48

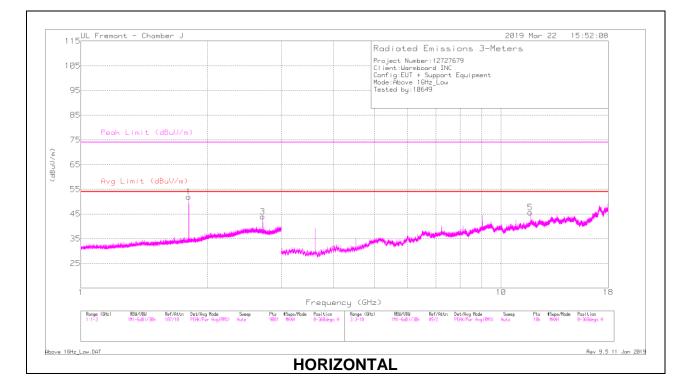
RADIATED EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181575 (dB/m)	Amp Cbl (dB)	Filter T1846 (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 120.1233	30.9	Pk	19.7	-30.8	0.5	20.3	43.52	-23.22	0-360	198	Н
	* 120.1617	26.87	Qp	19.7	-30.8	0.5	16.27	43.52	-27.25	245	172	Н
2	49.9377	32.69	Pk	13.8	-31.3	0.5	15.69	40	-24.31	0-360	101	V
	50.0092	30.6	Qp	13.8	-31.3	0.5	13.6	40	-26.4	67	112	V
3	60.1403	34.81	Pk	13.3	-31.2	0.5	17.41	40	-22.59	0-360	101	V
	60.205	26.94	Qp	13.3	-31.2	0.5	9.54	40	-30.46	201	127	V
6	* 120.3784	29.15	Pk	19.7	-30.8	0.5	18.55	43.52	-24.97	0-360	101	V
	* 120.2269	24.64	Qp	19.7	-30.8	0.5	14.04	43.52	-29.48	253	108	V
4	336.6178	32.1	Pk	19.8	-29.9	0.5	22.5	46.02	-23.52	0-360	101	Н
	336.7871	25.93	Qp	19.8	-29.9	0.5	16.33	46.02	-29.69	260	102	Н
5	713.2667	36.58	Pk	26.3	-28.9	0.5	34.48	46.02	-11.54	0-360	101	Н
	713.1041	21.38	Qp	26.3	-28.9	0.5	19.28	46.02	-26.74	76	168	Н

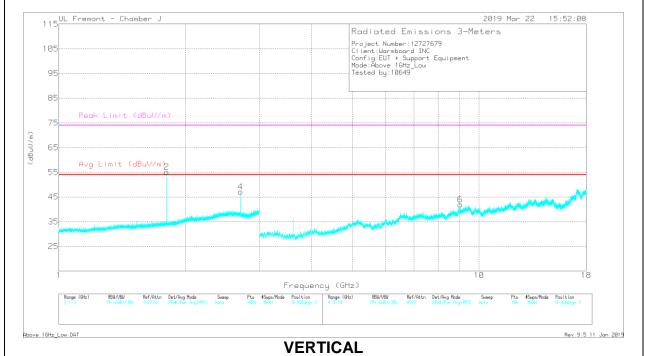
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

Qp - Quasi-Peak detector


Note:

1. Marker 7 and 8 are fundamental signal of EUT.

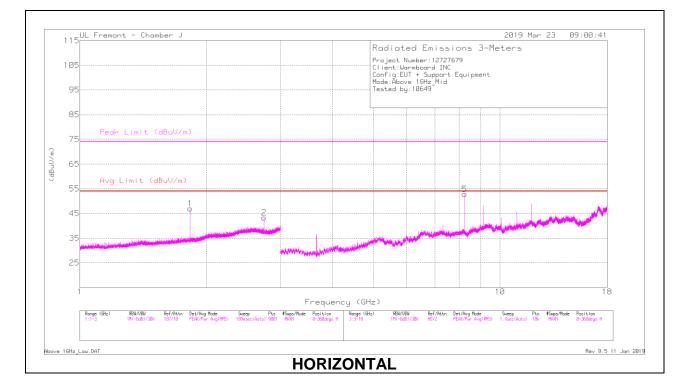

Page 34 of 48

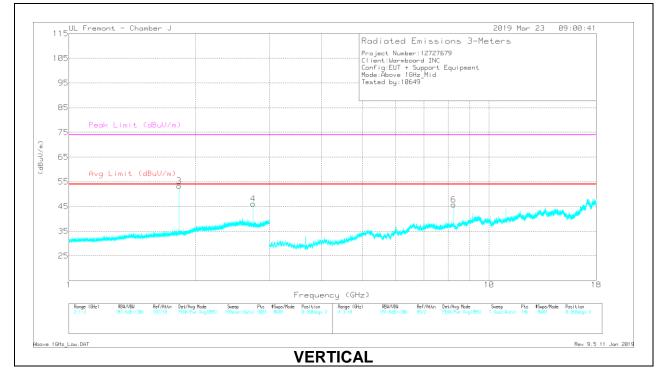
9.3. TRANSMITTER ABOVE 1 GHz

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL RESULTS

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


RADIATED EMISSIONS

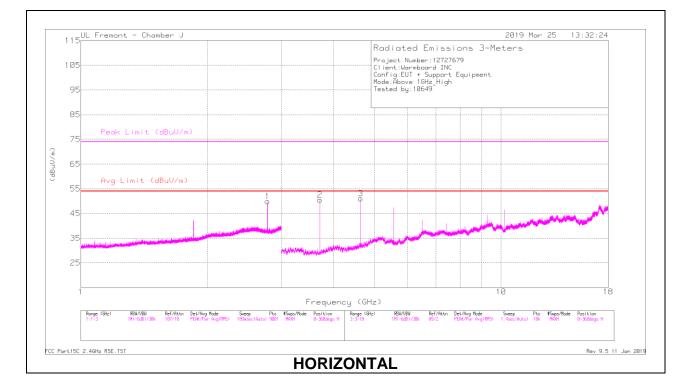

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF PRE0189 055 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Filter PRE0182 423 (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	1.806	52.28	PK2	26.4	-26	0	1	53.68	-	-	-	-	74	105	Н
3	* 2.709	45.2	PK2	29.6	-25.5	0	1	50.3	-	-	74	-23.7	231	219	Н
	* 2.709	37.5	MAv1	29.6	-25.5	1.29	1	43.89	54	-10.11	-	-	231	219	Н
2	1.806	55.36	PK2	26.4	-26	0	1	56.76	-	-	-	-	202	107	V
4	* 2.709	45.86	PK2	29.6	-25.5	0	1	50.96	-	-	74	-23.04	146	109	V
	* 2.709	39.19	MAv1	29.6	-25.5	1.29	1	45.58	54	-8.42	-	-	146	109	V
5	* 11.739	35.4	PK2	39.9	-22.8	0	1	53.5	-	-	74	-20.5	214	286	Н
	* 11.738	24.19	MAv1	39.9	-22.8	1.29	1	43.58	54	-10.42	-	-	214	286	Н
6	* 9.03	34.68	PK2	38.9	-24.6	0	1	49.98	-	-	74	-24.02	210	112	V
	* 9.03	24.6	MAv1	38.9	-24.7	1.29	1	41.09	54	-12.91	-	-	210	112	V

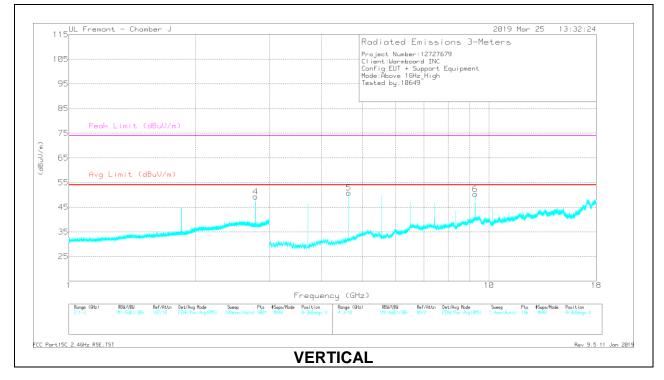
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 36 of 48

MID CHANNEL RESULTS

Page 37 of 48


RADIATED EMISSIONS


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF PRE0189 055 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Filter PRE0182 423 (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	1.83	49.25	PK2	26.4	-26.1	0	1	50.55	-	-	-	-	244	152	н
2	* 2.745	45.33	PK2	29.4	-25.5	0	1	50.23	-	-	74	-23.77	221	317	Н
	* 2.745	38.37	MAv1	29.4	-25.5	1.29	1	44.56	54	-9.44	-	-	221	317	Н
3	1.83	54.28	PK2	26.4	-26.1	0	1	55.58	-	-	-		144	108	V
4	* 2.745	46.95	PK2	29.4	-25.5	0	1	51.85	-	-	74	-22.15	141	106	V
	* 2.745	40.48	MAv1	29.4	-25.5	1.29	1	46.67	54	-7.33	-	-	141	106	V
5	* 8.236	37.4	PK2	38.4	-26.6	0	1	50.2	-	-	74	-23.8	10	105	н
	* 8.234	27.62	MAv1	38.4	-26.6	1.29	1	41.71	54	-12.29	-	-	10	105	Н
6	* 8.234	38.52	PK2	38.4	-26.6	0	1	51.32	-	-	74	-22.68	293	120	V
	* 8.234	28.12	MAv1	38.4	-26.6	1.29	1	42.21	54	-11.79	-	-	293	120	V

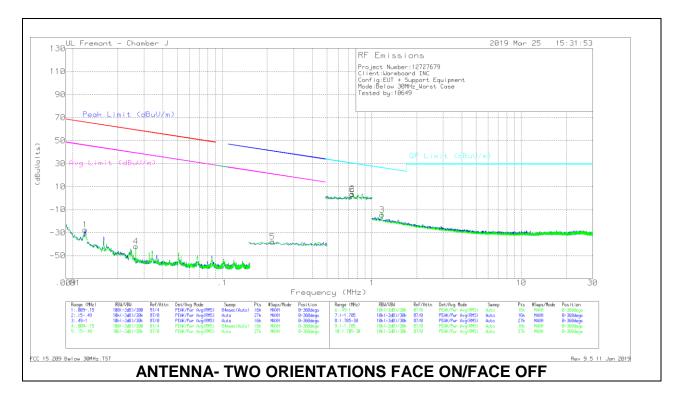
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 38 of 48

HIGH CHANNEL RESULTS

Page 39 of 48

RADIATED EMISSIONS


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF PRE0189 055 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Filter PRE0182 423 (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.781	48.4	PK2	29.3	-25.5	0	1	53.2	-	-	74	-20.8	232	252	Н
	* 2.781	39.14	MAv1	29.3	-25.5	1.29	1	45.23	54	-8.77	-	-	232	252	Н
4	* 2.78	47.17	PK2	29.3	-25.5	0	1	51.97	-	-	74	-22.03	210	106	V
	* 2.781	38.31	MAv1	29.3	-25.5	1.29	1	44.4	54	-9.6	-	-	210	109	V
2	* 3.709	54.06	PK2	30.5	-33.1	0	1	52.46	-	-	74	-21.54	316	129	Н
	* 3.708	44.26	MAv1	30.5	-33.1	1.29	1	43.95	54	-10.05	-	-	316	129	Н
3	* 4.636	50.34	PK2	33	-31.4	0	1	52.94	-	-	74	-21.06	207	118	Н
	* 4.635	39.69	MAv1	33	-31.4	1.29	1	43.58	54	-10.42	-	-	207	118	Н
5	* 4.636	50.74	PK2	33	-31.4	0	1	53.34	-	-	74	-20.66	254	240	V
	* 4.635	39.24	MAv1	33	-31.4	1.29	1	43.13	54	-10.87	-	-	254	240	V
6	9.27	36.44	PK2	39.8	-24.4	0	1	52.84	-	-	-	-	267	212	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 40 of 48

9.4. WORST CASE BELOW 30MHz

SPURIOUS EMISSIONS BELOW 30 MHz (WORST-CASE CONFIGURATION)

Below 30MHz Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (ACF)	Amp/Cbl (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
1	.01213	20.89	Pk	60	-28.5	-80	-27.61	65.91	-93.52	45.91	-73.52	-	-	-	-	0-360
4	.02643	8.21	Pk	58.3	-28.5	-80	-41.99	59.14	-101.13	39.14	-81.13	-	-	-	-	0-360
5	.21616	14.46	Pk	56.3	-28.6	-80	-37.84	-	-	-	-	40.92	-78.76	20.92	-58.76	0-360

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (ACF)	Amp/Cbl (dB)	Dist Corr 30m (dB) 40Log	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
2	.73978	15.64	Pk	56.3	-28.5	-40	3.44	30.23	-26.79	0-360
6	.74166	15.36	Pk	56.3	-28.5	-40	3.16	30.21	-27.05	0-360
3	1.17204	8.38	Pk	45.5	-28.4	-40	-14.52	26.25	-40.77	0-360

Pk - Peak detector

Page 41 of 48

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

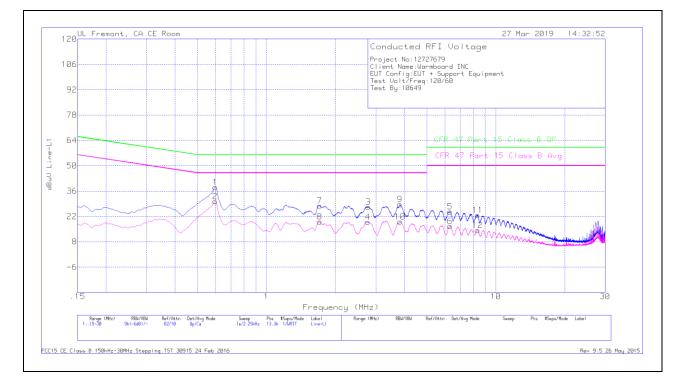
RSS-Gen 8.8

Execution of Emission (MHz)	Conducted	Limit (dBµV)
Frequency of Emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

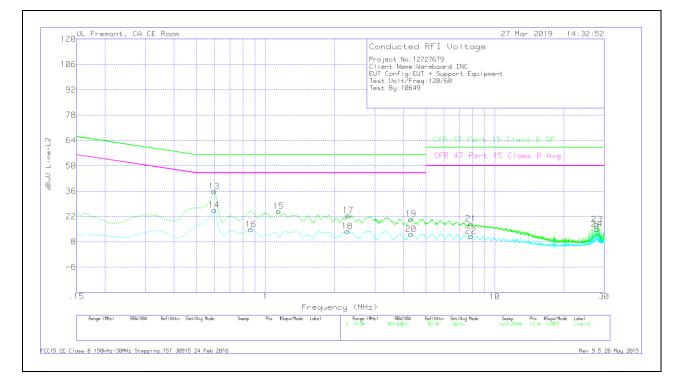

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

<u>RESULTS</u>

Page 42 of 48

LINE 1 RESULTS


Rang	e 1: Line-L	.1 .15 - 30)MHz								
Marker	Frequenc y (MHz)	Meter Reading (dBuV)	Det	LISN L1	LC Cables C1&C3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR)Margin (dB)
1	.59775	28.14	Qp	0	0	10.1	38.24	56	-17.76	-	-
2	.59775	20.2	Ca	0	0	10.1	30.3	-	-	46	-15.7
3	2.7735	17.11	Qp	0	.1	10.1	27.31	56	-28.69	-	-
4	2.77125	8.69	Ca	0	.1	10.1	18.89	-	-	46	-27.11
5	6.31275	14.26	Qp	0	.2	10.2	24.66	60	-35.34	-	-
6	6.3285	6.24	Ca	0	.2	10.2	16.64	-	-	50	-33.36
7	1.707	17.76	Qp	0	.1	10.1	27.96	56	-28.04	-	-
8	1.707	8.85	Ca	0	.1	10.1	19.05	-	-	46	-26.95
9	3.813	18.35	Qp	0	.1	10.1	28.55	56	-27.45	-	-
10	3.8265	8.81	Ca	0	.1	10.1	19.01	-	-	46	-26.99
11	8.3355	12.3	Qp	0	.2	10.2	22.7	60	-37.3	-	-
12	8.33438	3.99	Ca	0	.2	10.2	14.39	-	-	50	-35.61

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 43 of 48

LINE 2 RESULTS

Rang	e 2: Line-L2	2 .15 - 30)MHz								
Marker	Frequency (MHz)	Meter Readin g (dBuV)	Det	LISN L2	LC Cables C2&C3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR)Margin (dB)
13	.59775	25.82	Qp	0	0	10.1	35.92	56	-20.08	-	-
14	.59775	15.47	Ca	0	0	10.1	25.57	-	-	46	-20.43
15	1.14225	14.83	Qp	0	.1	10.1	25.03	56	-30.97	-	-
16	.8655	4.78	Ca	0	0	10.1	14.88	-	-	46	-31.12
17	2.29425	12.42	Qp	0	.1	10.1	22.62	56	-33.38	-	-
18	2.2785	3.65	Ca	0	.1	10.1	13.85	-	-	46	-32.15
19	4.31475	10.37	Qp	0	.1	10.1	20.57	56	-35.43	-	-
20	4.3125	2.1	Ca	0	.1	10.1	12.3	-	-	46	-33.7
21	7.854	7.61	Qp	0	.2	10.2	18.01	60	-41.99	-	-
22	7.8675	.85	Ca	0	.2	10.2	11.25	-	-	50	-38.75
23	27.93075	6.61	Qp	.1	.4	10.5	17.61	60	-42.39	-	-
24	27.93075	4.14	Ca	.1	.4	10.5	15.14	-	-	50	-34.86

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 44 of 48