

REGULATORY COMPLIANCE TEST REPORT

FCC CFR47 Part 27: MISCELLANEOUS WIRELESS COMMUNICATION SERVICES

Report No.: PULO01-U2 Rev A

Company: Puloli Inc.

Model Name: RU700A 1.0

REGULATORY COMPLIANCE TEST REPORT

Company: Puloli Inc.

Model Name: RU700A 1.0

To: FCC CFR47 Part 27 Miscellaneous Wireless Communication Services

Test Report Serial No.: PULO01-U2 Rev A

This report supersedes: NONE

Applicant: Puloli Inc

649 Mission Street Ste 416 San Francisco, California 94105

USA

Issue Date: 23rd May 2019

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)

PULO01-U2 Rev A

Table of Contents

1.	ACCREDITATION, LISTINGS & RECOGNITION	4
	1.1. TESTING ACCREDITATION	
	1.2. RECOGNITION	5
	1.3. PRODUCT CERTIFICATION	6
2.	DOCUMENT HISTORY	7
3.	TEST RESULT CERTIFICATE	8
4.	REFERENCES AND MEASUREMENT UNCERTAINTY	9
	4.1. Normative References	
	4.2. Test and Uncertainty Procedure	
5	PRODUCT DETAILS AND TEST CONFIGURATIONS	11
٠.	5.1. Technical Details	
	5.2. Scope Of Test Program	
	5.3. Equipment Model(s) and Serial Number(s)	
	5.4. External A.C/D.C. Power Adaptor	
	5.5. Antenna Details	
	5.6. Cabling and I/O Ports	
	5.7. Test Configurations	
	5.8. Equipment Modifications	
_		
	TEST SUMMARY	
1.	TEST EQUIPMENT CONFIGURATION(S)	
	7.1. Conducted Test Setup	10
	7.2. Radiated Emissions - 3m Chamber	
	7.3. ac Wireline Emissions	
^	MEAGUREMENT AND DRECENTATION OF TEXT DATA	\sim
	MEASUREMENT AND PRESENTATION OF TEST DATA	
	TEST RESULTS	21
	TEST RESULTS	21 21
	9.1. Type of Modulation	21 21 22
	9.1. Type of Modulation	21 21 22 26
	9.1. Type of Modulation	21 21 22 26 28
	9.1. Type of Modulation	21 21 22 26 28 32
	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions	21 22 26 28 32 32
	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1.1. Conducted Spurious Emissions	21 22 26 28 32 32 32
	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions	21 22 26 28 32 32 32 35
	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions 9.5.2.2. TX Spurious	21 22 26 28 32 32 32 35 36
	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions 9.5.2. TX Spurious 9.5.2.3. GPS Emissions	21 22 26 28 32 32 32 35 36 57
	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions 9.5.2.2 TX Spurious 9.5.2.3. GPS Emissions 9.5.3. Digital Emissions	21 22 26 28 32 32 35 36 57 67
	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions 9.5.2.2. TX Spurious 9.5.2.3. GPS Emissions 9.5.3. Digital Emissions Digital Emissions 30-1000 MHz Class A	21 22 26 28 32 32 32 35 36 57 67 68
	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions 9.5.2.2 TX Spurious 9.5.2.3. GPS Emissions 9.5.3. Digital Emissions	21 22 26 28 32 32 32 35 36 57 67 68
9.	TEST RESULTS	21 22 26 28 32 32 32 35 36 57 67 68 69 70
9.	TEST RESULTS 9.1. Type of Modulation. 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power. 9.5. Emissions. 9.5.1. Conducted Emissions. 9.5.1.1. Conducted Spurious Emissions. 9.5.2. Radiated Emissions. 9.5.2.2. TX Spurious. 9.5.2.3. GPS Emissions. 9.5.3. Digital Emissions Digital Emissions 30-1000 MHz Class A Digital Emissions 1-10 GHz Class A. 9.5.4. AC Wireline Emissions. APPENDIX - GRAPHICAL IMAGES.	21 22 26 28 32 32 35 36 57 68 69 70 72
9.	TEST RESULTS	21 22 26 28 32 32 35 36 57 68 69 70 72
9.	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions 9.5.2.2. TX Spurious 9.5.2.3. GPS Emissions 9.5.3. Digital Emissions Digital Emissions 30-1000 MHz Class A Digital Emissions 1-10 GHz Class A 9.5.4. AC Wireline Emissions APPENDIX - GRAPHICAL IMAGES A.1. 26 dB & 99% Bandwidth A.2. Emissions	21 22 26 28 32 32 35 36 57 68 69 70 72 73 82
9.	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions 9.5.2.2. TX Spurious 9.5.2.3. GPS Emissions 9.5.3. Digital Emissions Digital Emissions 30-1000 MHz Class A Digital Emissions 1-10 GHz Class A 9.5.4. AC Wireline Emissions APPENDIX - GRAPHICAL IMAGES A.1. 26 dB & 99% Bandwidth A.2. Emissions	21 22 26 28 32 32 35 36 57 68 69 70 72 73 82
9.	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions 9.5.2.2. TX Spurious 9.5.2.3. GPS Emissions 9.5.3. Digital Emissions Digital Emissions 30-1000 MHz Class A Digital Emissions 1-10 GHz Class A 9.5.4. AC Wireline Emissions APPENDIX - GRAPHICAL IMAGES A.1. 26 dB & 99% Bandwidth	21 22 26 28 32 32 35 36 57 68 69 70 72 82 82
9.	TEST RESULTS 9.1. Type of Modulation 9.2. 99% Bandwidth 9.3. Transmitter Frequency Stability 9.4. Conducted Output Power 9.5. Emissions 9.5.1. Conducted Emissions 9.5.1.1. Conducted Spurious Emissions 9.5.2. Radiated Emissions 9.5.2.2. TX Spurious 9.5.2.3. GPS Emissions 9.5.3. Digital Emissions Digital Emissions 30-1000 MHz Class A Digital Emissions 1-10 GHz Class A 9.5.4. AC Wireline Emissions APPENDIX - GRAPHICAL IMAGES A.1. 26 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions	21 22 26 28 32 32 35 36 57 67 68 69 70 72 82 82 82
9.	TEST RESULTS	21 22 26 28 32 32 35 36 57 67 68 69 70 72 82 82 82 98
9.	TEST RESULTS	21 22 26 28 32 32 35 36 57 67 68 69 70 72 82 82 82 98 98

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of May 2018.

President and CEO For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2019

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Issue Date: 23rd May 2019

Page: 4 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
-	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA - European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Issue Date: 23rd May 2019

Page: 5 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of May 2018

President and CEO For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2019

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Issue Date: 23rd May 2019

Page: 6 of 120

Title:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

2. DOCUMENT HISTORY

	Document History					
Revision	Date	Comments				
Draft	15 th May 2019	Initial Draft				
Draft #2	22 nd May 2019					
Rev A	23 rd May 2019	Initial Release				

In the above table the latest report revision will replace all earlier versions.

Issue Date: 23rd May 2019

7 of 120

Page:

Puloli Inc Model: RU700A 1.0

To: FCC Part Serial #: PULO01-

FCC Part 27 (NB IoT) PULO01-U2 Rev A

3. TEST RESULT CERTIFICATE

Manufacturer: Puloli, Inc.

649 Mission Street Ste 416 San Francisco. CA 94105

USA

Tested By: MiCOM Labs, Inc.

575 Boulder Court

Pleasanton California 94566

USA

Model: RU700A 1.0 Telephone: +1 925 462 0304

S/N's: 1749002312

Test Date(s): 10th – 16th May 2019 **Website:** www.micomlabs.com

STANDARD(S)

FCC 47 CFR Part 27

TEST RESULTS

EQUIPMENT COMPLIES

TESTING CERT #2381.01

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

Issue Date: 23rd May 2019 **Page:** 8 of 120

Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)

PULO01-U2 Rev A

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	FCC 47 CFR Part 27	2019	Miscellaneous Wireless Communications Services
II	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
III	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
IV	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
V	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VI	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
VII	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
VIII	KDB 971168 D01 V02r01	27th October, 2017	Measurement Guidance for Certification of Licensed Digital Transmitters
VIV	KDB 971168 D01 V03r01	9 th April 2018	Measurement Guidance for Certification of Licensed Digital Transmitters

Issue Date: 23rd May 2019

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Page:

9 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Issue Date: 23rd May 2019

Page: 10 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

	Description
Purpose:	Test of the Puloli Inc. RU700A 1.0 to FCC CFR 47 Part 27.
	Miscellaneous Wireless Communications Services
Applicant:	Puloli, Inc.
	649 Mission Street Ste 416
NA	San Francisco, CA 94105 USA
Manufacturer:	
Laboratory performing the tests:	MiCOM Labs, Inc. 575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
	FCC CFR 47 Part 27
Dates of test (from - to):	
No of Units Tested:	1
Product Family Name:	
	RU700A 1.0
Location for use:	Indoors
Declared Frequency Range(s):	
Type of Modulation:	BPSK, QPSK
EUT Modes of Operation:	NB IoT
Declared Nominal Output Power (dBm):	+23 dBm
Transmit/Receive Operation:	Transceiver Half Duplex
Rated Input Voltage and Current:	5Vdc 2A
Operating Temperature Range:	0°C - 40°C
ITU Emission Designator:	
Equipment Dimensions:	
Weight:	S .
Hardware Rev:	-
Software Rev:	1.18.1.r1

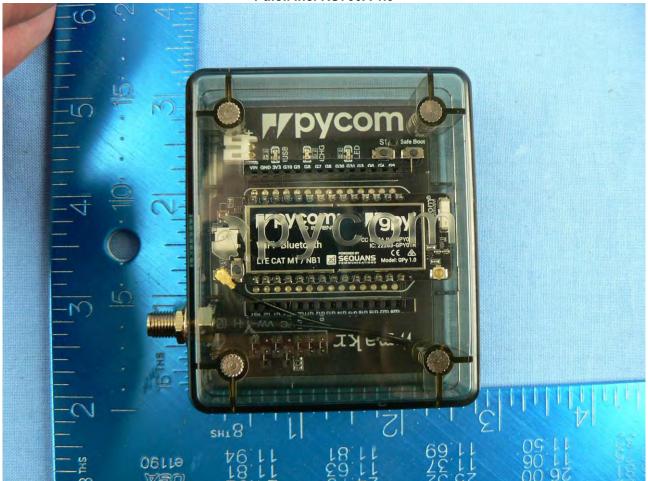
Issue Date: 23rd May 2019

Page: 11 of 120

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A Serial #:

5.2. Scope Of Test Program


Puloli Inc.RU700A 1.0

The scope of the test program was to test the Puloli Inc RU700A 1.0 configurations in the frequency ranges 787-788 MHz; for compliance against the following specification:

FCC CFR 47 Part 27

Miscellaneous Wireless Communications Services

23rd May 2019 Issue Date:

Page: 12 of 120

Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)

PULO01-U2 Rev A

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description	Mfr	Model No.	Serial No.
EUT	loT end point	Puloli Inc.	RU700A 1.0	1749002312
EUT	Power Supply	ICV	AC Adapter	-
Support	Base Station	Nutaq	PicoSDR2x2E	
Support	HDMI Monitor	ASUS	VS228	1
Support	Keyboard	Dell		1

5.4. External A.C/D.C. Power Adaptor

AC/DC Adaptor

Manufacturer: ICV Model: ICV-U0510E-1

I: 100 - 240 V_{AC}, 0.3 A 50/60 Hz

0: +5 V_{DC} 2.0 A

5.5. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
External	Linx Technologies	ANT-LTE-WS	Dipole	-1.78 (avg)	N/A	N/A	N/A	698-960
External	Proxicast	ANT-128-001	Yagi	11dBi (pk)- 6dB pad = 5dBi	N/A	60° Vert 90° Hor	N/A	700-2700

BF Gain - Beamforming Gain Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

5.6. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened	Conn Type	Data Type	Bit Rate	Environment
dc	1m	1	Yes	USB Micro	dc Power	N/A	Power
RF	Up to 25m (Yagi only)	1	Yes	SMA	N/A	N/A	End-User
GPIO	< 3m	2	No	GPIO			End-User

Issue Date: 23rd May 2019

Page: 13 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

5.7. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Bandwidth	Channel Frequency (MHz)			
(NB IoT)	(kHz)	Low Mid		High	
		787 - 788 MHz			
BPSK	3.75	787.2	787.5	787.8	
BPSK	15	787.2	787.5	787.8	
QPSK	3.75	787.2	787.5	787.8	
QPSK	15	787.2	787.5	787.8	
QPSK	180	787.2	787.5	787.8	

A comparison between QPSK and BPSK modulation types was performed for power and bandwidth, no difference was found and QPSK was selected as the conducted test mode. Radiated testing was performed on BPSK and QPSK operational modes.

5.8. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. Issue with 2nd harmonic falling within the GPS frequency band

As a result, the following modifications were required to bring the equipment into compliance: Output power was tested on the RU700A device and it was found that a power reduction was required due to a non-compliant 2nd harmonic falling within the GPS band (1559 – 1610 MHz). This influenced both the following antennas:

- 1).. Dipole -1.78 dBi
- 2).. Yagi 11.0 dBi

In order to bring the RU700A into compliance the following fix was implemented:

- i).. Dipole antenna output power was reduced 6 dB from +23 dBm to +17dBm
- ii).. Yagi antenna gain was also reduced 6 dB by adding a 6 dB attenuator to the antenna. Output power was reduced 3 dB from +23 dBm to +20 dBm.

The output power results reported in Section 9.4 'Conducted Output Power' reflect the above situation

5.9. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

Issue Date: 23rd May 2019 **Page:** 14 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

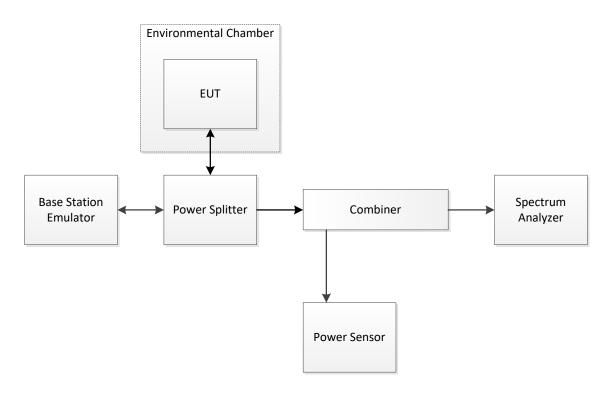
FCC Part 27 (NB IoT) PULO01-U2 Rev A

15 of 120

6. TEST SUMMARY

List of Measurements

Section(s)	Test Items	Description	Result	Test Report Section
2.1033(c)	Type of Modulation	Modulation type	Complies	View Data
2.1033(c)	Channel Bandwidth	26dB & 99% Emission Bandwidth	Complies	View Data
2.1055, 27.54	Transmitter Frequency Stability	Frequency contained within band of interest	Complies	View Data
2.1046, 27.50 (10)	Transmitter Output Power	Power Measurement	Complies	View Data
		Emissions		
2.1051, 27.53(c)	Transmitter Unwanted Emissions	Conducted Spurious Emissions	Complies	View Data
27.53(c)	Transmitter Unwanted Emissions	Radiated Transmitter Spurious Emissions	Complies	View Data
15.109	Digital Emissions	Digital Emissions < 1GHz	Complies - Class A	View Data
15.107	AC Wireline	Powerline Emissions	Complies - Class A	View Data


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted Test Setup

Conducted Test Setup

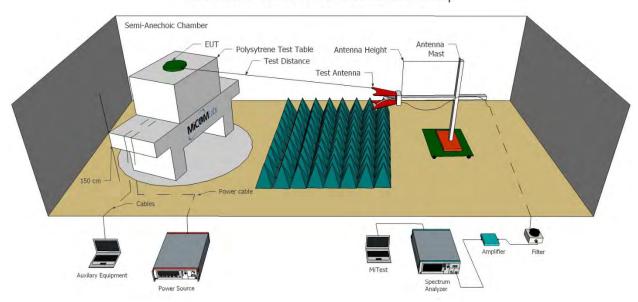
A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2019
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Feb 2020

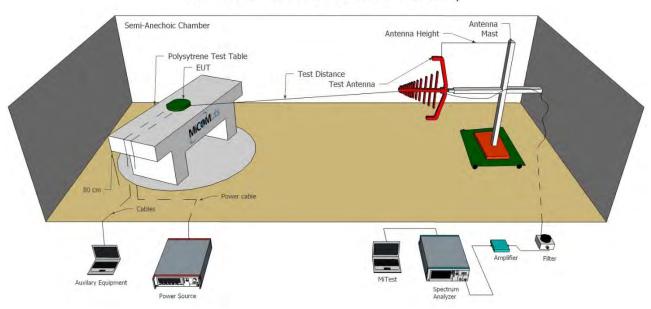
Issue Date: 23rd May 2019

Page: 16 of 120

Serial #:


Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A


7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.

Radiated Emissions Above 1GHz Test Setup

Radiated Emissions Below 1GHz Test Setup

Issue Date: 23rd May 2019

Page: 17 of 120

Title: To: Serial #: Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)

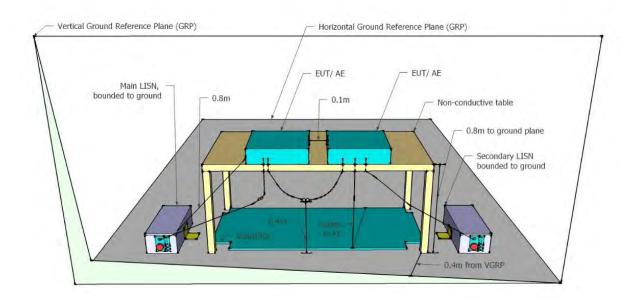
PULO01-U2 Rev A

A full system calibration was performed on the test station and any resulting system losses (or gains) were

Asset#	Description	Manufacturer	Model#	Serial#	Calibration
	Video System Controller			2 2 3 3 3 3 3 3	Due Date
170	for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	21 Apr 2020
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2020
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Apr 2020
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2019
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Apr 2020
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Require
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Require
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Require
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Require
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Require
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Require
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Require
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	9 Oct 2019
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	9 Oct 2019
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Oct 2019
465	Low Pass Filter DC- 1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	9 Oct 2019
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	24 Aug 201
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	24 Aug 201
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 201
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	24 Aug 201

Issue Date: 23rd May 2019

Page: 18 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

7.3. ac Wireline Emissions

Test Setup - Power Input / Output Port

A full system calibration was performed on the test station and any resulting system losses (or gains) were

taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	6 Oct 2019
190	LISN (two-line V-network)	Rhode & Schwarz	ESH3Z5	836679/006	18 Oct 2019
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 Jul 2019
295	Conducted Emissions Chamber Maintenance Check	MiCOM	Conducted Emissions Chamber	295	19 Jun 2019
307	BNC-CABLE	Megaphase	1689 1GVT4	15F50B002	11 Jun 2019
316	Dell desktop computer workstation	Dell	Desktop	WS04	Not Required
372	AC Variable PS	California Instruments	1251P	L06951	Cal when used
388	LISN (3 Phase) 9kHz - 30MHz	Rohde & Schwarz	ESH2-Z5	892107/022	20 Oct 2019
496	MiTest Conducted Emissions test software.	MiCOM	Conducted Emissions Test Software Version 1.0	496	Not Required
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019

Issue Date: 23rd May 2019

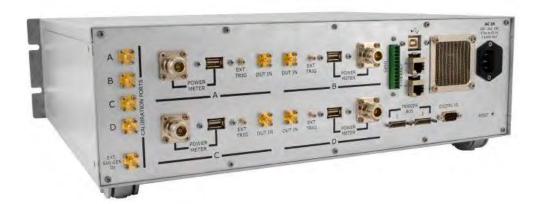
Page: 19 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

20 of 120


8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The Patented MiCOM Labs "MiTest" Automated Test System"

Issue Date: 23rd May 2019 Page:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

21 of 120

9. TEST RESULTS

9.1. Type of Modulation

Conducted Test Conditions for Type of Modulation							
Standard:	FCC CFR 47:Part 27	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	Type of Modulation	Rel. Humidity (%):	32 - 45				
Standard Section(s):	2.1033(c)	Pressure (mBars):	999 - 1001				
Reference Document(s):							

Test Procedure for Type of Modulation

The type of a digital modulation employed for the Puloli RU700A 1.0 is QPSK, BPSK.

Requirement

Equipment certified under the standard shall employ digital modulation

Issue Date: 23rd May 2019 Page:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

9.2. 26dB & 99% Bandwidth

Conducted Test Conditions 26dB & 99% Bandwidth								
Standard:	FCC CFR 47:Part 27 Ambient Temp. (°C): 24.0 - 27.5							
Test Heading:	99 % Occupied Bandwidth	Rel. Humidity (%):	32 - 45					
Standard Section(s):	2.1033(c) Pressure (mBars): 999 - 1001							
Reference Document(s):	See Normative References							

Test Procedure for Channel Bandwidth Measurement

The 26dB & 99 % channel bandwidth is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to approximately 1% or greater of the emission bandwidth.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits

The channel bandwidth shall be equal to or greater than 1 MHz and shall be reported by the certification applicant. Based on the channel bandwidth, the channel edge shall be used as reference point in the measurement of the transmitter unwanted emission power.

Issue Date: 23rd May 2019 **Page**: 22 of 120

Title:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for 26 dB & 99% Bandwidth

Variant:	NB IoT	Duty Cycle (%):	85
Data Rate:	3.75 KHz	Antenna Gain (dBi):	Not Applicable
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test	Me	Measured 26 dB Bandwidth (KHz)				
Frequency	Port(s)					
MHz	а	b	С	d		
787.11188	44.008					
787.41188	41.303					
787.88813	44.008					

Test	N	Measured 99% Bandwidth (KHz)				
Frequency	Port(s)					
MHz	а	b	С	d		
787.11188	42.926					
787.41188	42.926					
787.88813	42.745					

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 23 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for 26 dB & 99% Bandwidth

Variant:	NB IoT	Duty Cycle (%):	85
Data Rate:	15 KHz	Antenna Gain (dBi):	Not Applicable
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Te	est	Ме	Measured 26 dB Bandwidth (KHz)				
Freq	uency		Port(s)				
M	1Hz	а	b	С	d		
787.	.1175	169.749	-				
787.	.4175	167.735					
787.	.8825	155.11	-				

Test	N	Measured 99% Bandwidth (KHz)				
Frequency		Port(s)				
MHz	а	b	С	d		
787.1175	127.455					
787.4175	127.455					
787.8825	128.056					

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 24 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for 26 dB & 99% Bandwidth

Variant:	NB IoT	Duty Cycle (%):	85
Data Rate:	180 KHz	Antenna Gain (dBi):	Not Applicable
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test	Ме	Measured 26 dB Bandwidth (KHz)					
Frequency	Port(s)						
MHz	а	b	С	d			
787.11188	267.535	-					
787.41188	265.130						
787.88813	260.922	-					

Test	N	Measured 99% Bandwidth (KHz)				
Frequency		Port(s)				
MHz	а	b	С	d		
787.11188	186.373					
787.41188	187.575					
787.88813	186.373					

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 25 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

9.3. Transmitter Frequency Stability

Conducted Test Conditions for Transmitter Frequency Stability							
Standard:	FCC CFR 47 Part 27	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	Transmitter Frequency Stability	Rel. Humidity (%):	32 - 45				
Standard Section(s):	FCC 2.1055, 27.54	Pressure (mBars):	999 - 1001				
Reference Document(s):							

Test Procedure for Transmitter Frequency Stability

Transmitter Frequency Stability testing was performed over nominal voltage and ambient temperature except at room temperature where the voltage was varied ±10% and results reported for a single antenna port.

Definition

The center frequency is the center of the channel declared by the manufacturer as part of the declared channel plan(s).

Limite

The applicant shall ensure frequency stability by showing that fundamental emissions are maintained within the frequency band of operation when tested at the temperature and supply voltage variations specified in the relevant standard FCC Part 2.1055 and 27.54

Issue Date: 23rd May 2019 **Page**: 26 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Measurement Results for Transmitter Frequency Stability Operating Mode: 3.75 KHz QPSK

Test Frequency:	787.411875 MHz	Measured Frequency	Frequency Error	
Temperature	Voltage	MHz	KHz	PPM
0°C	5 Vdc	787.41187580	0.750	0.095
+10°C	5 Vdc	787.41187275	-2.250	-0.286
20°C	5 Vdc	787.41187375	-1.250	-0.159
20°C	4.5 Vdc	787.41187375	-1.250	-0.159
20°C	5.5 Vdc	787.41187025	-4.750	-0.603
+30°C	5 Vdc	787.41187125	-3.750	-0.476
+40°C	5 Vdc	787.41187375	-1.250	-0.159

Issue Date: 23rd May 2019

Page: 27 of 120

Title:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT)
PULO01-U2 Rev A

9.4. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power						
Standard:	Standard: FCC CFR 47 Part 27 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	FCC 27.50 (10) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = A + G + Y+ 10 log (1/x) dBm

A = Total Power $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(10) Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP.

ERP in dBm = 10 * LOG (P/1mW) = 10*LOG(3000) = 34.77 dBm

The following modifications were required to bring the equipment into compliance:

1. Issue with 2nd harmonic falling within the GPS frequency band

As a result, the following modifications were required to bring the equipment into compliance: Output power was tested on the RU700A device and it was found that a power reduction was required due to a non-compliant 2nd harmonic falling within the GPS band (1559 – 1610 MHz). This influenced both the following antennas:

- 1).. Dipole -1.78 dBi
- 2).. Yagi 11.0 dBi

In order to bring the RU700A into compliance the following fix was implemented:

- i).. Dipole antenna output power was reduced 6 dB from +23 dBm to +17dBm
- ii).. Yagi antenna gain was also reduced 6 dB by adding a 6 dB attenuator to the antenna. Output power was reduced 3 dB from +23 dBm to +20 dBm.

The output power results reported in Section 9.4 'Conducted Output Power' reflect the above situation

Issue Date: 23rd May 2019 **Page**: 28 of 120

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A Serial #:

Equipment Configuration for Peak Output Power

Variant:	NB IoT	Duty Cycle (%):	85.0
Data Rate:	3.75 KHz	Antenna Gain (dBi):	-1.78 (Dipole)
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test	Mea	sured Outp	out Power (d	IBm)	Calculated	EDD	ERP Limit	Marain	
Frequency	Port(s)			Total Power Σ Port(s)	ERP	ERP LIIIII	Margin	EUT Power Setting	
MHz	а	b	С	d	dBm	dBm	dBm	dB	
787.111875	17.86	-			17.86	18.22	34.77	-16.55	17
787.411875	17.99	-			17.99	18.35	34.77	-16.42	17
787.888125	17.44				17.44	17.80	34.77	-16.97	17

Equipment Configuration for Peak Output Power

Variant:	NB IoT	Duty Cycle (%):	85.0
Data Rate:	3.75 KHz	Antenna Gain (dBi):	5 (Yagi)
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test	Mea	sured Outp	out Power (d	Bm)	Calculated	ERP	ERP Limit	Manain	
Frequency		Po	rt(s)		Total Power Σ Port(s)	EKP	ERP LIIIII	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dBm	dB	
787.111875	20.86	1		-	20.86	28.00	34.77	-6.77	20
787.411875	20.99				20.99	28.13	34.77	-6.64	20
787.888125	20.44				20.44	27.58	34.77	-7.19	20

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

The above measurements include a Duty Cycling correction factor of 0.7 dB.

23rd May 2019 Issue Date:

Page: 29 of 120

^{*}Power reduced to meet TX Spurious Limit in GPS band

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Peak Output Power

Variant:	NB IoT	Duty Cycle (%):	85.0
Data Rate:	15 KHz	Antenna Gain (dBi):	-1.78 (Dipole)
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test	Mea	sured Outp	out Power (d	Bm)	Calculated	EDD	EDD Limit	Manain	
Frequency		Po	rt(s)		Total Power Σ ERP Port(s)		ERP Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dBm	dB	
787.1175	17.67				17.67	18.03	34.77	-16.74	17
787.4175	17.70				17.70	18.06	34.77	-16.71	17
787.8825	17.26				17.26	17.62	34.77	-17.15	17

Equipment Configuration for Peak Output Power

Variant:	NB IoT	Duty Cycle (%):	85.0
Data Rate:	15 KHz	Antenna Gain (dBi):	5 (Yagi)
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test	Mea	sured Outp	out Power (d	Bm)	Calculated	EDD	EDD I limit	NA	
Frequency		Po	rt(s)		Total Power Σ Port(s)	ERP	ERP Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dBm	dB	
787.1175	20.67				20.67	27.81	34.77	-6.96	20
787.4175	20.70				20.70	27.84	34.77	-6.93	20
787.8825	20.26				20.26	27.40	34.77	-7.37	20

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements include a Duty Cycling correction factor of 0.7 dB.

Issue Date: 23rd May 2019

Page: 30 of 120

^{*}Power reduced to meet TX Spurious Limit in GPS band

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Peak Output Power

Variant:	NB IoT	Duty Cycle (%):	85.0
Data Rate:	180 KHz	Antenna Gain (dBi):	-1.78 (Dipole)
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test	Measured Output Power (dBm)				Calculated Total Power Σ	ERP	ERP Limit	Margin	EUT Power
Frequency	Port(s)		Port(s)			g	Setting		
MHz	а	b	С	d	dBm	dBm	dBm	dB	
787.2	17.21				17.21	17.57	34.77	-17.2	17
787.5	17.17				17.17	17.53	34.77	-17.24	17
787.8	17.17	-		-	17.17	17.53	34.77	-17.24	17

Equipment Configuration for Peak Output Power

Variant:	NB IoT	Duty Cycle (%):	85.0
Data Rate:	180 KHz	Antenna Gain (dBi):	5 (Yagi)
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test	Mea	sured Outp	out Power (d	Bm)	Calculated	FDD	EDD Limit		
Frequency	Port(s) Total Power Σ Port(s)		Port(s)		ERP	ERP Limit	Margin	EUT Power Setting	
MHz	а	b	С	d	dBm	dBm	dBm	dB	
787.2	20.21				20.21	27.35	34.77	-7.42	20
787.5	20.17				20.17	27.31	34.77	-7.46	20
787.8	20.17				20.17	27.31	34.77	-7.46	20

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

The above measurements include a Duty Cycling correction factor of 0.7 dB.

Issue Date: 23rd May 2019

Page: 31 of 120

^{*}Power reduced to meet TX Spurious Limit in GPS band

Title:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

9.5. Emissions

9.5.1. Conducted Emissions

9.5.1.1. Conducted Spurious Emissions

Conducted Te	Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions						
Standard:	FCC CFR 47: Part 27	CC CFR 47: Part 27 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Transmitter Unwanted Emissions	Rel. Humidity (%):	32 - 45				
Standard Section(s):	FCC 2.1051, 27.53(C),	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

The Transmitter Unwanted Emissions were measurement conductively. Testing was performed on individual antenna ports and limits applied to each plot respectively.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document, however output power was (in all cases) set for +23 dBm.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

- (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed:
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

Only worst-case modes were examined for band-edge and spurious emissions. 3.75 kHz single tone and 15 kHz 'all tones' (180 kHz bandwidth).

Issue Date: 23rd May 2019 **Page**: 32 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Conducted Spurious Emissions - Peak

Variant:	NB IoT	Duty Cycle (%):	85
Data Rate:	3.75 KHz	Antenna Gain (dBi):	Not Applicable
Modulation:	QPSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test	_	Frequency	Conducted Spurious Emissions - Peak (dBm)							
Frequency	Operating Tones	Range	Poi	rt a	Po	ort b	Po	rt c	Por	t d
MHz	101163	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
	First	30.0 - 763	<u>-56.3</u>	-13.0						
707 444075	First	763 - 775	<u>-65.84</u>	-35.0						
787.111875	First*	775 - 786.9*	<u>-26.59</u>	-13.0						
	First	786.9 - 787	<u>-20.62</u>	-13.0						
	Last	788 – 788.1	<u>-24.82</u>	-13.0						
707 000405	Last*	788.1 – 793*	<u>-25.76</u>	-13.0						
787.888125	Last	793 5 - 805	<u>-62.32</u>	-35.0						
	Last	805 – 10,000	<u>-48.94</u>	-13.0						

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS					
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB					

^{*}RBW reduced to 50 kHz, additional 3dB added to integrate over 100 kHz RBW

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 33 of 120

^{**}Note All measurements in this table include a 0.7dB duty cycle correction factor.

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Conducted Spurious Emissions - Peak

Variant:	NB IoT	Duty Cycle (%):	85
Data Rate:	180 KHz	Antenna Gain (dBi):	Not Applicable
Modulation:	QPSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results

Test		Frequency	Conducted Spurious Emissions - Peak (dBm)								
Frequency	Operating Tones	Range	Po	rt a	Po	ort b	Po	rt c	Por	t d	
MHz	101163	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit	
	All	30.0 - 763	<u>-56.30</u>	-13.0							
787.2	All	763 - 775	<u>-71.87</u>	-35.0							
	All	775 - 786.9	<u>-16.58</u>	-13.0							
	All	786.9 - 787	<u>-18.86</u>	-13.0							
	All	788 – 788.1	<u>-18.92</u>	-13.0							
787.8	All	788.1 – 793	<u>-14.59</u>	-13.0							
	All	793 5 - 805	<u>-66.70</u>	-35.0							
	All	805 – 10,000	<u>-48.94</u>	-13.0							

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

^{*}Note All measurements in this table include a 0.7dB duty cycle correction factor.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 34 of 120

Title:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

9.5.2. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and GPS Emissions									
Standard:	Standard: FCC CFR 47: Part 27 Ambient Temp. (°C): 20.0 - 24.5								
Test Heading:	Radiated Spurious	Rel. Humidity (%):	32 - 45						
Standard Section(s):	FCC 2.1051, 27.53(c),27.53(f) Pressure (mBars): 999 - 1001								
Reference Document(s):	See Normative References								

Test Procedure for Radiated Spurious Emissions

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits

- (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to −70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and −80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation:

EUT needs Antenna connected to receive base station signals to transmit.

Issue Date: 23rd May 2019 **Page**: 35 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

9.5.2.2. TX Spurious

Dipole Antenna 30-1000 MHz

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	3.75 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	787.95	113.32	6.33	-6.00	113.65	Fundamental	Vertical	100	0			
#2	788.00	67.37	6.33	-6.00	67.70	MaxQP	Vertical	135	179	82.2	-14.5	Pass
#3	788.10	69.56	6.33	-6.10	69.79	MaxQP	Vertical	104	305	82.2	-12.4	Pass
#4	788.16	66.45	6.33	-6.10	66.68	MaxQP	Vertical	224	3	82.2	-15.6	Pass
#5	788.22	64.77	6.33	-6.10	65.00	MaxQP	Vertical	152	311	82.2	-17.2	Pass
#6	788.27	59.57	6.33	-6.10	59.80	MaxQP	Vertical	156	204	82.2	-22.4	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 36 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	15 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	30.00 - 1000.00 MHz											
Num Frequency Raw Cable dB/m AF dB/m Level dBμV/m Measurement dBμV/m Type								Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	787.95	113.25	6.33	-6.00	113.58	Fundamental	Vertical	100	0		-	
#2	788.07	72.37	6.33	-6.10	72.60	MaxAvg	Vertical	122	191	82.2	-9.6	Pass
#3	788.11	69.69	6.33	-6.10	69.92	MaxAvg	Vertical	194	203	82.2	-12.3	Pass
#4	788.17	66.00	6.33	-6.10	66.23	MaxAvg	Vertical	157	305	82.2	-16.0	Pass
#5	788.25	64.32	6.33	-6.10	64.55	MaxAvg	Vertical	127	301	82.2	-17.7	Pass
#6	788.32	61.71	6.33	-6.10	61.94	MaxAvg	Vertical	138	326	82.2	-20.3	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 37 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	3.75 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	787.95	113.17	6.33	-6.00	113.50	Fundamental	Vertical	100	0			
#2	788.00	67.63	6.33	-6.00	67.96	MaxAvg	Vertical	131	100	82.2	-14.3	Pass
#3	788.10	70.56	6.33	-6.10	70.79	MaxAvg	Vertical	125	179	82.2	-11.4	Pass
#4	788.25	65.43	6.33	-6.10	65.66	MaxAvg	Vertical	138	288	82.2	-16.6	Pass
#5	788.34	59.66	6.33	-6.10	59.89	MaxAvg	Vertical	123	311	82.2	-22.3	Pass
#6	788.44	56.85	6.33	-6.10	57.08	MaxAvg	Vertical	167	311	82.2	-25.2	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor. 788 MHz measured with 30 KHz RBW

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 38 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	15 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	787.95	112.83	6.33	-6.00	113.16	Fundamental	Vertical	100	0			
#2	788.00	71.03	6.33	-6.00	71.36	MaxAvg	Vertical	120	180	82.2	-10.9	Pass
#3	788.13	69.66	6.33	-6.10	69.89	MaxAvg	Vertical	125	179	82.2	-12.3	Pass
#4	788.16	66.66	6.33	-6.10	66.89	MaxAvg	Vertical	148	296	82.2	-15.3	Pass
#5	788.33	63.72	6.33	-6.10	63.95	MaxAvg	Vertical	126	209	82.2	-18.3	Pass
#6	788.44	61.96	6.33	-6.10	62.19	MaxAvg	Vertical	133	315	82.2	-20.0	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor. 788 MHz measured with 30 KHz RBW

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019

Page:

39 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

40 of 120

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	180 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

					30.0	00 - 1000.00 MH	z					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	787.84	113.72	6.33	-6.00	114.05	Fundamental	Vertical	100	0			
#2	788.00	74.77	6.33	-6.00	75.10	MaxAvg	Vertical	111	188	82.2	-7.1	Pass
#3	788.11	66.88	6.33	-6.10	67.11	MaxAvg	Vertical	148	291	82.2	-15.1	Pass
#4	788.15	65.77	6.33	-6.10	66.00	MaxAvg	Vertical	159	305	82.2	-16.2	Pass
#5	788.25	64.40	6.33	-6.10	64.63	MaxAvg	Vertical	133	275	82.2	-17.6	Pass
#6	788.30	63.37	6.33	-6.10	63.60	MaxAvg	Vertical	144	181	82.2	-18.6	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 Page:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Dipole Antenna 1-10 GHz

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	3.75 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

		1000.00 - 10000.00 MHz											
	Num Frequency Raw Cable dBμV AF dBμV Level dBμV/m Measurement dBμV/m Pol cm Hgt cm Azt blimit dBμV/m Margin dBμV/m Pass dBμV/m												
Ī	#1	1574.95	90.78	-1.43	-16.56	68.79	Peak (Scan)	Horizontal	100	132	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 41 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	15 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz												
	Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
Ī	#1	1574.89	87.09	-1.43	-16.56	69.10	Peak (Scan)	Horizontal	100	40	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 42 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	3.75 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz												
	Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
ſ	#1	1574.91	82.33	-1.43	-16.56	64.34	Peak (Scan)	Horizontal	100	0	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 43 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	15 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1574.91	82.33	-1.43	-16.56	64.34	Peak (Scan)	Horizontal	100	0	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 44 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	180 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1574.89	92.65	-1.43	-16.56	74.66	Peak (Scan)	Horizontal	100	36	82.2	*	Pass
Test Not	Test Notes: EUT powered up linked to Base station via antenna. Multicarrier.											

Note: click the links in the above matrix to view the graphical image (plot).

^{*1559-1610} MHz is in GPS band with limit measured separately.

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT)

PULO01-U2 Rev A

Yagi Antenna 30-1000 MHz

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	3.75 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

					30.	00 - 1000.00 MF	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	757.82	69.78	6.26	-6.50	69.54	MaxQP	Vertical	100	277	82.2	-12.7	Pass
#2	787.84	114.01	6.33	-6.00	114.34	Fundamental	Horizontal	100	0		1	
#3	788.00	72.99	6.33	-6.00	73.32	MaxQP	Horizontal	100	356	82.2	-8.9	Pass
#4	788.22	65.19	6.33	-6.10	65.42	MaxQP	Horizontal	100	37	82.2	-16.8	Pass
#5	788.88	56.35	6.33	-6.10	56.58	MaxQP	Horizontal	100	0	82.2	-25.7	Pass
#6	789.54	48.17	6.33	-6.00	48.50	MaxQP	Horizontal	101	5	82.2	-33.7	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor. 788 MHz measured with 30 KHz RBW

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	15 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

					30.	00 - 1000.00 MF	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	757.78	62.09	6.26	-6.50	61.85	MaxAvg	Horizontal	101	5	82.2	-20.4	Pass
#2	787.84	121.98	6.33	-6.00	122.31	Fundamental	Horizontal	100	0			-
#3	788.00	77.07	6.33	-6.00	77.40	MaxAvg	Horizontal	100	356	82.2	-4.8	Pass
#4	788.10	74.37	6.33	-6.10	74.60	MaxAvg	Horizontal	100	356	82.2	-7.6	Pass
#5	788.24	68.94	6.33	-6.10	69.17	MaxAvg	Horizontal	100	37	82.2	-13.1	Pass
#6	788.42	61.69	6.33	-6.10	61.92	MaxAvg	Horizontal	100	0	82.2	-20.3	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor. 788 MHz measured with 30 KHz RBW

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 47 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	3.75 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

					30.	00 - 1000.00 MF	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	757.85	66.11	6.26	-6.50	65.87	MaxAvg	Vertical	101	341	82.2	-16.4	Pass
#2	787.80	121.98	6.33	-6.00	122.31	Fundamental	Horizontal	100	0		-	
#3	788.00	76.47	6.33	-6.00	76.80	MaxAvg	Horizontal	202	4	82.2	-5.4	Pass
#4	788.10	74.67	6.33	-6.10	74.90	MaxAvg	Horizontal	100	356	82.2	-7.3	Pass
#5	788.25	68.89	6.33	-6.10	69.12	MaxAvg	Horizontal	212	0	82.2	-13.1	Pass
#6	788.77	64.46	6.33	-6.10	64.69	MaxAvg	Horizontal	101	357	82.2	-17.5	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor. 788 MHz measured with 30 KHz RBW

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 48 of 120

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT)

Serial #: PULO01-U2 Rev A

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	15 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

					30.	00 - 1000.00 MF	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	757.75	66.84	6.26	-6.50	66.60	MaxAvg	Vertical	109	231	82.2	-15.6	Pass
#2	787.84	121.92	6.33	-6.00	122.25	Fundamental	Horizontal	100	0		-	-
#3	788.06	76.27	6.33	-6.10	76.50	MaxAvg	Horizontal	106	357	82.2	-5.7	Pass
#4	788.13	74.67	6.33	-6.10	74.90	MaxAvg	Horizontal	104	18	82.2	-7.3	Pass
#5	788.24	72.27	6.33	-6.10	72.50	MaxAvg	Horizontal	104	10	82.2	-9.7	Pass
#6	788.46	64.47	6.33	-6.10	64.70	MaxAvg	Horizontal	184	2	82.2	-17.5	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor. 788 MHz measured with 30 KHz RBW

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 49 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Radiated Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.80	Data Rate:	180 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

					30.	00 - 1000.00 MF	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	757.77	67.33	6.26	-6.50	67.09	MaxAvg	Vertical	106	338	82.2	-15.1	Pass
#2	787.84	122.14	6.33	-6.00	122.47	Fundamental	Horizontal	100	0			
#3	788.00	79.17	6.33	-6.00	79.50	MaxAvg	Horizontal	113	3	82.2	-2.7	Pass
#4	788.13	76.57	6.33	-6.10	76.80	MaxAvg	Horizontal	101	2	82.2	-5.4	Pass
#5	788.23	73.74	6.33	-6.10	73.97	MaxAvg	Horizontal	117	350	82.2	-8.3	Pass
#6	788.30	73.73	6.33	-6.10	73.96	MaxAvg	Horizontal	110	0	82.2	-8.3	Pass
#7	788.39	69.13	6.33	-6.10	69.36	MaxAvg	Horizontal	114	10	82.2	-12.9	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 Duty Cycle Correction Factor.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 50 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

51 of 120

Yagi Antenna 1-10 GHz

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	3.75 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
									Pass /Fail			
#1	1574.87	74.42	-1.43	-16.56	56.43	Peak (Scan)	Horizontal	100	0	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 Page:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	15 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz												
							Margin dB	Pass /Fail					
Ī	#1	1574.96	73.50	-1.43	-16.56	55.51	Peak (Scan)	Horizontal	100	0	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 52 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	3.75 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

		1000.00 - 10000.00 MHz											
Num Frequency Raw Cable dBμV AF Level dB/m dB Measurement dBμV/m Pol Type Hgt cm Azt Deg dBμV/m Limit dBμV/m dB									Margin dB	Pass /Fail			
	#1	1574.84	73.34	-1.43	-16.56	55.35	Peak (Scan)	Horizontal	100	0	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 53 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	15 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

		1000.00 - 10000.00 MHz											
Num Frequency Raw Cable dBμV AF Level dBμV/m Measurement Type Pol cm Hgt cm Azt Deg dBμV/m Limit dBμV/m Margin dB									Margin dB	Pass /Fail			
	#1	1575.00	73.14	-1.43	-16.57	55.14	Peak (Scan)	Horizontal	100	0	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna*1559-1610 MHz is in GPS band with separate limit measured separately.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 54 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	15 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1575.00	73.14	-1.43	-16.57	55.14	Peak (Scan)	Horizontal	100	0	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 55 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Yagi	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	180 KHz
Power Setting:	23	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1574.87	80.66	-1.43	-16.56	62.67	Peak (Scan)	Horizontal	100	0	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

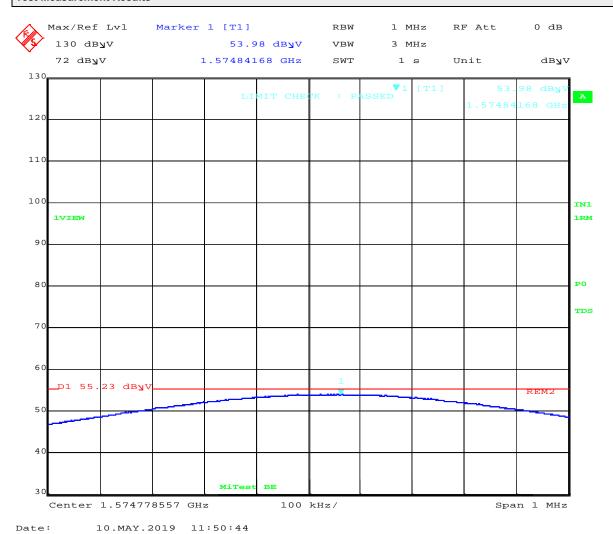
Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 56 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A


9.5.2.3. GPS Emissions

Dipole Antenna

Equipment Configuration for GPS Band Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	3.75 KHz
Power Setting:	17	Tested By:	JMH

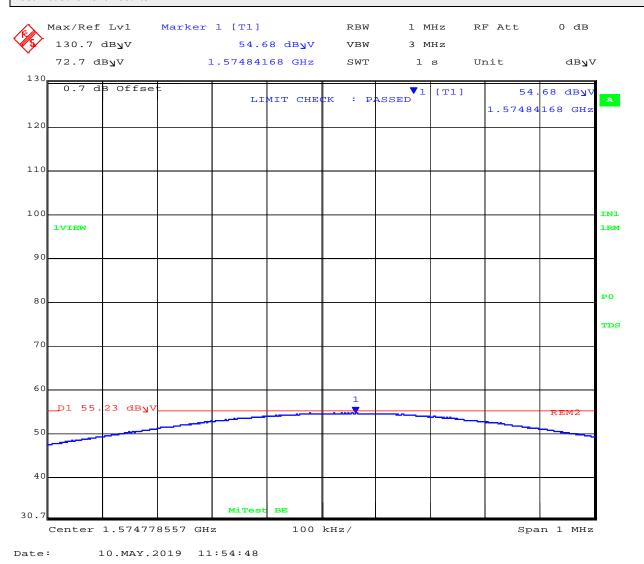
Test Measurement Results

53.98 dBuV/m + 0.7 (Duty Cycle) = 54.68 dBuV/m Corrected Value

Issue Date: 23rd May 2019 **Page:** 57 of 120

Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)


PULO01-U2 Rev A

58 of 120

Equipment Configuration for GPS Band Emissions

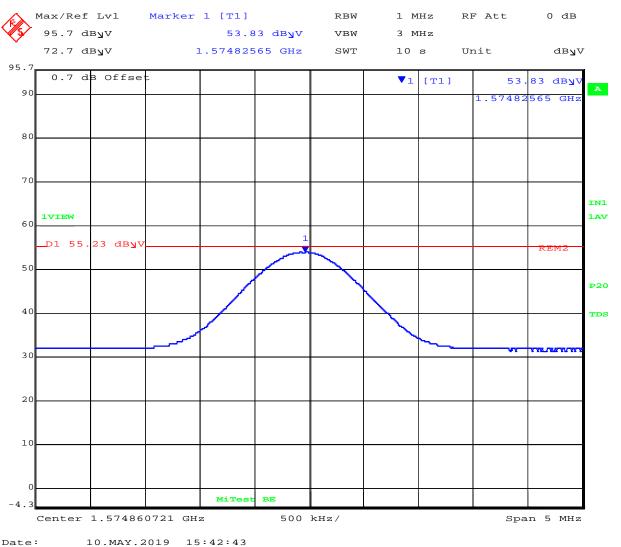
Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	15 KHz
Power Setting:	17	Tested By:	JMH

Test Measurement Results

*Measurement includes +0.7dB offset for Duty Cycle Correction

Issue Date: 23rd May 2019 Page:

Serial #:


Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)

PULO01-U2 Rev A

Equipment Configuration for GPS Band Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	3.75 KHz
Power Setting:	17	Tested By:	JMH

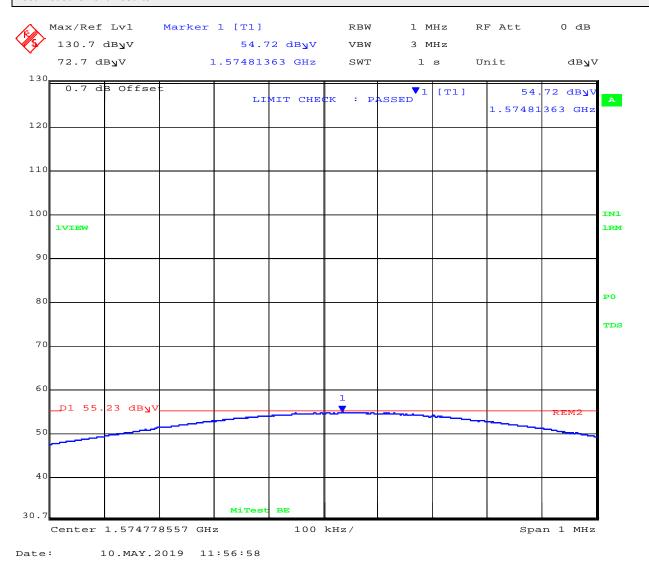
Test Measurement Results

Date: 10.MAY.2019 15:42:43

*Measurement includes +0.7dB offset for Duty Cycle Correction

Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)


PULO01-U2 Rev A

60 of 120

Equipment Configuration for GPS Band Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	15 KHz
Power Setting:	17	Tested By:	JMH

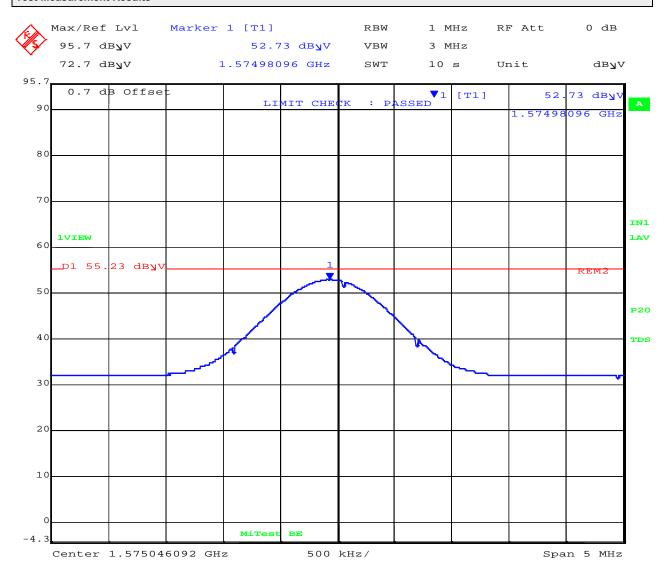
Test Measurement Results

*Measurement includes +0.7dB offset for Duty Cycle Correction

Issue Date: 23rd May 2019 Page:

Serial #:

Puloli Inc Model: RU700A 1.0


FCC Part 27 (NB IoT) PULO01-U2 Rev A

61 of 120

Equipment Configuration for GPS Band Emissions

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	180 KHz
Power Setting:	17	Tested By:	JMH

Test Measurement Results

Date: 10.MAY.2019 15:23:47

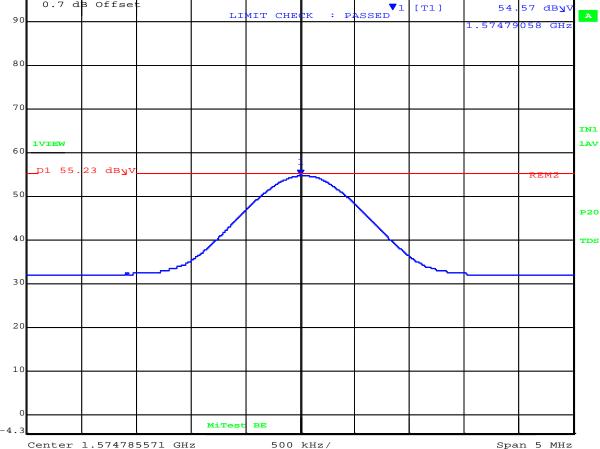
*Measurement includes +0.7dB offset for Duty Cycle Correction

Issue Date: 23rd May 2019 Page:

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A


Yagi Antenna

Equipment Configuration for GPS Band Emissions

Antenna:	Yagi + 6dB Pad	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	3.75 KHz
Power Setting:	20	Tested By:	JMH

Test Measurement Results

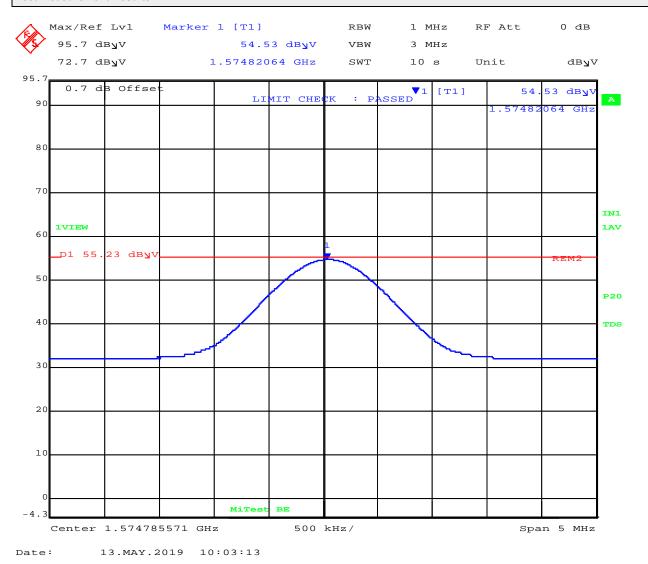
Date: 13.MAY.2019 10:12:46

Issue Date: 23rd May 2019 **Page**: 62 of 120

^{*}Measurement includes +0.7dB offset for Duty Cycle Correction

Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)


PULO01-U2 Rev A

63 of 120

Equipment Configuration for GPS Band Emissions

Antenna:	Yagi + 6dB Pad	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	BPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	15 KHz
Power Setting:	20	Tested By:	JMH

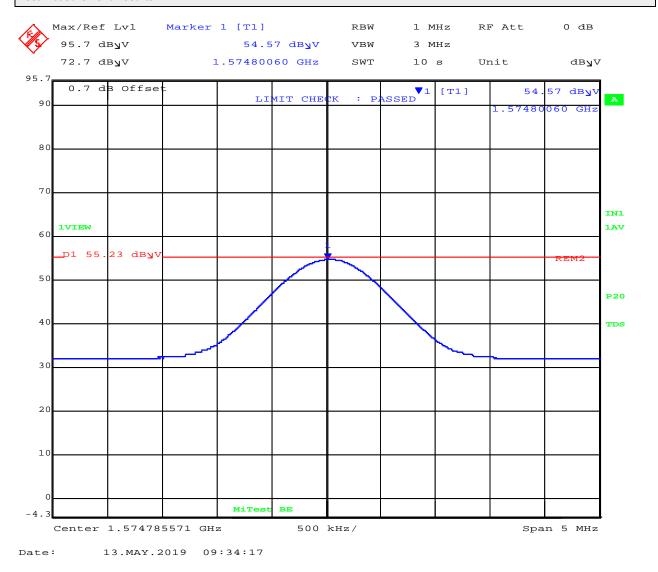
Test Measurement Results

*Measurement includes +0.7dB offset for Duty Cycle Correction

Issue Date: 23rd May 2019 Page:

Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)


PULO01-U2 Rev A

64 of 120

Equipment Configuration for GPS Band Emissions

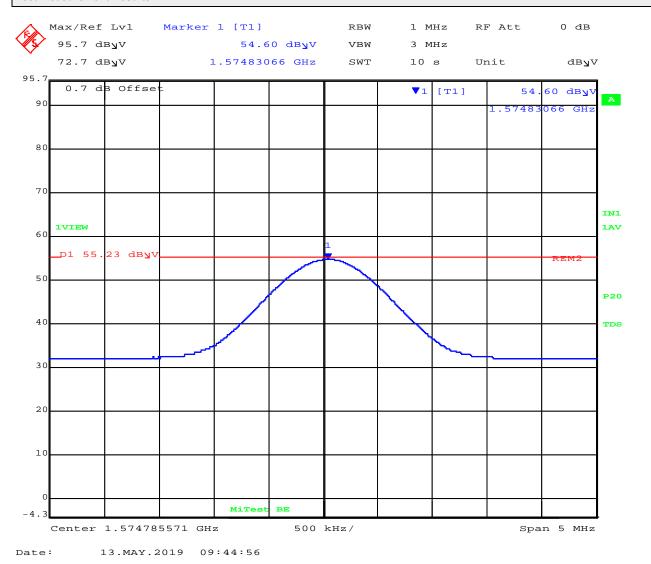
Antenna:	Yagi + 6dB Pad	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	3.75 KHz
Power Setting:	20	Tested By:	JMH

Test Measurement Results

*Measurement includes +0.7dB offset for Duty Cycle Correction

Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)


PULO01-U2 Rev A

65 of 120

Equipment Configuration for GPS Band Emissions

Antenna:	Yagi + 6dB Pad	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	15 KHz
Power Setting:	20	Tested By:	JMH

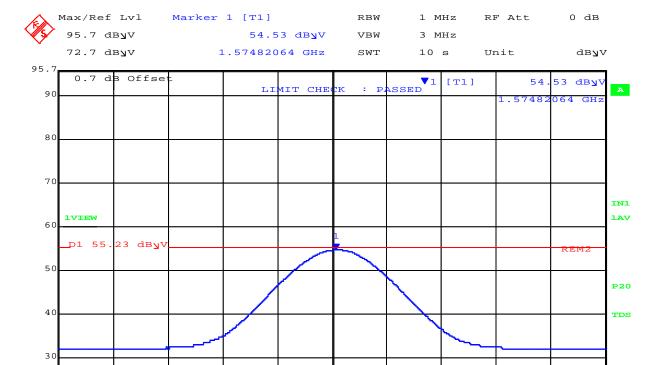
Test Measurement Results

*Measurement includes +0.7dB offset for Duty Cycle Correction

Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)

PULO01-U2 Rev A


Equipment Configuration for GPS Band Emissions

Antenna:	Yagi + 6dB Pad	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	787.50	Data Rate:	180 KHz
Power Setting:	20	Tested By:	JMH

Test Measurement Results

20

10

-4.3 MiTest BE Center 1.574785571 GHz 500 kHz/ Span 5 MHz

*Measurement includes +0.7dB offset for Duty Cycle Correction

13.MAY.2019 10:03:13

Issue Date: 23rd May 2019 **Page**: 66 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT)
PULO01-U2 Rev A

9.5.3. Digital Emissions

Test Conditions for Digital Emissions							
Standard:	FCC CFR 47:15.109	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	Radiated Emissions Limits	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.109 (a)	999 - 1001					
Reference Document(s):	See Normative References						

Test Procedure for Radiated Emissions Measurement Test Procedure

Testing 30 – 1,000 MHz was performed in an anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

15.109 Radiated limits.

((a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Quasi-peak Limit (dBμV/m)	Measurement Distance (meters)
30 to 88	40	3
88-216	43.5	3
216-960	46	3
960-1000	54	3

(b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the following:

Frequency(MHz)	Quasi-peak Limit (dBμV/m)	Measurement Distance (meters)
30 to 88	49.5	3
88-216	54	3
216-960	56.5	3
960-1000	60	3

Traceability

I	Laboratory Measurement Uncertainty	V
	Measurement uncertainty	+5.6/ -4.5 dB

Issue Date: 23rd May 2019 **Page**: 67 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Digital Emissions 30-1000 MHz Class A

Equipment Configuration for Radiated Digital Emissions (Class A)

Antenna:	Dipole	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	NA
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	NA
Channel Frequency (MHz):	0.00	Data Rate:	NA
Power Setting:	NA	Tested By:	JMH

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	32.55	32.76	3.54	-9.40	26.90	MaxQP	Vertical	98	268	49.5	-22.6	Pass
#2	193.02	48.11	4.43	-16.50	36.04	MaxQP	Vertical	98	356	54.0	-18.0	Pass
#3	207.94	46.81	4.49	-17.20	34.10	MaxQP	Vertical	113	4	54.0	-19.9	Pass
#4	320.02	49.29	4.91	-13.90	40.30	MaxQP	Vertical	99	51	57.0	-16.7	Pass
Test Not	tes: EUT powe	ered by A	C/DC PS.		•	•		•				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 68 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Digital Emissions 1-10 GHz Class A

Equipment Configuration for Digital Emissions 1-10 GHx

Antenna:	Not Applicable	Variant:	NB IOT
Antenna Gain (dBi):	Not Applicable	Modulation:	Not Applicable
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	Not Applicable
Channel Frequency (MHz):	0.00	Data Rate:	Not Applicable
Power Setting:	Not Applicable	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	6064.07	68.53	-2.84	-10.00	55.69	Max Peak	Vertical	178	32	80.0	-24.3	Pass
#2	6064.07	68.33	-2.84	-10.00	55.49	Max Avg	Vertical	178	32	60.0	-4.5	Pass
#3	6068.87	71.37	-2.85	-9.84	57.68	Max Peak	Horizontal	101	295	80.0	-22.3	Pass
#4	6068.87	69.94	-2.85	-9.84	57.25	Max Avg	Horizontal	101	295	60.0	-2.8	Pass
#5	6068.92	71.29	-2.85	-9.84	58.60	Max Peak	Vertical	123	194	80.0	-21.4	Pass
#6	6068.92	68.30	-2.85	-9.84	55.61	Max Avg	Vertical	123	194	60.0	-4.4	Pass
Test No	est Notes: EUT powered up											

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 23rd May 2019 **Page:** 69 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

9.5.4. AC Wireline Emissions

Test Conditions for AC Mains Conducted Emissions							
Standard:	FCC CFR 47:15.107 Ambient Temp. (°C): 24.0 - 27.5						
Test Heading:	AC Mains Conducted Limits	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.107 (a)	999 - 1001					
Reference Document(s):	See Normative References						

Test Method

The test method shall be in accordance with ANSI C63.4 and the Artificial Mains Networks (AMNs) shall be connected to the AC mains power source. The measurement frequency range extends from 150 kHz to 30 MHz. When the EUT is a transmitter operating at frequencies below 30 MHz, then the exclusion band for transmitters applies for measurements in the transmit mode of operation.

Test Procedure for AC Mains Conducted Emissions Measurement

The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

15.107 Conducted limits.

(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

	Conducte	d limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

(b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms LISN. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	79	66		
0.5-30	73	60		

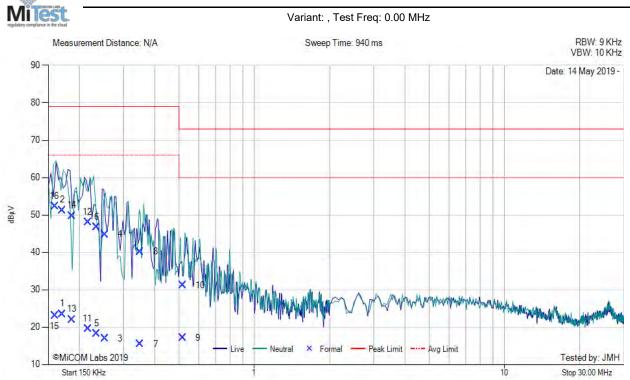
Traceability

All conducted emission measurements are traceable to national standards. The uncertainty of measurement at a confidence level of not less than 95 %, with a coverage factor of k=2, in the range 9 kHz - 30 MHz (Average & Quasi-peak) is ± 2.64 dB.

Laboratory Measurement Uncertainty	
Measurement uncertainty	±2.64 dB

Issue Date: 23rd May 2019

Page: 70 of 120



Serial #:

Puloli Inc Model: RU700A 1.0 FCC Part 27 (NB IoT)

PULO01-U2 Rev A

Model:	RU700A 1.0	Configuration tested:	AC/DC PS	
Input power:	120V _{AC} /60Hz	Standard:	FCC Class A	

Num	Frequency MHz	Raw dBµV	Cable Loss dB	Factor dB	Total Correction dBµV	Corrected Value dBµV	Measurement Type	Line	Limit dBµV/m	Margin dB	Pass /Fail
1	0.170	13.55	0.05	9.92	9.97	23.52	Max Avg	Neutral	66.0	-42.5	Pass
2	0.170	41.31	0.05	9.92	9.97	51.28	Max Qp	Neutral	79.0	-27.7	Pass
3	0.253	6.98	0.07	9.92	9.99	16.97	Max Avg	Live	66.0	-49.0	Pass
4	0.253	34.80	0.07	9.92	9.99	44.79	Max Qp	Live	79.0	-34.2	Pass
5	0.234	8.30	0.07	9.92	9.99	18.29	Max Avg	Neutral	66.0	-47.7	Pass
6	0.234	36.72	0.07	9.92	9.99	46.71	Max Qp	Neutral	79.0	-32.3	Pass
7	0.350	5.57	0.04	9.92	9.96	15.53	Max Avg	Neutral	66.0	-50.5	Pass
8	0.350	30.21	0.04	9.92	9.96	40.17	Max Qp	Neutral	79.0	-38.8	Pass
9	0.516	7.08	0.09	9.92	10.01	17.09	Max Avg	Neutral	60.0	-42.9	Pass
10	0.516	21.16	0.09	9.92	10.01	31.17	Max Qp	Neutral	73.0	-41.8	Pass
11	0.216	9.56	0.06	9.92	9.98	19.54	Max Avg	Neutral	66.0	-46.5	Pass
12	0.216	38.09	0.06	9.92	9.98	48.07	Max Qp	Neutral	79.0	-30.9	Pass
13	0.186	12.09	0.06	9.92	9.98	22.07	Max Avg	Neutral	66.0	-43.9	Pass
14	0.186	39.80	0.06	9.92	9.98	49.78	Max Qp	Neutral	79.0	-29.2	Pass
15	0.159	13.11	0.05	9.92	9.97	23.08	Max Avg	Neutral	66.0	-42.9	Pass
16	0.159	42.36	0.05	9.92	9.97	52.33	Max Qp	Neutral	79.0	-26.7	Pass

Test Notes: Powered by AC DC PS

Issue Date: 23rd May 2019

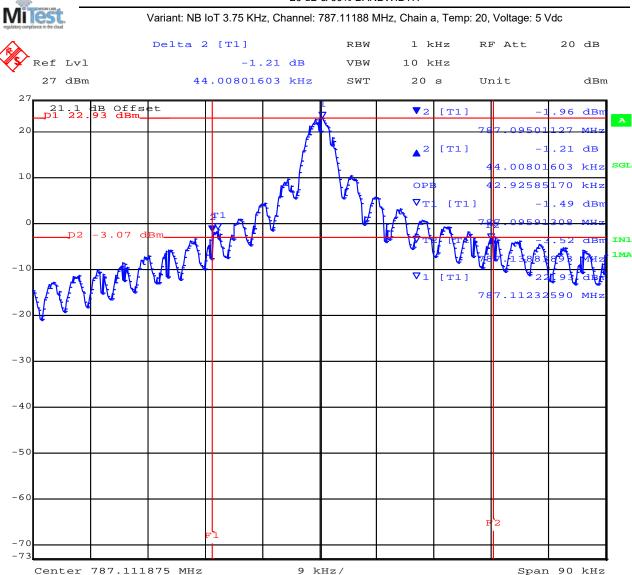
Page: 71 of 120

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) To: PULO01-U2 Rev A Serial #:

A. APPENDIX - GRAPHICAL IMAGES

23rd May 2019 Issue Date: Page:


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

A.1. 26 dB & 99% Bandwidth

26 dB & 99% BANDWIDTH

Date: 15.MAY.2019 16:50:22

back to matrix

Issue Date: 23rd May 2019 **Page**: 73 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

Span 90 kHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

26 dB & 99% BANDWIDTH

		20 db d 35% bANDWIDTH									
MITEST. regulatory compliance in the cloud		Variant: NB	loT 3.75 KH	z, Channel:	787.41188 N	MHz, Chain a	a, Temp: 20,	Voltage: 5	√dc		
(R)		Delta 2	2 [T1]		RBW	1 k	Hz R	F Att	20	dВ	
Ref L	vl		0.	.53 dB	VBW	10 k	Hz				
27 d	Bm	43	L.302605	521 kHz	SWT	20	s U	nit		dBm	ı
27		. 1.	П	1		1	ı	<u> </u>	ı		
p1 2	1 dB Off 23.06 dBm	set n		X	F	▼2	[T1]	-:	.06	dBm	A
20				<u> </u>	\		7.8	7.39483	091	MHz	
				l <i>F</i>	Ţ	_ 2	[T1]		.53	dв	
				l ŧ	l E			11.30260			SGL
10							•				
				[f \sqrt	I ₩ \ .	OPI		2.92585	170	KHZ	
				E A	U [#	T VT:	[T1]	-3	.89	dBm	
0			T1 (<u> </u>	T.	1 PM	27,	7.39591	308	MHz	
	2.94	dBm	F F V F	•	•	VF VFT	P TE	H	1.84	dBm	IN1
		I A P				¥ '	# 4 F 1. A			. The co	1MA
-10	AK FE		-				A A	71.74.340.3	938	F 7	
	n [1] [1]	(U u				∇1	[T1]	V 23	NE O O	dBm	
F # F #	A A	F -					78	7.41142	410	MHz	
-20	4										
-30											
-40											
-50											
-60											
							F	2			
-70			Fl								

Date: 15.MAY.2019 16:42:43

Center 787.411875 MHz

back to matrix

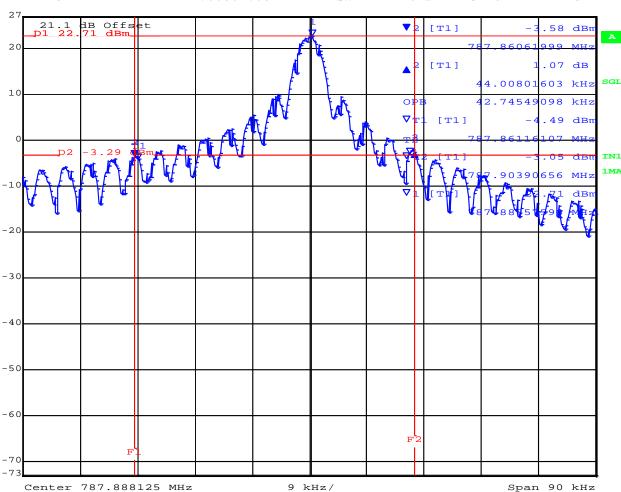
Issue Date: 23rd May 2019 **Page**: 74 of 120

9 kHz/

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A


26 dB & 99% BANDWIDTH

MiTest.
regulatory compliance in the cloud

Variant NB IoT 3.75 KHz, Channel: 787.88813 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Delta 2 [T1] RBW 1 kHz RF Att 20 dE

27 dBm 44.00801603 kHz SWT 20 s Unit dBm

Date: 15.MAY.2019 17:01:11

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2425.619 MHz: -11.605 dBm M2: 2425.988 MHz: -5.416 dBm Delta1: 689 KHz: 0.927 dB T1: 2425.379 MHz: -24.326 dBm T2: 2426.573 MHz: -21.875 dBm OBW: 1.194 MHz	Channel Frequency: 2426.00 MHz

back to matrix

Issue Date: 23rd May 2019 **Page**: 75 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

Span 300 kHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

26 dB & 99% BANDWIDTH

Milest.
regulatory compliance in the cloud

Variant: NB IOT 15 KHz, Channel: 787.1175 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

regulatory compliance in the cloud		D. 3.1				D.D.11	0.1			0.0	10
		Delta 2	[1						F ALL	20	ав
Ref L 27 d		169	.74		39 dB 000 kHz				nit		dBm
_p1 2	1 dB Offs					1 7	▼2	[T1]	- 4	.72	
20					<i></i>	TE .	<u>^</u> 2	[T1]	87,06742 (.39	
10					<u> </u>	+	OPI		69.74949 27.45490		
				т1 У			A VIII		1	.45	dBm
0	02 -4.28	dBm	2	A	/ \t	V V			\$7 ₂ 08413	2	dBm I
-10			4	\[it .		V	[T]	87.21158	\$1 8	MHP 1
			VE I	A					87.11960	4 1	MHZ
-20	AT A STATE OF THE	A A	Ť								
-30	M. A. I										_
fisefft	`										
-40											
-50											_
-60			\dashv								\dashv

Date: 15.MAY.2019 17:18:25

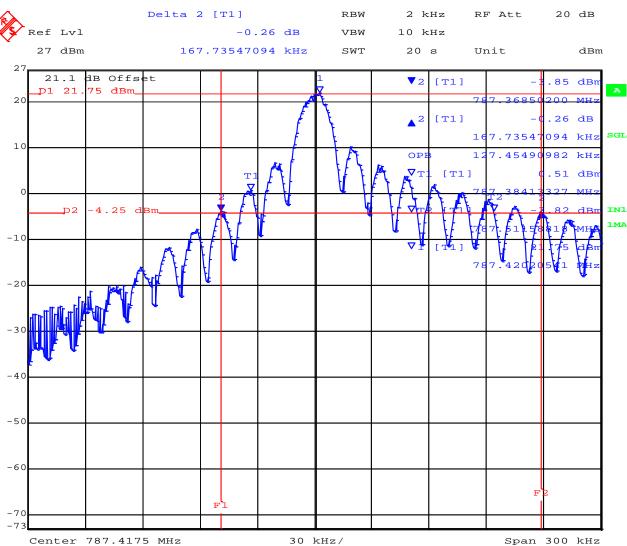
Center 787.1175 MHz

back to matrix

Issue Date: 23rd May 2019 **Page:** 76 of 120

30 kHz/

Serial #:


Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

26 dB & 99% BANDWIDTH

MITEST.
regulatory compliance in the cloud

Variant NB IOT 15 KHz, Channel: 787.4175 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 15.MAY.2019 17:25:34

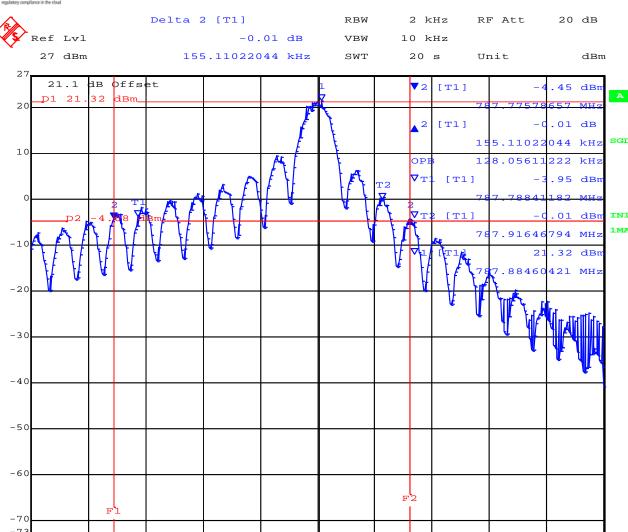
back to matrix

Issue Date: 23rd May 2019

Page: 77 of 120

Serial #:

Puloli Inc Model: RU700A 1.0


Span 300 kHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

26 dB & 99% BANDWIDTH

MiTest.
regulatory compliance in the cloud

Variant NB IOT 15 KHz, Channel: 787.8825 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 15.MAY.2019 17:31:08

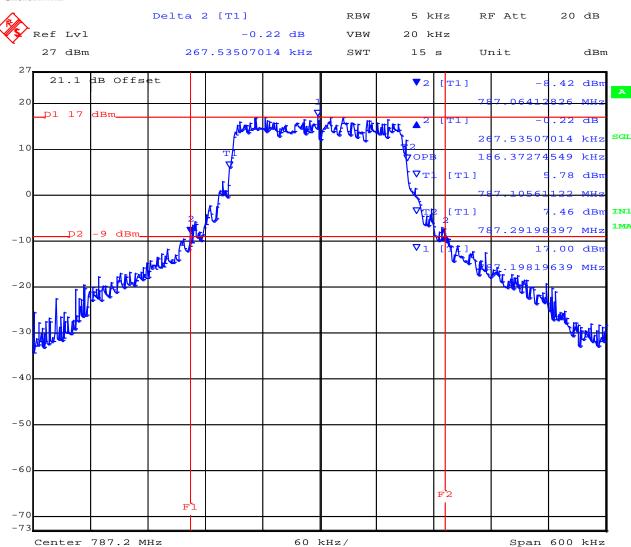
Center 787.8825 MHz

back to matrix

Issue Date: 23rd May 2019 **Page**: 78 of 120

30 kHz/

Serial #:


Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

26 dB & 99% BANDWIDTH

Mitest.

Variant: NB IOT 180 KHz, Channel: 787.2 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 15.MAY.2019 16:16:58

back to matrix

Issue Date: 23rd May 2019 **Page**: 79 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

Span 600 kHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

26 dB & 99% BANDWIDTH

Variant NB IOT 180 KHz, Channel: 787.5 MHz, Chain a, Temp: 20, Voltage: 5 Vdc Delta 2 [T1] RBW 5 kHz RF Att 20 dB Ref Lvl 0.67 dB VRW 20 kHz 27 dBm 265.13026052 kHz SWT 15 s Unit dBm 21.1 dB Offset .24 dBr 20 D1 16 9 dBm 5.13026 052 kHz SGL pР kH: 85 dBt 63 dBm IN1 MH . 90 691 -60

Date: 15.MAY.2019 16:12:39

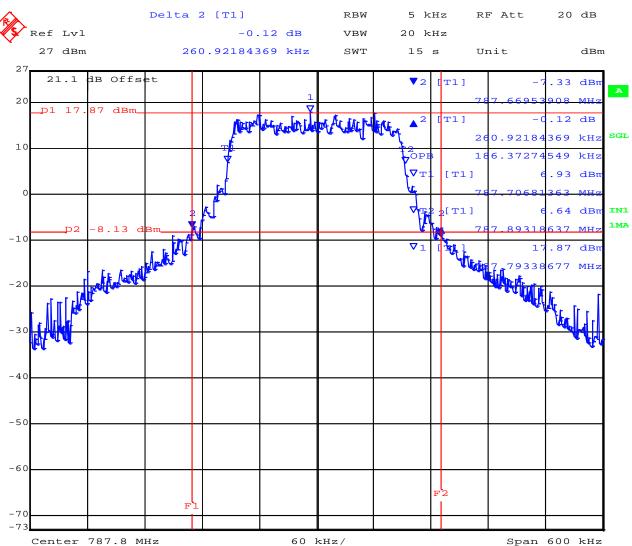
Center 787.5 MHz

back to matrix

Issue Date: 23rd May 2019 **Page:** 80 of 120

60 kHz/

Serial #:


Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

26 dB & 99% BANDWIDTH

Mitest.
regulatory compliance in the cloud

Variant NB IOT 180 KHz, Channel: 787.8 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 15.MAY.2019 16:22:23

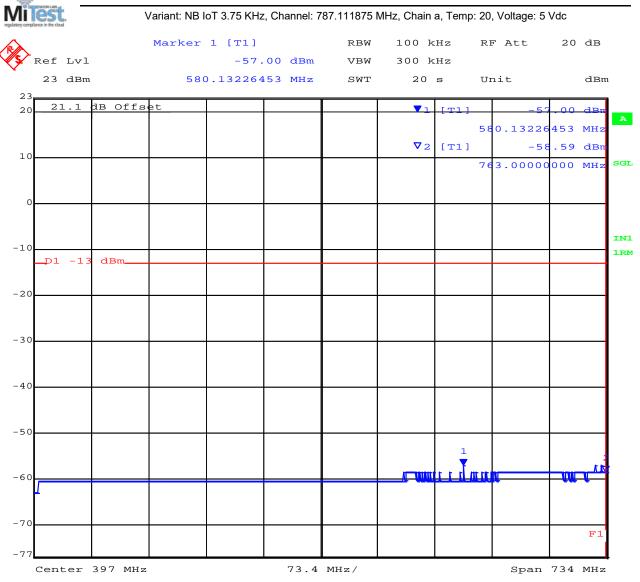
back to matrix

Issue Date: 23rd May 2019 Page:

81 of 120

Serial #:

Puloli Inc Model: RU700A 1.0


FCC Part 27 (NB IoT) PULO01-U2 Rev A

A.2. Emissions

A.2.1. Conducted Emissions

A.2.1.1. Conducted Spurious Emissions

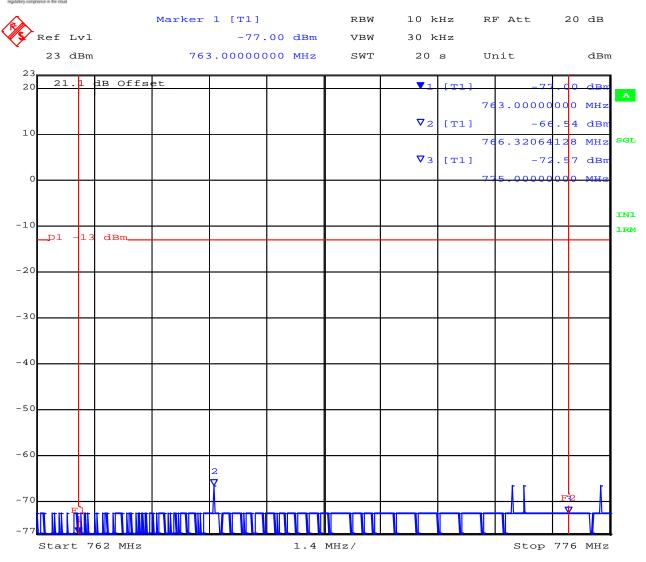
CONDUCTED SPURIOUS EMISSIONS - PEAK

Date: 16.MAY.2019 11:22:42

back to matrix

Issue Date: 23rd May 2019 **Page**: 82 of 120

Serial #:


Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

MiTest.

Variant: NB IoT 3.75 KHz, Channel: 787.111875 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 16.MAY.2019 11:13:42

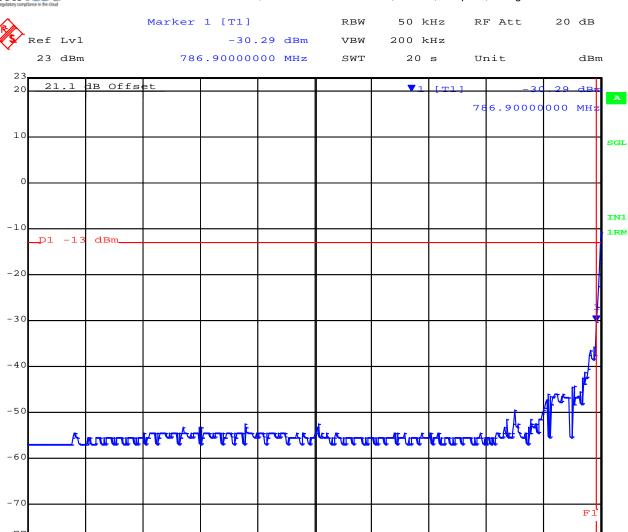
back to matrix

Issue Date: 23rd May 2019

Page: 83 of 120

Serial #:

Puloli Inc Model: RU700A 1.0


Stop 787 MHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

MiTest.
regulatory compliance in the cloud

Variant: NB IoT 3.75 KHz, Channel: 787.111875 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 16.MAY.2019 13:16:52

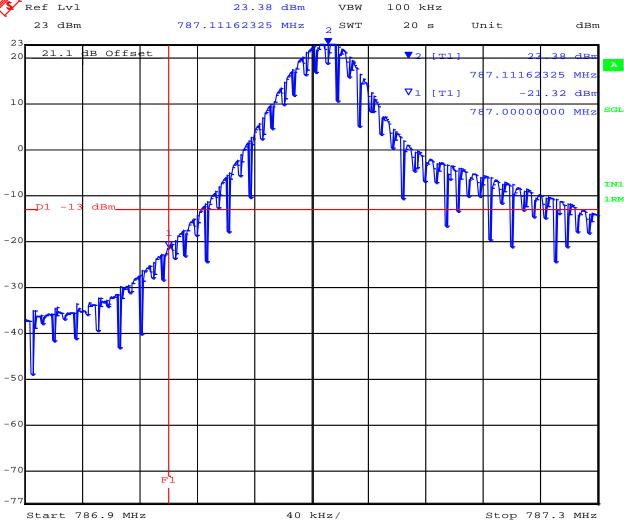
Start 775 MHz

back to matrix

Issue Date: 23rd May 2019 **Page**: 84 of 120

1.2 MHz/

Serial #:


Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: NB IoT 3.75 KHz, Channel: 787.111875 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

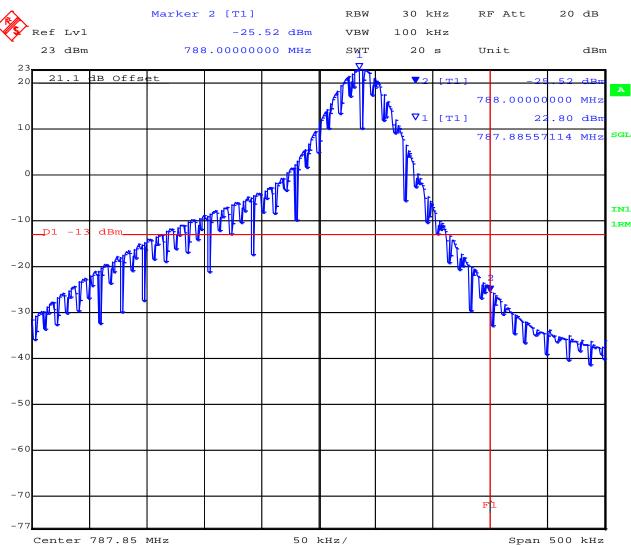
Marker 2 [T1] RBW 30 kHz RF Att 20 of

Date: 16.MAY.2019 10:00:18

back to matrix

Issue Date: 23rd May 2019 **Page**: 85 of 120

Serial #:


Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

MITEST.
regulatory compliance in the cloud

Variant: NB IoT 3.75 KHz, Channel: 787.888125 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 16.MAY.2019 10:16:18

back to matrix

Issue Date: 23rd May 2019 **Page**: 86 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

Span 5 MHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

MiTest.

Variant: NB IoT 3.75 KHz, Channel: 787.888125 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Marker 1 [T1] RBW 50 kHz RF Att -29.46 dBm VBW 200 kHz 23 dBm 788.10000000 MHz 20 s dBm SWT Unit dB Offset 788.10000000 MHz 10 SGL IN1 -101RM -20-30 MANUEL POR -50rance around range for reduced by the contract range around -60

Date: 16.MAY.2019 13:12:30

Center 790.5 MHz

back to matrix

Issue Date: 23rd May 2019 **Page**: 87 of 120

500 kHz/

Serial #:

Puloli Inc Model: RU700A 1.0

Stop 806 MHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

MiTest.
regulatory compliance in the cloud

Variant: NB IoT 3.75 KHz, Channel: 787.888125 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

regulatory compl	iance in the cloud					.,	0000.20		ш, тотпр	0, .	onago. o			
R				Marker	1 [T1]		RBW	10 k	Hz	RF .	Att	20	dВ	
%	Ref I	Lvl			-72.	57 dBm	VBW	30 k	Hz					
_	23 0	dBm		793	3.000000	000 MHz	SWT	20	s	Uni	t		dBm	1
23		Į,	dB Offs	L.			<u> </u>	_						l
20	21.	+	dB OIIS	et				<u>V</u> 1			-72		dBm	A
											.00000			
10								∇ 2	[T1]		-63			
										795.	.45090	180	MHz	SGL
								∇ 3	[T1]		-72	. 57	dBm	
0		+								805	.00000	000	MHz	
-10														IN1
-10		-13	dBm											1RM
-20		+												
-30		+												
-40														
-50		+								_				
-60														
-60				7										
		Ι.												
-70		\perp										F22		
	باللالا	F	الللكال	ւսևւլլ	11111									Į.

Date: 16.MAY.2019 11:06:41

Start 792 MHz

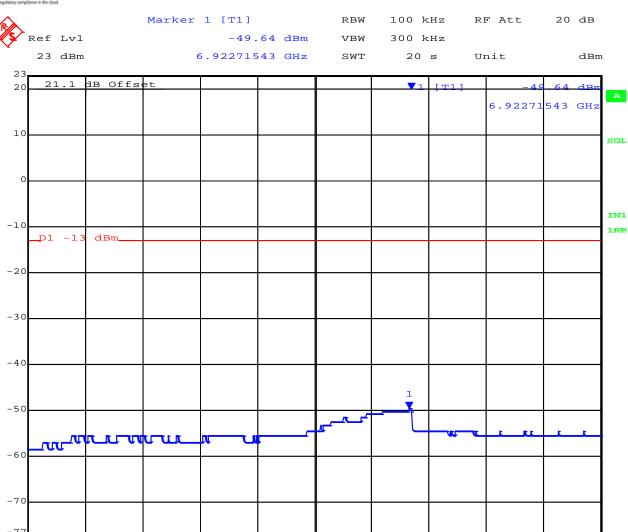
back to matrix

Issue Date: 23rd May 2019 **Page:** 88 of 120

1.4 MHz/

Serial #:

Puloli Inc Model: RU700A 1.0


Stop 10 GHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

MiTest.
regulatory compliance in the cloud

Variant: NB IoT 3.75 KHz, Channel: 787.888125 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 16.MAY.2019 11:27:19

Start 805 MHz

back to matrix

Issue Date: 23rd May 2019 **Page:** 89 of 120

919.5 MHz/

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

MiTest.
regulatory compliance in the cloud

Variant: NB IoT 180 KHz, Channel: 787.2 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

	Marker	1 [T1]		RBW	100 k	Hz	RF Att	20	dВ
Ref Lvl		-57.	00 dBm	VBW	300 k	Hz			
	749	9.290581	16 MHz	SWT	20	s	Unit		dBm
23 20 21.1 dB Offs	et				V 1	[T1]	-5'	.00	
							749.29058	3116	MHz
					∇ 2	[T1]		3.59	
10							763.00000	000	MHz sgi
0									
-10									INI
_D1 -13 dBm									1RI
-20									
-30									
-40									
-50									
									1 1
-60						in in			14
-70									F1
-77									_
Start 30 MHz	•		73.4	MHz/	<u> </u>		Stop	764	MHz

Date: 16.MAY.2019 11:20:25

back to matrix

Issue Date: 23rd May 2019 **Page:** 90 of 120

Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

Milest.

Variant: NB IoT 180 KHz, Channel: 787.2 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Marker 1 [T1] RBW 10 kHz RF Att -72.57 dBm VBW 30 kHz 23 dBm 763.00000000 MHz 20 s dBm SWT Unit dB Offset 763.0000000 MHz **∇**2 [T1] -72 dBr 10 SGL 6.32064128 MHz **∇**3 [T1] dBn IN1 -101RM dBm -20-30

-50 -60 -70

1.4 MHz/

Date: 16.MAY.2019 11:16:57

Center 769 MHz

back to matrix

-40

Issue Date: 23rd May 2019

Page: 91 of 120

Span 14 MHz


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: NB IoT 180 KHz, Channel: 787.2 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

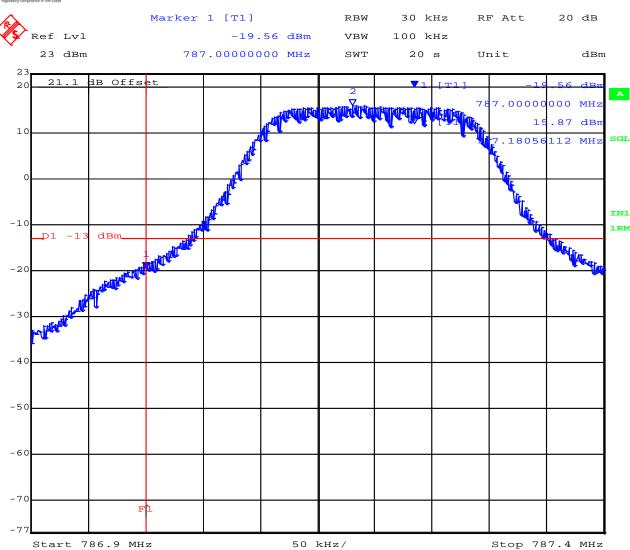
1.2 MHz/

Date: 16.MAY.2019 10:33:48

Start 775 MHz

back to matrix

Issue Date: 23rd May 2019 Page: 92 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: NB IoT 180 KHz, Channel: 787.2 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 16.MAY.2019 10:22:12

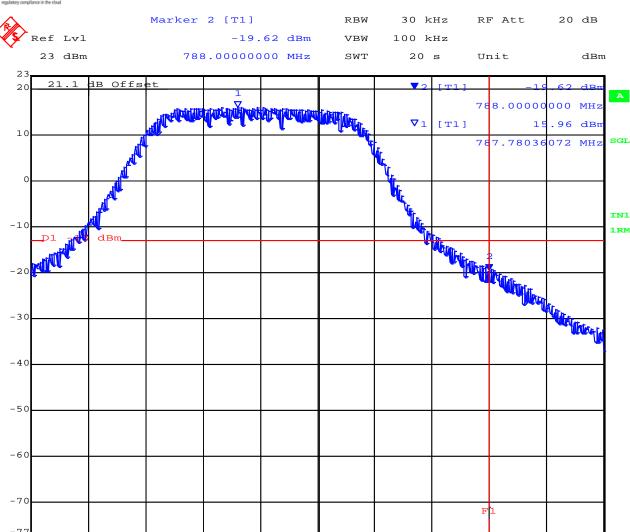
Start 786.9 MHz

back to matrix

Issue Date: 23rd May 2019 Page: 93 of 120

Serial #:

Puloli Inc Model: RU700A 1.0


Stop 788.1 MHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

Milest.
regulatory compliance in the cloud

Variant: NB IoT 180 KHz, Channel: 787.8 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 16.MAY.2019 10:11:17

Start 787.6 MHz

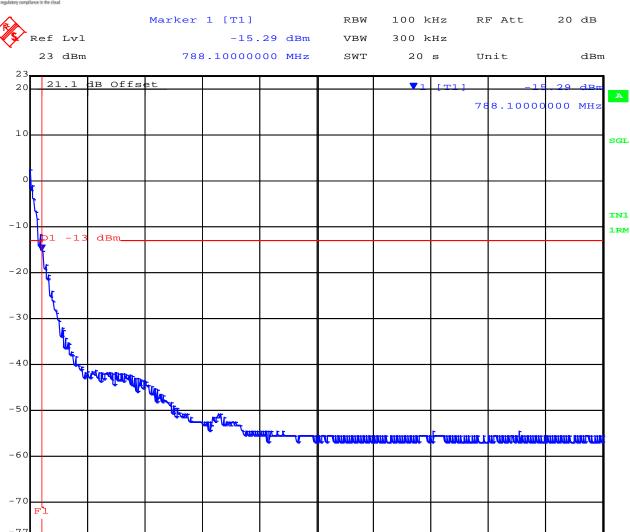
back to matrix

Issue Date: 23rd May 2019 **Page**: 94 of 120

50 kHz/

Serial #:

Puloli Inc Model: RU700A 1.0


Stop 793 MHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

MiTest.

Variant: NB IoT 180 KHz, Channel: 787.8 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

500 kHz/

Date: 16.MAY.2019 10:58:44

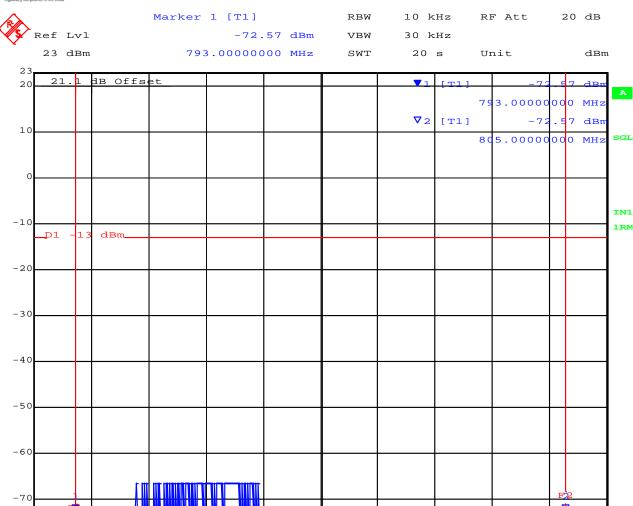
Start 788 MHz

back to matrix

Issue Date: 23rd May 2019 **Page**: 95 of 120

Serial #:

Puloli Inc Model: RU700A 1.0


Stop 806 MHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

MiTest.

Variant: NB IoT 180 KHz, Channel: 787.8 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 16.MAY.2019 11:02:47

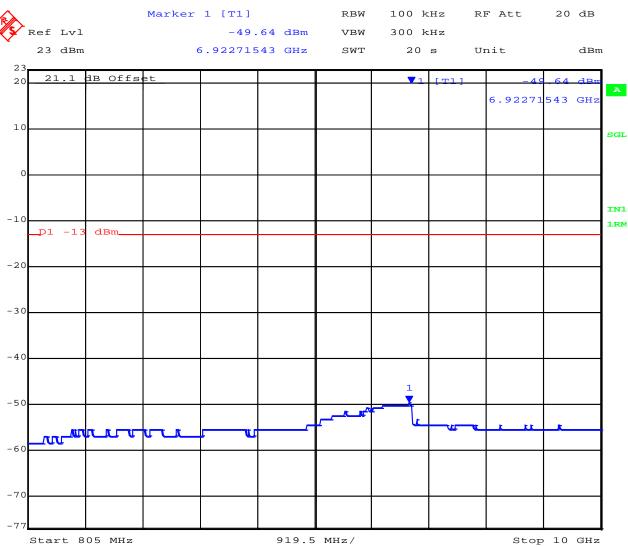
Start 792 MHz

back to matrix

Issue Date: 23rd May 2019 **Page:** 96 of 120

1.4 MHz/

Serial #:


Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

CONDUCTED SPURIOUS EMISSIONS - PEAK

Milest.
regulatory compliance in the cloud

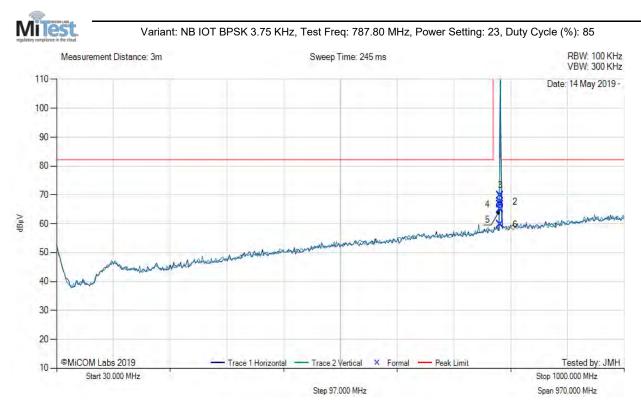
Variant: NB IoT 180 KHz, Channel: 787.8 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Date: 16.MAY.2019 11:30:06

back to matrix

Issue Date: 23rd May 2019 **Page:** 97 of 120

Serial #:


Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

A.2.2. Radiated Emissions

A.2.2.2. TX Spurious Emissions

Dipole Antenna 30-1000 MHz

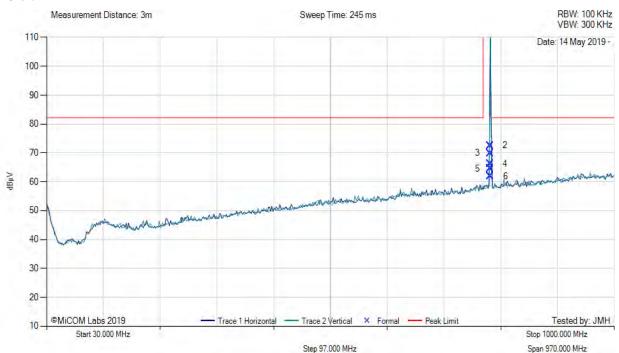
					30.0	0 - 1000.00 MHz	2					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	787.95	113.32	6.33	-6.00	113.65	Fundamental	Vertical	100	0		I	
2	788.00	67.37	6.33	-6.00	67.70	MaxQP	Vertical	135	179	82.2	-14.5	Pass
3	788.10	69.56	6.33	-6.10	69.79	MaxQP	Vertical	104	305	82.2	-12.4	Pass
4	788.16	66.45	6.33	-6.10	66.68	MaxQP	Vertical	224	3	82.2	-15.6	Pass
5	788.22	64.77	6.33	-6.10	65.00	MaxQP	Vertical	152	311	82.2	-17.2	Pass
6	788.27	59.57	6.33	-6.10	59.80	MaxQP	Vertical	156	204	82.2	-22.4	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction.

back to matrix

Issue Date: 23rd May 2019

Page: 98 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

MiTest regulatory compliance in the cloud

Variant: NB IOT BPSK 15 KHz, Test Freq: 787.80 MHz, Power Setting: 23, Duty Cycle (%): 85

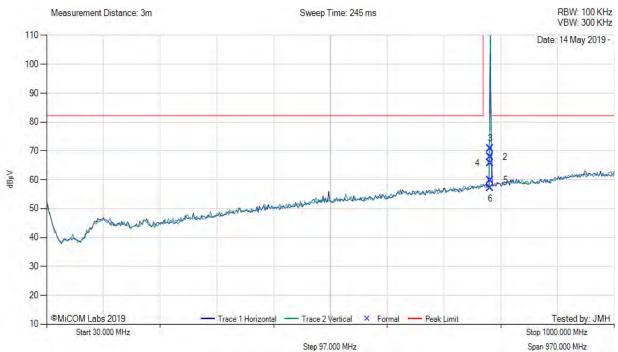
					30.0	0 - 1000.00 MHz	<u>'</u>					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	787.95	113.25	6.33	-6.00	113.58	Fundamental	Vertical	100	0			
2	788.07	72.37	6.33	-6.10	72.60	MaxAvg	Vertical	122	191	82.2	-9.6	Pass
3	788.11	69.69	6.33	-6.10	69.92	MaxAvg	Vertical	194	203	82.2	-12.3	Pass
4	788.17	66.00	6.33	-6.10	66.23	MaxAvg	Vertical	157	305	82.2	-16.0	Pass
5	788.25	64.32	6.33	-6.10	64.55	MaxAvg	Vertical	127	301	82.2	-17.7	Pass
6	788.32	61.71	6.33	-6.10	61.94	MaxAvg	Vertical	138	326	82.2	-20.3	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction.

back to matrix

Issue Date: 23rd May 2019

Page: 99 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Variant: NB IOT QPSK 3.75 KHz, Test Freq: 787.80 MHz, Power Setting: 23, Duty Cycle (%): 85

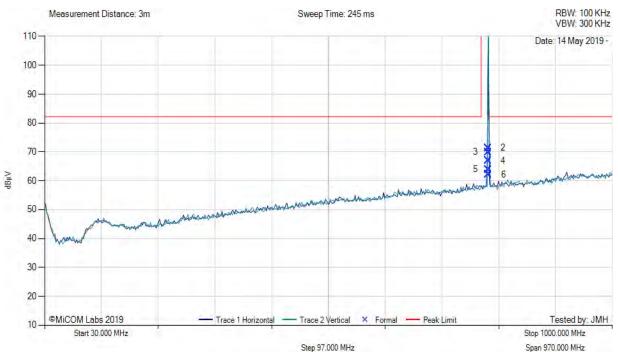
					30.0	0 - 1000.00 MHz	2					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	787.95	113.17	6.33	-6.00	113.50	Fundamental	Vertical	100	0		I	
2	788.00	67.63	6.33	-6.00	67.96	MaxAvg	Vertical	131	100	82.2	-14.3	Pass
3	788.10	70.56	6.33	-6.10	70.79	MaxAvg	Vertical	125	179	82.2	-11.4	Pass
4	788.25	65.43	6.33	-6.10	65.66	MaxAvg	Vertical	138	288	82.2	-16.6	Pass
5	788.34	59.66	6.33	-6.10	59.89	MaxAvg	Vertical	123	311	82.2	-22.3	Pass
6	788.44	56.85	6.33	-6.10	57.08	MaxAvg	Vertical	167	311	82.2	-25.2	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction. 788 MHz measured with 30 KHz RBW

back to matrix

Issue Date: 23rd May 2019

Page: 100 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Variant: NB IOT QPSK 15 KHz, Test Freq: 787.80 MHz, Power Setting: 23, Duty Cycle (%): 85

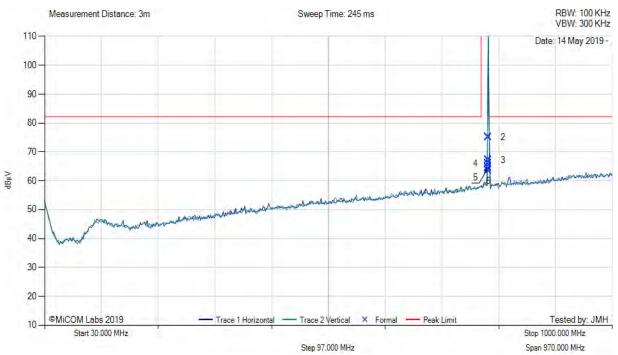
					30.0	0 - 1000.00 MHz	2					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	787.95	112.83	6.33	-6.00	113.16	Fundamental	Vertical	100	0		1	
2	788.00	71.03	6.33	-6.00	71.36	MaxAvg	Vertical	120	180	82.2	-10.9	Pass
3	788.10	69.66	6.33	-6.10	69.89	MaxAvg	Vertical	125	179	82.2	-12.3	Pass
4	788.16	66.66	6.33	-6.10	66.89	MaxAvg	Vertical	148	296	82.2	-15.3	Pass
5	788.33	63.72	6.33	-6.10	63.95	MaxAvg	Vertical	126	209	82.2	-18.3	Pass
6	788.44	61.96	6.33	-6.10	62.19	MaxAvg	Vertical	133	315	82.2	-20.0	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction. 788 MHz measured with 30 KHz RBW

back to matrix

Issue Date: 23rd May 2019

Page: 101 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Variant: NB IOT QPSK 180 KHz, Test Freq: 787.80 MHz, Power Setting: 23, Duty Cycle (%): 85

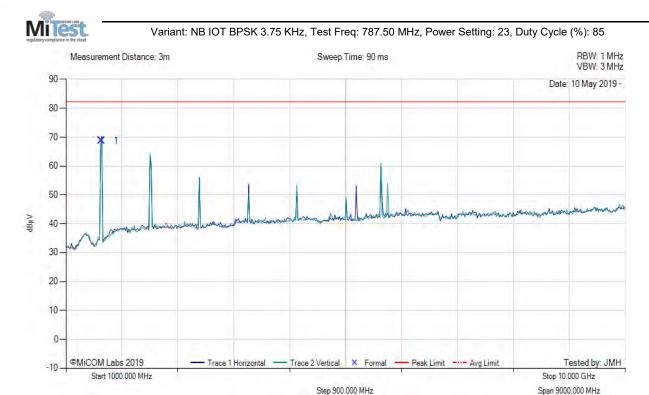
					30.0	0 - 1000.00 MHz	2					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	787.84	113.72	6.33	-6.00	114.05	Fundamental	Vertical	100	0			
2	788.00	74.77	6.33	-6.00	75.10	MaxAvg	Vertical	111	188	82.2	-7.1	Pass
3	788.11	66.88	6.33	-6.10	67.11	MaxAvg	Vertical	148	291	82.2	-15.1	Pass
4	788.15	65.77	6.33	-6.10	66.00	MaxAvg	Vertical	159	305	82.2	-16.2	Pass
5	788.25	64.40	6.33	-6.10	64.63	MaxAvg	Vertical	133	275	82.2	-17.6	Pass
6	788.30	63.37	6.33	-6.10	63.60	MaxAvg	Vertical	144	181	82.2	-18.6	Pass

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction.

back to matrix

Issue Date: 23rd May 2019

Page: 102 of 120



Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Dipole Antenna 1-10 GHz

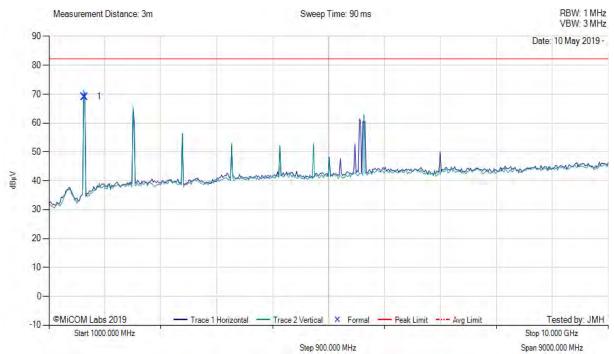
						1000	.00 - 10000.00 N	ИHz					
Num Frequency MHz Raw dBμV Cable Loss dB/m AF dB/m Level dBμV/m Measurement Type Pol Hgt cm Azt Deg Limit dBμV/m									Margin dB	Pass /Fail			
	1	1574.95	90.78	-1.43	-16.56	68.79	Peak (Scan)	Horizontal	100	132	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. 1577 MHz has separate limit and is tested separately

back to matrix

Issue Date: 23rd May 2019 **Page**: 103 of 120

^{*1559-1610} MHz has separate limits, See GPS Band Emissions in Section 9.5.2.3


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

MITEST regulatory compliance in the cloud

Variant: NB IOT BPSK 15 KHz, Test Freq: 787.50 MHz, Power Setting: 23, Duty Cycle (%): 85

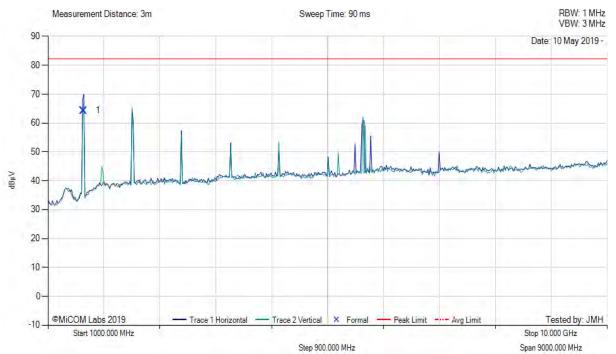
						1000	.00 - 10000.00 N	1Hz					
Nim Nim Pol State Nim Pol State Nim Pol State Nim Pol State Nim Ni										Margin dB	Pass /Fail		
	1	1574.89	87.09	-1.43	-16.56	69.10	Peak (Scan)	Horizontal	100	40	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

back to matrix

Issue Date: 23rd May 2019

Page: 104 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

MITEST regulatory compliance in the cloud

Variant: NB IOT QPSK 3.75 KHz, Test Freq: 787.50 MHz, Antenna: dipole, Power Setting: 23, Duty Cycle (%): 85

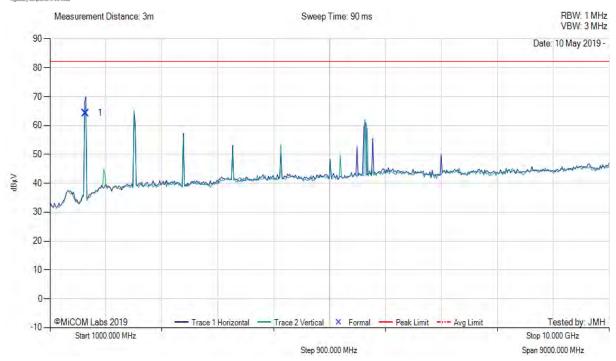
	1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	1574.91	82.33	-1.43	-16.56	64.34	Peak (Scan)	Horizontal	100	0	82.2	*	Pass		

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

back to matrix

Issue Date: 23rd May 2019 Page:

105 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

MiTest

Variant: NB IOT QPSK 15 KHz, Test Freq: 787.50 MHz, Antenna: dipole, Power Setting: 23, Duty Cycle (%): 85

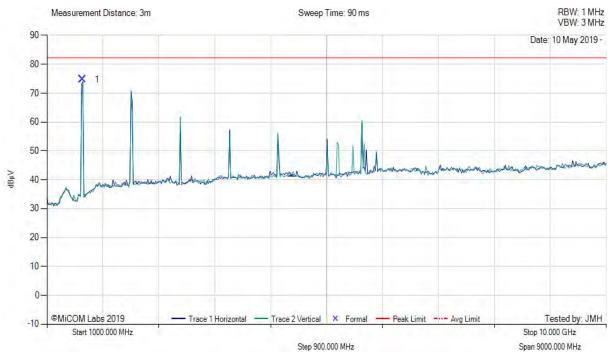
1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1574.91	82.33	-1.43	-16.56	64.34	Peak (Scan)	Horizontal	100	0	82.2	*	Pass	

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

back to matrix

Issue Date: 23rd May 2019

Page: 106 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

MITEST regulatory compliance in the cloud

Variant: NB IOT QPSK 180 KHz, Test Freq: 787.50 MHz, Power Setting: 23, Duty Cycle (%): 85

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1574.89	92.65	-1.43	-16.56	74.66	Peak (Scan)	Horizontal	100	36	82.2	*	Pass	

Test Notes: EUT powered up linked to Base station via antenna. Multicarrier. *1559-1610 MHz is in GPS band with separate limit measured separately.

back to matrix

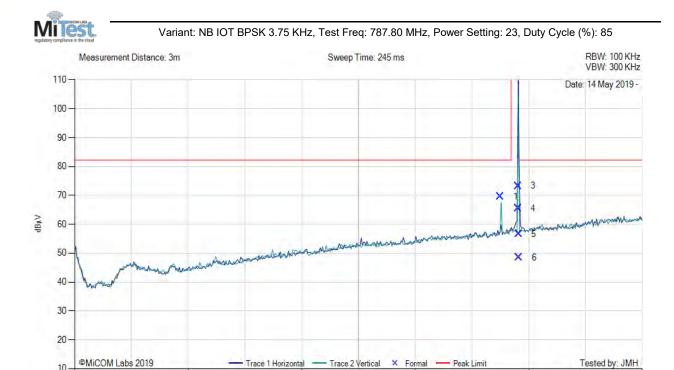
Issue Date: 23rd May 2019

Page:

107 of 120

Serial #:

Puloli Inc Model: RU700A 1.0


Stop 1000.000 MHz

Span 970.000 MHz

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Yagi Antenna 30-1000 MHz

Start 30,000 MHz

	30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	757.82	69.78	6.26	-6.50	69.54	MaxQP	Vertical	100	277	82.2	-12.7	Pass		
2	787.84	114.01	6.33	-6.00	114.34	Fundamental	Horizontal	100	0		1			
3	788.00	72.99	6.33	-6.00	73.32	MaxQP	Horizontal	100	356	82.2	-8.9	Pass		
4	788.22	65.19	6.33	-6.10	65.42	MaxQP	Horizontal	100	37	82.2	-16.8	Pass		
5	788.88	56.35	6.33	-6.10	56.58	MaxQP	Horizontal	100	0	82.2	-25.7	Pass		
6	789.54	48.17	6.33	-6.00	48.50	MaxQP	Horizontal	101	5	82.2	-33.7	Pass		

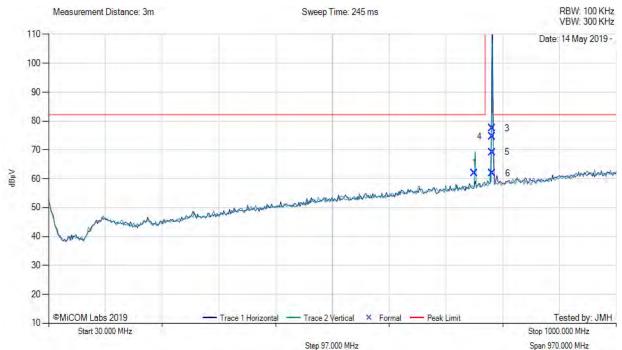
Step 97.000 MHz

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction. 788 MHz measured with 30 KHz RBW

back to matrix

Issue Date: 23rd May 2019

Page: 108 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Variant: NB IOT BPSK 15 KHz, Test Freq: 787.80 MHz, Power Setting: 23, Duty Cycle (%): 85

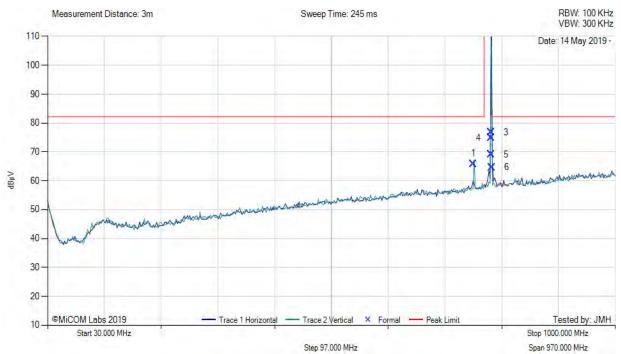
	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	757.78	62.09	6.26	-6.50	61.85	MaxAvg	Horizontal	101	5	82.2	-20.4	Pass			
2	787.84	121.98	6.33	-6.00	122.31	Fundamental	Horizontal	100	0		1				
3	788.00	77.07	6.33	-6.00	77.40	MaxAvg	Horizontal	100	356	82.2	-4.8	Pass			
4	788.10	74.37	6.33	-6.10	74.60	MaxAvg	Horizontal	100	356	82.2	-7.6	Pass			
5	788.24	68.94	6.33	-6.10	69.17	MaxAvg	Horizontal	100	37	82.2	-13.1	Pass			
6	788.42	61.69	6.33	-6.10	61.92	MaxAvg	Horizontal	100	0	82.2	-20.3	Pass			

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction. 788 MHz measured with 30 KHz RBW

back to matrix

Issue Date: 23rd May 2019

Page: 109 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Mitest regulatory compliance in the cloud

Variant: NB IOT QPSK 3.75 KHz, Test Freq: 787.80 MHz, Power Setting: 23, Duty Cycle (%): 85

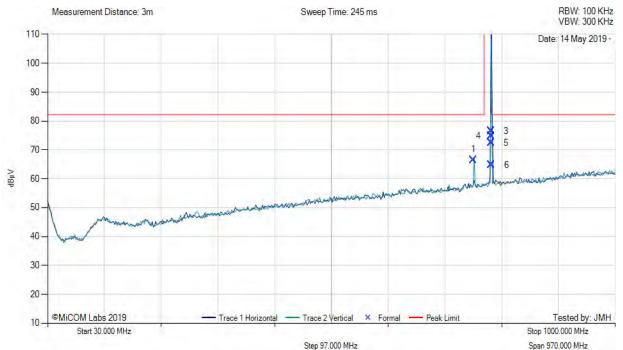
	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	757.85	66.11	6.26	-6.50	65.87	MaxAvg	Vertical	101	341	82.2	-16.4	Pass			
2	787.80	121.98	6.33	-6.00	122.31	Fundamental	Horizontal	100	0		1				
3	788.00	76.47	6.33	-6.00	76.80	MaxAvg	Horizontal	202	4	82.2	-5.4	Pass			
4	788.10	74.67	6.33	-6.10	74.90	MaxAvg	Horizontal	100	356	82.2	-7.3	Pass			
5	788.25	68.89	6.33	-6.10	69.12	MaxAvg	Horizontal	212	0	82.2	-13.1	Pass			
6	788.77	64.46	6.33	-6.10	64.69	MaxAvg	Horizontal	101	357	82.2	-17.5	Pass			

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction. 788 MHz measured with 30 KHz RBW

back to matrix

Issue Date: 23rd May 2019

Page: 110 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Variant: NB IOT QPSK 15 KHz, Test Freq: 787.80 MHz, Power Setting: 23, Duty Cycle (%): 85

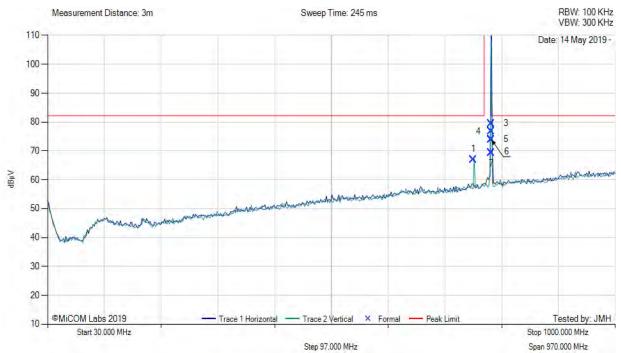
	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	757.75	66.84	6.26	-6.50	66.60	MaxAvg	Vertical	109	231	82.2	-15.6	Pass			
2	787.84	121.92	6.33	-6.00	122.25	Fundamental	Horizontal	100	0		1				
3	788.06	76.27	6.33	-6.10	76.50	MaxAvg	Horizontal	106	357	82.2	-5.7	Pass			
4	788.13	74.67	6.33	-6.10	74.90	MaxAvg	Horizontal	104	18	82.2	-7.3	Pass			
5	788.24	72.27	6.33	-6.10	72.50	MaxAvg	Horizontal	104	10	82.2	-9.7	Pass			
6	788.46	64.47	6.33	-6.10	64.70	MaxAvg	Horizontal	184	2	82.2	-17.5	Pass			

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction. 788 MHz measured with 30 KHz RBW

back to matrix

Issue Date: 23rd May 2019

Page: 111 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Variant: NB IOT QPSK 180 KHz, Test Freq: 787.80 MHz, Power Setting: 23, Duty Cycle (%): 85

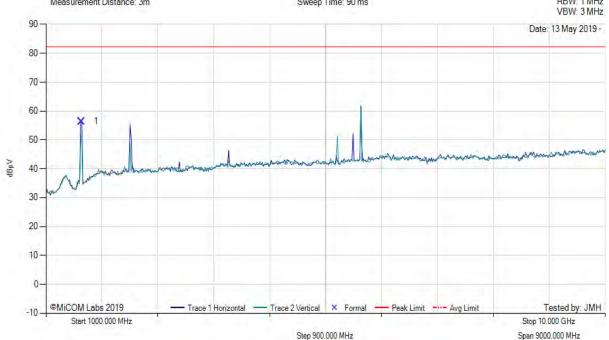
	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	757.77	67.33	6.26	-6.50	67.09	MaxAvg	Vertical	106	338	82.2	-15.1	Pass			
2	787.84	122.14	6.33	-6.00	122.47	Fundamental	Horizontal	100	0		1				
3	788.00	79.17	6.33	-6.00	79.50	MaxAvg	Horizontal	113	3	82.2	-2.7	Pass			
4	788.13	76.57	6.33	-6.10	76.80	MaxAvg	Horizontal	101	2	82.2	-5.4	Pass			
5	788.23	73.74	6.33	-6.10	73.97	MaxAvg	Horizontal	117	350	82.2	-8.3	Pass			
6	788.30	73.73	6.33	-6.10	73.96	MaxAvg	Horizontal	110	0	82.2	-8.3	Pass			
7	788.39	69.13	6.33	-6.10	69.36	MaxAvg	Horizontal	114	10	82.2	-12.9	Pass			

Test Notes: EUT powered by AC/DC PS. Connected via Antenna to Base station outside chamber. 30 dB pad in front of amp to prevent overload. Measurements include 0.7 DC Correction

back to matrix

Issue Date: 23rd May 2019

Page: 112 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

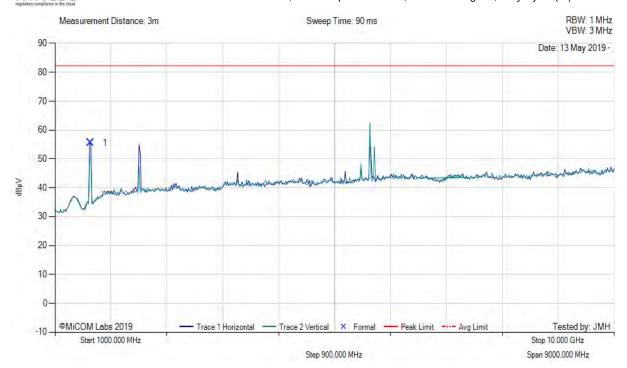
Yagi Antenna 1-10 GHz

						1000	.00 - 10000.00 N	ИНZ					
	Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
Г	1	1574.87	74.42	-1.43	-16.56	56.43	Peak (Scan)	Horizontal	100	0	82.2	*	Pass

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

back to matrix

Issue Date: 23rd May 2019 Page: 113 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

ATTOCH

Variant: NB IOT BPSK 15 KHz, Test Freq: 787.50 MHz, Power Setting: 23, Duty Cycle (%): 85

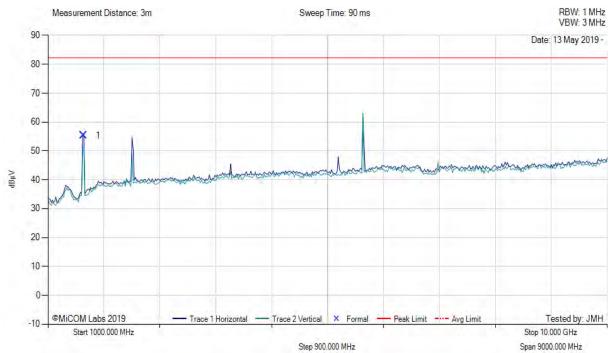
	1000.00 - 10000.00 MHz													
ı	Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
	1	1574.96	73.50	-1.43	-16.56	55.51	Peak (Scan)	Horizontal	100	0	82.2	*	Pass	

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

back to matrix

Issue Date: 23rd May 2019

Page: 114 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Variant: NB IOT QPSK 3.75 KHz, Test Freq: 787.50 MHz, Power Setting: 23, Duty Cycle (%): 85

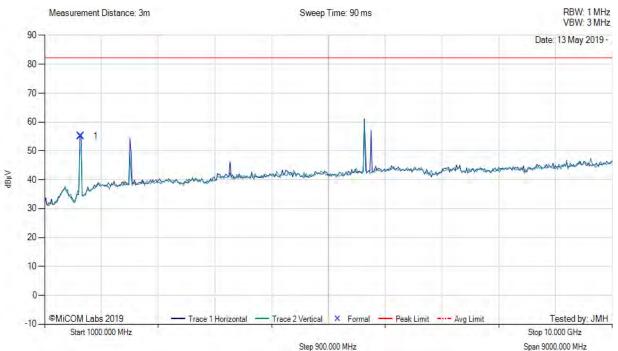
	1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	1574.84	73.34	-1.43	-16.56	55.35	Peak (Scan)	Horizontal	100	0	82.2	*	Pass		

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

back to matrix

Issue Date: 23rd May 2019

Page: 115 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

MITEST.
regulatory compliance in the cloud

Variant: NB IOT QPSK 15 KHz, Test Freq: 787.50 MHz, Power Setting: 23, Duty Cycle (%): 85

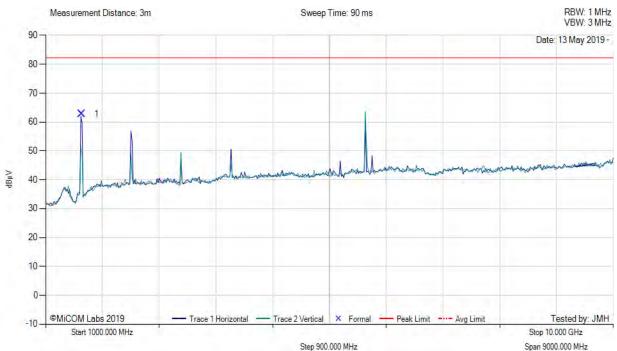
	1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	1575.00	73.14	-1.43	-16.57	55.14	Peak (Scan)	Horizontal	100	0	82.2	*	Pass		

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

back to matrix

Issue Date: 23rd May 2019

Page: 116 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

MITEST regulatory compliance in the cloud

Variant: NB IOT QPSK 180 KHz, Test Freq: 787.50 MHz, Power Setting: 23, Duty Cycle (%): 85

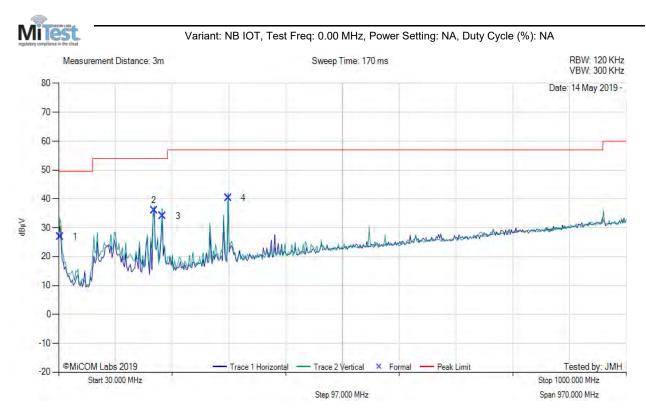
	1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	1574.87	80.66	-1.43	-16.56	62.67	Peak (Scan)	Horizontal	100	0	82.2	*	Pass		

Test Notes: EUT powered up linked to Base station via antenna. *1559-1610 MHz is in GPS band with separate limit measured separately.

back to matrix

Issue Date: 23rd May 2019

Page: 117 of 120



Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

A.2.3. Digital Emissions

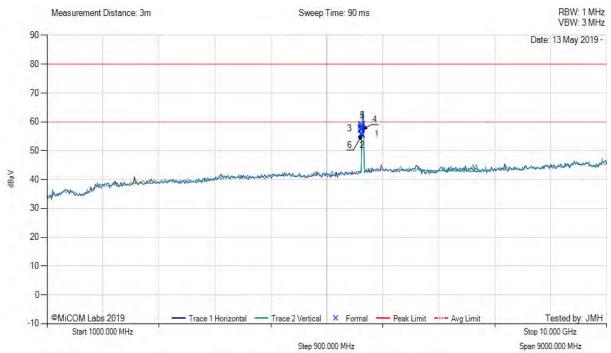
	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	32.55	32.76	3.54	-9.40	26.90	MaxQP	Vertical	98	268	49.5	-22.6	Pass			
2	193.02	48.11	4.43	-16.50	36.04	MaxQP	Vertical	98	356	54.0	-18.0	Pass			
3	207.94	46.81	4.49	-17.20	34.10	MaxQP	Vertical	113	4	54.0	-19.9	Pass			
4	320.02	49.29	4.91	-13.90	40.30	MaxQP	Vertical	99	51	57.0	-16.7	Pass			

Test Notes: EUT powered by AC/DC PS.

back to matrix

Issue Date: 23rd May 2019

Page: 118 of 120


Serial #:

Puloli Inc Model: RU700A 1.0

FCC Part 27 (NB IoT) PULO01-U2 Rev A

Variant: NB IOT, Test Freq: 0.00 MHz, Power Setting: Not Applicable, Duty Cycle (%): 80

	1000.00 - 10000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	6064.07	68.53	-2.84	-10.00	55.69	Max Peak	Vertical	178	32	80.0	-24.3	Pass			
2	6064.07	68.33	-2.84	-10.00	55.49	Max Avg	Vertical	178	32	60.0	-4.5	Pass			
3	6068.87	71.37	-2.85	-9.84	57.68	Max Peak	Horizontal	101	295	80.0	-22.3	Pass			
4	6068.87	69.94	- 2.85	-9.84	57.25	Max Avg	Horizontal	101	295	60.0	-2.8	Pass			
5	6068.92	71.29	-2.85	-9.84	58.60	Max Peak	Vertical	123	194	80.0	-21.4	Pass			
6	6068.92	68.30	-2.85	-9.84	55.61	Max Avg	Vertical	123	194	60.0	-4.4	Pass			

Test Notes: EUT powered up

back to matrix

Issue Date: 23rd May 2019

Page: 119 of 120

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com