

TEST REPORT

Report No.: BCTC2107125725-1E

Applicant: ShenZhen HanHong Digital Technology Co., Ltd

Product Name: Soundbar

Model/Type Ref.: HD-025L

Tested Date: 2021-07-09 to 2021-07-12

Issued Date: 2021-07-12

No.: BCTC/RF-EMC-005 Page 1 of 70 / / Edition:: A

FCC ID:2ASKOHD-025L

Product Name: Soundbar

Trademark: N/A

Model/Type Ref.: HD-025L 90100PI, AF-40

Prepared For: ShenZhen HanHong Digital Technology Co., Ltd

Prepared For. Sherizhen Hannong Digital rechnology Co., Ltd

Building A Room #303-305, Huafeng Internet - Innovation Address: Technology Park, Gonghe Industry Road 107#, Xixiang Street,

Baoan, Shenzhen, China

Manufacturer: ShenZhen HanHong Digital Technology Co., Ltd

Building A Room #303-305, Huafeng Internet - Innovation

Address: Technology Park, Gonghe Industry Road 107#, Xixiang Street,

Baoan, Shenzhen, China

Prepared By: Shenzhen BCTC Testing Co., Ltd.

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st

Address: Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Sample Received Date: 2021-07-09

Sample tested Date: 2021-07-09 to 2021-07-12

Issue Date: 2021-07-12

Report No.: BCTC2107125725-1E

FCC Part15.247

Test Standards: ANSI C63.10-2013

Test Results: PASS

Remark: This is Bluetooth Classic radio test report.

Tested by:

kelsey Ton

Kelsey Tan/ Project Handler

Approved by:

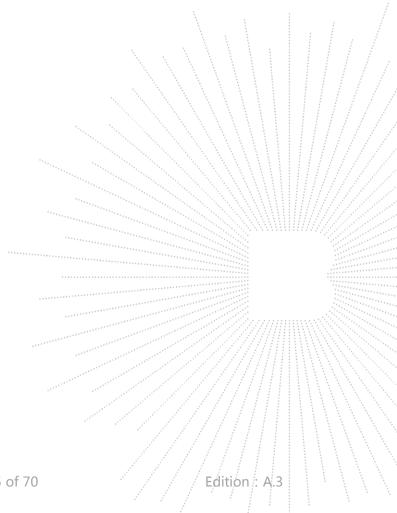
Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No.: BCTC/RF-EMC-005 Page 2 of 70 / / Edition: A.3

TABLE OF CONTENT

Test F	Report Declaration	Page
1.	VERSION	5
2.	TEST SUMMARY	6
3.	MEASUREMENT UNCERTAINTY	7
4.	PRODUCT INFORMATION AND TEST SETUP	
4.1	Product Information	8
4.2	Test Setup Configuration	9
4.3	Support Equipment	9
4.4	Channel List	10
4.5	Test Mode	10
4.6	table of parameters of text software setting	11
5.	TEST FACILITY AND TEST INSTRUMENT USED	12
5.1	Test Facility	12
5.2	Test Instrument Used	
6.	CONDUCTED EMISSIONS	14
6.1	Block Diagram Of Test Setup	
6.2	Limit	14
6.3	Test procedure	14
6.4	EUT operating Conditions	15
6.5	Test Result	16
7.	RADIATED EMISSIONS	
7.1	Block Diagram Of Test Setup	
7.2	Limit	19
7.3	Test procedure	20
7.4	EUT operating Conditions	21
7.5	Test Result	
8.	RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED	
	IDS OF OPERATION	26
8.1	Block Diagram Of Test Setup	26
8.2	Block Diagram Of Test Setup Limit Test procedure EUT operating Conditions	26
8.3	lest procedure	27
8.4	EUT operating Conditions	27
8.5	Test Result CONDUCTED EMISSION	28
9.	CONDUCTED EMISSION	29
9.1	Block Diagram Of Test Setup	29
9.2	Limit	29
9.3	Test procedure	29
9.4	Test Result	30
10.	20 DB BANDWIDTH	
10.1	Block Diagram Of Test Setup	39


10.2	Limit	39
10.3	Test procedure	39
10.4		
11.	MAXIMUM PEAK OUTPUT POWER	45
11.1	Block Diagram Of Test Setup	45
11.2	Limit	45
11.3	Test procedure	45
11.4		
12.	HOPPING CHANNEL SEPARATION	51
12.1	Block Diagram Of Test Setup	51
12.2		
12.3	1000 100	
12.4		
13.	NUMBER OF HOPPING FREQUENCY	57
13.1	Block Diagram Of Test Setup	57
13.2		
13.3	Test procedure	57
13.4	Test Result	58
14.		
14.1	= 10 m = 10 m = 1	
14.2		60
14.3		60
14.4		
15.		1 1
15.1		
15.2	100111000111111111111111111111111111111	66
16.	EUT PHOTOGRAPHS	
17.	EUT TEST SETUP PHOTOGRAPHS	68

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
BCTC2107125725-1E	2021-07-12	Original	Valid

No.: BCTC/RF-EMC-005 Page 5 of 70

2. TEST SUMMARY

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
5	Dwell Time	§15.247(a)(1)(iii)	PASS
6	Spurious RF conducted emissions	§15.247(d)	PASS
7	Band edge	§15.247(d)	PASS
8	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
9	Antenna Requirement	15.203	PASS

No.: BCTC/RF-EMC-005 Page 6 of 70 / Edition A.3

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission(150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59℃

No.: BCTC/RF-EMC-005 Page 7 of 70 / Edition: A.3

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model/Type Ref.: HD-025L

90100PI, AF-40

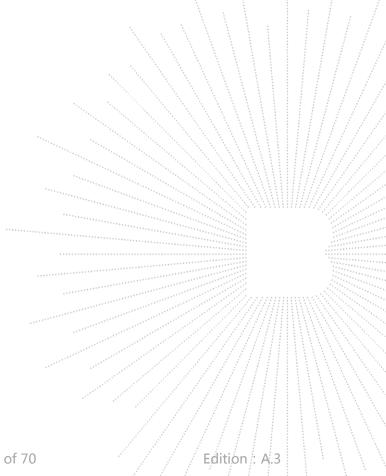
Model differences: All the model are the same circuit and RF module, except model

names.

Operation Frequency: Bluetooth: 2402-2480MHz

Type of Modulation: Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

Number Of Channel 79CH


Antenna installation: Bluetooth: PCB antenna

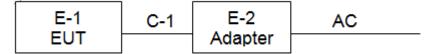
Antenna Gain: Bluetooth: 3.38dBi

Ratings: DC 19V 1.5A

Adapter information: Model:LY030SPS-190150V

Input:AC100-240V 50-60Hz 0.8A Output:DC 19V 1.5A 28.5W

No.: BCTC/RF-EMC-005


Page 8 of 70

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission:

E-1	C-1	E-2	AC
EUT		Adapter	

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Soundbar	N/A	HD-025L	N/A	EUT
E-2	Adapter	N/A	LY030SPS -190150V	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.3M	DC cable unshielded

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

No.: BCTC/RF-EMC-005 Page 9 of 70 / / Edition: A.3

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	/

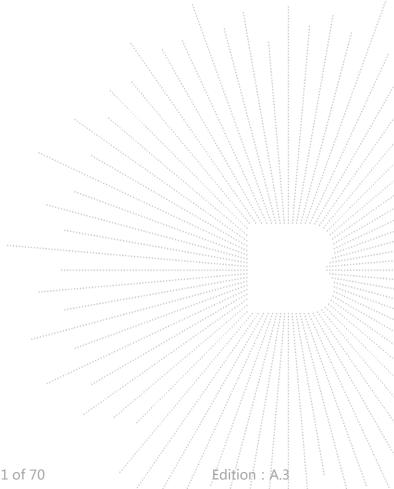
4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(Pi/4DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz		
4	Transmitting(Conducted emission and Radiated emission)					

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) Fully-charged battery is used during the test


No.: BCTC/RF-EMC-005 Page 10 of 70 / / Édition: A.3

4.6 table of parameters of text software setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	SecureCRT		
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters	DEF	DEF	DEF

No.: BCTC/RF-EMC-005 Page 11 of 70

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

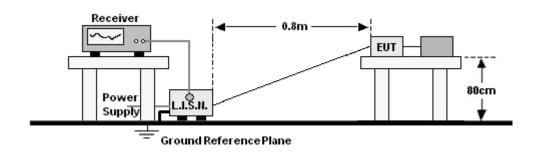
IC Registered No.: 23583

5.2 Test Instrument Used

Conducted emissions Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022		
LISN	R&S	ENV216	101375	May 28, 2021	May 27, 2022		
ISN	HPX	ISN T800	S1509001	May 28, 2021	May 27, 2022		
Software	Frad	EZ-EMC	EMC-CON 3A1	1	\ \\		

RF conducted test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Power Metter	Keysight	E4419B	1	May 28, 2021	May 27, 2022
Power Sensor (AV)	Keysight	E9 300A	1	May 28, 2021	May 27, 2022
Signal Analyzer 20kHz-26.5GHz	KEYSIGHT	N9020A	MY4910006 0	May 28, 2021	May 27, 2022
Spectrum Analyzer 9kHz-40GHz	R&S	FSP40	100363	May 28, 2021	May 27, 2022

No.: BCTC/RF-EMC-005 Page 12 of 70 Édition: A.3


Report No.: Be16210/123/23-1						
Radiated emissions Test (966 chamber)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023	
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022	
Receiver	R&S	ESRP	101154	May 28, 2021	May 27, 2022	
Amplifier	Schwarzbeck	BBV9718	9718-309	May 28, 2021	May 27, 2022	
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 28, 2021	May 27, 2022	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	VULB9163- 942	Jun. 01, 2021	May 31, 2022	
Horn Antenna	SCHWARZBE CK	BBHA9120 D	1201	Jun. 02, 2021	Jun. 01, 2022	
Horn Antenna (18GHz-40 GHz)	SCHWARZBE CK	BBHA9170	822	May 28, 2021	May 27, 2022	
Amplifier (18GHz-40 GHz)	MITEQ	TTA1840-3 5-HG	2034381	May 28, 2021	May 27, 2022	
Loop Antenna (9KHz-30M Hz)	SCHWARZBE CK	FMZB1519 B	014	Jun. 02, 2021	Jun. 01, 2022	
RF cables1 (9kHz-30MH z)	Huber+Suhnar	9kHz-30M Hz	B1702988- 0008	May 28, 2021	May 27, 2022	
RF cables2 (30MHz-1G Hz)	Huber+Suhnar	30MHz-1G Hz	1486150	May 28, 2021	May 27, 2022	
RF cables3 (1GHz-40G Hz)	Huber+Suhnar	1GHz-40G Hz	1607106	May 28, 2021	May 27, 2022	
Power Metter	Keysight	E4419B		May 28, 2021	May 27, 2022	
Power Sensor (AV)	Keysight	E9 300A	\	May 28, 2021	May 27, 2022	
Signal Analyzer 20kHz-26.5 GHz	KEYSIGHT	N9020A	MY491000 60	May 28, 2021	May 27, 2022	
Spectrum Analyzer 9kHz-40G Hz	Agilent	FSP40	100363	May 28, 2021	May 27, 2022	
Software	Frad	EZ-EMC	FA-03A2 RE			

No.: BCTC/RF-EMC-005 Page 13 of 70 / Edition: A.

6. CONDUCTED EMISSIONS

6.1 Block Diagram Of Test Setup

6.2 Limit

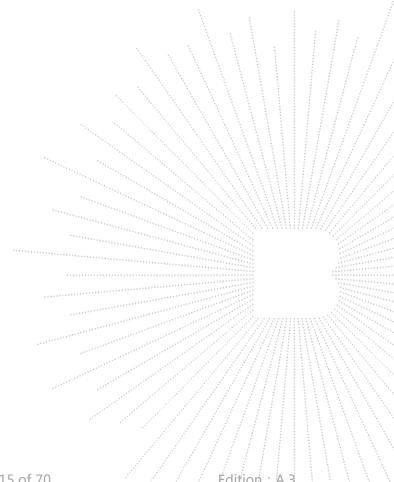
FREQUENCY (MHz)	Limit (dBuV)		
FREQUENCT (MHZ)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

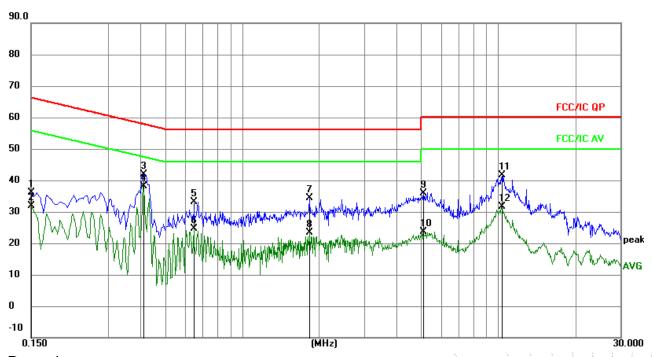
Receiver Parameters	Setting
Attenuation	10 dB\\\\\
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


- a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

No.: BCTC/RF-EMC-005 Page 14 of 70 / / Édition: A.3

6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

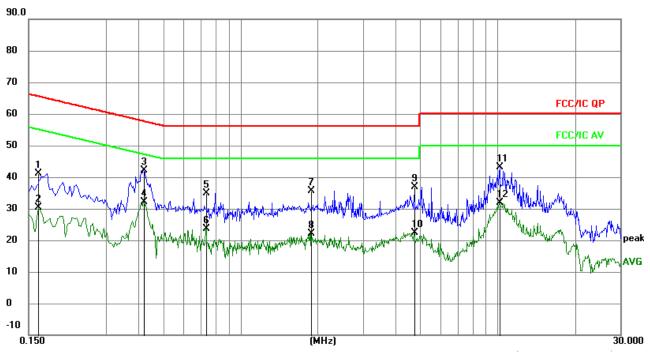


No.: BCTC/RF-EMC-005 Page 15 of 70

Test Result 6.5

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Remark:


- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

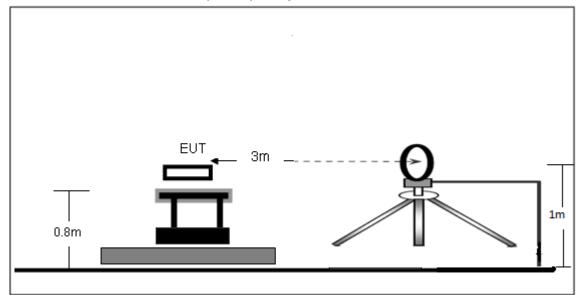
						5. 5. 5.		1 1 1 1
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBu∀	dBu∨	dB	Detector
1		0.1500	26.56	9.52	36.08	66.00	-29.92	QP
2		0.1500	22.46	9.52	31.98	56.00	-24.02	AVG
3		0.4105	32.49	9.51	42.00	57.64	-15.64	QP
4	*	0.4105	28.62	9.51	38.13	47.64	-9.51	AVG
5		0.6474	23.18	9.83	33.01	56.00	-22.99	QP
6		0.6474	14.76	9.83	24.59	46.00	-21.41	AVG
7		1.8288	24.73	9.59	34.32	56.00	-21.68	QP
8		1.8288	13.71	9.59	23.30	46.00	-22.70	AVG
9		5.1118	26.10	9.80	35.90	60.00	-24.10	QP
10		5.1118	13.76	9.80	23.56	50.00	-26.44	AVG
11		10.2876	31.97	9.69	41.66	60.00	-18.34	QP
12		10.2876	21.99	9.69	31.68	50.00	-18.32	AVG

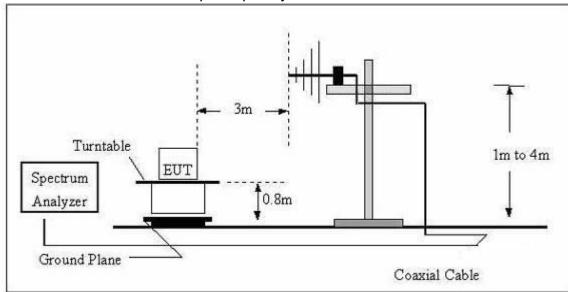
Edition: A.3

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

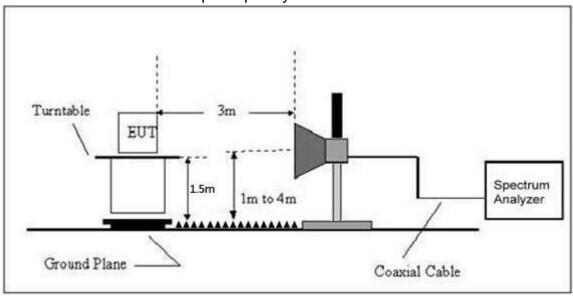

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBu∀	dBu∀	dB	Detector
1		0.1635	31.67	9.50	41.17	65.28	-24.11	QP
2		0.1635	20.80	9.50	30.30	55.28	-24.98	AVG
3		0.4200	32.67	9.52	42.19	57.45	-15.26	QP
4	*	0.4200	22.72	9.52	32.24	47.45	-15.21	AVG
5		0.7350	25.27	9.64	34.91	56.00	-21.09	QP
6		0.7350	14.11	9.64	23.75	46.00	-22.25	AVG
7		1.8825	26.08	9.59	35.67	56.00	-20.33	QP
8		1.8825	12.42	9.59	22.01	46.00	-23.99	AVG
9		4.7310	27.19	9.78	36.97	56.00	-19.03	QP
10		4.7310	12.70	9.78	22.48	46.00	-23.52	AVG
11		10.1670	33.44	9.69	43.13	60.00	-16.87	QP
12		10.1670	22.13	9.69	31.82	50.00	-18.18	AVG


7. RADIATED EMISSIONS

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



No.: BCTC/RF-EMC-005 Page 18 of 70

Edition: A.3

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENC	Limit (dBuV/m) (at 3M)		
Y (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

No.: BCTC/RF-EMC-005 Page 19 of 70 / / Édition: A.3

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak,
	RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

 Note:

No.: BCTC/RF-EMC-005 Page 20 of 70 / / Edition: A.3

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

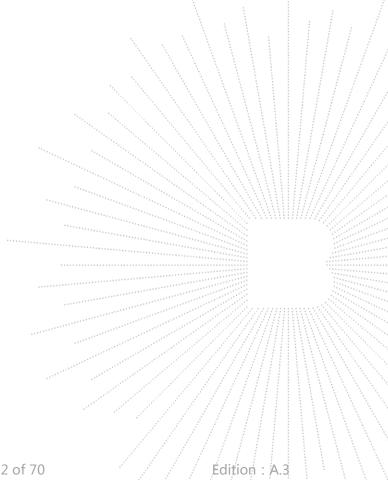
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-005 Page 21 of 70 Édition: A.3

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidtity:	24%
Pressure:	101 kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 4	Polarization:	


Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

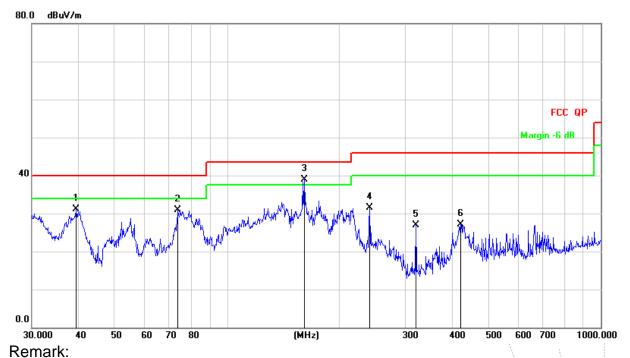
Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

No.: BCTC/RF-EMC-005 Page 22 of 70

Between 30MHz - 1GHz

Temperature:	26℃	Relative Humidtity:	54%
Pressure:	101 kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 4	Polarization :	Horizontal



Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector
1	1	106.0126	50.18	-16.67	33.51	43.50	-9.99	QP
2	1	159.2251	55.52	-18.91	36.61	43.50	-6.89	QP
3	* 2	211.5265	53.51	-16.03	37.48	43.50	-6.02	QP
4	2	240.8304	52.14	-15.36	36.78	46.00	-9.22	QP
5		319.9370	47.24	-13.05	34.19	46.00	-11.81	QP
6	4	119.1081	42.52	-10.66	31.86	46.00	-14.14	QP

Temperature:	26℃	Relative Humidtity:	54%
Pressure:	101 kpa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 4	Polarization :	Vertical

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector
1		39.4371	46.55	-15.52	31.03	40.00	-8.97	QP
2		73.8756	49.91	-19.05	30.86	40.00	-9.14	QP
3	*	160.9089	57.65	-18.80	38.85	43.50	-4.65	QP
4	- :	240.8304	46.94	-15.36	31.58	46.00	-14.42	QP
5	,	319.9370	40.04	-13.05	26.99	46.00	-19.01	QP
6	4	122.0577	37.73	-10.60	27.13	46.00	-18.87	QP

Between 1GHz - 25GHz

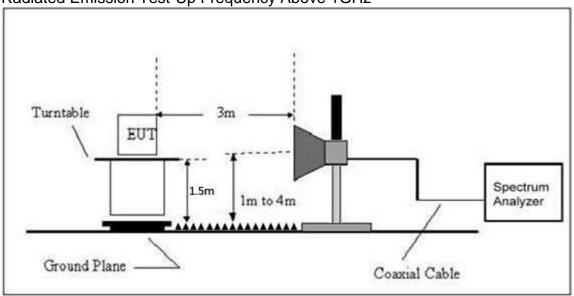
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector	
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре	
	GFSK Low channel							
V	4804.00	52.20	-0.43	51.77	74.00	-22.23	PK	
V	4804.00	42.00	-0.43	41.57	54.00	-12.43	AV	
V	7206.00	43.00	8.31	51.31	74.00	-22.69	PK	
V	7206.00	32.91	8.31	41.22	54.00	-12.78	AV	
Н	4804.00	48.96	-0.43	48.53	74.00	-25.47	PK	
Н	4804.00	38.86	-0.43	38.43	54.00	-15.57	AV	
Н	7206.00	40.23	8.31	48.54	74.00	-25.46	PK	
Н	7206.00	32.12	8.31	40.43	54.00	-13.57	AV	
		GF:	SK Middle	channel				
V	4880.00	48.70	-0.38	48.32	74.00	-25.68	PK	
V	4880.00	40.12	-0.38	39.74	54.00	-14.26	AV	
V	7320.00	37.98	8.83	46.81	74.00	-27.19	PK	
V	7320.00	29.05	8.83	37.88	54.00	-16.12	AV	
Н	4880.00	46.87	-0.38	46.49	74.00	-27.51	PK	
Н	4880.00	37.40	-0.38	37.02	54.00	,-16.98	ĄV	
Н	7320.00	36.13	8.83	44.96	74.00	-29.04	PK	
Н	7320.00	29.04	8.83	37.87	,54.00	-16.13	AV	
			SK High c	hannel	A A			
V	4960.00	50.12	-0.32	49.80	74.00	-24.20	PK	
V	4960.00	39.52	-0.32	39.20	54.00	-14.80	AV	
V	7440.00	43.19	9.35	52.54	74.00	-21.46	PK	
V	7440.00	33.25	9.35	42.60	54.00	-11.40	AV	
Н	4960.00	48.73	-0.32	48.41	74.00	-25.59	PK //	
Н	4960.00	38.86	-0.32	38.54	54.00	-15.46	AV	
Н	7440.00	40.90	9.35	50.25	74.00	-23.75	PK	
Н	7440.00	32.71	9.35	42.06	54.00	-11.94	AV	

Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Over= Emission Level - Limit

- 2.If peak below the average limit, the average emission was no test.
- 3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
- 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.


No.: BCTC/RF-EMC-005 Page 25 of 70 / / Édition: A.3

8. RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED BANDS OF OPERATION

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENC	Limit (dBuV/m) (at 3M)		
Y (MHz)	PEAK	AVERAGE	
Above 1000	74	54////	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.

No.: BCTC/RF-EMC-005 Page 26 of 70 / / Édiţion : A.3

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1/T Hz for Average

Above 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-005 Page 27 of 70 / / Édition: A.3

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)		nits IV/m)	Result		
	(,	(111112)	(dBuV/m)	(dB)	PK	PK	AV			
			Low	Channel 2	402MHz					
	Н	2390.00	57.50	-6.70	50.80	74.00	54.00	PASS		
	Н	2400.00	49.52	-6.71	42.81	74.00	54.00	PASS		
	V	2390.00	57.71	-6.70	51.01	74.00	54.00	PASS		
GFSK	V	2400.00	50.44	-6.71	43.73	74.00	54.00	PASS		
Gran			High	Channel 2	2480MHz					
	Ι	2483.50	56.73	-6.79	49.94	74.00	54.00	PASS		
	Ι	2485.00	49.36	-6.81	42.55	74.00	54.00	PASS		
	V	2483.50	56.21	-6.79	49.42	74.00	54.00	PASS		
	V	2485.00	48.85	-6.81	42.04	74.00	54.00	PASS		
		Low Channel 2402MHz								
	Н	2390.00	56.84	-6.70	50.14	74.00	54.00	PASS		
	Ι	2400.00	47.95	-6.71	41.24	74.00	54.00	PASS		
	V	2390.00	56.08	-6.70	49.38	74.00	54.00	PASS		
Pi/4DQPSK	V	2400.00	47.12	-6.71	40.41	74.00	54.00	PASS		
FI/4DQF3N	High Channel 2480MHz									
	Ι	2483.50	55.94	-6.79	49.15	74.00	54.00	PASS		
	Н	2485.00	49.17	-6.81	42.36	74.00	54.00	PASS		
	V	2483.50	55.16	-6.79	48.37	74.00	54.00	PASS		
	V	2485.00	46.84	-6.81	40.03	74.00	54.00	PASS		
			Low	Channel 2	2402MHz					
	Η	2390.00	56.35	-6.70	49.65	74.00	54.00	PASS		
	Τ	2400.00	48.07	-6.71	41.36	74.00	54.00	PASS		
	V	2390.00	56.07	-6.70	49.37	74.00	54.00	PASS		
8DPSK	V	2400.00	47.71	-6.71	41.00	74.00	54.00	PASS		
ODI: SK			High	Channel 2	2480MHz					
	Н	2483.50	55.86	-6.79	49.07	74.00	54.00	PASS		
	Η	2485.00	48.99	-6.81	42.18	74.00	54.00	PASS		
	V	2483.50	54.39	-6.79	47.60	74.00	54.00	PASS		
	V	2485.00	46.66	-6.81	39.85	74.00	54.00	PASS		

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Over= Emission Level - Limit

- 2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
- 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005 Page 28 of 70 / / Edition: A.3

9. CONDUCTED EMISSION

9.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

9.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

Below 1GHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

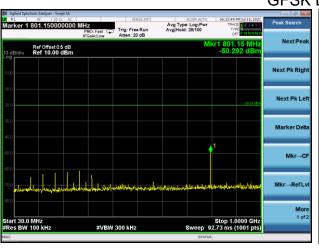
Detector function = peak, Trace = max hold

Above 1GHz:

RBW = 1MHz, VBW = 3MHz, Sweep = auto

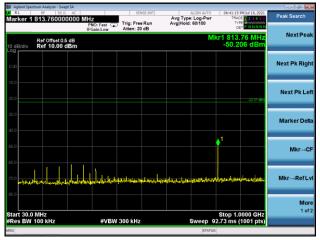
Detector function = peak, Trace = max hold

No.: BCTC/RF-EMC-005 Page 29 of 70

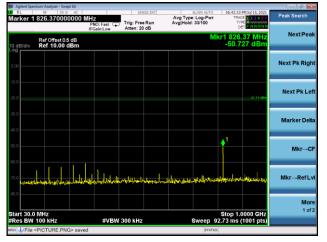


9.4 Test Result

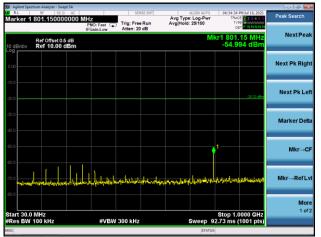
Report No.: BCTC2107125725-1E

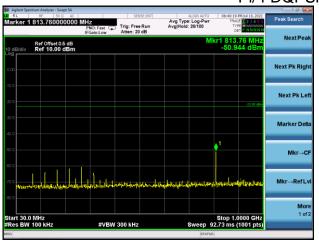

Temperature:	26℃	Relative Humidity:	54%
Test Voltage :	DC 19V	Remark:	N/A

30MHz – 25GHz GFSK Low Channel

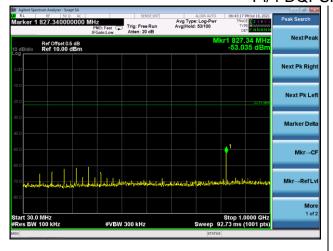


GFSK Middle Channel

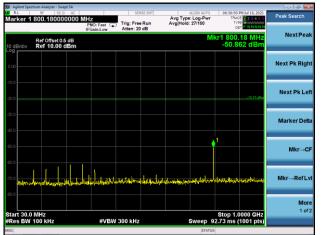

GFSK High Channel

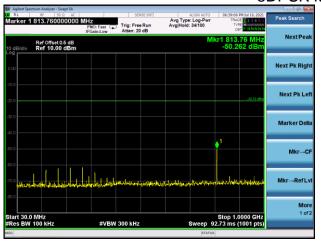


Pi/4 DQPSK Low Channel

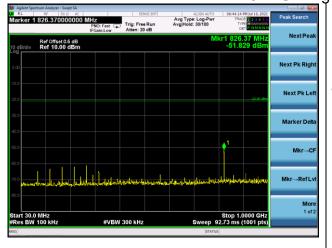


Pi/4 DQPSK Middle Channel

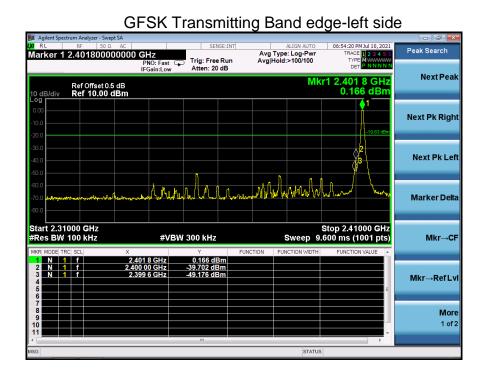

Pi/4 DQPSK High Channel

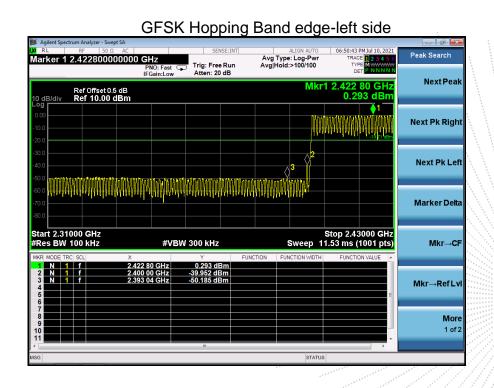


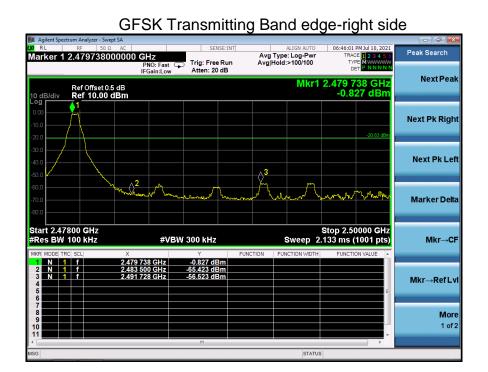
8DPSK Low Channel

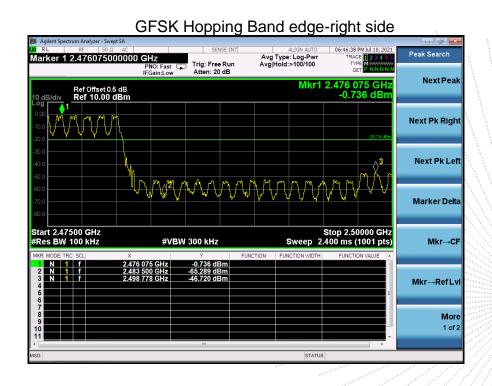


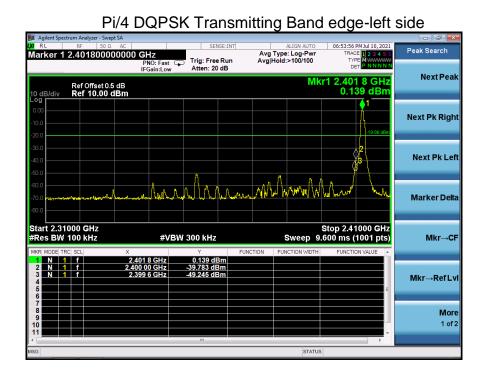
8DPSK Middle Channel

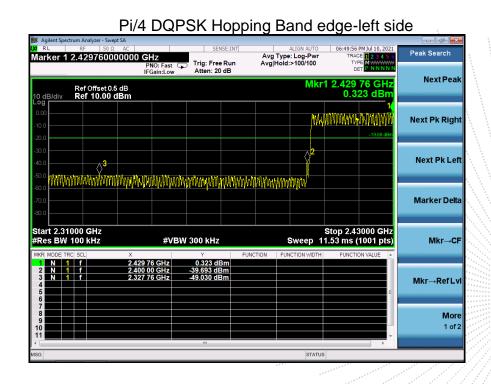


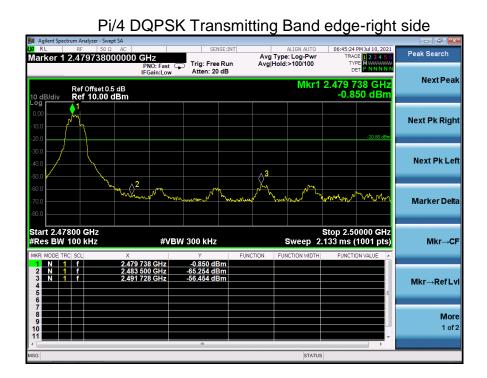

8DPSK High Channel

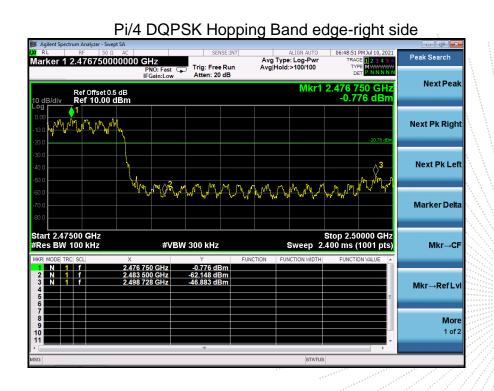


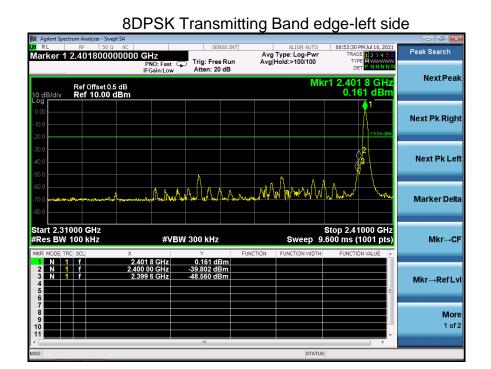


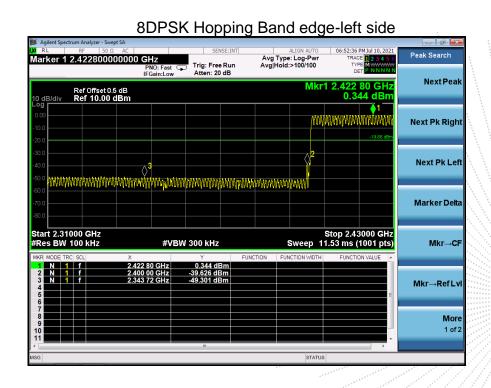

Edition: A.3

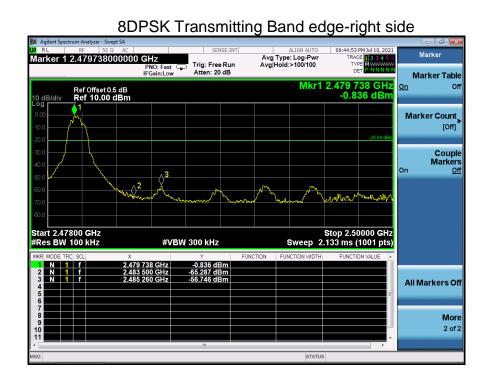


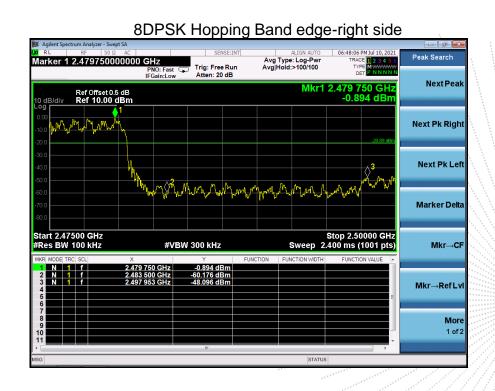



Edition: A.3






Edition: A.3



Edition: A.3

10. 20 DB BANDWIDTH

10.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

10.2 Limit

N/A

10.3 Test procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

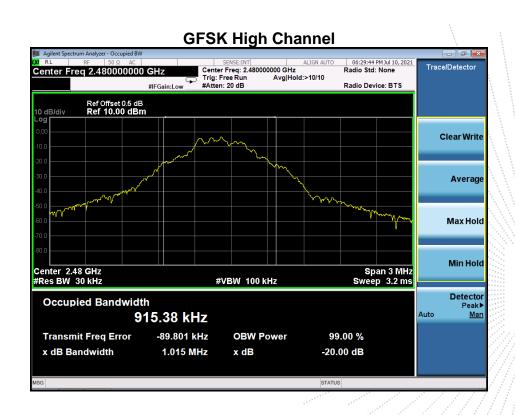
No.: BCTC/RF-EMC-005 Page 39 of 70 / / Edition: A.



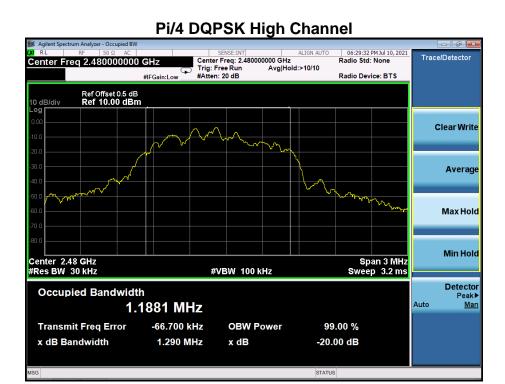
10.4 Test Result

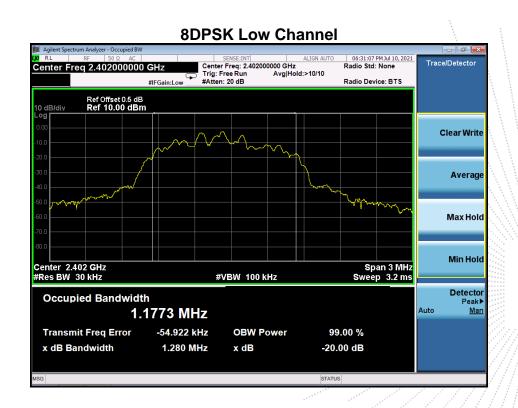
Temperature :	126°C	Relative Humidity:	54%
Test Voltage :	DC 19V	Remark	N/A

Modulation	Test Channel	Bandwidth(MHz)
GFSK	Low	1.014
GFSK	Middle	1.015
GFSK	High	1.015
Pi/4 DQPSK	Low	1.292
Pi/4 DQPSK	Middle	1.282
Pi/4 DQPSK	High	1.290
8DPSK	Low	1.280
8DPSK	Middle	1.279
8DPSK	High	1.281

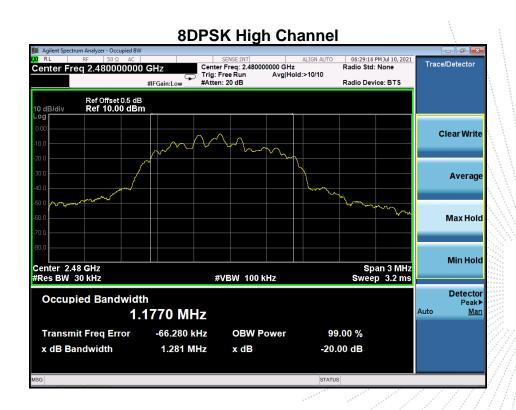

Test plots GFSK Low Channel

GFSK Middle Channel




Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel SENSE:INT | ALIGN AUTO Center Freq: 2.441000000 GHz Trig: Free Run | Avg|Hold:>10/10 #Atten: 20 dB 06:30:11 PMJul 10, 2021 Radio Std: None Trace/Detector #IFGain:Low Radio Device: BTS **Clear Write** Average Max Hold Min Hold Span 3 MHz Sweep 3.2 ms Center 2.441 GHz #Res BW 30 kHz **#VBW 100 kHz Occupied Bandwidth** Peak▶ Auto Man 1.1863 MHz **OBW Power** -61.090 kHz 99.00 % Transmit Freq Error x dB Bandwidth 1.282 MHz x dB -20.00 dB



8DPSK Middle Channel

11. MAXIMUM PEAK OUTPUT POWER

11.1 Block Diagram Of Test Setup

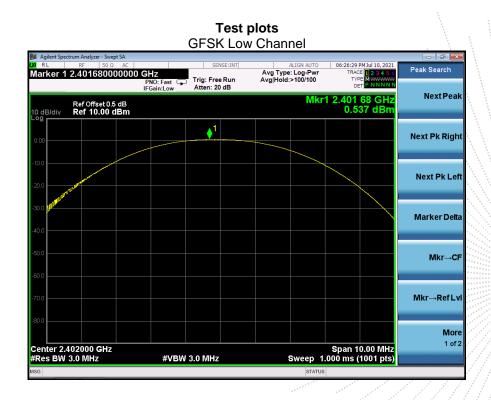
EUT	SPECTRUM
	ANALYZER

11.2 Limit

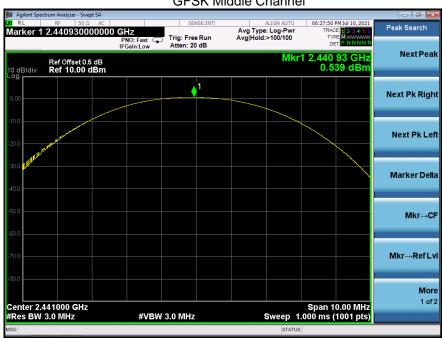
FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS

11.3 Test procedure

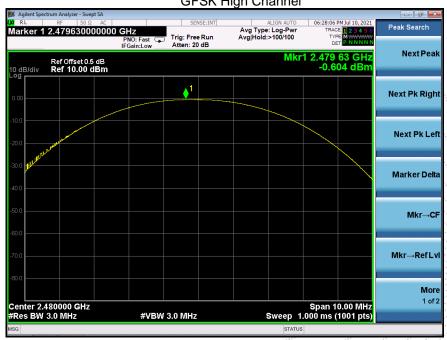
- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.


No.: BCTC/RF-EMC-005 Page 45 of 70 Edition: A.

11.4 Test Result


Temperature :	26°C	Relative Humidity:	54%
Test Voltage :	DC 19V	Remark:	N/A

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	0.537	21
GFSK	Middle	0.539	21
GFSK	High	-0.604	21
Pi/4 DQPSK	Low	0.507	21
Pi/4 DQPSK	Middle	0.542	21
Pi/4 DQPSK	High	-0.596	21
8DPSK	Low	0.441	21
8DPSK	Middle	0.522	21
8DPSK	High	-0.602	21

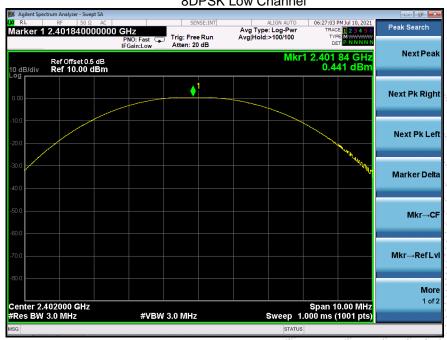


GFSK Middle Channel

GFSK High Channel

Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel



Edition: A.3

8DPSK Low Channel

8DPSK Middle Channel

8DPSK High Channel

12. HOPPING CHANNEL SEPARATION

12.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port

to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

No.: BCTC/RF-EMC-005 Page 51 of 70 / Edition: A.3