Bundesnetzagentur TEST R BNetzA-CAB-02/21-102 Test report no.: *	Deutsche Akkreditierungsstelle
Testing laboratory	Applicant
CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u> Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-04 & 05	Broadband TelCom Power Inc. 1719 S. Grand Ave. CA 92705 Santa Ana / USA Phone: -/- Contact: Frank Meza e-mail: <u>fmeza@btcpower.com</u> Phone: +1 (714) 259-4888 Manufacturer Leipzig Electronic Systems GmbH Hertzstrasse 2 04329 Leipzig / GERMANY
Test star	ndard/s
FCC - Title 47 CFRFCC - Title 47 of the Code of IPart 15frequency devices	Federal Regulations; Chapter I; Part 15 - Radio
RSS - 247 Issue 2 Digital Transmission Systems Licence - Exempt Local Area I	(DTSs), Frequency Hopping Systems (FHSs) and Network (LE-LAN) Devices
	elecommunications Radio Standards Specification Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Kind of test item:	Charging box for electric vehicle	
Model name:	eBox Professional	
FCC ID:	2ASKCACCU205	
IC:	твр	
Frequency:	DTS band 2400 MHz to 2483.5 MHz	16
Technology tested:	WLAN	l E
Antenna:	Integrated antenna	
Power supply:	115 V AC by internal power supply	
Temperature range:	-30°C to +85°C	

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino Lab Manager Radio Communications & EMC

Test performed:

René Oelmann Lab Manager Radio Communications & EMC

1 Table of contents

1	Table of	of contents	2
2	Genera	al information	3
	2.2	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test st	andard/s and references	4
4	Test er	nvironment	5
5	Test ite	em	5
		General description	
6	-	ption of the test setup	
	6.2	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz	8
	6.4	AC conducted Conducted measurements with peak power meter & spectrum analyzer	10
7	Seque	nce of testing	12
	7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	13 14
8		rement uncertainty	
9		ary of measurement results	
3 10		itional comments	
11		itional EUT parameter	
12		surement results	
	12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11	Antenna gain Identify worst case data rate Maximum output power Duty cycle Peak power spectral density 6 dB DTS bandwidth Occupied bandwidth – 99% emission bandwidth Occupied bandwidth – 20 dB bandwidth Band edge compliance conducted Spurious emissions conducted Spurious emissions radiated below 30 MHz	
	12.12 12.13 12.14	Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz Spurious emissions conducted below 30 MHz (AC conducted)	82 91
13	Obse	ervations	
Anr	nex A	Glossary	94
Anr	nex B	Document history	
Anr	nex C	Accreditation Certificate – D-PL-12076-01-04	
Anr	nex D	Accreditation Certificate – D-PL-12076-01-05	96

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2018-06-25
Date of receipt of test item:	2018-06-26
Start of test:	2018-06-26
End of test:	2019-02-29
Person(s) present during the test:	Mr. Christian Langenbrinck

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
DTS: KDB 558074 D01	v05r2	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 American national standard for methods of measurement of radio-

ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic
		equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 **Test environment**

Temperature : T _{nom} T _{max} T _{min}			+22 °C during room temperature tests No test under extreme temperature conditions required. No test under extreme temperature conditions required.
Relative humidity content	:		42 %
Barometric pressure :			1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	115 V AC by internal power supplyNo test under extreme voltage conditions required.No test under extreme voltage conditions required.

5 **Test item**

General description 5.1

Kind of test item	:	Charging box for electric vehicle
Type identification	:	eBox Professional
HMN	:	TBD
PMN	:	ТВО
HVIN	:	TBD
FVIN	:	TBD
S/N serial number	:	Radiated unit: Not available Conducted unit: Not available
HW hardware status	:	-/-
SW software status	:	App 1.x
FW firmware status	:	Router Core 3.x
Frequency band	:	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission Use of frequency spectrum	:	DSSS, OFDM
Type of modulation	:	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels	:	11 channels with 20 MHz bandwidth
Antenna	:	Integrated antenna
Power supply	:	115 V AC by internal power supply
Temperature range	:	-30°C to +85C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-6031/18-01-01_AnnexA 1-6031/18-01-01_AnnexB 1-6031/18-01-01_AnnexD

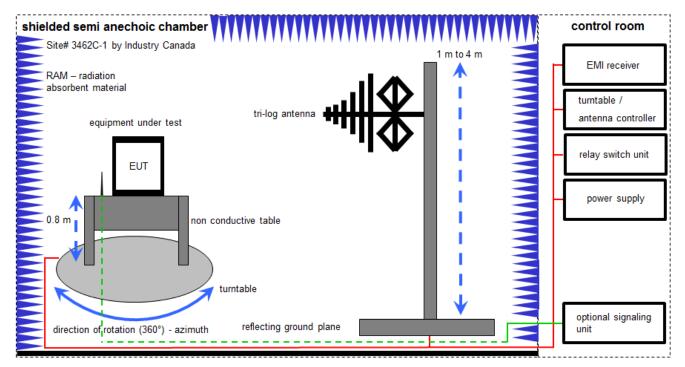
6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

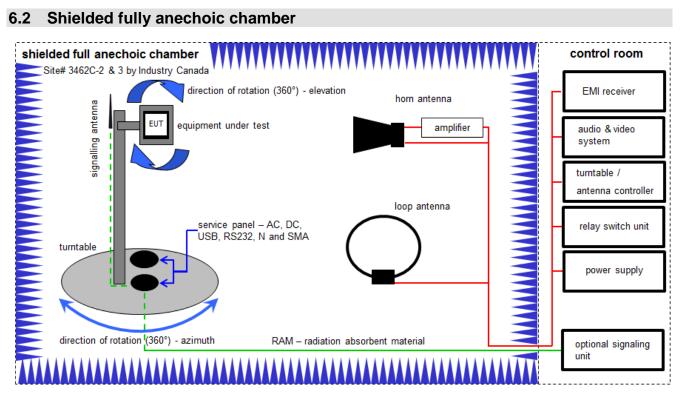
6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC I advanced

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.30.0


FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

<u>Example calculation:</u> FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	A	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	15.12.2017	14.12.2018
4	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
5	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
6	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
7	A	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
8	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
9	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020

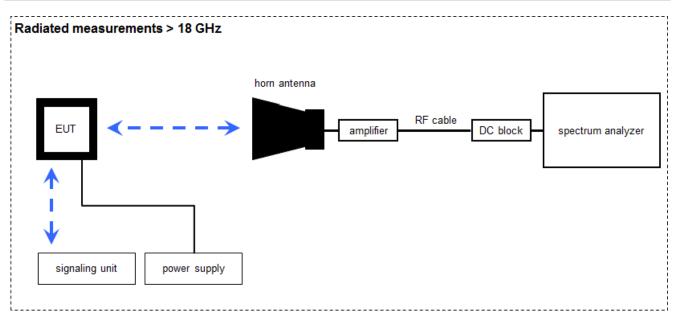
CTC || advanced

member of RWTÜV group

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

 \overline{FS} [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

Equipment table:

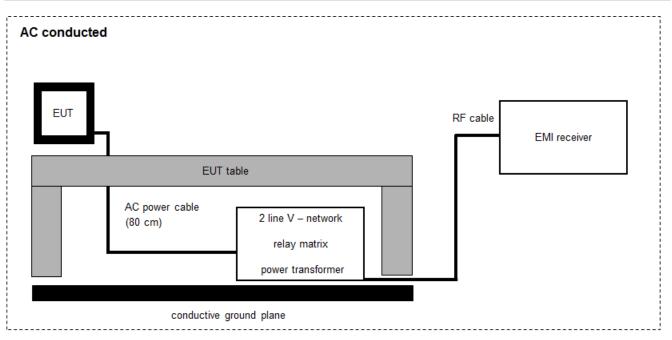
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	07.07.2017	06.07.2019
2	Α, Β	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKi!	07.07.2017	06.07.2019
4	A, B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	А, В	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
6	А	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
7	А, В	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	20.12.2017	19.12.2018
8	А, В	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
9	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
10	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
11	А, В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
12	А	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
13	А, В	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
14	А, В	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
15	Α, Β	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

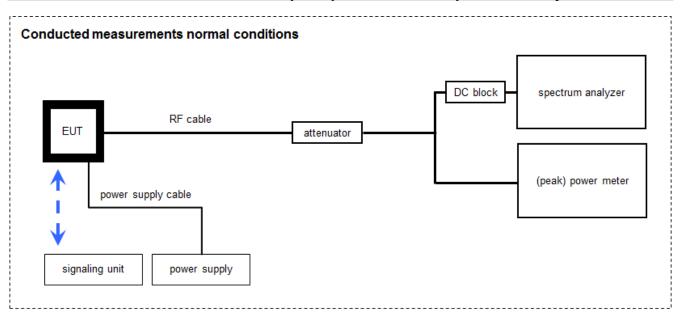
Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	A	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	-/-	300000486	vIKI!	13.12.2017	12.12.2019
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	16.01.2018	15.01.2019
4	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2018	16.12.2019
5	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
6	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
7	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

6.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)


<u>Example calculation</u>: FS [dB μ V/m] = 37.62 [dB μ V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB μ V/m] (244.06 μ V/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	viKi!	13.12.2017	12.12.2019
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	18.12.2017	17.12.2018
5	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	12.12.2018	11.12.2019

CTC I advanced

6.5 Conducted measurements with peak power meter & spectrum analyzer

WLAN tester version: 1.1.13; LabView2015

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Гуре Manufacturer Serial No. INV. No		INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	16.01.2018	15.01.2019
2	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2018	16.12.2019
3	А, В	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000108	ev	11.05.2018	10.05.2020
4	Α, Β	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
5	А, В	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	-/-	300004590	ne	-/-	-/-
6	В	Power Sensor	NRP-Z81	R&S	100010	300003780	vlKI!	26.01.2017	25.01.2019
7	В	Power Sensor	NRP-Z81	R&S	100010	300003780	vlKI!	11.12.2018	10.12.2019
8	А, В	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
9	А, В	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-

CTC I advanced

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty									
Test case	Uncertainty								
Antenna gain	± 3	dB							
Power spectral density	± 1.1	l5 dB							
DTS bandwidth	± 100 kHz (depend	s on the used RBW)							
Occupied bandwidth	± 100 kHz (depend	s on the used RBW)							
Maximum output power conducted	± 1.15 dB								
Detailed spurious emissions @ the band edge - conducted	± 1.15 dB								
Band edge compliance radiated	± 3 dB								
	> 3.6 GHz	± 1.15 dB							
Spurious emissions conducted	> 7 GHz	± 1.15 dB							
	> 18 GHz	± 1.89 dB							
	≥ 40 GHz	± 3.12 dB							
Spurious emissions radiated below 30 MHz	± 3	dB							
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB								
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB								
Spurious emissions radiated above 12.75 GHz	± 4.	5 dB							
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.	6 dB							

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2019-04-26	-/-

Test specification clause	Test case	Guideline Conditions Source		Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (f)(ii)	Antenna gain	-/-	Nominal	Nominal	DSSS		-/	/_		-/-
§15.35	Duty cycle	-/-	Nominal	Nominal	DSSS OFDM		-/	/_		-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 10.2	Nominal	Nominal	DSSS OFDM	X				-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	DSSS OFDM	X				-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	DSSS OFDM	X				-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	KDB 558074 DTS clause: 9.1.2	Nominal	Nominal	DSSS OFDM	X				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge – cond.	-/-	Nominal	Nominal	DSSS OFDM	X				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance cond. & rad.	KDB 558074 DTS clause: 13.3.2 and clause 12.2.2	Nominal	Nominal	DSSS OFDM	X				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions cond.	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.209(a) RSS-Gen	TX spurious emissions rad. below 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	X				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.109 RSS-Gen	RX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal Nominal RX / Idle I					-/-	
§15.109 RSS-Gen	RX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	RX / idle	X				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	X				-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

10 Additional comments

Reference documents:	Customer Questionnaire.docx
	The power setting 14 was used for all tests.
Special test descriptions:	Conducted test results were extracted from test report no. 1-6031_18-02-02-A.
Configuration descriptions:	None
Provided channels:	

Channels with 20 MHz channel bandwidth:

	channel number & centre frequency													
channel	1	2	3	4	5	6	7	8	9	10	11	12	13	
f _c / MHz	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472	

Note: The channels used for the tests are marked in bold in the list.

11 Additional EUT parameter

Test mode:		No test mode available Iperf was used to ping another device with the largest support packet size
	\boxtimes	Test mode available Special software is used. EUT is transmitting pseudo random data by itself
Modulation types:	\boxtimes	Wide Band Modulation (None Hopping – e.g. DSSS, OFDM)
		Frequency Hopping Spread Spectrum (FHSS)
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		 Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		 Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Antenna gain

Limits:

FCC	IC
6 dBi / > 6 dBi output power and	power density reduction required

	lowest channel	middle channel	highest channel
Gain [dBi] Declared by the manufacturer	4.1	4.1	4.3

12.2 Identify worst case data rate

Description:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Measurement:

Measurement parameter		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	3 MHz	
Trace mode Max hold		
Test setup See chapter 6.5 - A		
Measurement uncertainty	-/-	

Modulation scheme / bandwidth		
DSSS / b – mode	1 Mbit/s	
OFDM / g – mode	6 Mbit/s	
OFDM / n HT20 – mode	MCS0	

12.3 Maximum output power

Description:

Measurement of the maximum conducted peak output power. The measurements are performed using the data rate identified in the previous chapter.

Measurement:

Measurement parameter		
According to DTS clause: 8.3.1.3		
Peak power meter		
Test setup See chapter 6.5 - B		
Measurement uncertainty See chapter 8		

Limits:

FCC	IC	
Conducted 1.0 W / 30 dBm with an antenna gain of max. 6 dBi		
Conducted limit with a maximum gain of 4.3 dBi = 30 dBm		

	maximum output power / dBm		
	lowest channel	middle channel	highest channel
Output power conducted DSSS / b – mode	12.9	13.4	13.1
Output power conducted OFDM / g – mode	12.2	12.3	12.3
Output power conducted OFDM / n HT20 – mode	12.0	11.6	12.1

12.4 Duty cycle

Description:

Measurement of the timing behavior.

Measurement:

Measurement parameter		
Detector	Peak	
Sweep time	Depends on the signal see plot	
Resolution bandwidth	10 MHz	
Video bandwidth	10 MHz	
Trace mode	Max hold	
Test setup	See chapter 6.5 - A	
Measurement uncertainty	See chapter 8	

Limits:

FCC	IC
No lim	itation!

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel
DSSS / k	o – mode	100 % / 0.0 dB	100 % / 0.0 dB	100 % / 0.0 dB
OFDM /	g – mode	100 % / 0.0 dB	100 % / 0.0 dB	100 % / 0.0 dB
OFDM / n H	T20 – mode	100 % / 0.0 dB	100 % / 0.0 dB	100 % / 0.0 dB

12.5 Peak power spectral density

Description:

Measurement of the peak power spectral density of a digital modulated system. The PSD shows the strength of the variations as a function of the frequency. The measurement is repeated for both modulations at the lowest, middle and highest channel.

Measurement:

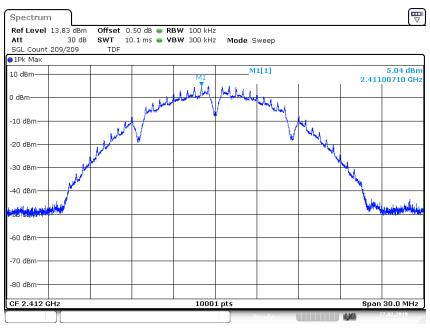
Measurement parameter		
According to DTS clause: 8.4		
Detector	Positive Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	30 MHz	
Trace mode	Max. hold (allow trace to fully stabilize)	
Test setup	See chapter 6.5 - A	
Measurement uncertainty	easurement uncertainty See chapter 8	

Limits:

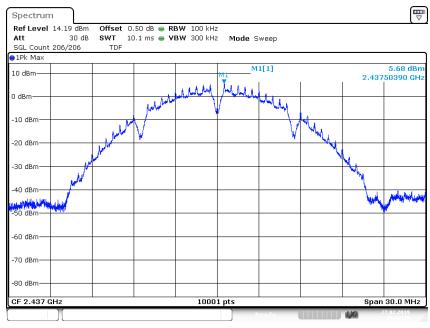
FCC	IC
8 dBm / 3 kH	z (conducted)

Results:

measured	peak power spectral density / dBm @ 100 kHz		
	Lowest channel Middle channel H		Highest channel
DSSS / b – mode	5.04	5.68	5.26
OFDM / g – mode	2.16	2.41	2.09
OFDM / n HT20 – mode	2.17	2.59	2.40

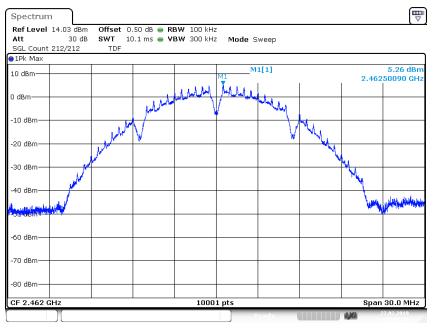

Formula for PKPSD calculation: PKPSD_{calculated}=PKPSD_{measured}+10*log(3kHz/RBW_{measured}[kHz])

calculated	peak power spectral density / dBm @ 3 kHz		
	Lowest channel Middle channel Hig		Highest channel
DSSS / b – mode	-10.19	-9.55	-9.97
OFDM / g – mode	-13.07	-12.82	-13.14
OFDM / n HT20 – mode	-13.06	-12.64	-12.83


Plots: DSSS / b - mode

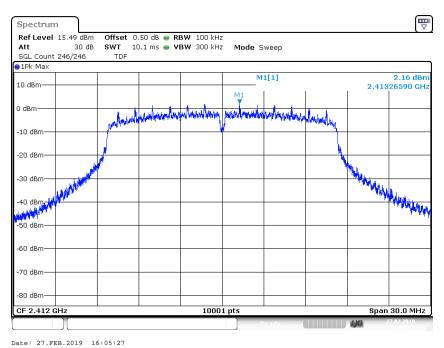
Plot 1: Lowest channel

Date: 27.FEB.2019 15:53:06

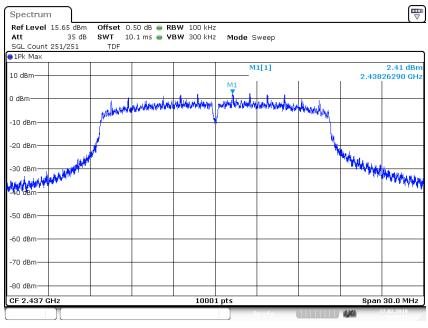

Plot 2: Middle channel

Date: 27.FEB.2019 16:00:29

Plot 3: Highest channel

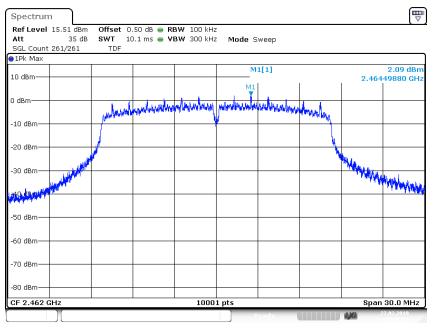


Date: 27.FEB.2019 15:43:18



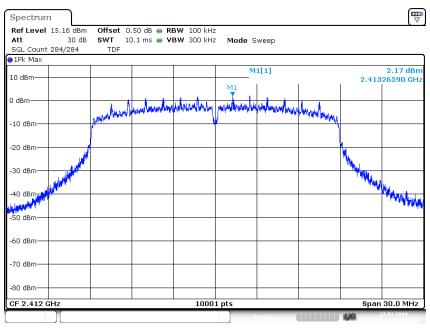
Plots: OFDM / g - mode

Plot 1: Lowest channel

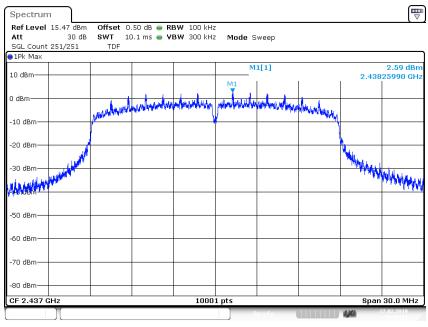

Plot 2: Middle channel

Date: 27.FEB.2019 16:15:27

Plot 3: Highest channel

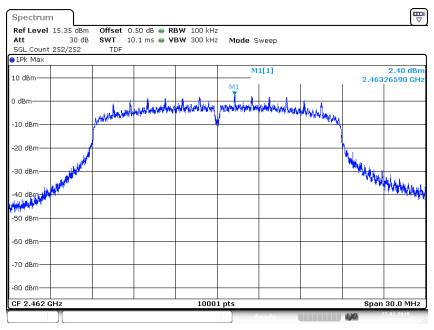


Date: 27.FEB.2019 15:36:28


Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

Date: 27.FEB.2019 16:21:40


Plot 2: Middle channel

Date: 27.FEB.2019 16:28:23

Plot 3: Highest channel

Date: 27.FEB.2019 15:28:40

12.6 6 dB DTS bandwidth

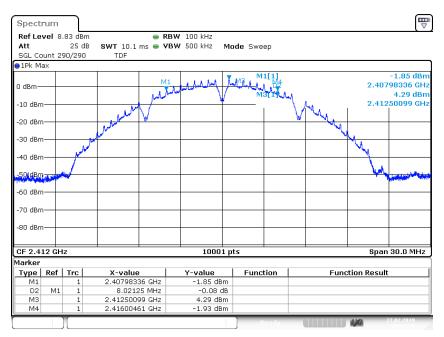
Description:

Measurement of the 6 dB bandwidth of the modulated signal.

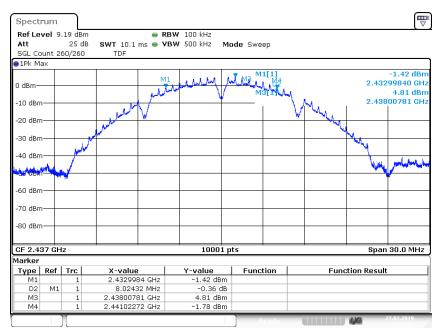
Measurement:

Measurement parameter									
According to DTS clause: 8.2									
Detector	Peak								
Sweep time	Auto								
Resolution bandwidth	100 kHz								
Video bandwidth	500 kHz								
Span	30 MHz								
Trace mode	Single count with 200 counts								
Test setup	See chapter 6.5 - A								
Measurement uncertainty	See chapter 8								

Limits:

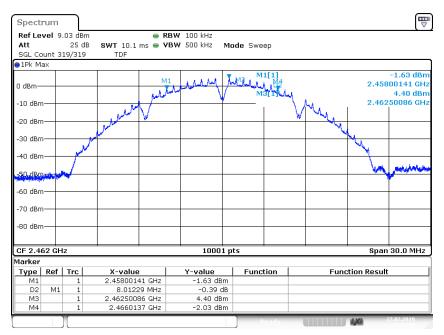

FCC	IC
, , , , , , , , , , , , , , , , , , , ,	may operate in the 2400–2483.5 MHz band. Ith shall be at least 500 kHz.

	6 dB DTS bandwidth / kHz							
	lowest channel	middle channel	highest channel					
DSSS / b – mode	8021	8024	8012					
OFDM / g – mode	15121	15128	15109					
OFDM / n HT20 – mode	15124	15124	15118					


Plots: DSSS / b - mode

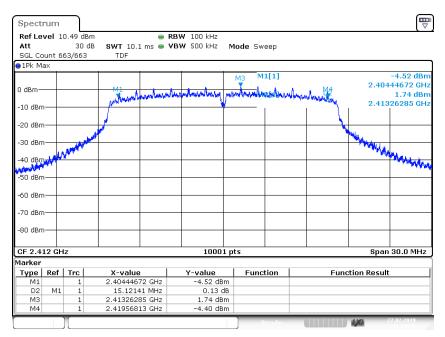
Plot 1: Lowest channel

Date: 27.FEB.2019 15:52:01


Plot 2: Middle channel

Date: 27.FEB.2019 15:59:26

Plot 3: Highest channel



Date: 27.FEB.2019 15:42:10

Plots: OFDM / g - mode

Plot 1: Lowest channel

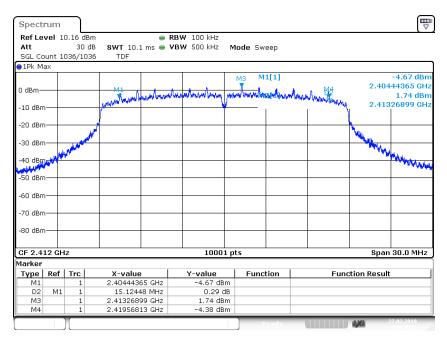
Date: 27.FEB.2019 16:04:36

Plot 2: Middle channel

Spectrum	ī									
Ref Level Att SGL Count	30 0			BW 100 kHz BW 500 kHz	Mode Sw	еер				
●1Pk Max	,									
0 dBm		Manner	nnhand	minterestation		1[1] andam	Man Marine		-4.16 dBn 944077 GH 2.06 dBn 950182 GH	
-10 dBm				Ť			1	2.43	930182 GH	
-20 dBm										
-30 dBm	- California	*		_				man		
-30 dBm	WW.								mmmm	
-50 dBm										
-60 dBm										
-70 dBm										
-80 dBm										
CF 2.437 G	Hz			10001	pts			Spa	n 30.0 MHz	
Marker										
Type Re		X-value		Y-value	Function		Fund	Function Result		
M1	1	2.429440		-4.16 dBn						
D2 M		15.1275		0.09 dE						
M3 M4	1	2.4395018		2.06 dBn -4.06 dBn						
	1					eady		120	27.02.2019	

Date: 27.FEB.2019 16:14:34

Plot 3: Highest channel


Ref Le	uol 1		lm		-	DB W	100 kHz								V
Att	veri	0.51 UB 30 i		T 10 -	Lms 🖷 '			м	de Sv	voon					
SGL Co	unt 9			TDF	L ms 🗕	¥ D ¥¥	300 KH2	IVIL	Jue Sv	veeh					
1Pk M		12/012													
JIEK DI	<u>av</u>					_				11[1]					-4.79 dBr
									10						45581 GH
0 dBm—			P	1		hulut	montenen	m.hve	Anna	weekew.	Amerika	Mđ			1.87 dBr
			6.9	MARAN	irinna aurin u			U		the first way	a Auto Auto Po	NAMERON		.463	26298 GH
-10 dBm	n——		11							1		1	1		
-20 dBn	.		1									4			
-20 uBN			1												
-30 dBm	-		1. Ale 1.										1		MANN
00 000	·	MAR												"WY	MALALL
40 dBn		¥"											_		TA MARKAN
Martin M															
-50 dBn	n-+-					_				+			-		
-60 dBn															
70 10-															
-70 dBn															
-80 dBr															
00 001	·														
CF 2.4	60.01	-					1000	11.00	_					0	30.0 MHz
	OZ GH	2					1000	n pe	<u> </u>					span	30.0 MHZ
1arker					1				_			_			
Туре	Ref			X-value 2.45445581 GHz		Y	'-value		Fund	ction		Fur	nction R	esult	
M1 D2	M1	1			B1 GHZ		-4.79 di 0.29								
M3	MIT	1			38 MH2 98 GHz		1.87 di								
M4		1			18 GHz		-4.50 di								

Date: 27.FEB.2019 15:35:25

Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

Date: 27.FEB.2019 16:20:35

Plot 2: Middle channel

Specti	um									
Ref Le [.] Att SGL Co		30	db SWT 10.		BW 100 kHz BW 500 kHz	Mode	Sweep			
■1Pk Ma		15//15	TDF							
0 dBm—			MI	montown	mmmm	M3	M1[1]	Annaly Mat		-4.01 dBn 944077 GH 2.15 dBn 825997 GH
-10 dBm	-		- P				_	1	2.10	
-20 dBm	+								A MARKED	
-30 dBm		A CONTRACT	·							A A A A A A
AFJ GBM	WW	.								MANANA MANA
-50 dBm	_									
-60 dBm	+									
-70 dBm	_									
-80 dBm	_									
CF 2.43	97 GH	Iz			1000	1 pts			Spa	n 30.0 MHz
Marker										
Туре	Ref		X-valu		Y-value		unction	Func	tion Resu	t
M1		1	2.429440		-4.01 dB					
D2 M3	Μ1	1	2.438259		-0.17 c 2.15 dB					
M3 M4		1	2.438259		-4.18 dB					
							Ready		1/0	27.02.2019

Date: 27.FEB.2019 16:27:29

Refle	vel 1	0.35 dBm	1	_ R	BW 100 kHz					
Att		30 dE			BW 500 kHz	Mode	Sween			
SGL Co	unt 7		TDF	•	BH 500 KHZ	moue	oweeb			
DIPk M		- 1/ 1 - 1								
						мз	M1[1]			-4.10 dBr
o			541			T			2.45	444685 GH
0 dBm—			×	walnum	nintmutaily	MM WW	MARANA	American Harrison		1.93 dBr
-10 dBn			Inthe Western Party and a				_	A NUMBER OF STREET, ST	2.46	326886 GH
TO GDI	·		1							
-20 dBm	∩		<u>/</u>				_			
		J.W.							N	WWWWWWWW
-30 dBn	+-י	LINE CONTRACT							- Mark	4.
	. W	V								Wahana
-40 dBn										
-50 dBr										
-50 451	'									
-60 dBn	⊢ −ι		-				_			
-70 dBn	י − ר		-							
00 40-										
-80 dBn										
					10001					
CF 2.4	62 GH	z			10001	pts			spa	n 30.0 MHz
1arker								_		
Type M1	Ref	Trc 1				Fund	tion Resu	It		
D2	M1	1	2.454446		-4.10 dBr -0.25 d					
M3	1411	1	2.463268		-0.25 u 1.93 dBr					
M4		1	2.469565		-4.36 dBr					

Date: 27.FEB.2019 15:27:42

12.7 Occupied bandwidth – 99% emission bandwidth

Description:

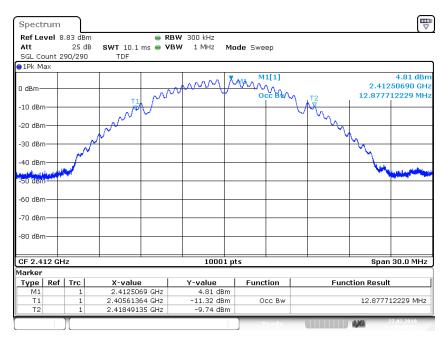
Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement:

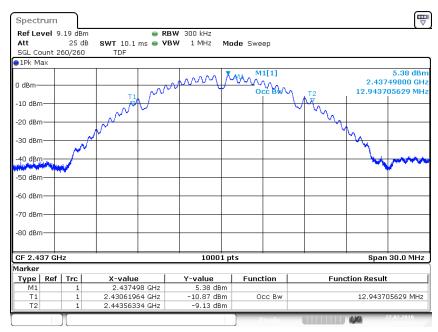
Measu	urement parameter
Detector	Peak
Sweep time	Auto
Resolution bandwidth	300 kHz
Video bandwidth	1 MHz
Span	30 MHz
Measurement procedure	Measurement of the 99% bandwidth using the integration function of the analyzer
Trace mode	Single count with 200 counts
Test setup	See chapter 6.5 - A
Measurement uncertainty	See chapter 8

<u>Usage:</u>

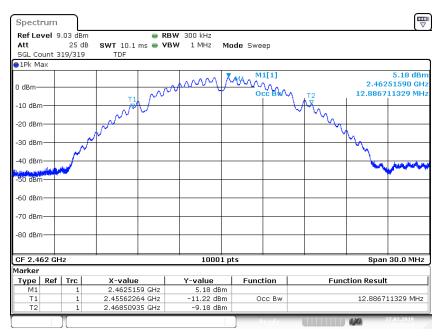
-/-	IC
OBW is necessary fo	r Emission Designator


Results:

	99%	emission bandwidth	/ kHz
	lowest channel	middle channel	highest channel
DSSS / b – mode	12878	12944	12887
OFDM / g – mode	16249	16291	16243
OFDM / n HT20 – mode	17347	17383	17347

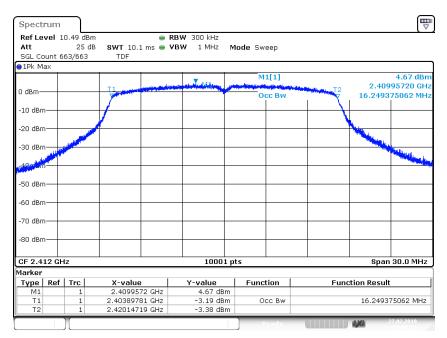

Plots: DSSS / b - mode

Plot 1: Lowest channel


Date: 27.FEB.2019 15:52:18

Plot 2: Middle channel

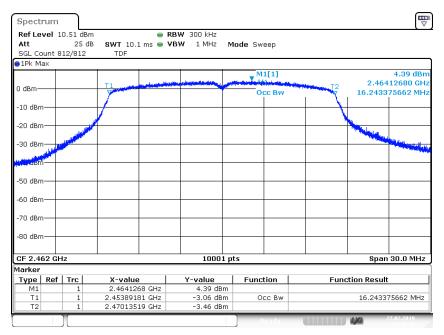
Date: 27.FEB.2019 15:59:42



Date: 27.FEB.2019 15:42:29

Plots: OFDM / g - mode

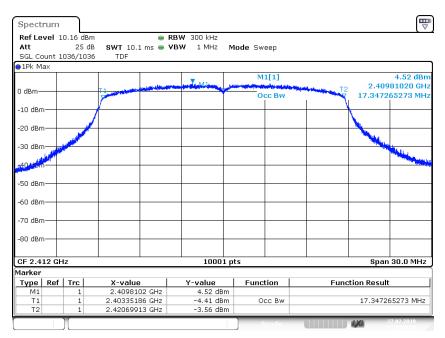
Plot 1: Lowest channel


Date: 27.FEB.2019 16:05:07

Plot 2: Middle channel

Spectrum											E
Ref Level 1 Att SGL Count 7	25	dB SWT 10.1		3W 300 kHz 3W 1 MHz	Mo	de Sw	еер				, ,
●1Pk Max		T1 continue			_	M	1[1]		T 2	2.435	4.67 dBn 58710 GH:
0 dBm	Occ Bw					Ϋ́ι.	16.2913	70863 MH			
-20 dBm											
-30.dBm	and the state of the								- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
-40 dBm											
-50 dBm											
-60 dBm											
-70 dBm								_			
-80 dBm								_			
CF 2.437 G	Ηz			1000	1 pts	5				Span	30.0 MHz
Marker Type Ref	Trc	X-value	1	Y-value	- 1	Func	tion		Eunctio	n Result	•
M1 M1	1	2.435587	1 GHz	4.67 dB	m	. and					
T1 T2	1	2.4288828 2.4451741		-3.43 dB -3.39 dB		0	cc Bw			16.2913	70863 MHz
][R	eady			0	27.02.2019

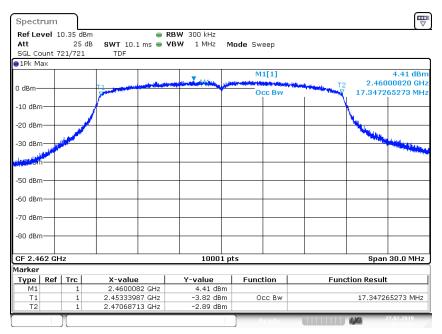
Date: 27.FEB.2019 16:15:07



Date: 27.FEB.2019 15:36:06

Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel


Date: 27.FEB.2019 16:21:20

Plot 2: Middle channel

Spectrum						
Ref Level 1 Att SGL Count 7	25 0		RBW 300 kHz ∕BW 1 MHz MI	ode Sweep		
• 1Pk Max		T1	and the second	M1[1]	Ta	
-10 dBm				Occ Bw	_	17.383261674 MH:
-20 dBm						
-30 dBob						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
-80 dBm						
CF 2.437 GH	łz		10001 pt	s		Span 30.0 MHz
Marker						
Type Ref		X-value	Y-value	Function	Fund	ction Result
M1 T1 T2	1 1 1	2.4354042 GHz 2.42833387 GHz 2.44571713 GHz	4.48 dBm -3.10 dBm -3.06 dBm	Occ Bw		17.383261674 MHz
][Ready		27.02.2019

Date: 27.FEB.2019 16:28:03

Date: 27.FEB.2019 15:28:19

12.8 Occupied bandwidth – 20 dB bandwidth

Description:

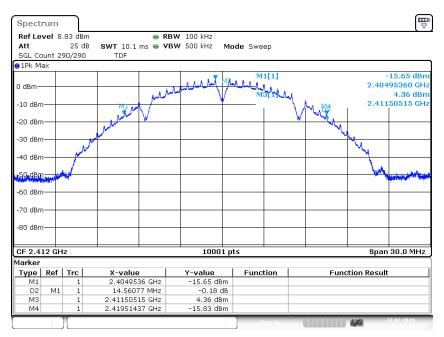
Measurement of the 20 dB bandwidth of the modulated carrier.

Measurement:

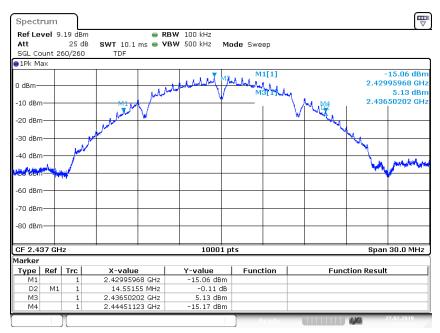
	Measurement parameter
Detector	Peak
Sweep time	Auto
Resolution bandwidth	100 kHz
Video bandwidth	500 kHz
Span	30 MHz
Trace mode	Single count with min. 200 counts
Test setup	See chapter 6.5 - A
Measurement uncertainty	See chapter 8

<u>Usage:</u>

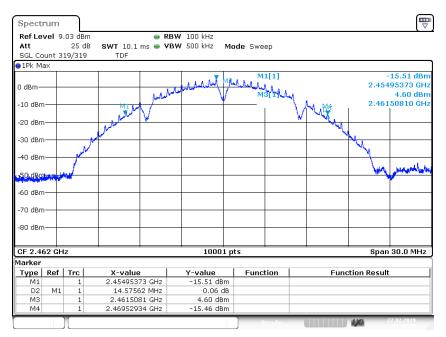
-/-	IC
Within the	used band!


Results:

	2	0 dB bandwidth / MH	Z
	lowest channel	middle channel	highest channel
DSSS / b – mode	14561	14552	14576
OFDM / g – mode	17089	17068	17071
OFDM / n HT20 – mode	18109	18109	18103

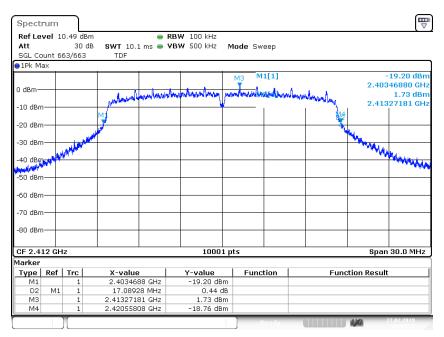

Plots: DSSS / b - mode

Plot 1: Lowest channel


Date: 27.FEB.2019 15:52:10

Plot 2: Middle channel

Date: 27.FEB.2019 15:59:34



Date: 27.FEB.2019 15:42:20

Plots: OFDM / g - mode

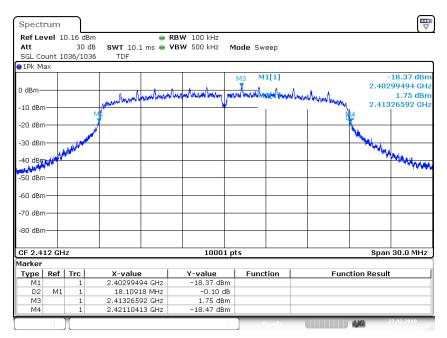
Plot 1: Lowest channel

Date: 27.FEB.2019 16:04:53

Plot 2: Middle channel

Spectrum									
Ref Level 10. Att SGL Count 709	30 dB :	SWT 10.1 TDF		W 100 kHz W 500 kHz	Mode	Sweep			
●1Pk Max									
0 dBm		1. J	whent	antmanting	minitim	Mg1[1]	Incohenter		-17.97 dBr 347181 GH 2.13 dBr
-10 dBm		Marian			ľ. –		and and they have	2.439	50182 GH
-20 dBm	MI	}							
								Mary Mary Mary	
-30 dBm	AN THE OWNER							* YYYY	Werker
-30 dBm -40 dBm									
-50 dBm									
-50 UBIII									
-60 dBm									
-70 dBm									
-80 dBm									
GF 2.437 GHz				1000	1 pts			Span	1 30.0 MHz
Marker									
	Trc	X-value		Y-value		unction	Fund	tion Result	t
M1	-	2.4284718		-17.97 dB					
D2 M1 M3	1	17.0682 2.4395018		-0.43 c 2.13 dB					
M4	1	2.4395018		-18.40 dB					
						Ready		120	27.02.2019

Date: 27.FEB.2019 16:14:52


Spect		L													U
Ref Le	vel 1						100 kHz								
Att		30			L ms 😑 🕻	BW 5	500 kHz	Mo	de Swe	ер					
SGL Co		12/812		TDF											
1Pk M	ax														
								M		[1]					8.72 dBr
0 dBm—					entern American						James		2.		5997 GH
				Angerth	enterne (MarpHi	20.200 V	WANN MANN	purme	Auto Manager	No. Row No.	n paratan ha	Att has			1.81 dBr 6886 GH
-10 dBm	∩—						ĭ		i		1	1	z.	.4032	0880 GH
			M										t		
-20 dBm												- 4		-	
00 dp-		16	MART .										Tanky		Malana
-30 dBm		Juny											1.04	WAR.	An Lui
-40 dBm	June Martin	ψ n τ													
المرجوري															
-50 dBm	<u> </u>												_		
-60 dBm	∩—														
-70 dBm	<u>ا</u> –۱												-		
-80 dBm															
CF 2.4	52 GH	z					1000:	L pts					S	pan 3	30.0 MHz
1arker															
Туре	Ref	Trc		(-value			value		Funct	ion		Fun	ction Re	sult	
M1		1	2.4	453459		-	18.72 dB								
D2	M1	1			1 MHz		0.20 c								
M3		1		463268			1.81 dB								
M4		1	2.4	470531	J7 GHZ		18.52 dB	rri							

Date: 27.FEB.2019 15:35:49

Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

Date: 27.FEB.2019 16:21:00

Plot 2: Middle channel

Spectrum									
Ref Level	10.47 de	Sm	🖷 R	BW 100 kHz					
Att	30 (dB SWT 10.3	L ms 😑 🗸	BW 500 kHz	Mode	sweep			
SGL Count	715/715	TDF							
🔵 1Pk Max									
					M3	M1[1]			-18.53 dBm
0 dBm						a	A	1	2.42801587 GH
o abiii			as was fully and	montenentering	phone	hundered in the	Manshandle		2.20 dBn
-10 dBm		AN A A		`	<u> </u>			and 3	2.43827482 GHz
		MI						14	
-20 dBm		1						- N	
	السلا	× .						MAN 4	www.www
-30 dBm	and the second second								WWWWWWWWW
AND COMMY	V7."								
- To GDIN									
-50 dBm									
-60 dBm						-			
-70 dBm									
-80 dBm									
-00 00111									
CF 2.437 G				1000	1				
	HZ			1000	r pes				Span 30.0 MHz
Marker	1 - 1								
Type Ref		X-value		<u>Y-value</u> -18.53 dB		unction	F	unction R	esult
M1 D2 M3	1 1	2.428015		-18.53 GB 0.52 (
M3	1 1	2.438274		2.20 dB					
M4	1	2.446125		-18.01 dB					
	7				_			4.52	27.02.2010
	Л							171	

Date: 27.FEB.2019 16:27:48

Ref Le	vel 1	0.35 dBm	1	😑 R	BW 100 kHz					
Att		30 dE			'BW 500 kHz	Mod	e Sweep			
SGL Co	ount 7:	21/721	TDF				e encop			
1Pk M										
							M91[1]			-18.08 dBr
0 dBm-									2	.45299789 GH
U UBIII-			Aunt	unin	mulanuling	Minh	W.Minternetung	Munhumber		1.95 dBr
-10 dBm			AMA MANA AND AND AND AND AND AND AND AND AND					And Party Party	A 2	.46449869 GH
20 000	.		MĮ						NA	
-20 dBn	η 		<u>/</u>						- 	
			7 I I I I I I I I I I I I I I I I I I I							
-30 dBn	+-י	100							- M	MAN MANAN
40 dBm	June Marine									manner
-40 dBn	7									
-50 dBn	n——									
-60 dBr			-		-					
-70 dBm	דרי									
-80 dBn										
-00 001	'									
CF 2.4	63.01	-			1000	Inte				pan 30.0 MHz
larker		2			1000.	i pis				ipan 30.0 Miliz
Type	Ref	Trc	X-value	. 1	Y-value	1	Function	1 6	unction Re	scult
M1	Ker	1	2.452997		-18.08 dB		runction		ALCOUT RE	suit
D2	M1	1		33 MHz	-0.41 c					
MЗ		1	2.464498		1.95 dB					
M4		1	2.471101	18 GHz	-18.49 dB	m				

Date: 27.FEB.2019 15:28:03

12.9 Band edge compliance conducted

Description:

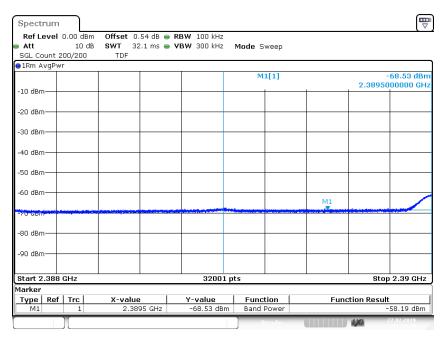
Measurement of the radiated band edge compliance with a conducted test setup.

Measurement:

Measurement parameter for measurements							
According to DTS clause: 8.7.3 and clause 12.2.2							
Detector RMS							
Sweep time	Auto						
Resolution bandwidth	100 kHz						
Video bandwidth	300 kHz						
	2 MHz						
Span	lower band edge	2388 MHz	to	2390 MHz			
	upper band edge	2483.5 MHz	to	2485.5 MHz			
Trace mode	Trace mode Trace average with 200 counts						
Test setup	etup See chapter 6.5 - A						
Measurement uncertainty	Aeasurement uncertainty See chapter 8						

Limits:

FCC	IC					
-41.26 dBm						


Results:

	band edge compliance / dBm (gain calculation)					
Modulation:	DSSS / b – mode	OFDM / g – mode	OFDM / n HT20 – mode	OFDM / n HT40 – mode		
Max. lower band edge power conducted	-58.19	-54.01	-54.01	-/-		
Antenna gain / dBi	4.1					
Max. lower band edge power radiated	-54.09	-49.91	-49.91	-/-		
Max. upper band edge power conducted	-57.97	-51.51	-50.48	-/-		
Antenna gain / dBi	4.3					
Max. upper band edge power radiated	-53.67	-47.21	-46.18	-/-		

Plots: DSSS / b - mode

Plot 1: Lower band edge

Date: 27.FEB.2019 15:53:30

Plot 2: Upper band edge

Spectrum					Ę
Ref Level 0.00 dBm Att 10 dB SGL Count 200/200	Offset 0.55 dB		Mode Sweep		
∋1Rm AvgPwr					
			M1[1]		-66.73 dB
-10 dBm					2.484000000 GH
-20 dBm					
-30 dBm					
-30 ubiii					
-40 dBm					
-50 dBm					
-60 dBm					
	M1 T				
-70 dBm					
-80 dBm					
-90 dBm					
Start 2.4835 GHz		32001 p	ts		Stop 2.4855 GH
Marker Type Ref Trc	X-value	Y-value	Function	E.u.s	ction Result
Type Ref Trc M1 1	2.484 GHz	-66.73 dBm	Band Power	Fun	-57.97 dBm
			Ready		27.02.2019

Date: 27.FEB.2019 15:43:56

Plots: OFDM / g - mode

Plot 1: Lower band edge

Ref Level 0.00 dBn					
Att 10 dE SGL Count 200/200	3 SWT 32.1 ms 👄 TDF	VBW 300 kHz	Mode Sweep		
1Rm AvgPwr					
			M1[1]		-63.90 dBn
-10 dBm					2.3895000000 GH
-20 dBm					
-30 dBm					
oo abiii					
-40 dBm					
-50 dBm					
-50 UBIII					
-60 dBm				M1	
-70 dBm					
-80 dBm					
-90 dBm					
Start 2.388 GHz 1arker		32001 p	ts		Stop 2.39 GHz
Type Ref Trc	X-value	Y-value	Function	Fund	tion Result
M1 1	2.3895 GHz	-63.90 dBm	Band Power		-54.01 dBm

Date: 27.FEB.2019 16:05:53

Plot 2: Upper band edge

Spectrum									
Ref Level 0 Att SGL Count 20	10 dB			BW 100 kHz BW 300 kHz	Mode S	weep			
●1Rm AvgPwr									
					М	1[1]		2.4840	-61.74 dBm 000000 GHz
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
- CO VISION		M1					N		
-70 dBm									
-70 abiii									
-80 dBm									
-90 dBm									
Start 2.4835	GHz			32001	pts	I		Stop :	2.4855 GHz
Marker									
Type Ref		X-value		Y-value	Func		Fun	iction Resu	
M1	1	2.48	4 GHz	-61.74 dBr	n Band	Power			-51.51 dBm
								1/1	27.02.2019

Date: 27.FEB.2019 15:37:08

Plots: OFDM / n HT20 - mode

Plot 1: Lower band edge

Ref Level 0.00 dBn					
Att 10 dE SGL Count 200/200	3 SWT 32.1 ms TDF	VBW 300 kHz	Mode Sweep		
1Rm AvgPwr					
			M1[1]		-63.02 dBn
-10 dBm		-	1		2.3895000000 GH
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm				M1	
70 dBm					
-80 dBm					
.90 dBm					
Start 2.388 GHz		32001 p	ts		Stop 2.39 GHz
larker					
Type Ref Trc M1 1	2.3895 GHz	Y-value -63.02 dBm	Function Band Power	Functi	ion Result -54.01 dBm

Date: 27.FEB.2019 16:22:07

Spectrum Offset 0.73 dB ● RBW 100 kHz SWT 32.1 ms ● VBW 300 kHz TDF Ref Level 0.00 dBm Att 10 dB SGL Count 200/200 Mode Sweep ●1Rm AvgPwr -60.73 dBn 2.4840000000 GH M1[1] -10 dBm -20 dBm--30 dBm--40 dBm -50 dBm-M1 -70 dBm--80 dBm--90 dBm-Stop 2.4855 GHz Start 2.4835 GHz 32001 pts Marker Type Ref Trc M1 1 Function Result -50.48 dBm X-value 2.484 GHz Y-value Function -60.73 dBm Band Power 1.00 Date: 27.FEB.2019 15:29:20

Plot 2: Upper band edge

12.10 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The measurement is performed at the lowest; the middle and the highest channel. The measurement is repeated for all modulations.

Measurement:

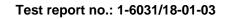
Measurement parameter							
Detector	Peak						
Sweep time	Auto						
Resolution bandwidth	100 kHz						
Video bandwidth	500 kHz						
Span	9 kHz to 25 GHz						
Trace mode	Max Hold						
Test setup	See chapter 6.5 - A						
Measurement uncertainty	See chapter 8						

Limits:

FCC	IC
intentional radiator is operating, the radio frequency po at least 30 dB below that in the 100 kHz bandwidth with	d in which the spread spectrum or digitally modulated over that is produced by the intentional radiator shall be in the band that contains the highest level of the desired ed measurement. Attenuation below the general limits

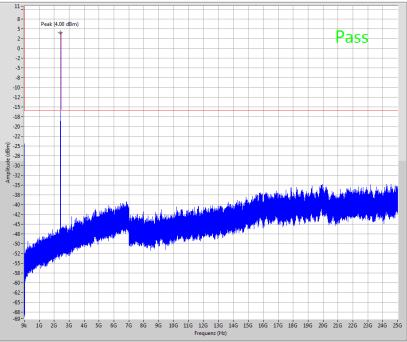
Results: DSSS / b - mode

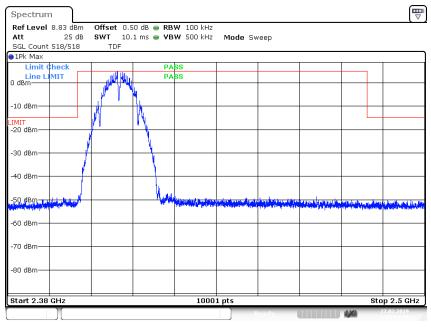
	TX spurious emissions conducted							
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results			
Lowest channel		4.0	30 dBm		Operating frequency			
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant				
Middle channel		5.1	30 dBm		Operating frequency			
All detected e	All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant			
Highest channel		4.7	30 dBm		Operating frequency			
All detected e	All detected emissions are below the -20 dBc & - 30 dBc criteria.				compliant			


Results: OFDM / g - mode

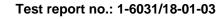
TX spurious emissions conducted							
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results		
Lowest channel		1.3	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant			
Middle channel		1.7	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant			
Highest channel		1.3	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		compliant		

Results: OFDM / n HT20 - mode

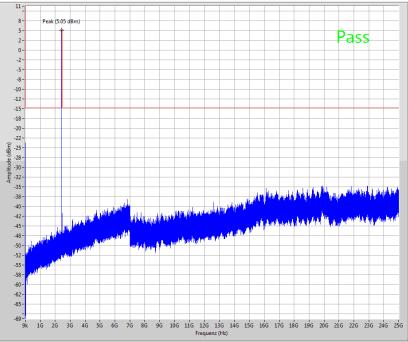

TX spurious emissions conducted						
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
Lowest channel		2.2	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant		
Middle channel		0.00	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant		
Highest channel		2.1	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant		


Plots: DSSS / b - mode

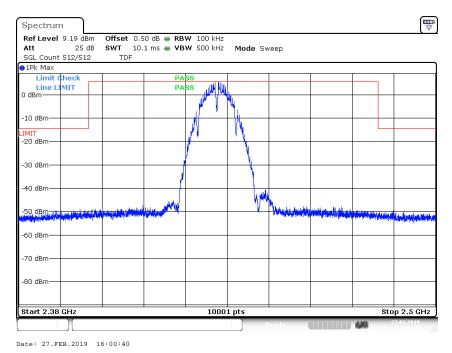
Plot 1: Lowest channel, up to 25 GHz



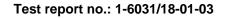
The peak at the beginning of the plot is the LO from the SA.


Plot 2: Lowest channel, zoomed carrier

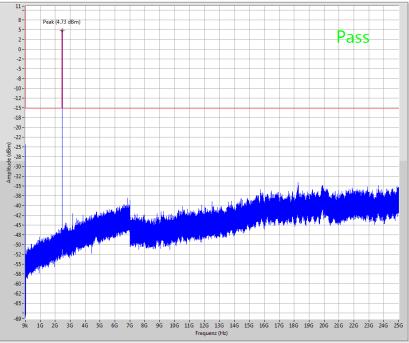
Date: 27.FEB.2019 15:53:17



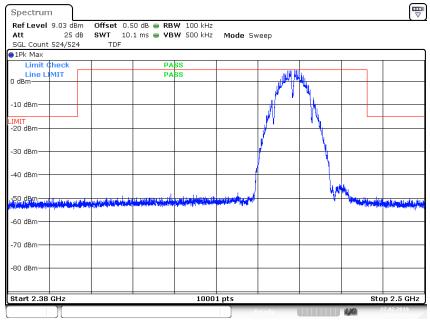
Plot 3: Middle channel, up to 25 GHz



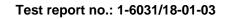
The peak at the beginning of the plot is the LO from the SA.


Plot 4: Middle channel, zoomed carrier

© CTC advanced GmbH

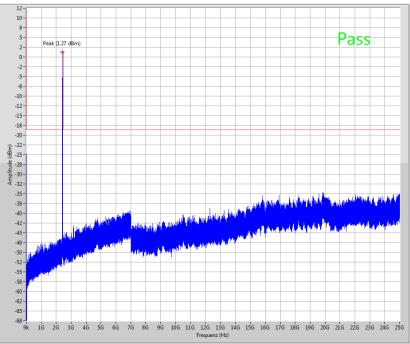


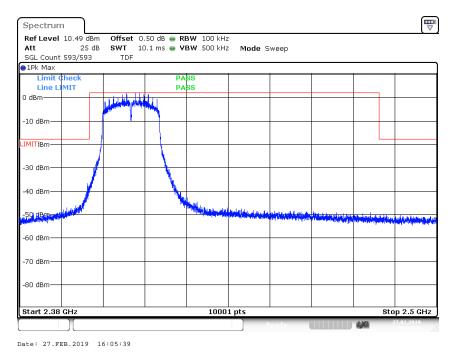
Plot 5: Highest channel, up to 25 GHz



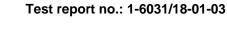
The peak at the beginning of the plot is the LO from the SA.

Plot 6: Highest channel, zoomed carrier

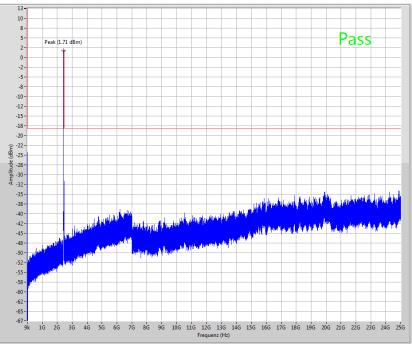

Date: 27.FEB.2019 15:43:29


Plots: OFDM / g - mode

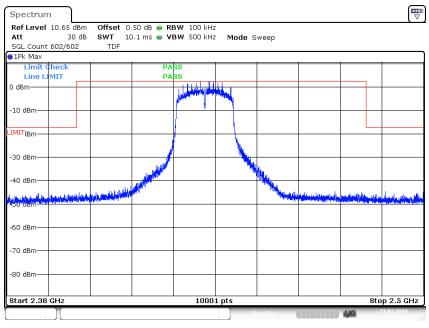
Plot 1: Lowest channel, up to 25 GHz



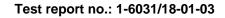
The peak at the beginning of the plot is the LO from the SA.


Plot 2: Lowest channel, zoomed carrier

© CTC advanced GmbH

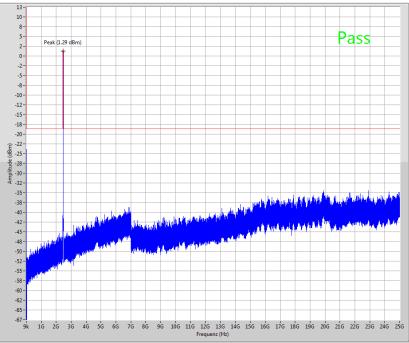


Plot 3: Middle channel, up to 25 GHz

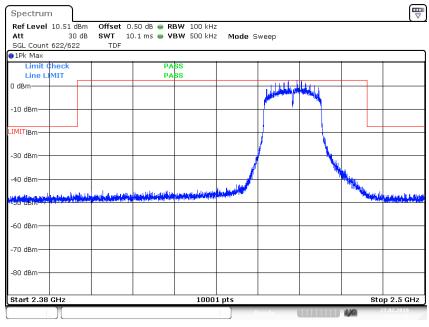


The peak at the beginning of the plot is the LO from the SA.

Plot 4: Middle channel, zoomed carrier



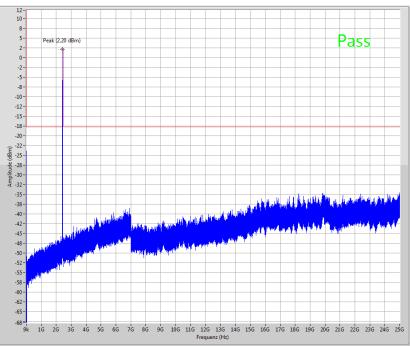
Date: 27.FEB.2019 16:15:40



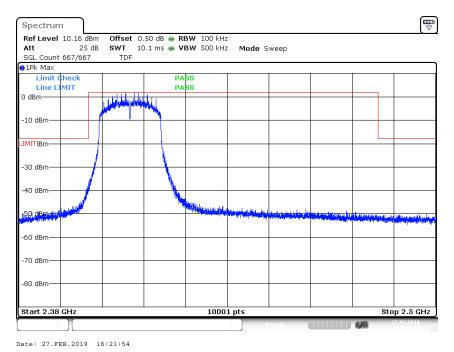
Plot 5: Highest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

Plot 6: Highest channel, zoomed carrier

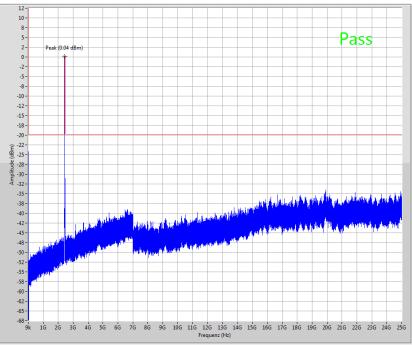


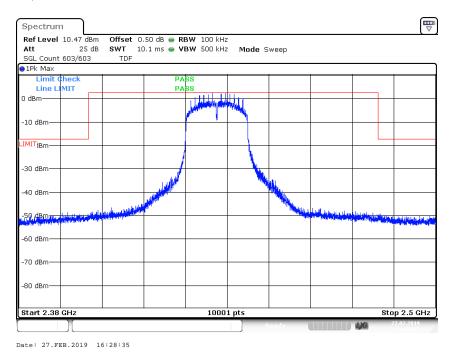
Date: 27.FEB.2019 15:36:40

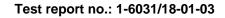

Plots: OFDM / n HT 20 - mode

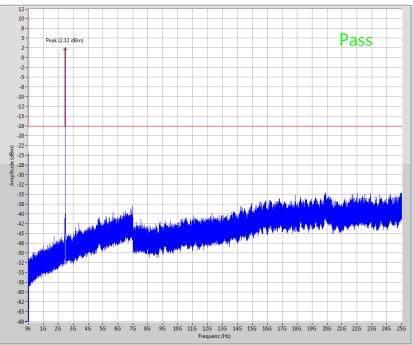
Plot 1: Lowest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

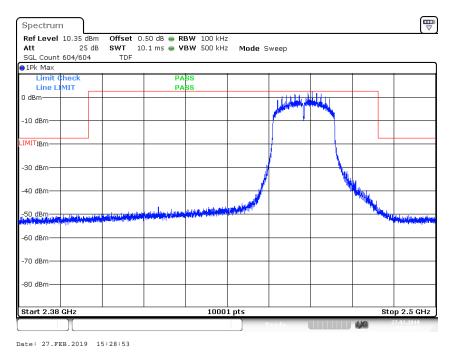

Plot 2: Lowest channel, zoomed carrier


Test report no.: 1-6031/18-01-03


Plot 3: Middle channel, up to 25 GHz


The peak at the beginning of the plot is the LO from the SA.

Plot 4: Middle channel, zoomed carrier



Plot 5: Highest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

Plot 6: Highest channel, zoomed carrier

12.11 Spurious emissions radiated below 30 MHz

Description:

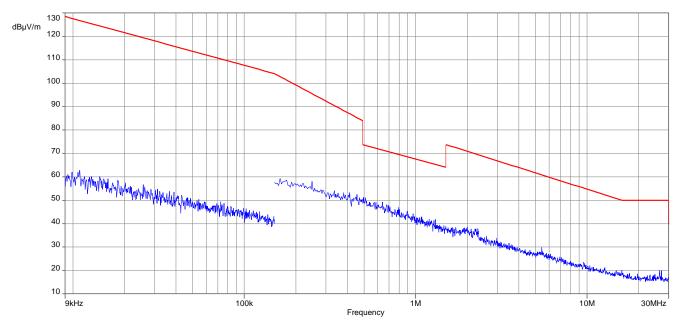
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

Measurement parameter					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max Hold				
Measured modulation	 DSSS b – mode OFDM g – mode OFDM n HT20 – mode OFDM n HT40 – mode 				
Test setup	See chapter 6.2 - B				
Measurement uncertainty	See chapter 8				

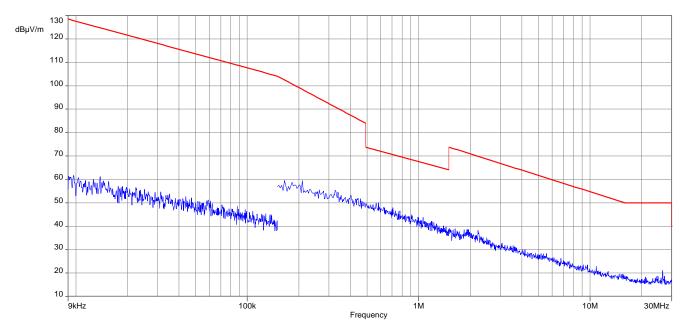
Limits:

FCC		IC	
Frequency / MHz	Field Strength / (dBµV / m)		Measurement distance / m
0.009 - 0.490	2400/F(kHz)		300
0.490 – 1.705	24000/F(kHz)		30
1.705 - 30.0	3	0	30

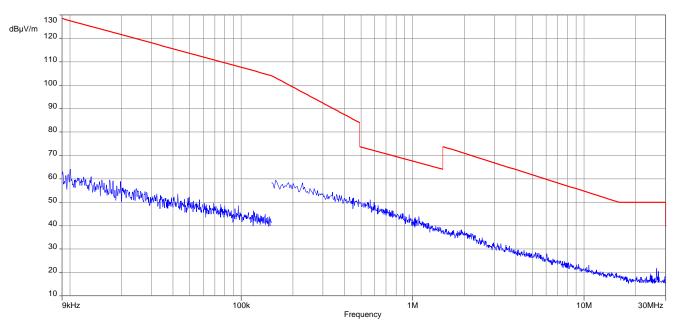

Results:

TX spurious emissions radiated < 30 MHz / (dB μ V / m) @ 3 m						
Frequency / MHz	Detector	Level / (dBµV / m)				
All detected peaks are more than 20 dB below the limit.						

Test report no.: 1-6031/18-01-03

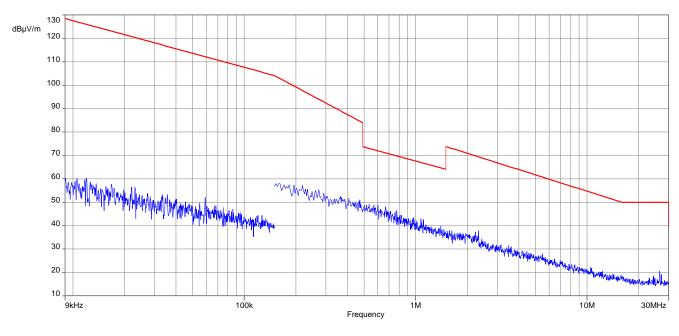

CTC I advanced

Plots: DSSS

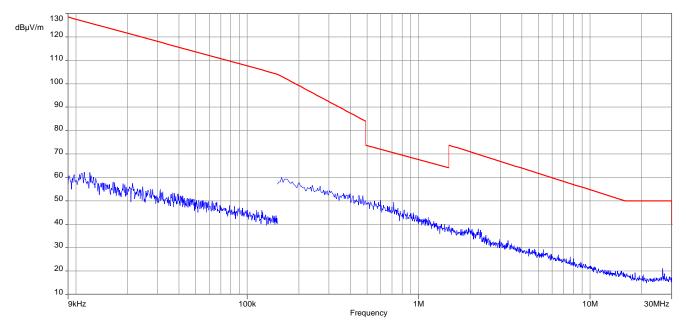


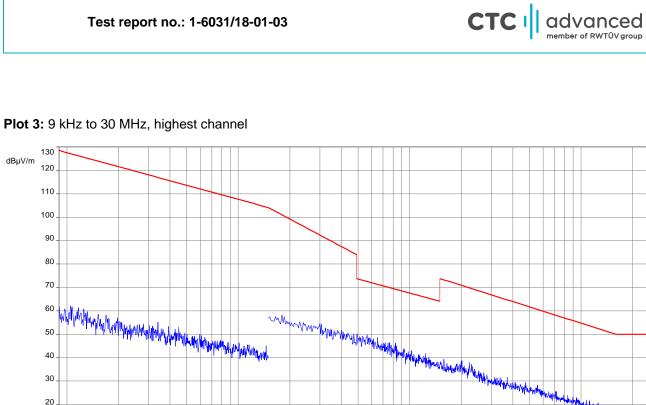
Plot 1: 9 kHz to 30 MHz, lowest channel

Plot 2: 9 kHz to 30 MHz, middle channel



Plot 3: 9 kHz to 30 MHz, highest channel




Plots: OFDM (20 MHz nominal channel bandwidth)

Plot 1: 9 kHz to 30 MHz, lowest channel

1M

Frequency

100k

20

10. 9kHz Test report no.: 1-6031/18-01-03

halingary

10M

up may ly

30MHz

12.12 Spurious emissions radiated 30 MHz to 1 GHz

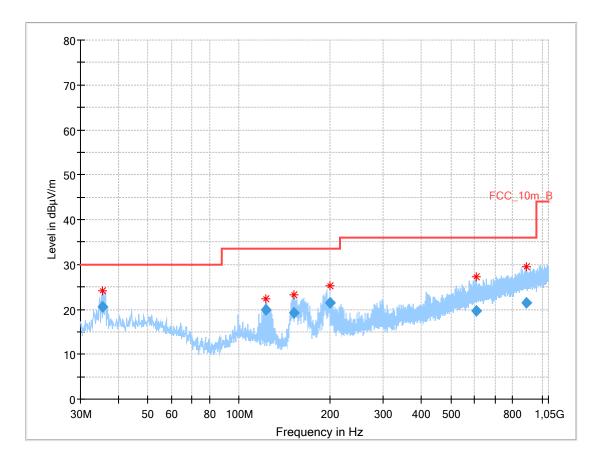
Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

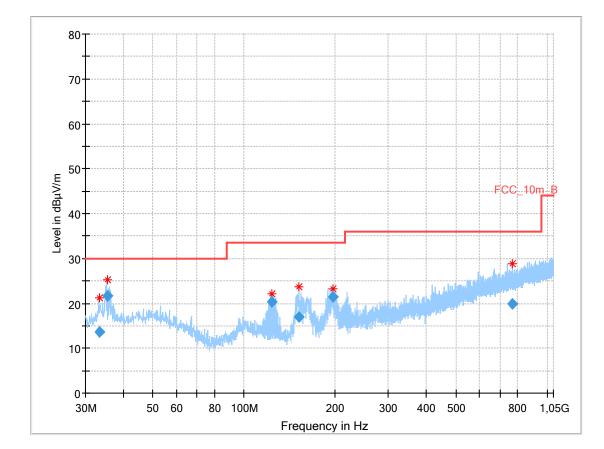
Measurement:

Measurement parameter						
Detector	Peak / Quasi Peak					
Sweep time	Auto					
Resolution bandwidth	120 kHz					
Video bandwidth	3 x RBW					
Span	30 MHz to 1 GHz					
Trace mode	Max Hold					
Measured modulation	 DSSS b – mode OFDM g – mode OFDM n HT20 – mode OFDM n HT40 – mode RX / Idle – mode 					
Test setup	See chapter 6.1 - A					
Measurement uncertainty	See chapter 8					

Limits:

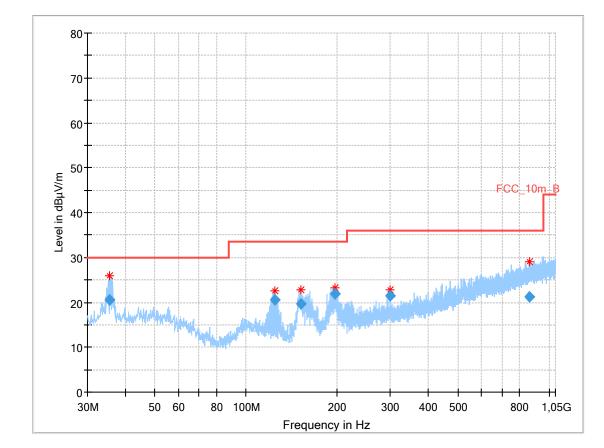

FCC			IC
intentional radiator is operating, the at least 20 dB below that in the 100 k power, based on either an RF con- specified in Section 15.209(a) is not	radio frequency po Hz bandwidth with ducted or a radiate required. In additio	wer that is produce in the band that cor ed measurement. A n, radiated emissio	ead spectrum or digitally modulated ed by the intentional radiator shall be ntains the highest level of the desired Attenuation below the general limits ons which fall in the restricted bands, i limits specified in §15.209(a) (see
Frequency / MHz	Field Strengt	n / (dBuV / m)	Measurement distance / m

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m
30 – 88	30.0	10
88 – 216	33.5	10
216 - 960	36.0	10

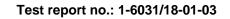

Plot: DSSS

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

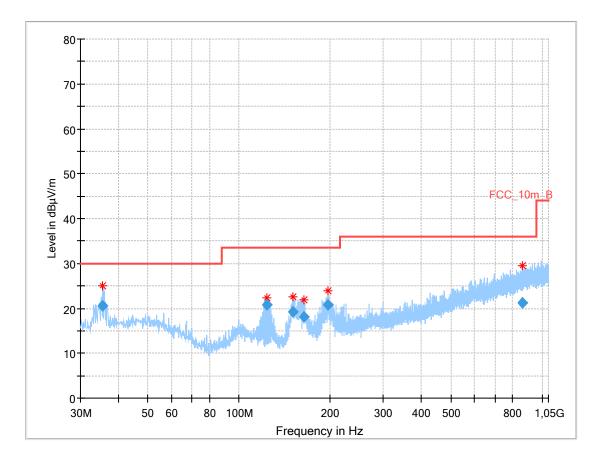
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
35.586	20.58	30.0	9.42	1000	120	98.0	v
122.426	19.85	33.5	13.65	1000	120	101.0	v
151.382	19.22	33.5	14.28	1000	120	101.0	v
200.017	21.48	33.5	12.02	1000	120	101.0	v
605.956	19.68	36.0	16.32	1000	120	98.0	н
888.994	21.35	36.0	14.65	1000	120	170.0	v

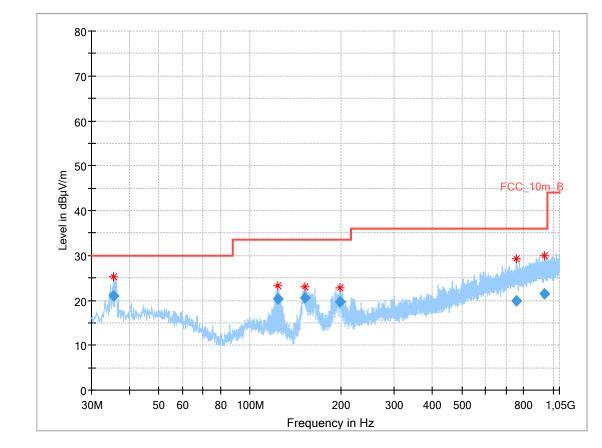


Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
33.393	13.73	30.0	16.27	1000	120	98.0	v
35.551	21.75	30.0	8.25	1000	120	98.0	v
123.427	20.35	33.5	13.15	1000	120	100.0	v
151.276	17.06	33.5	16.44	1000	120	98.0	v
196.279	21.51	33.5	11.99	1000	120	98.0	v
767.097	19.95	36.0	16.05	1000	120	101.0	н

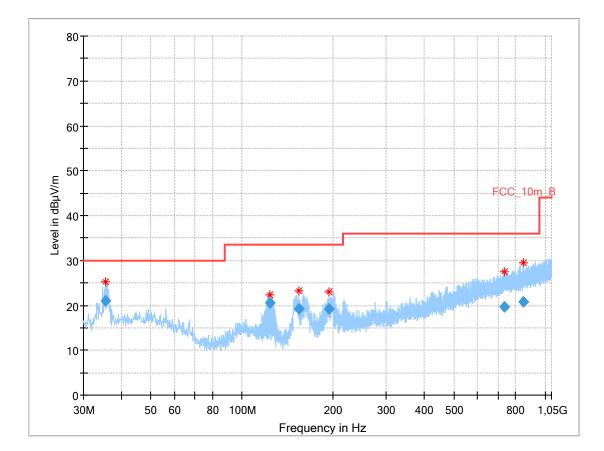
Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
35.569	20.65	30.0	9.35	1000	120	98.0	v
124.467	20.63	33.5	12.87	1000	120	101.0	v
152.135	19.68	33.5	13.82	1000	120	98.0	v
196.268	21.81	33.5	11.69	1000	120	98.0	v
300.006	21.50	36.0	14.50	1000	120	170.0	н
861.651	21.16	36.0	14.84	1000	120	98.0	н

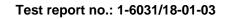

Plot: OFDM (20 MHz nominal channel bandwidth)

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

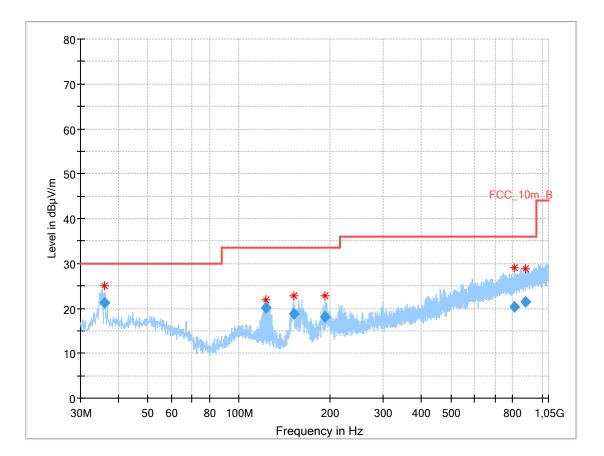
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
35.528	20.54	30.0	9.46	1000	120	98.0	v
123.484	20.78	33.5	12.72	1000	120	101.0	v
151.001	19.28	33.5	14.22	1000	120	98.0	v
164.175	18.12	33.5	15.38	1000	120	98.0	v
196.335	20.87	33.5	12.63	1000	120	98.0	v
864.093	21.24	36.0	14.76	1000	120	98.0	н



Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
35.557	21.01	30.0	8.99	1000	120	98.0	v
123.465	20.28	33.5	13.22	1000	120	101.0	v
151.867	20.55	33.5	12.95	1000	120	98.0	v
198.706	19.72	33.5	13.78	1000	120	98.0	v
755.761	19.99	36.0	16.01	1000	120	170.0	н
934.617	21.38	36.0	14.62	1000	120	170.0	v

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
35.554	21.09	30.0	8.91	1000	120	98.0	v
123.509	20.59	33.5	12.91	1000	120	101.0	v
154.133	19.22	33.5	14.28	1000	120	98.0	v
193.683	19.15	33.5	14.35	1000	120	98.0	v
733.136	19.65	36.0	16.35	1000	120	98.0	v
847.413	20.87	36.0	15.13	1000	120	170.0	н

Plot: RX / Idle mode

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
35.942	21.30	30.0	8.70	1000	120	98.0	v
122.486	20.12	33.5	13.38	1000	120	101.0	v
152.205	18.88	33.5	14.62	1000	120	170.0	v
192.119	18.04	33.5	15.46	1000	120	98.0	v
811.218	20.25	36.0	15.75	1000	120	170.0	н
878.051	21.45	36.0	14.55	1000	120	170.0	v

12.13 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

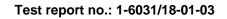
Measurement parameter						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max Hold					
Measured modulation	 DSSS b - mode OFDM g - mode OFDM n HT20 - mode OFDM n HT40 - mode RX / Idle - mode 					
Test setup	See chapter 6.2 – B					
Measurement uncertainty	See chapter 8					

Limits:

FCC		IC			
intentional radiator is operating, the at least 30 dB below that in the 100 k power, based on either an RF con specified in Section 15.209(a) is not	radio frequency po (Hz bandwidth with ducted or a radiate required. In additio	wer that is produce in the band that cor ed measurement. A on, radiated emissio	ead spectrum or digitally modulated ed by the intentional radiator shall be ntains the highest level of the desired Attenuation below the general limits ons which fall in the restricted bands, limits specified in §15.209(a) (see		
	Eigld Ctroppet		Magaziramant diatanaa / m		

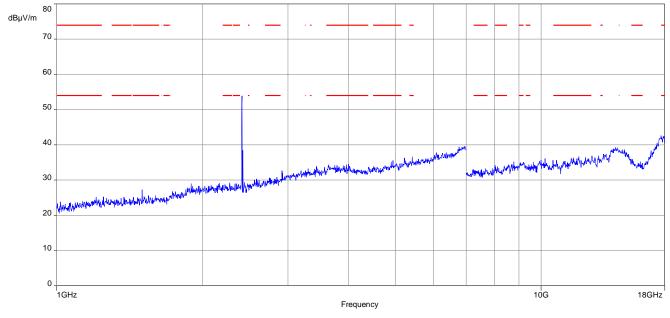
Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m	
Above 960	54.0 (AVG)	2	
	74.0 (peak)	3	

Results: DSSS

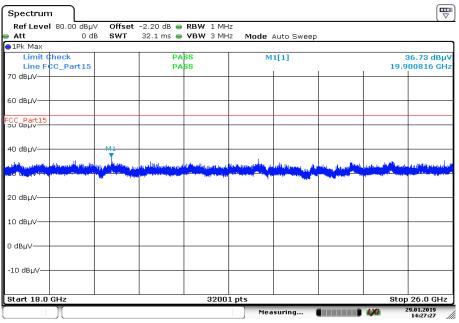

TX spurious emissions radiated / dBµV/m @ 3 m								
lo	owest chann	el	m	iddle channe	el	highest channel		
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m
	All detected emissions are more than 20 dB below the limit.		All detected emissions are more than 20 dB below the limit.		All detected emissions are more than 20 dB below the limit.			
	Peak			Peak			Peak	
	AVG			AVG			AVG	
	Peak			Peak			Peak	
	AVG			AVG			AVG	

Results: OFDM (20 MHz nominal channel bandwidth)

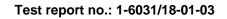
TX spurious emissions radiated / dBµV/m @ 3 m								
lo	owest chann	el	m	iddle channe	el	highest channel		
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m
	All detected emissions are more than 20 dB below the limit.		All detected emissions are more than 20 dB below the limit.		All detected emissions are more than 20 dB below the limit.			
	Peak			Peak			Peak	
	AVG			AVG			AVG	
	Peak			Peak			Peak	
	AVG			AVG			AVG	


$\underline{\textbf{Results:}} \; \mathsf{RX} \, / \, \mathsf{idle} - \mathsf{mode}$

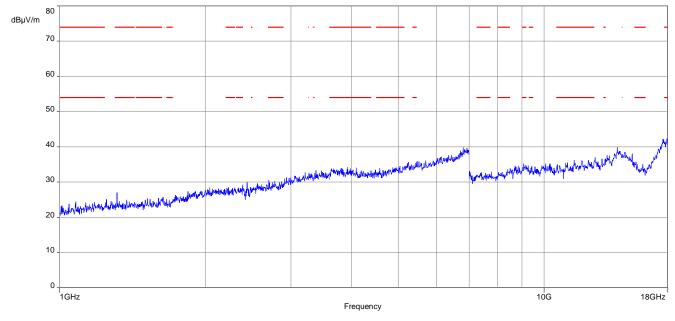
TX spurious emissions radiated / dBµV/m @ 3 m						
f / MHz Detector Level / dBµV/m						
All detected emissions are more than 20 dB below the limit.						
	Peak					
AVG						
Peak						
	AVG					



Plots: DSSS

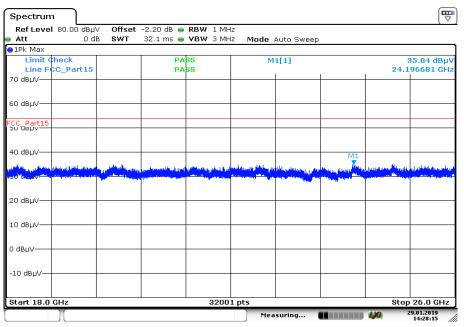

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

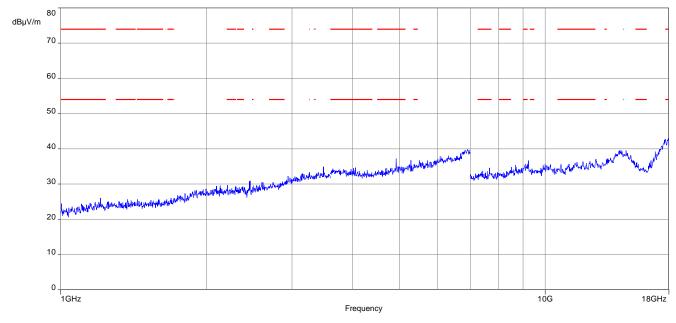


Date: 29.JAN.2019 14:27:27

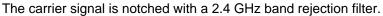

The carrier signal is notched with a 2.4 GHz band rejection filter.



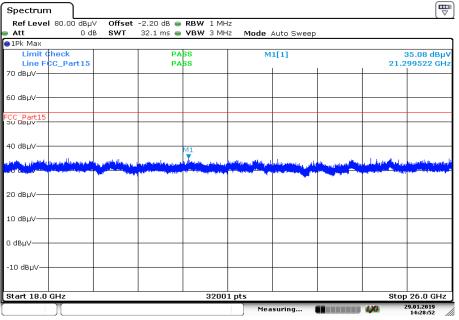
Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

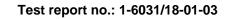


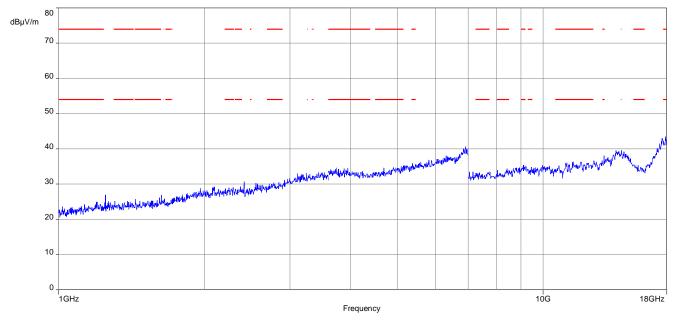
Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

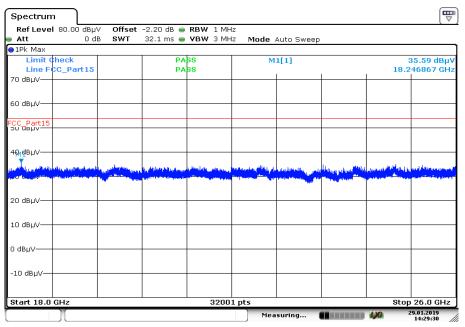


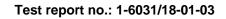
Date: 29.JAN.2019 14:28:15



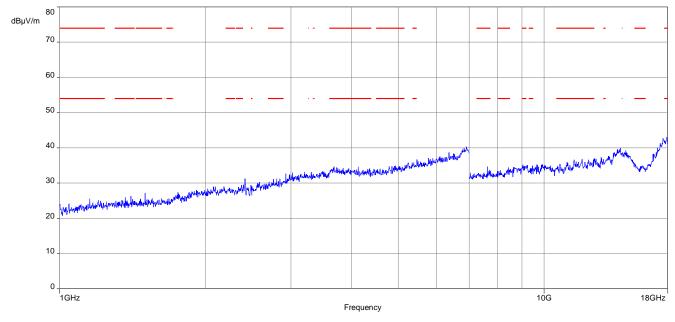

Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization


Date: 29.JAN.2019 14:28:52

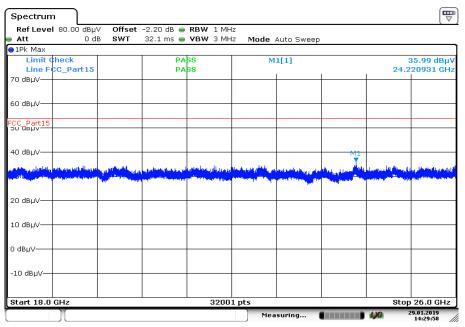

Plots: OFDM (20 MHz bandwidth)



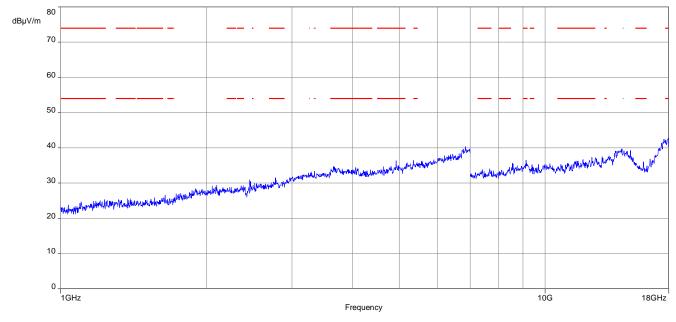
The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 29.JAN.2019 14:29:30



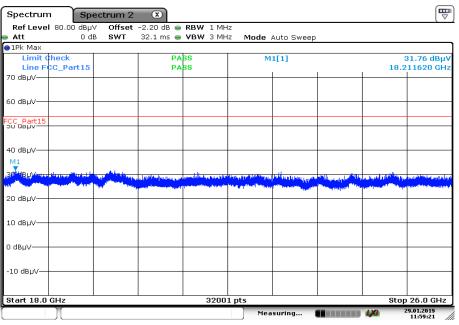
Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

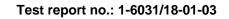


Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

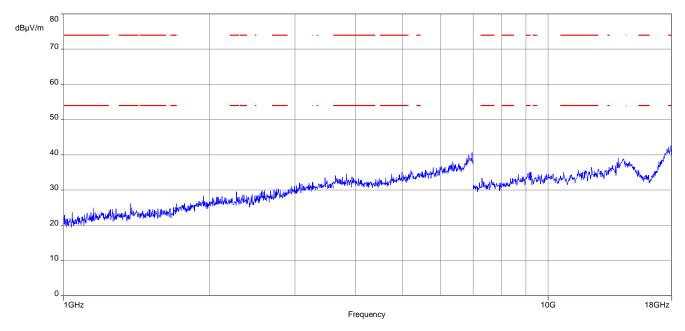


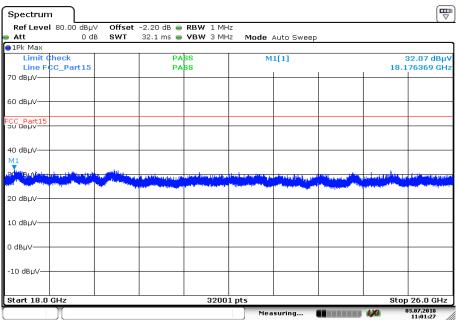
Date: 29.JAN.2019 14:29:58




Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 29.JAN.2019 11:59:21



Plots: RX / idle mode

Plot 2: 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 3.JUL.2018 11:01:27

12.14 Spurious emissions conducted below 30 MHz (AC conducted)

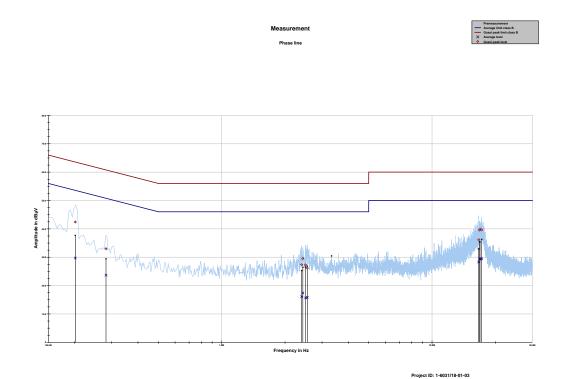
Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

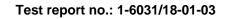
Measurement:

Measurement parameter					
Detector	Peak - Quasi Peak / Average				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max. hold				
Test setup	See chapter 6.4 - A				
Measurement uncertainty	See chapter 8				

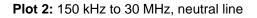
Limits:

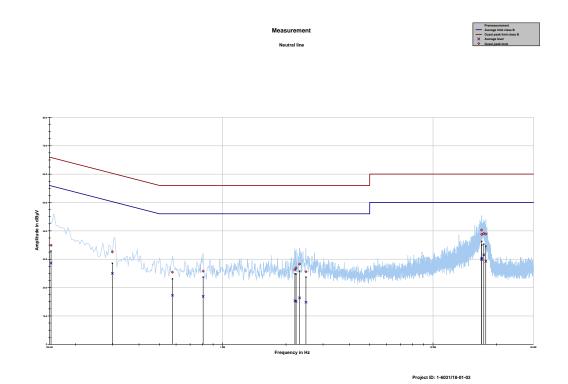

FCC			IC
Frequency / MHz)	Quasi-Peak / (dBµV / m)		Average / (dBµV / m)
0.15 - 0.5	66 to	o 56*	56 to 46*
0.5 – 5	56		46
5 - 30.0	6	0	50

*Decreases with the logarithm of the frequency



Plots:


Plot 1: 150 kHz to 30 MHz, phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.201354	42.41	21.14	63.555	29.70	24.84	54.533
0.281697	32.98	27.78	60.766	23.68	28.56	52.237
2.398779	27.33	28.67	56.000	16.08	29.92	46.000
2.430877	29.59	26.41	56.000	17.39	28.61	46.000
2.503694	27.27	28.73	56.000	15.63	30.37	46.000
2.551715	26.15	29.85	56.000	15.83	30.17	46.000
16.672772	36.15	23.85	60.000	28.30	21.70	50.000
16.810882	39.58	20.42	60.000	29.32	20.68	50.000
16.910670	39.90	20.10	60.000	29.37	20.63	50.000
17.216820	39.65	20.35	60.000	29.45	20.55	50.000

CTC I advanced

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.152715	34.91	30.94	65.851	28.65	27.27	55.922
0.298742	32.59	27.69	60.278	24.99	26.76	51.750
0.576637	25.45	30.55	56.000	17.29	28.71	46.000
0.807110	25.79	30.21	56.000	16.88	29.12	46.000
2.204294	26.24	29.76	56.000	15.35	30.65	46.000
2.232688	26.91	29.09	56.000	15.12	30.88	46.000
2.320123	28.27	27.73	56.000	16.36	29.64	46.000
2.487726	25.57	30.43	56.000	14.85	31.15	46.000
17.010272	40.28	19.72	60.000	29.91	20.09	50.000
17.048115	38.75	21.25	60.000	30.33	19.67	50.000
17.429855	39.05	20.95	60.000	31.53	18.47	50.000
17.823736	38.90	21.10	60.000	29.27	20.73	50.000

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test			
DUT	Device under test			
	Unit under test			
GUE	GNSS User Equipment			
ETSI				
	European Telecommunications Standards Institute			
EN	European Standard			
FCC	Federal Communications Commission			
FCC ID	Company Identifier at FCC			
IC	Industry Canada			
PMN	Product marketing name			
HMN	Host marketing name			
HVIN	Hardware version identification number			
FVIN	Firmware version identification number			
EMC	Electromagnetic Compatibility			
HW	Hardware			
SW	Software			
Inv. No.	Inventory number			
S/N or SN	Serial number			
C	Compliant			
NC	Not compliant			
NA	Not applicable			
NP	Not performed			
PP	Positive peak			
QP	Quasi peak			
AVG	Average			
00	Operating channel			
OCW	Operating channel bandwidth			
OBW	Occupied bandwidth			
OOB	Out of band			
DFS	Dynamic frequency selection			
CAC	Channel availability check			
OP	Occupancy period			
NOP	Non occupancy period			
DC	Duty cycle			
PER	Packet error rate			
CW	Clean wave			
MC	Modulated carrier			
WLAN	Wireless local area network			
RLAN	Radio local area network			
DSSS	Dynamic sequence spread spectrum			
OFDM	Orthogonal frequency division multiplexing			
FHSS	Frequency hopping spread spectrum			
GNSS	Global Navigation Satellite System			
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz			

CTC I advanced

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-04-26

Annex C Accreditation Certificate – D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundestillee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:	
Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Aktraditerungsstalle GmbH (DAkks). Exempted is the unchanged form of separate disseminations of the cover sheets the the coloriting assistante body mentioned experiental. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gastett I o. 2623) and the Regulation (EG) No 755/2008 of the (unopean Parliament and of the Council of 9 July 2008 straining out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union L28 of 9 July 2008, p. 30), DakkS is a signatory to the Multilateral Agreements for accredit of the European cooperation for
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04	A sequency to the unitability accessible acc
Frankfurt am Main, 11.01.2019 / bloc. Uwe Zimmermann Head of Division	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf