

CFR 47 FCC PART 15 SUBPART C ISED RSS-210 ISSUE 10

TEST REPORT

For

ASC-2680 HD Video Drone

FCC MODEL NUMBER: CT-6483

IC MODEL NUMBER: CT-6483T

REPORT NUMBER: 4790858924-RF-2

ISSUE DATE: June 1, 2023

FCC ID: 2ASK3CT-6483T

IC: 24796-CT6483T

Prepared for

AMAX INDUSTRIAL GROUP CHINA CO.,LTD OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	June 1, 2023	Initial Issue	

Summary of Test Results						
Clause	Test Items	FCC/ISED Rules	Test Results			
1	20dB Bandwidth and 99% Occupied Bandwidth	CFR 47 FCC §15.215 (c) ISED RSS-Gen Clause 6.7	Pass			
2	Radiated Emission	CFR 47 FCC §15.249 (a)(d)(e) ISED RSS-210 Annex B B.10 CFR 47 FCC §15.205 and §15.209 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass			
3	Conducted Emission Test for AC Power Port	CFR 47 FCC §15.207 RSS-GEN Clause 8.8	Not Applicable (Note 3)			
4	4 Antenna Requirement CFR 47 FCC §15.203 ISED RSS-Gen Clause 6.8 Pass					
Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China. Note 2: The measurement result for the sample received is <pass> according to < CFR 47 FCC PART 15 SUBPART C, ISED RSS-210 ISSUE 10 > when <accuracy method=""> decision rule is applied.</accuracy></pass>						

Note 3: The EUT is powered by battery and can't be charged.

CONTENTS

1.	ATTESTATION OF TEST RESULTS
2.	TEST METHODOLOGY6
3.	FACILITIES AND ACCREDITATION
4.	CALIBRATION AND UNCERTAINTY
4	.1. MEASURING INSTRUMENT CALIBRATION
4	.2. MEASUREMENT UNCERTAINTY7
5.	EQUIPMENT UNDER TEST
5	1. DESCRIPTION OF EUT
5	2. CHANNEL LIST
5	.3. MAXIMUM FIELD STRENGTH
5	.4. TEST CHANNEL CONFIGURATION
5	.5. THE WORSE CASE POWER SETTING PARAMETER
5	.6. DESCRIPTION OF AVAILABLE ANTENNAS
5	7. DESCRIPTION OF TEST SETUP
6.	MEASURING EQUIPMENT AND SOFTWARE USED11
7.	ANTENNA PORT TEST RESULTS12
7	1. 20DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH
7	<i>DUTY CYCLE</i>
8.	RADIATED TEST RESULTS
•	1. RESTRICTED BANDEDGE RESTRICTED BANDEDGE AND FIELD STRENGTH DF INTENTIONAL EMISSIONS
8	2. SPURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)
8	.3. SPURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)
8	.4. SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)
8	.5. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)
8	.6. SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)
9.	ANTENNA REQUIREMENT

1. ATTESTATION OF TEST RESULTS

Applicant Information Company Name: AMAX INDUSTRIAL GROUP CHINA CO., LTD Address: OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG Manufacturer Information AMAX INDUSTRIAL GROUP CHINA CO., LTD OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG EUT Name: ASC-2680 HD Video Drone CT-6483 CT-6483T May 22, 2023

Company Name: Address:

EUT Information

FCC Model: IC Model: Sample Received Date: Sample Status: Sample ID: Date of Tested:

Normal 6099249 May 23, 2023 to June 1, 2023

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	Page		
ISED RSS-210 ISSUE 10	Pass		

Prepared By:

Venn Sucur

Denny Huang Senior Project Engineer

Checked By:

Kebo Zhang Senior Project Engineer

Approved By:

oober

Stephen Guo **Operations Manager**

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, ISED RSS-210 ISSUE 10 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Conduction emission	3.62 dB			
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB			
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB			
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)			
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)			
Duty Cycle	±0.028%			
DTS and 99% Occupied Bandwidth	±0.0196%			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	ASC-2680 HD Video Drone			
FCC Model:	CT-6483			
IC Model:	CT-6483T			
Broduct Description	Operation Frequency 2466 MHz ~ 2478 MHz			
Product Description	Modulation Type GFSK			
Battery DC 6 V				

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2466	2	2470	3	2474	4	2478

5.3. MAXIMUM FIELD STRENGTH

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak field strength (dBµV/m)
GFSK	2466 ~ 2478	1-4[4]	86.30

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 1(Low Channel), CH 3(MID Channel), CH 4(High Channel)	2466 MHz, 2474 MHz, 2478 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2466 MHz ~ 2478 MHz Band					
Test Soft	ware Version	/			
Modulation Type	Transmit Antenna	Test Channel			
	Number	CH 1	CH 3	CH 4	
GFSK	1	Default	Default	Default	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	Maximum Antenna Gain (dBi)
1	2466 ~ 2478	Wire Antenna	0.17

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX	Antenna 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
/	/	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/

ACCESSORY

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
/	/	/	/	/	/

TEST SETUP

The EUT have the engineer mode inside.

SETUP DIAGRAM FOR TEST

New batteries were used during tested.

6. MEASURING EQUIPMENT AND SOFTWARE USED

Radiated Emissions							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.17, 2022	Oct.16, 2023		
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024		
Preamplifier	HP	8447D	2944A09099	Oct.17, 2022	Oct.16, 2023		
EMI Measurement Receiver	R&S	ESR26	101377	Oct.17, 2022	Oct.16, 2023		
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024		
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.17, 2022	Oct.16, 2023		
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024		
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.17, 2022	Oct.16, 2023		
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.17, 2022	Oct.16, 2023		
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024		
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.17, 2022	Oct.16, 2023		
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01202035	Oct.17, 2022	Oct.16, 2023		
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.17, 2022	Oct.16, 2023		
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.17, 2022	Oct.16, 2023		
Software							
[Description		Manufacturer	Name	Version		
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1		

7. ANTENNA PORT TEST RESULTS

7.1. 20DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.249) Subpart C RSS-Gen Issue 5						
Section	Test Item	Limit	Frequency Range (MHz)			
CFR 47 FCC §15.215 (c)	20dB Bandwidth	for reporting purposes only	2400-2483.5			
ISED RSS-Gen Clause 6.7 Issue 5	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5			

TEST PROCEDURE

Connect the UUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1% to 5% of the occupied bandwidth
VBW	approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

Refer to clause 8 ratiated test setup.

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	63%
Atmosphere Pressure	101 kPa	Test Voltage	DC 6 V

TEST RESULTS

Frequency	99% Bandwidth	20dB Bandwidth	Result
(MHz)	(MHz)	(MHz)	
2466	1.399	1.079	PASS

99% Bandwidth Test Plot

Spect	rum	\neg	Receiver	×								
Att PS PA		67.00		300 ms	 RBW 30 kH; VBW 100 kH; 		Mode A	uto Sw	eep	Input 17	AC	
⊖1Pk Vi	ew											
co do d							M	1[1]				53.92 dBµV
60 dBµ\	/				M	1		_				59800 GHz
50 dBµ\	,					[0	CC BW		1	1.3986	01399 MHz
20 aph/												
40 dBµ\	,				(V	12						
40 UBD	·				M/	Y						
30 dBu\	/											
00 000						114						
20 dBµ\	/					-						
						- al	1.1					
10 dBµ\	/						M.					
					N N N		ԴՊՊՈ	he de				
O dBµV-			with the with	Muhl I			<u> </u>	<u>Ippelleg</u> e	անե	tin mination	the design of	A
physically	1.1846-14	all revenues	tertholographin in a	10.00 M				1	n ollo	Dellative Managements		AND HUNDRED WAS
-10 dBµ	N					<u> </u>						
-20 dBµ	N-					<u> </u>						
-30 dBµ	N					-						
CF 2.4	66 GH	Ηz			1001	l pt	s				Spar	1 20.0 MHz
Marker												
Туре	Ref	Trc	X-valu	е	Y-value		Func	tion		Fund	tion Result	t
M1		1		598 GHz	53.92 dBj							
T1		1		312 GHz	29.21 dBj		0	cc Bw			1.3986	01399 MHz
T2		1	2.4661	798 GHz	37.02 dBj	JV						
							Mea	suring	.		444	16.05.2023 18:53:59

Date: 16.MAY.2023 18:53:59

20dB Bandwidth Test Plot

Ref Level 67.00 dBµV ● RBW 30 k Att 0 dB ● SWT 300 ms ● VBW 100 k PS PA 0			`
	Hz Mode Auto Swe	eep Input 1	AC
1Pk View			
	D2[1]		-18.53 di
50 dBµV	MI		-859.0 kH
50 dBuV	M1[1]		54.03 dBµ\ 2.4659800 GH
		1	2.4039600 GH
10 dBµV	3		
D1 34.030 dBuV			
30 dBµV			
	U I		
20 dBµV	- M		
	՝ Կանում		
	991		
DOBLY	""Why Angelight	Mine	
wine was a superior with the superior of the s			and all the and a distribution and
10 dBµV			
20 dBµV			
30 dBµV			
	01 pts		Span 20.0 MHz
larker	1	-	
Type Ref Trc X-value Y-value M1 1 2.46598 GHz 54.03 d	Function	Fund	ction Result
D2 M1 1 -859.0 kHz -18.53			
D3 M1 1 220.0 kHz -17.8			
	Measuring		16.05.2023

Date: 16.MAY.2023 18:57:38

Frequency	99% Bandwidth	20dB Bandwidth	Result
(MHz)	(MHz)	(MHz)	
2474	1.299	1.059	PASS

99% Bandwidth Test Plot

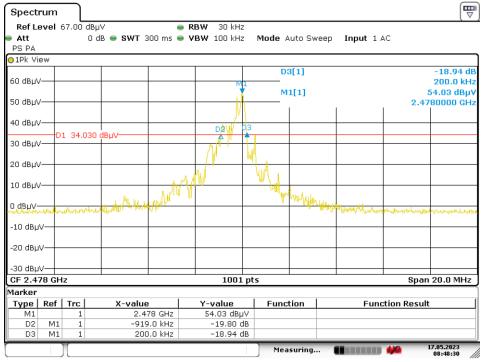
Spectrum Ref Level Att			-	RBW 30 kH; VBW 100 kH;		Auto Sw	eep	Input 17	AC	(\
PS PA 1Pk View										
JIPK VIEW					M	1[1]				54.30 dBµ\
60 dBµV				M						739800 GH
50 dBµV					0	CC BW			1.298	701299 MH:
50 GDD 4				l M						
40 dBµV				- Not	12					
30 dBuV				T 1 • X	¶2 ▼					
30 UBHV					V					
20 dBµV				-h./-	- m.l					
			. к.	า∤∛	'What					
10 dBµV			A.V		Մվ	land .				
D dBUV	الروب أوأريك الم		Mar 1			laydyw	With	When Muchachast a	durat and	parties and the second second
	and the short	well-thrown in the second						Horn a crown APA	a non an	\$ ² ~584~70~554470498
-10 dBµV										
-20 dBµV		_								
-30 dBµV										
CF 2.474 GH	lz			1001	pts				Spa	n 20.0 MHz
1arker	1 1				1 -			-		
Type Ref M1	Trc 1	2 473	98 GHz	<u>Y-value</u> 54.30 dBµ	Func	tion		Fund	tion Resu	t
T1	1	2.47290		29.69 dBp		ICC BW			1.2987	01299 MHz
T2	1	2.47419	98 GHz	32.84 dBj	IV .					

Date: 17.MAY.2023 08:31:01

20dB Bandwidth Test Plot

Spectrum									
Ref Level 67	7.00 dBj	VL VL		RBW 30 kH	z				
Att	0 0	dB 👄 SWT 3	800 ms 👄	VBW 100 kH	z Mo	le Auto Sv	veep Inp	ut 1 AC	
PS PA									
∋1Pk View					_				
						D3[1]			-18.53 dE
60 dBµV				IV	1	-			220.0 kHz
ED dD: A/				1	ĺ.	M1[1]			54.36 dBµV
50 dBµV				l l			1	1	2.4739800 GHz
40 dBµV				["]					
	34.360	dBuV			03				
30 dBµV	54.500	черу			T.				
				1 101	LM -				
20 dBµV					1				
			1	UNY	1 W.				
10 dBµV			10	h ll li					
			L M L	V I		MMCMAN	hale and		
P. dBUY	Waterball	Contraction (11) (11) (11) (11) (11) (11) (11) (11	palla r				and addressing and	Muthermours	would approximate
-10 dBµV									
-10 ubpv									
-20 dBµV									
-30 dBµV									
CF 2.474 GHz		•		100:	pts				Span 20.0 MHz
Marker									
Type Ref	Trc	X-value		Y-value	F	unction		Function	Result
M1	1		98 GHz	54.36 dB					
D2 M1	1		0.0 kHz	-18.17					
D3 M1	1	220).0 kHz	-18.53	dB				
						Measuring			17.05.2023 08:36:30

Date: 17.MAY.2023 08:36:31


Frequency	99% Bandwidth	20dB Bandwidth	Result
(MHz)	(MHz)	(MHz)	
2478	1.339	1.119	PASS

99% Bandwidth Test Plot

Spectrum Ref Level	67.00 di	2		BW 30 kHz						(₩
Att PS PA		⊔dB ⊜ SWT 30			Mode 4	uto Sw	еер	Input 1	AC	
∋1Pk View										
					М	1[1]				53.71 dBµ\
60 dBµV				MI						779800 GH
50 dBµV				l M	0	CC BW			1.338	661339 MH
00 GDDA				T MB						
40 dBµV				M						
				T1	21					
30 dBµV				T N I	¥/					
20 dBuV				/ 4	<u>v</u>]					
20 0000				M.	- yor i					
10 dBµV			<u>. MM</u>	° V	- V (
					~ 4w	Mylanton				
O dBUY	walthat	approx and here of the second se	<u>107</u> 0				p. hu	Maharata	Holl yolawilliam	nifainte Merrielande
-10 dBµV										
-10 0004										
-20 dBµV										
-30 dBµV										
CF 2.478 GI	lz			1001	pts				Spa	n 20.0 MHz
Marker	1 - 1				1 -					•-
Type Ref M1	Trc 1	X-value 2,4779		<u>Y-value</u> 53.71 dBμ\	Func	tion		Fun	ction Resu	It
T1	1	2.476901		30.22 dBµ\		cc Bw			1.338	661339 MHz
T2	1	2.478239		27.35 dBµ\					2.000	
	1					suring.	-			17.05.2023

Date: 17.MAY.2023 08:45:48

20dB Bandwidth Test Plot

Date: 17.MAY.2023 08:48:31

7.2. DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero - Span Spectrum Analyzer method.

TEST SETUP

Refer to clause 8 ratiated test setup.

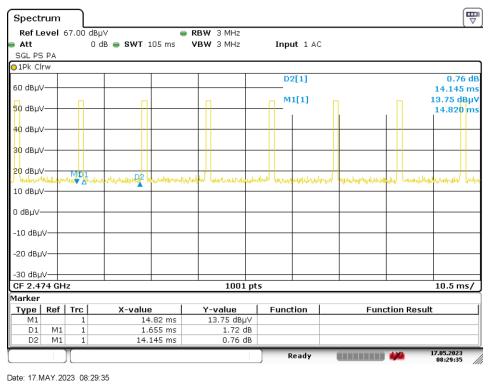
TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	63%
Atmosphere Pressure	101 kPa	Test Voltage	DC 6 V

TEST RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)
2.4G	1.55	14.25	0.1088	10.88	-19.27


Note: Duty Cycle Correction Factor=20log(x). Where: x is Duty Cycle



ON TIME AND DUTY CYCLE MID CH PLOT-1

Spect	rum	ſ												
Ref Le	evel (67.00	dBµV	•	RB	🖌 3 MHz								
🗕 Att			0 dB 😑 SWT	25 ms	VB'	W 3 MHz		Input	t 1 AC					
SGL PS	PA													
⊖1Pk Cl	rw													
60 dBµ\	,							D	2[1]					1.03 dB 14.2500 ms
50 dBµ\			_		_			M	1[1]	1			1	13.11 dBµV 3.3750 ms
40 dBµ\					_						+	_		
30 dBµV					_						+	_		
20 dBµ\ <mark>Միս Լոհի Միս</mark> 10 dBµ\	hunger	MJ.	Dylyrffriden Un Myfa	brand for the states	awah	mproduktion	Whar	why and a grant of the	ghapertoool	40441 <mark>0</mark>	ł	highert	unin un har ann	d.Anthonyoungedu
0 dBµV-	_						-							
-10 dBµ'	v+				_									
-20 dBµ'	v—													
-30 dBµ	v—			+										
CF 2.4	74 GH	lz	•			1001	pts	5						2.5 ms/
Marker														
Туре	Ref	Trc	X-valu			Y-value		Func	tion			Fun	ction Resul	t l
M1		1		.375 ms		13.11 dBµ								
D1 D2	M1 M1	1		1.55 ms 4.25 ms		0.42								
			-			1.03) R	eady	1		шт	444	17.05.2023 08:28:28

Date: 17.MAY.2023 08:28:28

Note: All the modes had been tested, but only the worst duty cycle recorded in the report.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

CFR 47 FCC §15.249 (a)(d)(c)(e) and ISED RSS-210 Issue 10 Annex B B.10

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

The field strength of	emissions from intention	nal radiators operated wit	thin these frequency
	bai	nds	
Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)
902 - 928	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3
2400 - 2483.5	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3
5725 – 5875	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radia	ated outside of the specified frequent	cy bands above 30	above 30 MHz			
Frequency Range	Field Strength Limit	Field Stren	•			
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m			
		Quasi-Peak				
30 - 88	100	40				
88 - 216	150	43.	5			
216 - 960	200	46				
Above 960	500	54				
Above 1000	500	Peak	Average			
Above 1000	500	74	54			

FCC Emissi	ons radiated outside of the specified fr	equency bands below 30 MHz
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

ISED General field strength limits at frequencies below 30 MHz

	Table 6 – General field strength limits at freq	uencies below 30 MHz
Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

IHz	MHz	GHz
.090 - 0.110	149.9 - 150.05	9.0 - 9.2
495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
.1735 - 2.1905	158.7 - 156.9	10.6 - 12.7
.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
.125 - 4.128	187.72 - 173.2	14.47 - 14.5
17725 - 4.17775	240 - 285	15.35 - 16.2
20725 - 4.20775	322 - 335.4	17.7 - 21.4
677 - 5.683	399.9 - 410	22.01 - 23.12
215 - 6.218	608 - 614	23.6 - 24.0
26775 - 6.26825	960 - 1427	31.2 - 31.8
31175 - 6.31225	1435 - 1626.5	38.43 - 38.5
291 - 8.294	1645.5 - 1646.5	Above 38.6
362 - 8.366	1660 - 1710	
37625 - 8.38675	1718.8 - 1722.2	
1425 - 8.41475	2200 - 2300	
.29 - 12.293	2310 - 2390	
2.51975 - 12.52025	2483.5 - 2500	
2.57675 - 12.57725	2655 - 2900	
3.36 - 13.41	3280 - 3287	
8.42 - 16.423	3332 - 3339	
.69475 - 16.69525	3345.8 - 3358	
.80425 - 16.80475	3500 - 4400	
.5 - 25.67	4500 - 5150	
.5 - 38.25	5350 - 5460	
- 74.6	7250 - 7750	
.8 - 75.2	8025 - 8500	

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

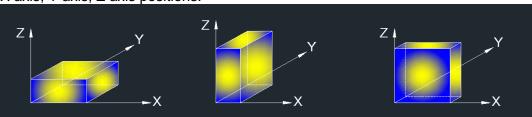
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
NBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.2. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

For Restricted Bandedge and field strength of intentional emission: Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the transmitting duration, please refer to clause 7.2.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report. 8. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious Emission (30 MHz ~ 1 GHz):

Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.3. All modes, channels and antennas have been tested, only the worst data was recorded in the

report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the transmitting duration, please refer to clause 7.2.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the transmitting duration, please refer to clause 7.2.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

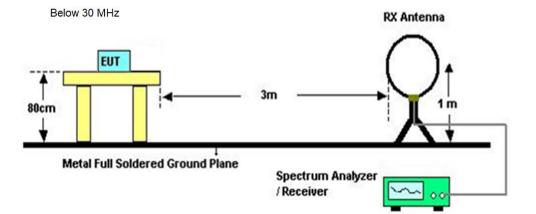
7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

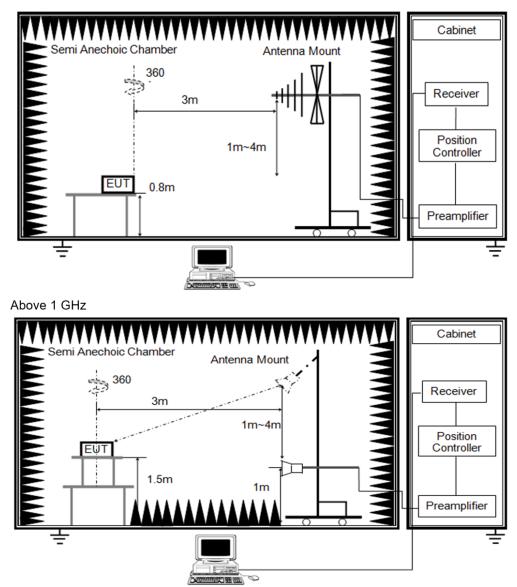
For Radiate Spurious emission (18 GHz ~ 26 GHz):

Note:

1. Measurement = Reading Level + Correct Factor.


2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

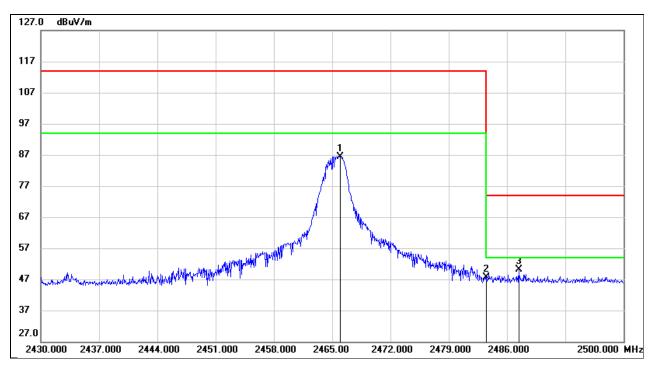
3. Peak: Peak detector.


4. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

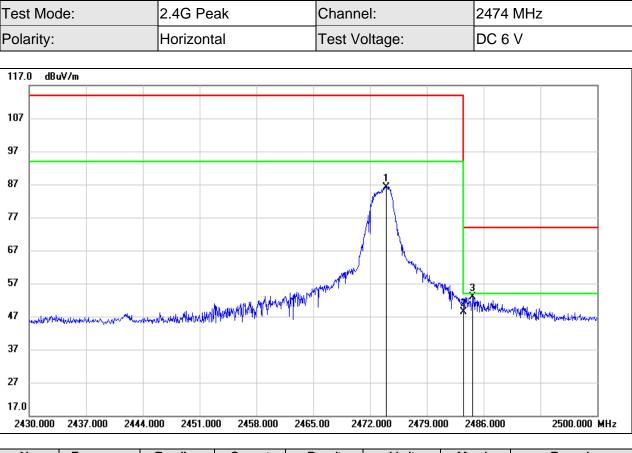
TEST SETUP

Below 1 GHz and above 30 MHz

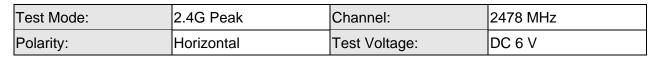
TEST ENVIRONMENT

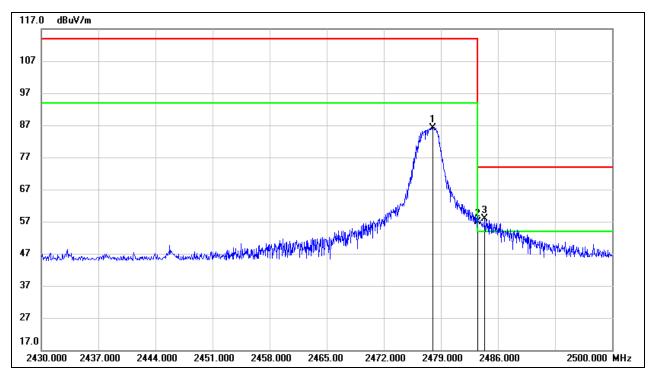

Temperature	25.1 °C	Relative Humidity	63%
Atmosphere Pressure	101 kPa	Test Voltage	DC 6 V

TEST RESULTS

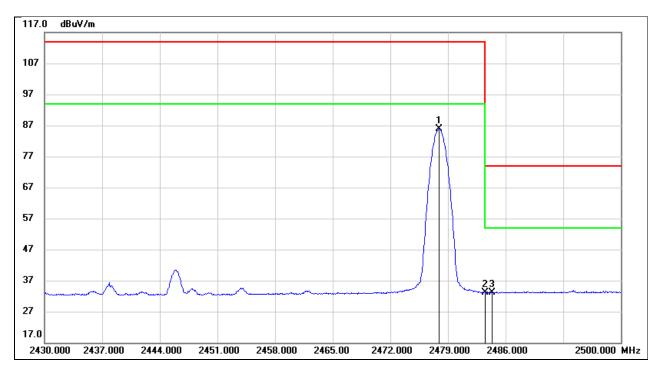

8.1. RESTRICTED BANDEDGE RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS

Test Mode:	2.4G Peak	Channel:	2466 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2466.000	53.91	32.39	86.30	114.00	-27.70	Fundamental
2	2483.500	15.17	32.44	47.61	74.00	-26.39	peak
3	2487.400	17.65	32.45	50.10	74.00	-23.90	peak

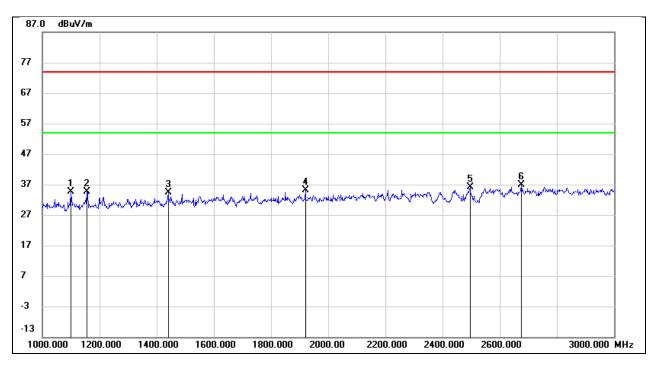


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2474.000	53.70	32.41	86.11	114.00	-27.89	Fundamental
2	2483.500	15.94	32.44	48.38	74.00	-25.62	peak
3	2484.670	20.34	32.44	52.78	74.00	-21.22	peak



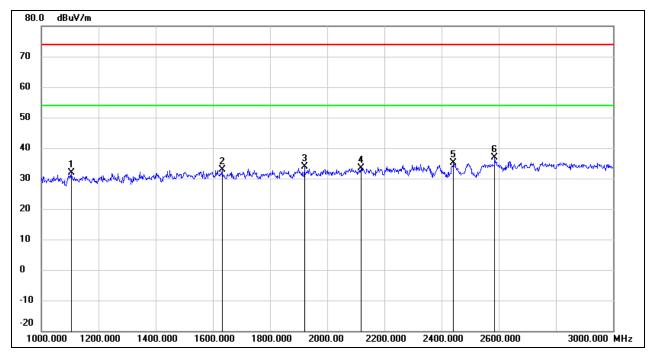
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2478.000	53.73	32.42	86.15	114.00	-27.85	Fundamental
2	2483.500	24.50	32.44	56.94	74.00	-17.06	peak
3	2484.390	25.43	32.44	57.87	74.00	-16.13	peak

Test Mode:	2.4G Peak	Channel:	2478 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V

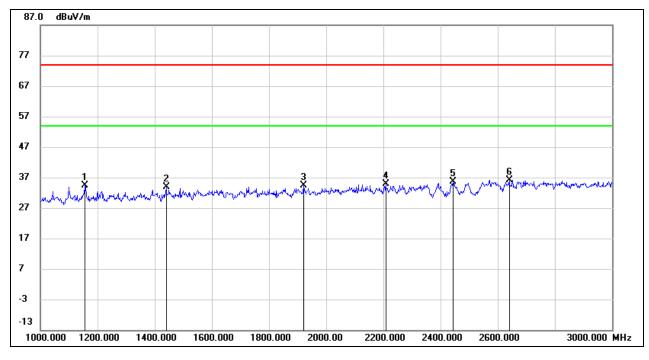


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2478.000	53.35	32.42	85.77	94.00	-8.23	Fundamental
2	2483.500	0.61	32.44	33.05	54.00	-20.95	AVG
3	2484.360	0.67	32.44	33.11	54.00	-20.89	AVG

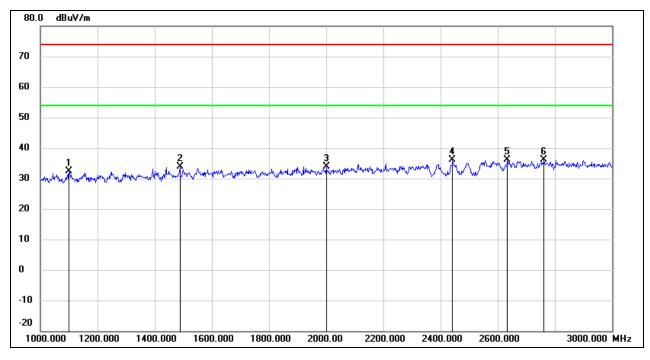
8.2. SPURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)


Test Mode:	2.4G	Channel:	2466 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V

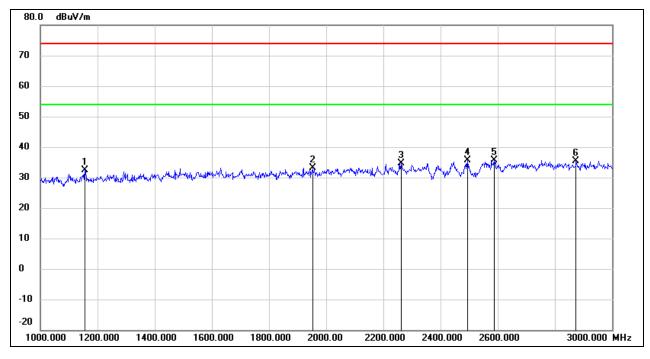
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1100.000	49.21	-14.57	34.64	74.00	-39.36	peak
2	1156.000	49.00	-14.31	34.69	74.00	-39.31	peak
3	1440.000	47.30	-12.98	34.32	74.00	-39.68	peak
4	1920.000	46.56	-11.32	35.24	74.00	-38.76	peak
5	2496.000	44.75	-8.51	36.24	74.00	-37.76	peak
6	2676.000	44.90	-7.96	36.94	74.00	-37.06	peak


Test Mode:	2.4G	Channel:	2466 MHz
Polarity:	Vertical	Test Voltage:	DC 6 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1104.000	46.33	-14.55	31.78	74.00	-42.22	peak
2	1632.000	45.07	-12.27	32.80	74.00	-41.20	peak
3	1920.000	45.31	-11.32	33.99	74.00	-40.01	peak
4	2118.000	43.94	-10.45	33.49	74.00	-40.51	peak
5	2442.000	43.87	-8.79	35.08	74.00	-38.92	peak
6	2586.000	45.23	-8.24	36.99	74.00	-37.01	peak


Test Mode:	2.4G	Channel:	2474 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1156.000	48.78	-14.31	34.47	74.00	-39.53	peak
2	1440.000	46.91	-12.98	33.93	74.00	-40.07	peak
3	1920.000	45.82	-11.32	34.50	74.00	-39.50	peak
4	2208.000	44.78	-9.99	34.79	74.00	-39.21	peak
5	2444.000	44.46	-8.78	35.68	74.00	-38.32	peak
6	2640.000	44.30	-8.07	36.23	74.00	-37.77	peak

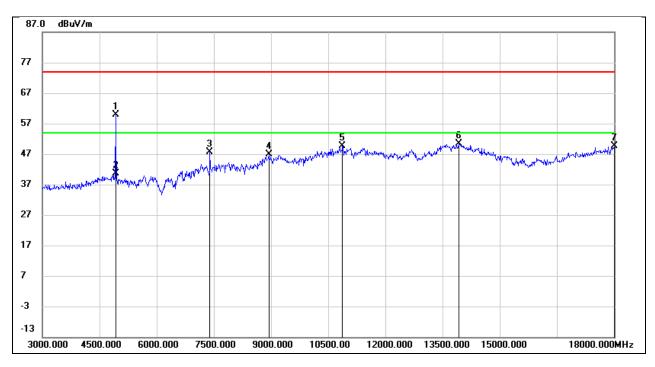

Test Mode:	2.4G	Channel:	2474 MHz
Polarity:	Vertical	Test Voltage:	DC 6 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1100.000	46.97	-14.57	32.40	74.00	-41.60	peak
2	1488.000	46.64	-12.76	33.88	74.00	-40.12	peak
3	2000.000	45.00	-11.06	33.94	74.00	-40.06	peak
4	2442.000	44.95	-8.79	36.16	74.00	-37.84	peak
5	2634.000	44.31	-8.09	36.22	74.00	-37.78	peak
6	2762.000	43.89	-7.70	36.19	74.00	-37.81	peak

Test Mode:	2.4G	Channel:	2478 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V

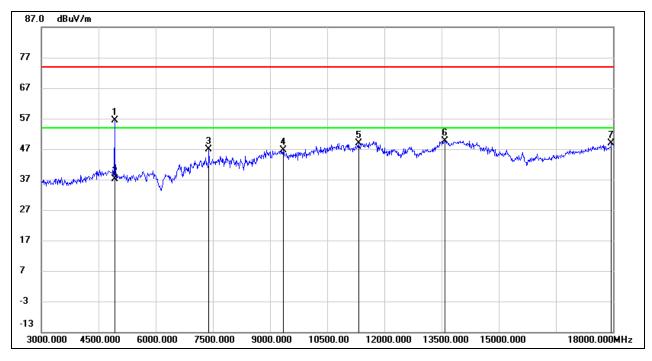
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1156.000	46.58	-14.31	32.27	74.00	-41.73	peak
2	1952.000	44.41	-11.22	33.19	74.00	-40.81	peak
3	2262.000	44.43	-9.72	34.71	74.00	-39.29	peak
4	2494.000	44.25	-8.52	35.73	74.00	-38.27	peak
5	2588.000	43.82	-8.22	35.60	74.00	-38.40	peak
6	2874.000	42.73	-7.37	35.36	74.00	-38.64	peak

Test Mode:	2.4G	Channel:	2478 MHz
Polarity:	Vertical	Test Voltage:	DC 6 V

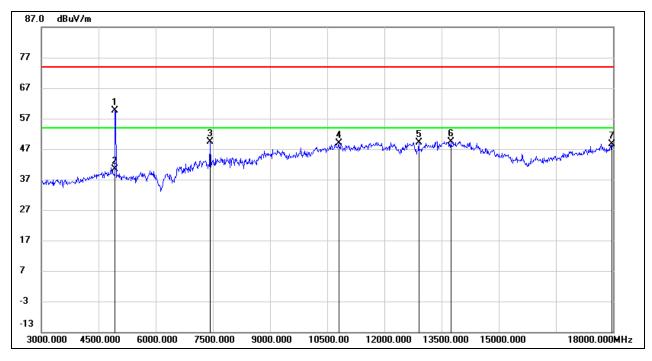


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1248.000	46.67	-13.88	32.79	74.00	-41.21	peak
2	1550.000	46.06	-12.54	33.52	74.00	-40.48	peak
3	2112.000	44.74	-10.48	34.26	74.00	-39.74	peak
4	2440.000	44.85	-8.80	36.05	74.00	-37.95	peak
5	2678.000	44.49	-7.96	36.53	74.00	-37.47	peak
6	2872.000	42.84	-7.37	35.47	74.00	-38.53	peak

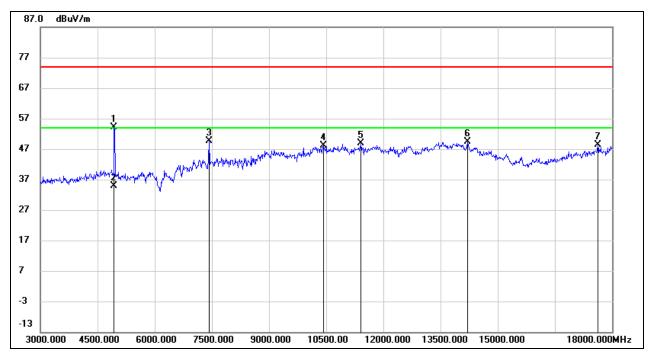
8.3. SPURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)


Test Mode:	2.4G	Channel:	2466 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V

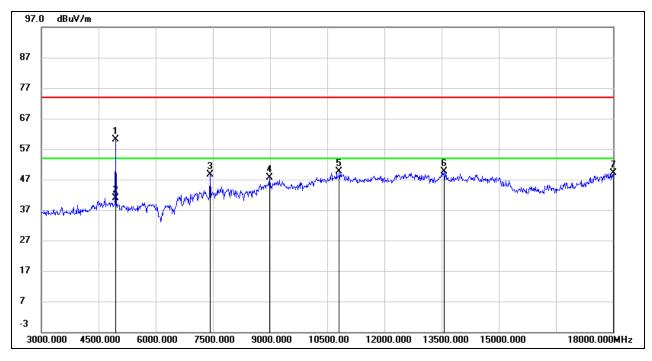
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	59.84	0.14	59.98	74.00	-14.02	peak
2	4920.000	/	/	40.71	54.00	-13.29	AVG
3	7395.000	41.35	6.40	47.75	74.00	-26.25	peak
4	8940.000	36.91	10.04	46.95	74.00	-27.05	peak
5	10875.000	35.24	14.32	49.56	74.00	-24.44	peak
6	13920.000	28.70	21.79	50.49	74.00	-23.51	peak
7	18000.000	23.83	25.69	49.52	74.00	-24.48	peak


Test Mode:	2.4G	Channel:	2466 MHz
Polarity:	Vertical	Test Voltage:	DC 6 V

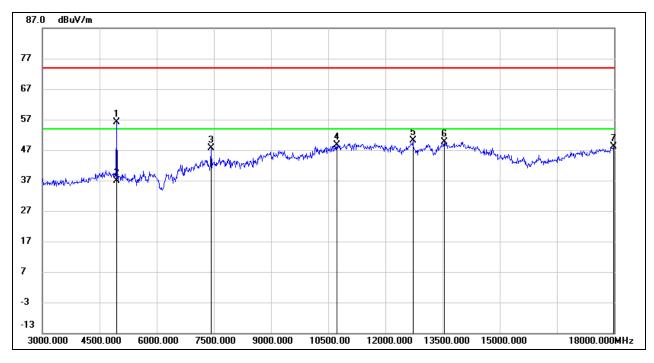
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	56.19	0.14	56.33	74.00	-17.67	peak
2	4920.000	/	/	37.06	54.00	-16.94	AVG
3	7395.000	40.53	6.40	46.93	74.00	-27.07	peak
4	9345.000	35.90	10.63	46.53	74.00	-27.47	peak
5	11325.000	32.97	15.95	48.92	74.00	-25.08	peak
6	13590.000	28.65	21.09	49.74	74.00	-24.26	peak
7	17955.000	23.52	25.42	48.94	74.00	-25.06	peak


Test Mode:	2.4G	Channel:	2474 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4935.000	59.44	0.20	59.64	74.00	-14.36	peak
2	4935.000	/	/	40.37	54.00	-13.63	AVG
3	7425.000	43.01	6.39	49.40	74.00	-24.60	peak
4	10800.000	34.87	14.06	48.93	74.00	-25.07	peak
5	12900.000	30.70	18.50	49.20	74.00	-24.80	peak
6	13740.000	28.07	21.40	49.47	74.00	-24.53	peak
7	17970.000	23.18	25.51	48.69	74.00	-25.31	peak


Test Mode:	2.4G	Channel:	2474 MHz
Polarity:	Vertical	Test Voltage:	DC 6 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4935.000	54.05	0.20	54.25	74.00	-19.75	peak
2	4935.000	/	/	34.98	54.00	-19.02	AVG
3	7425.000	43.28	6.39	49.67	74.00	-24.33	peak
4	10425.000	35.28	12.84	48.12	74.00	-25.88	peak
5	11415.000	32.50	16.29	48.79	74.00	-25.21	peak
6	14205.000	28.16	21.11	49.27	74.00	-24.73	peak
7	17625.000	24.83	23.47	48.30	74.00	-25.70	peak

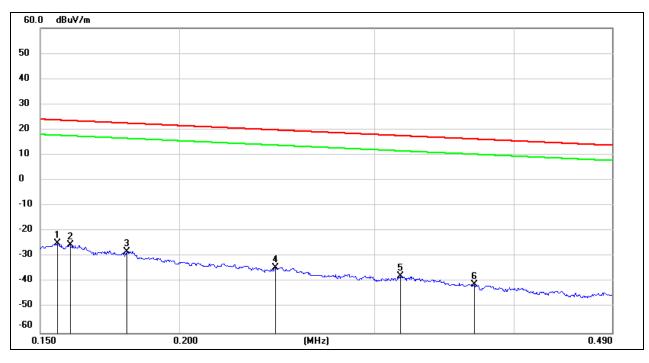

Test Mode:	2.4G	Channel:	2478 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	59.80	0.26	60.06	74.00	-13.94	peak
2	4950.000	/	/	40.79	54.00	-13.21	AVG
3	7425.000	42.24	6.39	48.63	74.00	-25.37	peak
4	8985.000	37.20	10.37	47.57	74.00	-26.43	peak
5	10815.000	35.46	14.11	49.57	74.00	-24.43	peak
6	13575.000	28.60	21.06	49.66	74.00	-24.34	peak
7	18000.000	23.48	25.69	49.17	74.00	-24.83	peak

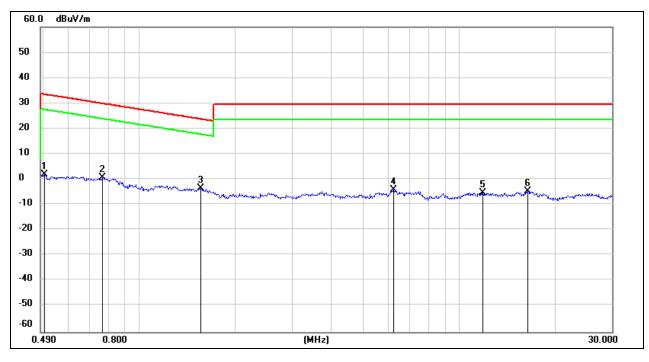
Test Mode:	2.4G	Channel:	2478 MHz
Polarity:	Vertical	Test Voltage:	DC 6 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	55.89	0.26	56.15	74.00	-17.85	peak
2	4950.000	/	/	36.88	54.00	-17.12	AVG
3	7425.000	41.14	6.39	47.53	74.00	-26.47	peak
4	10725.000	34.85	13.79	48.64	74.00	-25.36	peak
5	12720.000	31.96	18.08	50.04	74.00	-23.96	peak
6	13545.000	28.58	20.99	49.57	74.00	-24.43	peak
7	17985.000	22.62	25.60	48.22	74.00	-25.78	peak

8.4. SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)

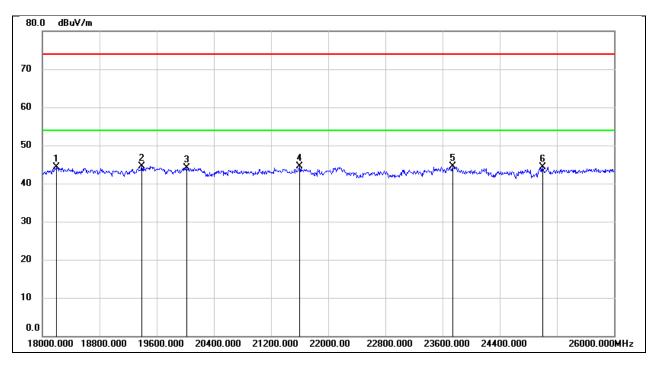

Test Mode:	2.4G	Channel:	2466 MHz
Polarity:	Loop Antenna Face On To The EUT	Test Voltage	DC 6 V

No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.01	77.22	-101.4	-24.18	-75.68	47.6	-3.9	-71.78	peak
2	0.0131	74.47	-101.38	-26.91	-78.41	45.25	-6.25	-72.16	peak
3	0.0221	72.13	-101.35	-29.22	-80.72	40.71	-10.79	-69.93	peak
4	0.0279	70.67	-101.38	-30.71	-82.21	38.69	-12.81	-69.40	peak
5	0.0675	63.64	-101.56	-37.92	-89.42	31.02	-20.48	-68.94	peak
6	0.0981	60.77	-101.78	-41.01	-92.51	27.77	-23.73	-68.78	peak


Test Mode:	2.4G	Channel:	2466 MHz
Polarity:	Loop Antenna Face On To The EUT	Test Voltage	DC 6 V

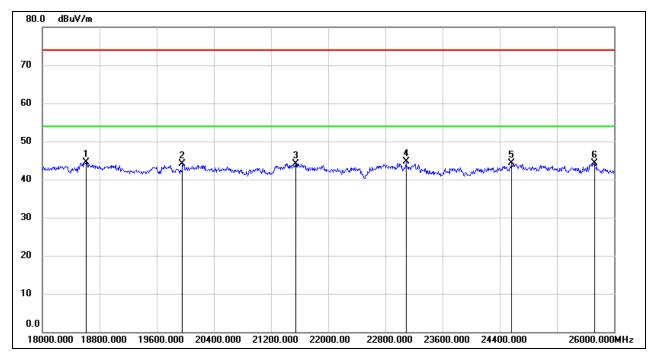
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.1554	76.77	-101.65	-24.88	-76.38	23.77	-27.73	-48.65	peak
2	0.1595	76.36	-101.65	-25.29	-76.79	23.55	-27.95	-48.84	peak
3	0.1794	73.77	-101.68	-27.91	-79.41	22.53	-28.97	-50.44	peak
4	0.2442	67.53	-101.79	-34.26	-85.76	19.85	-31.65	-54.11	peak
5	0.3163	64.2	-101.87	-37.67	-89.17	17.6	-33.9	-55.27	peak
6	0.3684	60.98	-101.93	-40.95	-92.45	16.27	-35.23	-57.22	peak

Test Mode:	2.4G	Channel:	2466 MHz
Polarity:	Loop Antenna Face On To The EUT	Test Voltage	DC 6 V



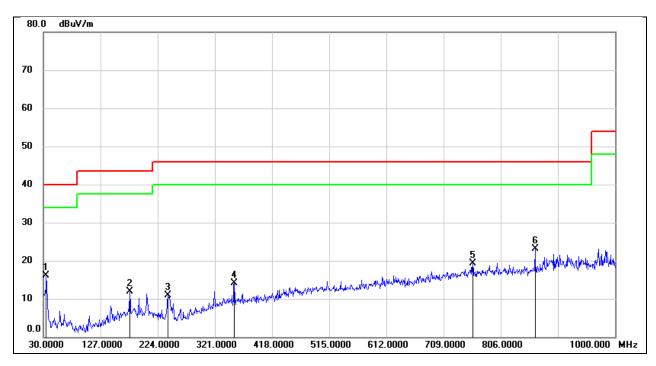
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.5039	63.93	-62.07	1.86	-49.64	33.56	-17.94	-31.70	peak
2	0.7641	62.92	-62.12	0.8	-50.70	29.94	-21.56	-29.14	peak
3	1.5564	58.68	-62.02	-3.34	-54.84	23.76	-27.74	-27.10	peak
4	6.2445	57.13	-61.32	-4.19	-55.69	29.54	-21.96	-33.73	peak
5	11.8513	55.56	-60.88	-5.32	-56.82	29.54	-21.96	-34.86	peak
6	16.3959	56.17	-60.96	-4.79	-56.29	29.54	-21.96	-34.33	peak

8.5. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)

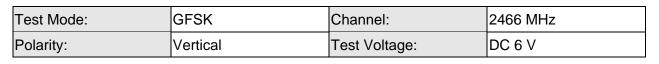

Test Mode:	2.4G	Channel:	2466 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V

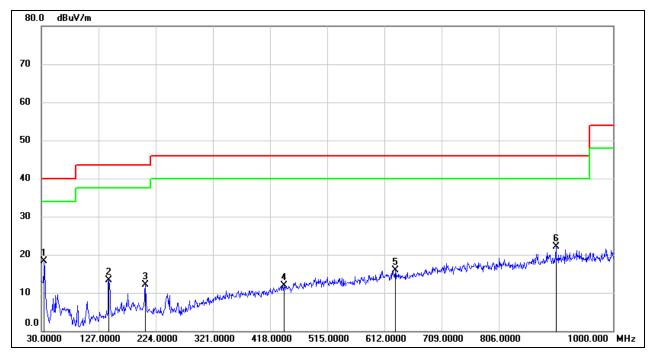
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18200.000	49.79	-5.52	44.27	74.00	-29.73	peak
2	19392.000	50.12	-5.57	44.55	74.00	-29.45	peak
3	20016.000	49.56	-5.47	44.09	74.00	-29.91	peak
4	21600.000	49.02	-4.54	44.48	74.00	-29.52	peak
5	23744.000	47.65	-3.20	44.45	74.00	-29.55	peak
6	25000.000	46.36	-2.10	44.26	74.00	-29.74	peak

Test Mode:	2.4G	Channel:	2466 MHz
Polarity:	Vertical	Test Voltage:	DC 6 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18616.000	49.89	-5.34	44.55	74.00	-29.45	peak
2	19960.000	49.56	-5.42	44.14	74.00	-29.86	peak
3	21544.000	48.76	-4.63	44.13	74.00	-29.87	peak
4	23088.000	48.02	-3.41	44.61	74.00	-29.39	peak
5	24568.000	46.60	-2.33	44.27	74.00	-29.73	peak
6	25728.000	45.11	-0.72	44.39	74.00	-29.61	peak


8.6. SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)


Test Mode:	GFSK	Channel:	2466 MHz
Polarity:	Horizontal	Test Voltage:	DC 6 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	35.18	-18.99	16.19	40.00	-23.81	QP
2	176.4700	28.52	-16.62	11.90	43.50	-31.60	QP
3	241.4600	29.44	-18.50	10.94	46.00	-35.06	QP
4	353.9800	27.14	-12.95	14.19	46.00	-31.81	QP
5	758.4699	26.34	-6.96	19.38	46.00	-26.62	QP
6	864.2000	28.87	-5.78	23.09	46.00	-22.91	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	37.23	-18.99	18.24	40.00	-21.76	QP
2	144.4600	31.97	-18.64	13.33	43.50	-30.17	QP
3	206.5399	29.00	-16.89	12.11	43.50	-31.39	QP
4	441.2800	23.93	-11.96	11.97	46.00	-34.03	QP
5	630.4300	25.31	-9.36	15.95	46.00	-30.05	QP
6	903.0000	26.88	-4.78	22.10	46.00	-23.90	QP

9. ANTENNA REQUIREMENT

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

RESULTS

Complies

END OF REPORT