

## **FCC - TEST REPORT**

| Report Number         | : 68.95  | 0.19.006   | 8.02          | Date of Issue | e: _  | April 24, 2019 |
|-----------------------|----------|------------|---------------|---------------|-------|----------------|
|                       |          |            |               |               |       |                |
| Model / HVIN          | : TEMI   | <b>S</b> 1 |               |               |       |                |
| Product Type          | : Temil  | Personal   | Computer Ro   | bot           |       |                |
| Applicant             | : Robot  | eam Hor    | ne Technology | / (Shenzhen)  | Co.   | , Ltd          |
| Address               | : 22F, C | CHANGE     | U JINMAO BL   | JILDING NO.5  | S S H | IIHUA ROAD,    |
|                       | FUTIA    | AN DISTE   | RICT, SHENZI  | HEN, CHINA    |       |                |
| Manufacturer          | : Robot  | eam Hor    | ne Technology | / (Shenzhen)  | Co.   | , Ltd          |
| Address               | : 22F, C | CHANGE     | U JINMAO BL   | JILDING NO.5  | SH    | IIHUA ROAD,    |
|                       | FUTIA    | AN DISTE   | RICT, SHENZI  | HEN, CHINA    |       |                |
|                       |          |            |               |               |       |                |
| Test Result           | : Pos    | sitive     | □ Negative    |               |       |                |
|                       |          |            |               |               |       |                |
| Total pages including |          |            |               |               |       |                |
| Appendices            | : 19     |            | _             |               |       |                |
|                       |          |            |               |               |       |                |

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval



## **Table of Contents**

| 1  | Τa | able of Contents                           | 2  |
|----|----|--------------------------------------------|----|
| 2  | D  | Details about the Test Laboratory          | 3  |
| 3  | D  | Description of the Equipment Under Test    | 4  |
| 4  |    | Summary of Test Standards                  |    |
| 5  | S  | Summary of Test Results                    | 6  |
| 6  | G  | General Remarks                            | 7  |
| 7  | To | est Setups                                 | 8  |
| 8  | S  | Systems test configuration                 | 9  |
| 9  | To | echnical Requirement                       |    |
| 9  | .1 | Conducted Emission Test                    | 10 |
| 9  | .2 | 20 dB Bandwidth and 99% Occupied Bandwidth | 13 |
| 9  | .3 | Radiated Emission Test                     | 14 |
| 10 |    | Test Equipment List                        | 18 |
| 11 |    | System Measurement Uncertainty             | 19 |



## 2 Details about the Test Laboratory

## **Details about the Test Laboratory**

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint

Road 2, Nanshan District

Shenzhen 518052

P.R. China

Telephone: 86 755 8828 6998 Fax: 86 755 828 5299

FCC Registration

514049

No.:

IC Registration

10320A

No.:



## 3 Description of the Equipment Under Test

Product: Temi Personal Computer Robot

Model no.: TEMI S1

FCC ID: 2ASJLTEMIS1

Options and accessories: Charger and power Cable

Rating: Supplied by 14.4Vdc, 15.6Ah Li-ion Battery

19Vdc, 5.0A Charged by an external adapter

Adapter information: Adapter Model: AY120BA-ZF190500M

Adapter Input: 100-240Vac, 50/60Hz; 1.8A Max

Adapter Output: 19.0Vdc, 5.0A

RF Transmission Frequency: 110KHz-144KHz for WPT

2402MHz-2480MHz for Bluetooth

2412MHz-2462MHz for 802.11b/g/n20 (WiFi)

5150-5350, 5470-5825MHz for 802.11a/n20/n40/ac20/ac40/ac80 (WiFi)

No. of Operated Channel: 79 for Bluetooth

11 for 802.11b/g/n20 (WiFi)

43 for for 802.11a/n20/n40/ac20/ac40/ac80 (WiFi)

Modulation: GFSK, π/4-DQPSK, 8DPSK for Bluetooth

DSSS, OFDM for WiFi

Antenna Type: Integrated antenna

Antenna Gain: 2.0dBi Max for 2.4GHz

2.5dBi Max for 5GHz

Description of the EUT: The Equipment Under Test (EUT) supporting wireless power

transmission which operated at 110KHz-144KHz.



# 4 Summary of Test Standards

| Test Standards        |                                   |  |  |  |  |
|-----------------------|-----------------------------------|--|--|--|--|
| FCC Part 15 Subpart C | PART 15 - RADIO FREQUENCY DEVICES |  |  |  |  |
| 10-1-2018 Edition     | Subpart C - Intentional Radiators |  |  |  |  |

All the test methods were according to ANSI C63.10 (2013).



# 5 Summary of Test Results

| Technical Requirements |                                  |            |             |             |         |     |  |  |  |  |
|------------------------|----------------------------------|------------|-------------|-------------|---------|-----|--|--|--|--|
| FCC Part 15 Subpart C  |                                  |            |             |             |         |     |  |  |  |  |
| Test Condition         |                                  | Pages      | Test        | Te          | est Res |     |  |  |  |  |
| 163t Goriation         |                                  | 1 ages     | Site        | Pass        | Fail    | N/A |  |  |  |  |
| §15.207                | Conducted emission AC power port | 10         | Site 1      | $\boxtimes$ |         |     |  |  |  |  |
|                        | 20dB bandwidth                   | 13         | Site 1      | $\boxtimes$ |         |     |  |  |  |  |
| §15.205                | Restricted bands of operation    | 13         | Site 1      | $\boxtimes$ |         |     |  |  |  |  |
| §15.209                | Radiated emission                | 14         | 14 Site 1 🖂 |             |         |     |  |  |  |  |
| §15.203                | Antenna requirement              | See note 1 |             |             |         |     |  |  |  |  |

Note 1: The EUT uses an Integrated coil antenna, which gain is 0dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.



### 6 General Remarks

#### Remarks

This submittal(s) (test report) is intended for FCC ID: 2ASJLTEMIS1, complies with Section 15.207, 15.209, 15.205 of the FCC Part 15, Subpart C rules.

This is an updated report, change the frequency band for WPT to 110KHz-144KHz by software.

| Sl           | J٨  | ЛI                                      | VI | Α | R | Υ | • |
|--------------|-----|-----------------------------------------|----|---|---|---|---|
| $\mathbf{-}$ | , n | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | v  | _ |   |   |   |

All tests according to the regulations cited on page 5 were

- Performed
- ☐ Not Performed

The Equipment under Test

- - Fulfills the general approval requirements.
- ☐ **Does not** fulfill the general approval requirements.

Sample Received Date: February 25, 2019

Testing Start Date: February 27, 2019

Testing End Date: March 6, 2019

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

Prepared by:

Tested by:

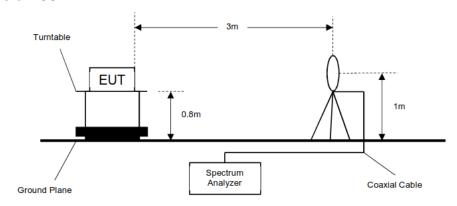
John Zhi Project Manager

Johnshi

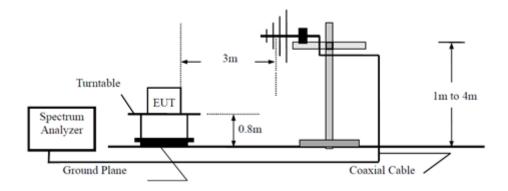
Alan Xiong Project Engineer

Alem X3ong

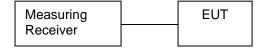
Tree Zhan Test Engineer


Tree Them




# 7 Test Setups

## 7.1 Radiated test setups


### Below 30MHz



### 30MHz-1GHz



## 7.2 Conducted RF test setups





# 8 Systems test configuration

Auxiliary Equipment Used during Test:

| Description  | Manufacturer | Model NO. | S/N |
|--------------|--------------|-----------|-----|
| Mobile Phone | HUAWEI       |           |     |



## 9 Technical Requirement

## 9.1 Conducted Emission Test

#### **Test Method**

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. Both sides of AC line were checked for maximum conducted interference.
- 6. The frequency range from 150 kHz to 30 MHz was searched.
- 7. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

#### Limit

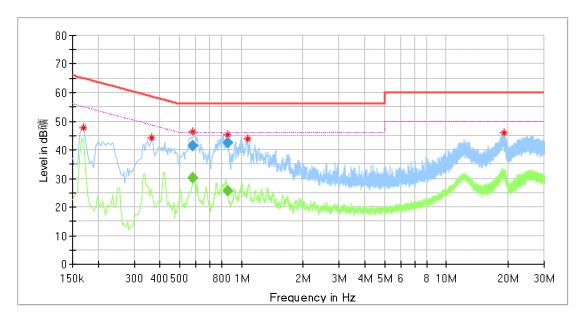
According to §15.207, conducted emissions limit as below:

| Frequency       | QP Limit | AV Limit |
|-----------------|----------|----------|
| <br>MHz         | dΒμV     | dΒμV     |
| <br>0.150-0.500 | 66-56*   | 56-46*   |
| 0.500-5         | 56       | 46       |
| 5-30            | 60       | 50       |

<sup>\*</sup>Decreasing linearly with logarithm of the frequency



### **Conducted Emission**


Product Type : Temi Personal Computer Robot

M/N : TEMI S1

Operating Condition : Charging Mode

Test Specification : Line

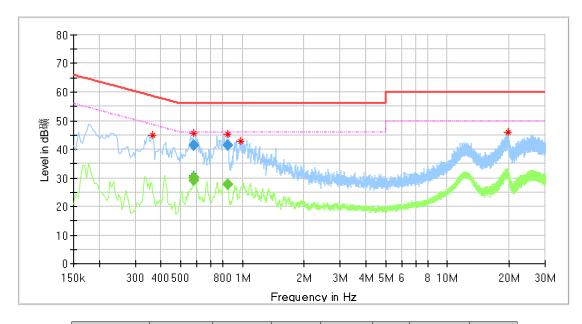
Comment : AC 120V/60Hz



| Frequency<br>(MHz) | MaxPeak<br>(dBµV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Line | Read<br>Level<br>(dBµV) | Corr.<br>(dB) |
|--------------------|-------------------|-------------------|-----------------|----------------|------|-------------------------|---------------|
| 0.170000           | 47.78             |                   | 64.96           | 17.18          | L1   | 37.58                   | 10.2          |
| 0.366000           | 44.25             |                   | 58.59           | 14.34          | L1   | 33.95                   | 10.3          |
| 0.581500           | 46.25             |                   | 56.00           | 9.75           | L1   | 35.95                   | 10.3          |
| 0.581500           |                   | 30.23             | 46.00           | 15.77          | L1   | 19.93                   | 10.3          |
| 0.581500           | 41.47             |                   | 56.00           | 14.53          | L1   | 31.17                   | 10.3          |
| 0.857500           |                   | 25.67             | 46.00           | 20.33          | L1   | 15.37                   | 10.3          |
| 1.070000           | 43.76             |                   | 56.00           | 12.24          | L1   | 33.46                   | 10.3          |
| 19.074000          | 46.11             |                   | 60.00           | 13.89          | L1   | 35.11                   | 11.0          |

Remark:
Max Peak= Read level + Corrector factor
Correct factor=cable loss + LISN factor




### **Conducted Emission**

Product Type : Temi Personal Computer Robot

M/N : TEMI S1

Operating Condition : Charging Mode Test Specification : Neutral

Comment : AC 120V/60Hz



| Frequency<br>(MHz) | MaxPeak<br>(dBμV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Line | Read<br>Level<br>(dBµV) | Corr.<br>(dB) |
|--------------------|-------------------|-------------------|-----------------|----------------|------|-------------------------|---------------|
| 0.366000           | 44.75             |                   | 58.59           | 13.84          | N    | 34.45                   | 10.3          |
| 0.577500           |                   | 29.13             | 46.00           | 16.87          | N    | 18.83                   | 10.3          |
| 0.577500           | 41.56             |                   | 56.00           | 14.44          | N    | 31.26                   | 10.3          |
| 0.581500           |                   | 30.33             | 46.00           | 15.67          | N    | 20.03                   | 10.3          |
| 0.581500           | 41.25             |                   | 56.00           | 14.75          | N    | 30.95                   | 10.3          |
| 0.849500           |                   | 27.67             | 46.00           | 18.33          | N    | 17.37                   | 10.3          |
| 0.849500           | 41.28             |                   | 56.00           | 14.72          | N    | 30.98                   | 10.3          |
| 0.982000           | 42.88             |                   | 56.00           | 13.12          | N    | 32.58                   | 10.3          |
| 19.690000          | 46.11             |                   | 60.00           | 13.89          | N    | 34.91                   | 11.2          |

Remark: Max Peak= Read level + Corrector factor Correct factor=cable loss + LISN factor



**Pass** 

**Pass** 

144.61

## 9.2 20 dB Bandwidth and 99% Occupied Bandwidth

#### **Test Method**

- 1. Use the following spectrum analyzer settings:
- RBW=200Hz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 20 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be  $\geq$  20 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

#### Limit

110.5KHz

144.2KHz

|                 |                   | No Limit         | t        |           |        |
|-----------------|-------------------|------------------|----------|-----------|--------|
| Test result     |                   |                  |          |           |        |
| Frequency       | 20dB<br>bandwidth | 99%<br>bandwidth | Resu     | ılt       | Result |
| KH <sub>7</sub> | Hz                | Hz               | F. (KHz) | F., (KHz) |        |

110.10

990

996

Limit [kHz]

The fundamental frequency is outside the restricted bands of 15.205 section.

950

955



## 9.3 Radiated Emission Test

#### **Test Method**

- 1: The EUT was place on a turn table which is 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

#### Limit

the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>MHz | Field Strength | Field Strength<br>dBµV/m | Detector | Measurement distance meters |
|------------------|----------------|--------------------------|----------|-----------------------------|
| 0.009-0.490      | 2400/F(kHz)    | 48.5-13.8                | QP       | 300                         |
| 0.490-1.705      | 24000/F(kHz)   | 33.8-23.0                | QP       | 30                          |
| 1.705-30         | 30             | 29.5                     | QP       | 30                          |
| 30-88            | 100            | 40                       | QP       | 3                           |
| 88-216           | 150            | 43.5                     | QP       | 3                           |
| 216-960          | 200            | 46                       | QP       | 3                           |
| 960-1000         | 500            | 54                       | QP       | 3                           |
| Above 1000       | 500            | 54                       | AV       | 3                           |
| Above 1000       | 5000           | 74                       | PK       | 3                           |

Note 1: Limit  $3m(dB\mu V/m)=Limit 300m(dB\mu V/m)+40Log(300m/3m)$  (Below 30MHz) Note 2: Limit  $3m(dB\mu V/m)=Limit 30m(dB\mu V/m)+40Log(30m/3m)$  (Below 30MHz)



## Radiated emissions test (9KHz-30MHz)

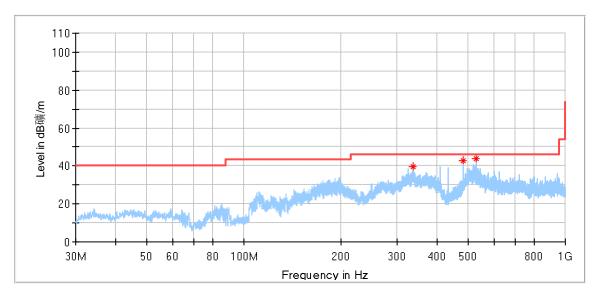
| Frequency<br>Band | Frequency          | Emissio<br>n Level | Read<br>level | Polarizat<br>ion | Limit  | Detector | Margin | Correct factor | Result |
|-------------------|--------------------|--------------------|---------------|------------------|--------|----------|--------|----------------|--------|
| Бапа              | MHz                | dBµV/m             | dBuV/m        |                  | dBµV/m |          | dBµV/m | (dB)           |        |
|                   | 0.0090             | 60.19              | 39.19         | Н                | 93.8   | QP       | 33.61  | 21.0           | Pass   |
|                   | 0.024              | 59.78              | 39.78         | Н                | 93.8   | QP       | 34.02  | 20.0           | Pass   |
|                   | 0.040              | 57.40              | 37.60         | Н                | 93.8   | QP       | 36.40  | 19.8           | Pass   |
|                   | 0.056              | 56.45              | 36.75         | Н                | 93.8   | QP       | 37.35  | 19.7           | Pass   |
|                   | 0.14               | 74.87              | 55.17         | Н                | 93.8   | QP       | 18.93  | 19.7           | Pass   |
|                   | 0.15               | 60.51              | 40.81         | Н                | 93.8   | QP       | 33.29  | 19.7           | Pass   |
|                   | 0.20               | 58.44              | 38.74         | Н                | 93.8   | QP       | 35.36  | 19.7           | Pass   |
|                   | 0.23               | 58.90              | 39.20         | Н                | 93.8   | QP       | 34.90  | 19.7           | Pass   |
|                   | 0.34               | 56.10              | 36.30         | Н                | 93.8   | QP       | 37.70  | 19.8           | Pass   |
|                   | 0.47               | 58.98              | 39.08         | Н                | 93.8   | QP       | 34.82  | 19.9           | Pass   |
| 9KHz-             | Other<br>Frequency |                    |               | Н                | 93.8   | QP       |        |                | Pass   |
| 30MHz             | 0.0090             | 53.65              | 32.65         | V                | 93.8   | QP       | 40.15  | 21.0           | Pass   |
|                   | 0.024              | 52.01              | 32.01         | V                | 93.8   | QP       | 41.79  | 20.0           | Pass   |
|                   | 0.040              | 50.84              | 31.04         | V                | 93.8   | QP       | 42.96  | 19.8           | Pass   |
|                   | 0.056              | 49.94              | 30.24         | V                | 93.8   | QP       | 43.86  | 19.7           | Pass   |
|                   | 0.072              | 49.27              | 29.57         | V                | 93.8   | QP       | 44.53  | 19.7           | Pass   |
|                   | 0.088              | 48.69              | 28.89         | V                | 93.8   | QP       | 45.11  | 19.8           | Pass   |
|                   | 0.104              | 53.16              | 33.36         | V                | 93.8   | QP       | 40.64  | 19.8           | Pass   |
|                   | 0.145              | 52.87              | 33.17         | V                | 93.8   | QP       | 40.93  | 19.7           | Pass   |
|                   | 0.165              | 69.67              | 49.77         | V                | 93.8   | QP       | 24.13  | 19.9           | Pass   |
|                   | 0.468              | 59.90              | 40.20         | V                | 93.8   | QP       | 33.90  | 19.7           | Pass   |
|                   | Other<br>Frequency |                    |               | V                | 93.8   | QP       |        |                | Pass   |

#### Remark:

- (1) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) Corrected Amplitude = Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
- (3) All tested frequencies comply for the strictest limit (93.8dB $\mu$ V/m). so the test result can considered as Pass.



## Radiated emissions test (30MHz-1000MHz)


Product Type : Temi Personal Computer Robot

M/N : TEMI S1

Operating Condition : Wireless Charging

Test Specification : Horizontal

Comment : 30MHz-1000MHz

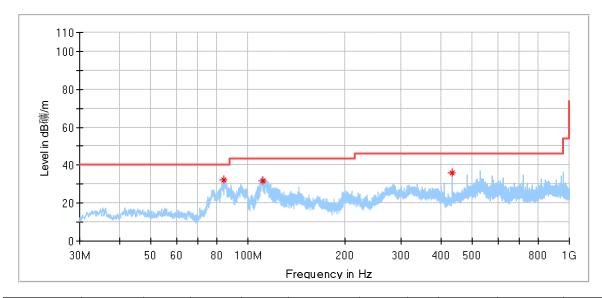


| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Limit<br>(dBµV<br>/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height (cm) | Pol | Azimuth (deg) | Read<br>Level<br>(dBuA/m) | Corr.<br>(dB) |
|--------------------|---------------------|-----------------------|----------------|-----------------------|--------------------|-------------|-----|---------------|---------------------------|---------------|
| 335.765556         | 39.60               | 46.00                 | 6.40           |                       |                    | 154.0       | Н   | 17.0          | 18.5                      | 21.1          |
| 480.080000         | 42.73               | 46.00                 | 3.27           |                       |                    | 154.0       | Н   | 13.0          | 19.13                     | 23.6          |
| 528.041111         | 43.64               | 46.00                 | 2.36           |                       |                    | 154.0       | Н   | 0.0           | 19.04                     | 24.6          |

Remark:

Max Peak= Read level + Corrector factor Corrector factor = Antenna Factor + Cable Loss




Product Type Temi Personal Computer Robot

M/NTEMI S1

Operating Condition Test Specification Wireless Charging

Vertical

Comment 30MHz-1000MHz



| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Limit<br>(dBµV<br>/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Read<br>Level<br>(dBuA/m) | Corr.<br>(dB) |
|--------------------|---------------------|-----------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|---------------------------|---------------|
| 83.996667          | 32.15               | 40.00                 | 7.85           |                       |                    | 154.0          | V   | 132.0         | 20.65                     | 11.5          |
| 111.480000         | 31.51               | 43.50                 | 11.99          |                       |                    | 154.0          | V   | 201.0         | 13.61                     | 17.9          |
| 432.065000         | 35.71               | 46.00                 | 10.29          |                       |                    | 154.0          | ٧   | 0.0           | 12.91                     | 22.8          |

Remark:

Max Peak= Read level + Corrector factor Corrector factor = Antenna Factor + Cable Loss



# **10 Test Equipment List**

## **Radiated Emission Test**

| DESCRIPTION                               | MANUFACTURER    | MODEL NO. | SERIAL NO.      | CAL. DUE DATE |  |
|-------------------------------------------|-----------------|-----------|-----------------|---------------|--|
| EMI Test Receiver                         | Rohde & Schwarz | ESR 26    | 101269          | 2019-7-6      |  |
| Trilog Super<br>Broadband Test<br>Antenna | Schwarzbeck     | VULB 9163 | 707             | 2019-7-6      |  |
| Horn Antenna                              | Rohde & Schwarz | HF907     | 102294          | 2019-7-6      |  |
| Loop Antenna                              | Rohde & Schwarz | HFH2-Z2   | 100398          | 2019-7-6      |  |
| Pre-amplifier                             | Rohde & Schwarz | SCU 18    | 102230          | 2019-7-6      |  |
| Signal Generator                          | Rohde & Schwarz | SMY01     | 839369/005      | 2019-7-6      |  |
| Attenuator                                | Agilent         | 8491A     | MY39264334      | 2019-7-6      |  |
| 3m Semi-anechoic chamber                  | TDK             | 9X6X6     |                 | 2020-7-7      |  |
| Test software                             | Rohde & Schwarz | EMC32     | Version 9.15.00 | N/A           |  |

## **Conducted Emission Test**

| DESCRIPTION       | MANUFACTURER      | MODEL NO. | SERIAL NO.     | CAL. DUE DATE |  |
|-------------------|-------------------|-----------|----------------|---------------|--|
| EMI Test Receiver | Rohde & Schwarz   | ESR 3     | 101782         | 2019-7-6      |  |
| LISN              | Rohde & Schwarz   | ENV4200   | 100249         | 2019-7-6      |  |
| Attenuator        | Shanghai Huaxiang | TS2-26-3  | 080928189      | 2019-7-6      |  |
| Test software     | Rohde & Schwarz   | EMC32     | Version9.15.00 | N/A           |  |

**Conducted RF Test System** 

| DESCRIPTION     | MANUFACTURER    | MODEL NO. | SERIAL NO. | CAL. DUE DATE |
|-----------------|-----------------|-----------|------------|---------------|
| Signal Analyzer | Rohde & Schwarz | FSV40     | 101030     | 2019-7-6      |



# 11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

| System Measurement Uncertainty                    |                                                     |  |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|
| Test Items                                        | Extended Uncertainty                                |  |  |  |  |  |
| Uncertainty for Conducted Emission 150kHz-30MHz   | 3.21dB                                              |  |  |  |  |  |
| (for test using AMN ENV432 or ENV4200)            |                                                     |  |  |  |  |  |
| Uncertainty for Radiated Emission in 3m chamber   | 4.46dB                                              |  |  |  |  |  |
| 9kHz-30MHz                                        |                                                     |  |  |  |  |  |
| Uncertainty for Radiated Spurious Emission 25MHz- | Horizontal: 4.91dB;                                 |  |  |  |  |  |
| 3000MHz                                           | Vertical: 4.89dB;                                   |  |  |  |  |  |
| Uncertainty for Conducted DE test with TS 9007    | RF Power Conducted: 1.16dB                          |  |  |  |  |  |
| Uncertainty for Conducted RF test with TS 8997    | Frequency test involved: 0.6×10 <sup>-7</sup> or 1% |  |  |  |  |  |