FCC/IC - TEST REPORT | Report Number | : | 68.950.22.0461.01 | Date | e of Issue: | | | | |---------------------------------------|------------|---|---------------|---|------|--|--| | Model / HVIN | : AP6398S2 | | | | | | | | Product Type | <u>:</u> | Wi-Fi and Bluetooth functionalities module | | | | | | | Applicant | <u>:</u> | Roboteam Home Techr | nology (She | enzhen) Co., Ltd | | | | | Address | <u>:</u> | 22F, CHANGFU JINMA | O BUILDIN | NG NO.5 SHIHUA ROAD, | | | | | | | FUTIAN DISTRICT, 518000 SHENZHEN, PEOPLE'S REPUBLIC | | | | | | | | | OF CHINA | | | | | | | Manufacturer | : | Roboteam Home Techr | nology (She | enzhen) Co., Ltd | | | | | Address | <u>:</u> | 22F, CHANGFU JINMA | O BUILDIN | NG NO.5 SHIHUA ROAD, | | | | | | | FUTIAN DISTRICT, 518 | 3000 SHEN | NZHEN, PEOPLE'S REPUBLIC | | | | | | | OF CHINA | | | | | | | Test Result | : | ■ Positive □ Nega | ative | | | | | | Total pages including
Appendices | :_ | 40 | | | | | | | Any use for advertising purposes must | be o | granted in writing. This technic | al report may | only be auoted in full. This report is the re | sult | | | Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4. ### Table of Contents | 1 | Ta | able of Contents | 2 | |----|----|---|----| | 2 | De | etails about the Test Laboratory | 3 | | 3 | De | escription of the Equipment Under Test | 4 | | 4 | Su | ummary of Test Standards | 5 | | 5 | Su | ummary of Test Results | 6 | | 6 | Ge | eneral Remarks | 7 | | 7 | Te | est Setups | 8 | | 8 | Sy | ystems test configuration | 9 | | 9 | Te | echnical Requirement | 10 | | 9. | .1 | Conducted Emission | 10 | | 9. | .2 | Conducted Peak Output Power | 13 | | 9. | .3 | Power Spectral Density | 15 | | 9. | .4 | 6 dB Bandwidth and 99% Occupied Bandwidth | 18 | | 9. | .5 | Spurious RF conducted emissions | | | 9. | .6 | Band edge | | | 9. | .7 | Spurious radiated emissions for transmitter | 35 | | 10 | | Test Equipment List | 38 | | 11 | | System Measurement Uncertainty | 40 | ### 2 Details about the Test Laboratory ### **Details about the Test Laboratory** Test Site 1 Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052 P.R. China Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299 FCC Registration No.: 514049 FCC Designation Number: CA5009 IC Registration 10320A No.: # 3 Description of the Equipment Under Test Product: Wi-Fi and Bluetooth functionalities module Model no.: AP6398S2 Brand name: tēmi Hardware Version Identification No. (HVIN) AP6398S2 FCC ID: 2ASJLAP6398S2 IC: 24774-AP6398S2 Options and accessories: N/A Rating: Supplied by 3.3VDC RF Transmission Frequency: 2402MHz-2480MHz No. of Operated Channel: 40 Modulation: GFSK Antenna Type: Integrated antenna Antenna 1 Gain: -0.5dBi Antenna 2 Gain: -2.5dBi Description of the EUT: The Equipment Under Test (EUT) is a Wi-Fi and Bluetooth functionalities module which support Bluetooth function and Wi-Fi operated at 5GHz and 2.4GHz. Only Bluetooth Low Energy included in this report. NOTE 1: The above EUT's information is declared by manufacturer. Please refer to the specifications or user's manual for more detailed description. NOTE 2: This report contains two kinds of antenna, they are identical only except antenna gain, testing only performed at the antenna support higher gain. # 4 Summary of Test Standards | Test Standards | | | | | |-----------------------|--|--|--|--| | FCC Part 15 Subpart C | PART 15 - RADIO FREQUENCY DEVICES | | | | | 10-1-2020 Edition | Subpart C - Intentional Radiators | | | | | RSS-Gen Issue 5 | General Requirements for Compliance of Radio Apparatus | | | | | April 2018 + A1 + A2 | | | | | | RSS-247 | Digital Transmission Systems (DTSS), Frequency Hopping Systems | | | | | Issue 2 February 2017 | (FHSS) and License-Exempt Local Area Network (LE-LAN) Devices | | | | All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 Measurement Guidance and ANSI C63.10 (2013). ## 5 Summary of Test Results | Technical Requirements | | | | | | | |--|--|------------|-------------|--|--|--| | FCC Part 15 Subpart C/ RSS-247 Issue 2/RSS-Gen Issue 5 | | | | | | | | Test Condition | | Pages | Test Result | | | | | §15.207& RSS-Gen 8.8 | Conducted emission AC power port | 10 | Pass | | | | | §15.247(b)(1) | Conducted peak output power | 13 | Pass | | | | | RSS-247 5.4(b) | Equivalent Isotropic Radiated Power | 13 | Pass | | | | | §15.247(e) & RSS-247
5.2(b) | Power spectral density | 15 | Pass | | | | | §15.247(a)(2) & RSS-247
5.2(a) & RSS-Gen 6.7 | 6dB bandwidth and 99% Occupied Bandwidth | 18 | Pass | | | | | §15.247(a)(1) & RSS-247
5.1(a) & RSS-Gen 6.7 | 20dB bandwidth and 99% Occupied Bandwidth | | N/A | | | | | §15.247(a)(1) & RSS-247
5.1(b) | Min. of Hopping Channel Carrier Frequency Separation | | N/A | | | | | §15.247(a)(1)(iii) & RSS-
247 5.1(d) | Min number of hopping frequencies | | N/A | | | | | §15.247(a)(1)(iii) & RSS-
247 5.1(d) | Dwell Time - Average Time of Occupancy | | N/A | | | | | §15.247(d) & RSS-247
5.5 | Spurious RF conducted emissions | 24 | Pass | | | | | §15.247(d) & RSS-247
5.5 | Band edge | 32 | Pass | | | | | §15.247(d) & §15.209 & RSS-247 5.5 & RSS-Gen 6.13 | Spurious radiated emissions for transmitter | 35 | Pass | | | | | §15.203 & RSS-Gen 6.8 | Antenna requirement | See note 2 | Pass | | | | Note 1: N/A=Not Applicable. Note 2: The EUT uses an external antenna and manufacturer will stick it down with glue, which gain is -0.5dBi. In accordance to §15.203 & RSS-Gen 6.8, it is considered sufficiently to comply with the provisions of this section. ### 6 General Remarks #### **Remarks** This submittal(s) (test report) is intended for FCC ID: 2ASJLAP6398S2, IC: 24774-AP6398S2, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules and RSS-247, RSS-GEN. #### **SUMMARY:** All tests according to the regulations cited on page 5 were - Performed - □ Not Performed The Equipment under Test - - Fulfills the general approval requirements. - □ **Does not** fulfill the general approval requirements. Sample Received Date: April 25, 2022 Testing Start Date: April 27, 2022 Testing End Date: May 17, 2022 - TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch - Reviewed by: Laurent Yuan Section Manager Prepared by: Tested by: Alan Xiong **Project Engineer** Carry Cai Test Engineer ### 7 Test Setups # 7.1 Radiated test setups Below 1GHz ### Above 1GHz ### 7.2 Conducted RF test setups # 8 Systems Test Configuration Auxiliary Equipment Used during Test: | Description | Manufacturer | Model NO. | S/N | |-------------|--------------|--------------|-------------| | Laptop | Thinkpad | X230 | 0A72162 | | Adapter | HOLOTO | ADS-25FSG-12 | 12VDC, 2.0A | Cables Used During Test: | Cable Length | | Shielded/unshielded | With / without ferrite | | |--------------|------|---------------------|------------------------|--| | USB Cable | 1.0m | Shielded | Without ferrite | | The system was configured to hopping mode and non-hopping mode. ### 9 Technical Requirement ### 9.1 Conducted Emission #### **Test Method** - 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface. - 2. Connect EUT to the power mains through a line impedance stabilization network (LISN). - 3. All the support units are connecting to the other LISN. - 4. The LISN provides 50 ohm coupling impedance for the measuring instrument. - 5. Both sides of AC line were checked for maximum conducted interference. - 6. The frequency range from 150 kHz to 30 MHz was searched. - 7. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively. #### Limit | Frequency | QP Limit | AV Limit | | | |-------------|----------|----------|--|--| | MHz | dΒμV | dΒμV | | | | 0.150-0.500 | 66-56* | 56-46* | | | | 0.500-5 | 56 | 46 | | | | 5-30 | 60 | 50 | | | ^{*}Decreases with the logarithm of the frequency. ### **Conducted Emission** Product Type : Wi-Fi and Bluetooth functionalities module M/N : AP6398S2 Operating Condition : Normal Working Test Specification : Line Comment : AC 120V/60Hz | Frequency
(MHz) | Max Peak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Line | Corr.
(dB) | |--------------------|--------------------|-------------------|-----------------|----------------|------|---------------| | 0.158000 | 37.05 | | 65.57 | 28.52 | L1 | 9.74 | | 0.254000 | 38.15 | | 61.63 | 23.47 | L1 | 9.67 | | 0.278000 | | 38.93 | 50.88 | 11.95 | L1 | 9.66 | | 0.298000 | 44.58 | | 60.30 | 15.72 | L1 | 9.66 | | 0.814000 | 30.60 | | 56.00 | 25.40 | L1 | 9.66 | | 2.198000 | 30.27 | | 56.00 | 25.73 | L1 | 9.70 | | 15.962000 | 36.27 | | 60.00 | 23.73 | L1 | 10.24 | Remark: Max Peak= Read level + Corrector factor Correct factor=cable loss + LISN factor ### **Conducted Emission** Product Type : Wi-Fi and Bluetooth functionalities module M/N : AP6398S2 Operating Condition : Normal Working Test Specification : Neutral Comment : AC 120V/60Hz | Frequency
(MHz) | Max Peak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Line | Corr.
(dB) | |--------------------|--------------------|-------------------|-----------------|----------------|------|---------------| | 0.162000 | 36.62 | | 65.36 | 28.74 | N | 9.77 | | 0.302000 | | 36.10 | 50.19 | 14.08 | N | 9.70 | | 0.302000 | 42.49 | | 60.19 | 17.69 | N | 9.70 | | 0.442000 | 30.80 | | 57.02 | 26.23 | N | 9.68 | | 0.826000 | 28.05 | | 56.00 | 27.95 | N | 9.69 | | 5.510000 | 34.35 | | 60.00 | 25.65 | N | 9.90 | | 15.914000 | 40.94 | | 60.00 | 19.06 | N | 10.36 | Remark: Max Peak= Read level + Corrector factor Correct factor=cable loss + LISN factor ### 9.2 Conducted Peak Output Power & EIRP ### **Test Method** - 1. The RF output of EUT was connected to the power meter by RF cable. The path loss was compensated to the results for each measurement. - 2. Set to the maximum power setting and enable the EUT transmit continuously - 3. Use the following test receiver settings: Span = approximately 5 times the 6dB bandwidth, centered on a hopping channel RBW > the 6dB bandwidth of the emission being measured, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold - 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report. - 5. Repeat above procedures until all frequencies measured were complete. #### Limits According to §15.247 (b) (1) & RSS-247 5.4(b), conducted peak output power limit as below: | Frequency Range | Limit | Limit | |-----------------|-------|-------| | MHz | W | dBm | | 2400-2483.5 | ≤1 | ≤30 | According to & RSS-247 5.4(b), EIRP limit as below: | Frequency Range | Limit | Limit | |-----------------|-------|-------| | MHz | W | dBm | | 2400-2483.5 | ≤4 | ≤36 | ### **Conducted Peak Output Power & EIRP** | Frequency | Mode | Conducted Peak Output Power | Antenna
Gain | EIRP | Result | |------------------------|-------|-----------------------------|-----------------|------|--------| | MHz | | dBm | dBi | dBm | | | Bottom channel 2402MHz | LE 1M | 5.05 | -0.5 | 4.55 | Pass | | Middle channel 2440MHz | LE 1M | 4.33 | -0.5 | 3.83 | Pass | | Top channel 2480MHz | LE 1M | 4.80 | -0.5 | 4.30 | Pass | | Bottom channel 2402MHz | LE 2M | 3.51 | -0.5 | 3.01 | Pass | | Middle channel 2440MHz | LE 2M | 4.46 | -0.5 | 3.96 | Pass | | Top channel 2480MHz | LE 2M | 5.11 | -0.5 | 4.61 | Pass | ### 9.3 Power Spectral Density #### **Test Method** - 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement. - 2. Set to the maximum power setting and enable the EUT transmit continuously - Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold. - 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report. - 5. Repeat above procedures until other frequencies measured were completed. ### Limit | Limit [dBm] | | |-------------|--| | ≤8 | | #### Test result | Frequency | Mode | Power spectral density | Result | |------------------------|-------|------------------------|--------| | MHz | | dBm/3KHz | | | Bottom channel 2402MHz | LE 1M | -11.07 | Pass | | Middle channel 2440MHz | LE 1M | -12.01 | Pass | | Top channel 2480MHz | LE 1M | -11.42 | Pass | | Bottom channel 2402MHz | LE 2M | -15.38 | Pass | | Middle channel 2440MHz | LE 2M | -14.94 | Pass | | Top channel 2480MHz | LE 2M | -13.82 | Pass | ### 9.4 6 dB Bandwidth and 99% Occupied Bandwidth #### **Test Method** - 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement. - 2. Set to the maximum power setting and enable the EUT transmit continuously. - Use the following test receiver settings: Span = approximately 5 times the 6dB bandwidth, centered on a hopping channel RBW =100KHz, VBW≥3RBW, - Sweep = auto, Detector function = peak, Trace = max hold - 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results. - 5. Repeat above procedures until all frequencies measured were complete. #### Limit | Limit [kHz] | | |-------------|---| | ≥500 | • | #### Test result | Frequency
MHz | Mode | 6dB bandwidth
MHz | 99% bandwidth
MHz | Result | |------------------------|-------|----------------------|----------------------|--------| | Bottom channel 2402MHz | LE 1M | 0.716 | 1.055 | Pass | | Middle channel 2440MHz | LE 1M | 0.708 | 1.055 | Pass | | Top channel 2480MHz | LE 1M | 0.712 | 1.051 | Pass | | Bottom channel 2402MHz | LE 2M | 1.196 | 2.042 | Pass | | Middle channel 2440MHz | LE 2M | 1.108 | 2.078 | Pass | | Top channel 2480MHz | LE 2M | 1.236 | 2.042 | Pass | ### 6 dB Bandwidth ### 99% Bandwidth ### 9.5 Spurious RF Conducted Emissions #### **Test Method** - 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. - 2. Set to the maximum power setting and enable the EUT transmit continuously. - 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. - 4. Measure and record the results in the test report. - 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency #### Limit | Frequency Range
MHz | Limit (dBc) | |------------------------|-------------| | 30-25000 | -20 | ### **Spurious RF conducted emissions** | Test Mode | Antenna | Channel
(MHz) | Frequency Range
(MHz) | Reference
Level | Result
(dBm) | Limit
(dBm) | Verdict | |-----------|---------|------------------|--------------------------|--------------------|-----------------|----------------|---------| | | | | Reference | 4.02 | 4.02 | | PASS | | | | 2402 | 30~1000 | 30~1000 | -67.66 | <=-15.98 | PASS | | | | | 1000~26500 | 1000~26500 | -45.62 | <=-15.98 | PASS | | | | | Reference | 3.19 | 3.19 | | PASS | | BLE_1M | Ant0 | 2440 | 30~1000 | 30~1000 | -67.2 | <=-16.81 | PASS | | | | | 1000~26500 | 1000~26500 | -48.99 | <=-16.81 | PASS | | | | | Reference | 3.75 | 3.75 | | PASS | | | | 2480 | 30~1000 | 30~1000 | -68.12 | <=-16.25 | PASS | | | | | 1000~26500 | 1000~26500 | -50.49 | <=-16.25 | PASS | | | | | Reference | 1.69 | 1.69 | | PASS | | | | 2402 | 30~1000 | 30~1000 | -67.64 | <=-18.31 | PASS | | | | | 1000~26500 | 1000~26500 | -31.56 | <=-18.31 | PASS | | | | | Reference | 2.41 | 2.41 | | PASS | | BLE_2M | Ant0 | 2440 | 30~1000 | 30~1000 | -67.95 | <=-17.59 | PASS | | | | | 1000~26500 | 1000~26500 | -50.98 | <=-17.59 | PASS | | | | | Reference | 3.25 | 3.25 | | PASS | | | | 2480 | 30~1000 | 30~1000 | -67.8 | <=-16.75 | PASS | | | | | 1000~26500 | 1000~26500 | -52.32 | <=-16.75 | PASS | ### 9.6 Band Edge ### **Test Method** - 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. - 2. Set to the maximum power setting and enable the EUT transmit continuously. - 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. - 4. Measure and record the results in the test report. - 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency - 6. Set to the maximum power setting and enable the EUT hopping mode, repeat the test. #### Limit | Frequency Range
MHz | Limit (dBc) | |------------------------|-------------| | 30-25000 | -20 | ### **Band edge testing** | Test Mode | Antenna | Channel | Channel
(MHz) | Reference
Level
(dBm) | Result
(dBm) | Limit
(dBm) | Verdict | |----------------|---------|---------|------------------|-----------------------------|-----------------|----------------|---------| | BLE 1M | Ant0 | Low | 2402 | 3.85 | -58.89 | <=-16.15 | PASS | | BLE_IWI AINU | High | 2480 | 3.83 | -57.66 | <=-16.17 | PASS | | | BLE 2M | Ant0 | Low | 2402 | 1.02 | -43.62 | <=-18.98 | PASS | | DLE_ZIVI | AIILU | High | 2480 | 3.41 | -53.96 | <=-16.59 | PASS | ### 9.7 Spurious Radiated Emissions for Transmitter #### **Test Method** - 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - 2. Set to the maximum power setting and enable the EUT transmit continuously - 3. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - 6. Use the following spectrum analyzer settings According to C63.10: - (1) Span shall wide enough to fully capture the emission being measured; - (2) Set RBW=100 kHz, VBW= 300KHz for f < 1 GHz; Sweep = auto; Detector function = peak; Trace = max hold; - (3) Set RBW=1 MHz, VBW= 3MHz for f≥1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. 7. Repeat above procedures until all frequencies measured were complete. #### Note: - 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz. - 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)). - 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz. ### Spurious radiated emissions for transmitter ### Limit The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205 & RSS-GEN 8.10, must comply with the radiated emission limits specified in section 15.209 & RSS-Gen 6.13. | Frequency | Field Strength | Field Strength | Detector | |------------|----------------|----------------|----------| | MHz | μV/m | dBμV/m | | | 30-88 | 100 | 40 | QP | | 88-216 | 150 | 43.5 | QP | | 216-960 | 200 | 46 | QP | | 960-1000 | 500 | 54 | QP | | Above 1000 | 500 | 54 | AV | | Above 1000 | 5000 | 74 | PK | ### Spurious radiated emissions for transmitter According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit. BLE_1M of Low channel 2402MHz Test Result | Frequency
Band | Frequency | Emission
Level | Polarization | Limit | Detector | Margin | Correct factor | Result | |-------------------|----------------------|-------------------|--------------|--------|----------|--------|----------------|--------| | Danu | MHz | dBμV/m | | dBµV/m | | dBµV/m | (dB/m) | | | | 45.142778 | 21.29 | Н | 40.00 | QP | 18.71 | 20.41 | Pass | | | 49.723333 | 21.33 | Н | 40.00 | QP | 18.67 | 20.70 | Pass | | | 72.733889 | 20.60 | Н | 40.00 | QP | 19.40 | 15.98 | Pass | | | 111.426111 | 20.45 | Н | 43.50 | QP | 23.05 | 18.26 | Pass | | | 346.220000 | 28.87 | Н | 46.00 | QP | 17.13 | 22.76 | Pass | | | 836.285556 | 35.12 | Н | 46.00 | QP | 10.88 | 29.96 | Pass | | 30- | Other
Frequencies | | Н | | QP | | | Pass | | 1000MHz | 30.000000 | 32.21 | V | 40.00 | QP | 7.79 | 17.38 | Pass | | | 36.897778 | 24.74 | V | 40.00 | QP | 15.26 | 18.18 | Pass | | | 67.345000 | 28.09 | V | 40.00 | QP | 11.91 | 17.90 | Pass | | | 77.098889 | 29.90 | | 40.00 | | 10.10 | 14.37 | Pass | | | 84.805000 | 27.93 | | 40.00 | | 12.07 | 14.77 | Pass | | | 123.497222 | 28.08 | V | 43.50 | QP | 15.42 | 16.20 | Pass | | | Other
Frequencies | | V | | QP | | | Pass | | | *2256.500000 | 42.17 | Н | 74 | PK | 31.83 | -5.90 | Pass | | | 3181.500000 | 45.70 | H | 74 | PK | 28.30 | -0.76 | Pass | | | *4274.000000 | 47.59 | H | 74 | PK | 26.41 | 3.30 | Pass | | | 5672.500000 | 49.80 | H | 74 | PK | 24.20 | 5.81 | Pass | | | *9450.000000 | 45.02 | Н | 74 | PK | 28.98 | 13.81 | Pass | | | 17102.500000 | 50.85 | Н | 74 | PK | 23.15 | 22.67 | Pass | | | Other | | 1.1 | | DIA | | | | | 1000- | Frequencies | | Н | | PK | | | Pass | | 25000MHz | *2293.500000 | 44.14 | V | 74 | PK | 29.86 | -5.76 | Pass | | | 2554.500000 | 46.00 | V | 74 | PK | 28.00 | -4.41 | Pass | | | *5369.000000 | 50.76 | V | 74 | PK | 23.24 | 5.42 | Pass | | | 6383.000000 | 49.01 | V | 74 | PK | 24.99 | 8.32 | Pass | | | *12633.000000 | 47.15 | V | 74 | PK | 26.85 | 15.39 | Pass | | | *17944.500000 | 51.45 | V | 74 | PK | 22.55 | 22.54 | Pass | | | Other
Frequencies | | V | | PK | | | Pass | #### Remark: - (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205 & RSS-GEN 8.10. - (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. - (3) We test both rates for Low channel, Middle channel and High channel separately, only the worse case recorded in this report. - (4) Corrected Amplitude = Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet) # 10 Test Equipment List ### **List of Test Instruments** Radiated Emission Test | Radiated Emission Test | | | | | | | | |---|--------------------|-----------------------|------------------------|---------------------|---------------------------|------------------|--| | DESCRIPTIO
N | MANUFACTU
RER | MODEL NO. | EQUIPMENT
ID | SERIAL NO. | CAL
INTERVAL
(YEAR) | CAL. DUE
DATE | | | EMI Test
Receiver | Rohde &
Schwarz | ESR 26 | 68-4-74-14-
002 | 101269 | 1 | 2022-6-4 | | | Trilog Super
Broadband
Test Antenna | Schwarzbeck | VULB 9162 | 68-4-80-19-
003 | 284 | 1 | 2023-1-17 | | | Wave Guide
Antenna | ETS | 3117 | 68-4-80-19-
001 | 00218954 | 1 | 2022-5-24 | | | Pre-amplifier | Rohde &
Schwarz | SCU 18F | 68-4-29-19-
001 | 100745 | 1 | 2022-10-10 | | | Pre-amplifier | Rohde &
Schwarz | SCU 18F | 68-4-29-19-
002 | 100746 | 1 | 2022-10-10 | | | Sideband
Horn Antenna | Q-PAR | QWH-SL-18-
40-K-SG | 68-4-80-14-
008 | 12827 | 1 | 2022-7-21 | | | Pre-amplifier | Rohde &
Schwarz | SCU 40A | 68-4-29-14-
002 | 100432 | 1 | 2022-7-27 | | | Attenuator | Mini-circuits | UNAT-6+ | 68-4-81-21-
002 | 15542 | 1 | 2022-8-23 | | | 3m Semi-
anechoic
chamber | TDK | SAC-3 #2 | 68-4-90-19-
006 | | 2 | 2023-5-28 | | | Test software | Rohde &
Schwarz | EMC32 | 68-4-90-19-
006-A01 | Version10.35.0
2 | N/A | N/A | | Conducted Emission Test | DESCRIPTIO
N | MANUFACTU
RER | MODEL NO. | EQUIPMENT
ID | SERIAL NO. | CAL
INTERVAL
(YEAR) | CAL. DUE
DATE | |-----------------------|----------------------|--------------------|------------------------|--------------------|---------------------------|------------------| | EMI Test
Receiver | Rohde &
Schwarz | ESR 3 | 68-4-74-14-
001 | 101782 | 1 | 2022-6-4 | | LISN | Rohde &
Schwarz | ENV4200 | 68-4-87-14-
001 | 100249 | 1 | 2022-6-5 | | LISN | Rohde &
Schwarz | ENV432 | 68-4-87-16-
001 | 101318 | 1 | 2022-6-5 | | LISN | Rohde &
Schwarz | ENV216 | 68-4-87-14-
002 | 100326 | 1 | 2022-6-5 | | ISN | Rohde &
Schwarz | ENY81 | 68-4-87-14-
003 | 100177 | 1 | 2022-6-5 | | ISN | Rohde &
Schwarz | ENY81-CA6 | 68-4-87-14-
004 | 101664 | 1 | 2022-6-5 | | High Voltage
Probe | Schwarzbeck | TK9420(VT94
20) | 68-4-27-14-
001 | 9420-584 | 1 | 2022-6-5 | | RF Current
Probe | Rohde &
Schwarz | EZ-17 | 68-4-27-14-
002 | 100816 | 1 | 2022-6-5 | | Attenuator | Shanghai
Huaxiang | TS2-26-3 | 68-4-81-16-
003 | 080928189 | 1 | 2022-6-3 | | Test software | Rohde &
Schwarz | EMC32 | 68-4-90-14-
003-A10 | Version9.15.0
0 | N/A | N/A | | Shielding
Room | TDK | CSR #1 | 68-4-90-19-
004 | | 3 | 2022-11-07 | Conducted RF Test System | DESCRIPTIO
N | MANUFACTU
RER | MODEL NO. | EQUIPMENT
ID | SERIAL NO. | CAL
INTERVAL
(YEAR) | CAL. DUE
DATE | |---------------------|--------------------|---------------------|------------------------|------------------------|---------------------------|------------------| | Signal
Analyzer | Rohde &
Schwarz | FSV40 | 68-4-74-14-
004 | 101030 | 1 | 2022-6-3 | | RF Switch
Module | Rohde &
Schwarz | OSP120/OSP-
B157 | 68-4-93-14-
003 | 101226/10085
1 | 1 | 2022-6-3 | | Power Splitter | Weinschel | 1580 | 68-4-85-14-
001 | SC319 | 1 | 2022-6-3 | | Test software | Tonscend | System for BT/WIFI | 68-4-74-14-
006-A13 | Version
2.6.77.0518 | N/A | N/A | | Shielding
Room | TDK | TS8997 | 68-4-90-19-
003 | | 3 | 2022-11-07 | ### 11 System Measurement Uncertainty For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were: | System Measurement Uncertainty | | | | | | |--|--|--|--|--|--| | Test Items | Extended Uncertainty | | | | | | Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200) | 3.31dB | | | | | | Uncertainty for Radiated Emission in new 3m chamber (68-4-90-19-006) 30MHz-1000MHz | Horizontal: 4.67dB;
Vertical: 4.65dB; | | | | | | Uncertainty for Radiated Emission in new 3m chamber (68-4-90-19-006) 1000MHz-18000MHz | Horizontal: 4.76dB;
Vertical: 4.75dB; | | | | | | Uncertainty for Radiated Emission 18000MHz-40000MHz | Horizontal: 4.51dB;
Vertical: 4.50dB; | | | | | | Uncertainty for Conducted RF test | RF Power Conducted: 1.27dB Frequency test involved: 0.6×10 ⁻⁷ or 1% | | | | | Measurement Uncertainty Decision Rule: Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1. THE END