

FCC/IC - TEST REPORT

Report Number	68.950.22.0463.01	Date of Issue:	June 6, 2022
Model / HVIN	: AP6398S2		
Product Type	: Wi-Fi and Bluetooth functi	onalities module	
Applicant	: Roboteam Home Technol	ogy (Shenzhen) (Co., Ltd
Address	: 22F, CHANGFU JINMAO	BUILDING NO.5	SHIHUA ROAD,
-	FUTIAN DISTRICT, 5180	00 SHENZHEN, F	PEOPLE'S REPUBLIC
_	OF CHINA		
Manufacturer	: Roboteam Home Technol	ogy (Shenzhen) (Co., Ltd
Address	: 22F, CHANGFU JINMAO	BUILDING NO.5	SHIHUA ROAD,
_	FUTIAN DISTRICT, 5180	00 SHENZHEN, F	PEOPLE'S REPUBLIC
	OF CHINA		
Test Result	: Positive Degati	ve	
Total pages including Appendices	: 46		

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4.

1 Table of Contents

Та	able of Contents	2
D	etails about the Test Laboratory	3
D	escription of the Equipment Under Test	4
S	ummary of Test Standards	5
S	ummary of Test Results	6
G	eneral Remarks	7
Тe	est Setups	8
S	ystems Test Configuration	9
Te	echnical Requirement	10
.1	Conducted Emission	10
.2	Conducted Peak Output Power & EIRP	13
.3	6dB Bandwidth and 99% Occupied Bandwidth	15
.4	Power Spectral Density	24
.5	Spurious RF Conducted Emissions	25
.6	Band Edge Testing	36
.7	Spurious Radiated Emissions for Transmitter	40
	Test Equipment List	44
	System Measurement Uncertainty	46
	T D D S S G T S T .1 .2 .3 .4 .5 .6 .7	Table of Contents Details about the Test Laboratory. Description of the Equipment Under Test. Summary of Test Standards Summary of Test Results. General Remarks Test Setups Systems Test Configuration. Technical Requirement .1 Conducted Emission .2 Conducted Peak Output Power & EIRP. .3 6dB Bandwidth and 99% Occupied Bandwidth .4 Power Spectral Density .5 Spurious RF Conducted Emissions .6 Band Edge Testing .7 Spurious Radiated Emissions for Transmitter. .7 Spurious Radiated Emissions for Transmitter. .7 Spurious Radiated Emissions for Transmitter.

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052 P.R. China
Telephone:	86 755 8828 6998
Fax:	86 755 8828 5299
FCC Registration No.:	514049
FCC Designation Number:	CA5009
IC Registration No.:	10320A

3 Description of the Equipment Under Test

Product:	Wi-Fi and Bluetooth functionalities module
Model no.:	AP6398S2
Brand name:	tēmi
Hardware Version Identification No. (HVIN)	AP6398S2
FCC ID:	2ASJLAP6398S2
IC:	24774-AP6398S2
Options and accessories:	N/A
Rating:	Supplied by 3.3VDC
RF Transmission Frequency:	2412MHz-2462MHz for 802.11b/g/n20 (WiFi)
No. of Operated Channel:	11 for 802.11b/g/n20 (WiFi)
Modulation:	DSSS, OFDM
Antenna Type:	Integrated antenna
Antenna 1	-0.5dBi Max for Ant0 0.5dBi Max for Ant1
Antenna 2	-5.0dBi Max for Ant0 -2.5dBi Max for Ant1
Description of the EUT:	The Equipment Under Test (EUT) is a Wi-Fi and Bluetooth functionalities module which support Bluetooth function and Wi-Fi operated at 5GHz and 2.4GHz. Only 2.4GWiFi included in this report.

NOTE 1: The above EUT's information is declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

NOTE 2: This report contains two kinds of antenna, they are identical only except antenna gain, testing only performed at the antenna support higher gain.

4 Summary of Test Standards

Test Standards					
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES				
10-1-2020 Edition	Subpart C - Intentional Radiators				
RSS-Gen Issue 5	General Requirements for Compliance of Radio Apparatus				
April 2018 + A1 + A2					
RSS-247	Digital Transmission Systems (DTSS), Frequency Hopping Systems				
Issue 2 February 2017	(FHSS) and License-Exempt Local Area Network (LE-LAN) Devices				

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 Measurement Guidance and ANSI C63.10 (2013).

Technical Requirements							
FCC Part 15 Subpart C/ RSS-247 Issue 2/RSS-Gen Issue 5							
Test Condition		Pages	Test	Τe	est Res	ult	
		rayes	Site	Pass	Fail	N/A	
§15.207 & RSS-GEN 8.8	Conducted emission AC power port	10	Site 1	\boxtimes			
§15.247 (b) (1) & RSS-247 5.4(d)	Conducted peak output power	13	Site 1	\boxtimes			
RSS-247 5.4(d)	Equivalent Isotropic Radiated Power	13	Site 1	\boxtimes			
§15.247(a)(1) & RSS-247 5.1(b)	20dB bandwidth					\boxtimes	
§15.247(a)(1) & RSS-247 5.1(b)	Carrier frequency separation					\boxtimes	
§15.247(a)(1)(iii) & RSS-247 5.1(d)	Number of hopping frequencies					\square	
§15.247(a)(1)(iii) & RSS-247 5.1(d)	Dwell Time					\boxtimes	
§15.247(a)(2) & RSS-247 5.2(a) & RSS-GEN 6.7	6dB bandwidth and 99% Occupied Bandwidth	15	Site 1	\boxtimes			
§15.247(e) & RSS-247 5.2(b)	Power spectral density	24	Site 1	\boxtimes			
§15.247(d) & RSS-247 5.5	Spurious RF conducted emissions	25	Site 1	\boxtimes			
§15.247(d) & RSS-247 5.5	Band edge	36	Site 1	\boxtimes			
§15.247(d) & §15.209 & RSS- 247 5.5 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	40 Site 1		\boxtimes			
§15.203 & RSS-Gen 6.8	Antenna requirement	See note 2					

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an external antenna and manufacturer will stick it down with glue, which gain are - 0.5dBi and 0.5dBi. In accordance to §15.203 & RSS-Gen 6.8, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2ASJLAP6398S2, IC: 24774-AP6398S2, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules and RSS-247, RSS-GEN.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed
- The Equipment Under Test
- - **Fulfills** the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: Ap	ril 25	, 2022
--------------------------	--------	--------

Testing Start Date: April 27, 2022

Testing End Date: June 5, 2022

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Reviewed by:

Prepared by:

auseroperan

Laurent Yuan Section Manager Alen X300g

arry caj

ested by:

ING (CH

Alan Xiong Project Engineer Carry Cai Test Engineer

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

7 Test Setups

7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups Below 1GHz

Above 1GHz

7.3 Conducted RF test setups

8 Systems Test Configuration

Description Manufacturer		Model NO.	S/N	
Laptop	Thinkpad	X230	0A72162	
Adapter	HOLOTO	ADS-25FSG-12	12VDC, 2.0A	

Auxiliary Equipment Used during Test:

Cables Used During Test:

Cable Length		Shielded/unshielded	With / without ferrite		
USB Cable	1.0m	Shielded	Without ferrite		

The system was configured to non-hopping mode.

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

Through pre-scan all kind of modulation and all kind of rates, find the 1Mbps of rate is the worst case of 802.11b; the 6Mbps of rate is the worst case of 802.11g; the 6.5Mbps of rate is the worst case of 802.11N20, only the worst case transmitter rate data mode in recorded in the report.

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. Both sides of AC line were checked for maximum conducted interference.
- 6. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Limit

According to §15.207 & RSS-GEN 8.8, Conducted emissions limit as below:

Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50
Deereeine lineerly wi	h la a a rith maaf tha f	*****

Decreasing linearly with logarithm of the frequency

Conducted Emission

Product Type:Wi-Fi and Bluetooth functionalities moduleM/N:AP6398S2Operating Condition:Normal WorkingTest Specification:LineComment:AC 120V/60Hz

Frequency (MHz)	Max Peak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.162000	39.66		65.36	25.70	L1	9.73
0.298000		40.69	50.30	9.60	L1	9.66
0.298000	44.09		60.30	16.20	L1	9.66
0.418000	33.04		57.49	24.45	L1	9.66
0.698000	32.05		56.00	23.95	L1	9.65
1.514000	30.22		56.00	25.78	L1	9.68
15.878000	35.79		60.00	24.21	L1	10.24

Remark:

Max Peak= Read level + Corrector factor Correct factor=cable loss + LISN factor

Conducted Emission

Product Type:Wi-Fi and Bluetooth functionalities moduleM/N:AP6398S2Operating Condition:Normal WorkingTest Specification:NeutralComment:AC 120V/60Hz

Frequency (MHz)	Max Peak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.162000	36.45		65.36	28.91	Ν	9.77
0.254000	38.62		61.63	23.00	Ν	9.70
0.298000		37.02	50.30	13.28	Ν	9.70
0.298000	43.78		60.30	16.51	Ν	9.70
0.442000	30.34		57.02	26.68	Ν	9.68
8.850000	37.73		60.00	22.27	Ν	10.17
16.058000	40.40		60.00	19.60	Ν	10.37

Remark:

Max Peak= Read level + Corrector factor Correct factor=cable loss + LISN factor

9.2 Conducted Peak Output Power & EIRP

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following test receiver settings: Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report.
- 5. Repeat above procedures until all frequencies measured were complete.

Limits

According to §15.247 (b) (1) & RSS-247 5.4(d), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

According to & RSS-247 5.4(d), EIRP limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table

	802	2.11	lb_	SIS	<u>SO</u>	mod	dulat	ion	Test	Resu	ılt	
_												-

Frequency (MHz)	Conducted Po (d	l Peak Output ower IBm)	Antenna (dB	Antenna Gain EIRP (dBi) (dBm) Result		EIRP (dBm)	
、	Ant 0	Ant 1	Ant 0	Ant 1	Ant 0	Ant 1	
Low channel 2412MHz	14.6	14.7	-0.5	0.5	14.1	15.2	Pass
Middle channel 2437MHz	14.7	14.8	-0.5	0.5	14.2	15.3	Pass
High channel 2462MHz	14.3	14.0	-0.5	0.5	13.8	14.5	Pass

Frequency (MHz)	Condu	cted Peak Power (dBm)	Output	Antenn (dl	Antenna Gain EIRP (dBi) (dBm)		EIRP (dBm)		Result
, , ,	Ant 0	Ant 1	SUM	Ant 0	Ant 1	Ant 0	Ant 1	SUM	
Low channel 2412MHz	15.1	13.6	17.4	-0.5	0.5	14.6	14.1	17.4	Pass
Middle channel 2437MHz	15.1	14.7	17.9	-0.5	0.5	14.6	15.2	17.9	Pass
High channel 2462MHz	14.8	14.0	17.4	-0.5	0.5	14.3	14.5	17.4	Pass

802.11g_CDD modulation Test Result

802.11n20_MIMO modulation Test Result

Frequency (MHz)	Conduc	cted Peak Power (dBm)	Output	Antenn (df	a Gain Bi)	EIRP (dBm)		Result	
	Ant 0	Ant 1	SUM	Ant 0	Ant 1	Ant 0	Ant 1	SUM	
Low channel 2412MHz	15.2	13.9	17.6	-0.5	0.5	14.7	14.4	17.6	Pass
Middle channel 2437MHz	15.3	14.2	17.8	-0.5	0.5	14.8	14.7	17.8	Pass
High channel 2462MHz	14.8	14.4	17.6	-0.5	0.5	14.3	14.9	17.6	Pass

 $Power^{SUM} = 10*Log(10^{(Power^{Ant0}/10)}+10^{(Power^{Ant1}/10)})$

9.3 6dB Bandwidth and 99% Occupied Bandwidth

Test Method for 6 dB Bandwidth

1. Use the following spectrum analyzer settings:

RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Test Method for 99 % Bandwidth

1. Use the following spectrum analyzer settings:

RBW=1% to 5% of the actual occupied, VBW≥3RBW, Sweep = auto,

Detector function = peak, Trace = max hold

2. Use the automatic bandwidth measurement capability of an instrument, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]

≥500

Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (MHz)	Result
Low channel 2412MHz	7.160	11.908	0.5	Pass
Middle channel 2437MHz	7.160	11.908	0.5	Pass
High channel 2462MHz	7.120	11.908	0.5	Pass

802.11b modulation Test Result

802.11g modulation Test Result

Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (MHz)	Result
Low channel 2412MHz	16.400	17.822	0.5	Pass
Middle channel 2437MHz	16.400	17.862	0.5	Pass
High channel 2462MHz	16.400	17.822	0.5	Pass

802.11n-HT20 modulation Test Result

Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (MHz)	Result
Low channel 2412MHz	17.680	18.621	0.5	Pass
Middle channel 2437MHz	17.640	18.661	0.5	Pass
High channel 2462MHz	17.680	18.661	0.5	Pass

6 dB Bandwidth

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 17 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 18 of 46

99% Bandwidth

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 21 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 22 of 46

9.4 Power Spectral Density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set analyzer center frequency to DTS channel center frequency. RBW=10kHz, VBW=3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 3. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 4. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm]

≤8

802.11b modulation Test Result

Frequency	Power spectr (dBm	al density ı)	Limit	Result	
(MHZ)	Ant0	Ant1	(dBm)		
Low channel 2412MHz	-9.00	-9.10	8	Pass	
Middle channel 2437MHz	-7.59	-7.34	8	Pass	
High channel 2462MHz	-8.80	-8.85	8	Pass	

802.11g modulation Test Result

Frequency	Power	r spectral de (dBm)	Limit	Result			
(MHZ)	Ant0	Ant1	SUM	(dBm)			
Low channel 2412MHz	-10.21	-11.33	-7.72	8	Pass		
Middle channel 2437MHz	-10.19	-11.76	-7.89	8	Pass		
High channel 2462MHz	-10.14	-11.89	-7.92	8	Pass		

802.11n-HT20 modulation Test Result

Frequency	Powe	r spectral de (dBm)	nsity	Limit	Result	
(MHZ)	Ant0	Ant1	SUM	(dBm)		
Low channel 2412MHz	-10.01	-11.18	-7.55	8	Pass	
Middle channel 2437MHz	-10.11	-11.26	-7.64	8	Pass	
High channel 2462MHz	-10.08	-11.29	-7.63	8	Pass	

PSD^{SUM} = 10*Log(10^(PSD^{Ant0}/10)+10^(PSD^{Ant1}/10))

9.5 Spurious RF Conducted Emissions

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 3. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 4. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Note: we test Ant0 and Ant1 respectively for 802.11b/g/n20 mode and only the worst case recorded in this report.

Spurious RF conducted emissions

Test Mode	Antenna	Channel (MHz)	Frequency Range (MHz)	Reference Level	Result (MHz)	Limit (MHz)	Verdict
			Reference	4.43	4.43		PASS
		2412	30~1000	30~1000	-68.1	<=-15.57	PASS
			1000~26500	1000~26500	-40.62	<=-15.57	PASS
			Reference	4.66	4.66		PASS
11B	Ant0	2437	30~1000	30~1000	-68.39	<=-15.34	PASS
			1000~26500	1000~26500	-47.4	<=-15.34	PASS
			Reference	4.67	4.67		PASS
		2462	30~1000	30~1000	-67.79	<=-15.33	PASS
			1000~26500	1000~26500	-48.23	<=-15.33	PASS
			Reference	3.65	3.65		PASS
		2412	30~1000	30~1000	-65.44	<=-16.35	PASS
			1000~26500	1000~26500	-32.01	<=-16.35	PASS
		Ant0 2437 2462	Reference	3.99	3.99		PASS
11G	Ant0		30~1000	30~1000	-64.52	<=-16.01	PASS
			1000~26500	1000~26500	-47.94	<=-16.01	PASS
			Reference	4.38	4.38		PASS
			30~1000	30~1000	-65.02	<=-15.62	PASS
			1000~26500	1000~26500	-49.25	<=-15.62	PASS
			Reference	3.88	3.88		PASS
		2412	30~1000	30~1000	-65.21	<=-16.12	PASS
			1000~26500	1000~26500	-34.61	<=-16.12	PASS
			Reference	3.87	3.87		PASS
11N20	Ant0	2437	30~1000	30~1000	-64.56	<=-16.13	PASS
			1000~26500	1000~26500	-49.02	<=-16.13	PASS
			Reference	4.65	4.65		PASS
		2462	30~1000	30~1000	-64.81	<=-15.35	PASS
			1000~26500	1000~26500	-47.14	<=-15.35	PASS

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 26 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 27 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 28 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 29 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 30 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 31 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 32 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 33 of 46

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 34 of 46

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.6 Band Edge Testing

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 3. Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 4. The level displayed must comply with the limit specified in this Section. .
- 5. Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:

According to §15.247(d) and RSS-247 5.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen 8.10, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

Frequency Range MHz	Limit (dBc)
30-25000	-20

Note: we test Ant0 and Ant1 respectively for 802.11b/g/n20 mode and only the worst case recorded in this report.

Band edge testing

Test Mode	Antenna	Channel Name	Channel (MHz)	Reference Level (dBm)	Result (dBm)	Limit (dBm)	Verdict
110	A ntO	Low	2412	4.08	-39.77	<=-15.92	PASS
TIB ANU	High	2462	4.31	-52.8	<=-15.69	PASS	
110	A ntO	Low	2412	3.21	-33.28	<=-16.79	PASS
ПG	Anto	High	2462	4.31	-43.67	<=-15.69	PASS
11100	A ntO	Low	2412	3.83	-33.45	<=-16.17	PASS
11N20 Antu	Anto	High	2462	4.32	-41.79	<=-15.68	PASS

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 38 of 46

9.7 Spurious Radiated Emissions for Transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned
- 6. Use the following spectrum analyzer settings According to C63.10: For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold. For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

7. Repeat above procedures until all frequencies measured were complete.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).

4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Spurious Radiated Emissions for Transmitter

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205 & RSS-GEN 8.10, must comply with the radiated emission limits specified in section 15.209 & RSS-Gen 6.13.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBµV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious Radiated Emissions for Transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (802.11n20_2472MHz mode) test result is listed in the report.

Transmitting spurious emission test result as below:

802.11n20 Modulation 2472MHz Test Result

Frequenc	Frequency	Emission	Polariza	Limit	Detector	Margin	Correct	Result
У	Trequency	Level	tion	Enne	Detector	Margin	factor	Result
Band	MHz	dBuV/m		dBµV/m		dBuV/m	(dB/m)	
	48.430000	20.66	Н	40.00	QP	19.34	20.56	Pass
	63.465000	21.48	Н	40.00	QP	18.52	18.89	Pass
	124.575000	22.75	Н	43.50	QP	20.75	16.04	Pass
	341.531667	27.48	Н	46.00	QP	18.52	22.49	Pass
	505.838889	28.69	Н	46.00	QP	17.31	25.43	Pass
	600.629444	31.00	Н	46.00	QP	15.00	27.76	Pass
	Other		Ц					Deee
30-	frequency		п		QP			Pass
1000MHz	30.000000	32.67	V	40.00	QP	7.33	17.38	Pass
	50.531667	26.51	V	40.00	QP	13.49	20.68	Pass
	66.967778	29.08	V	40.00	QP	10.92	18.05	Pass
	76.775556	29.06	V	40.00	QP	10.94	14.46	Pass
	86.691111	28.75	V	40.00	QP	11.25	15.33	Pass
	128.077778	28.77	V	43.50	QP	14.73	15.56	Pass
	Other		V					Deee
	frequency		v		QP			Pass
	*1593.00	40.54	Н	74	PK	33.46	-9.57	Pass
	*2491.00	50.32	Н	74	PK	23.68	-4.90	Pass
	3377.50	44.03	Н	74	PK	29.97	-0.74	Pass
	*4307.00	48.16	Н	74	PK	25.84	3.36	Pass
	6616.00	42.11	Н	74	PK	31.89	9.42	Pass
	8947.00	44.79	Н	74	PK	29.21	12.80	Pass
	*2483.50	64.63	Н	74	PK	9.37	-5.67	Pass
	*2500.00	42.68	Н	74	PK	31.32	-5.59	Pass
	2502.64	47.72	Н	74	PK	26.28	-5.56	Pass
	*2483.50	52.41	Н	54	AV	1.59	-5.67	Pass
1000	Other		ш	74/54				Deee
25000MU	Frequency		П	74/34				Fass
20001011	*1596.00	42.84	V	74	PK	31.16	-9.50	Pass
2	*2493.00	45.67	V	74	PK	28.33	-4.90	Pass
	4316.50	47.19	V	74	PK	26.81	3.33	Pass
	7196.50	43.03	V	74	PK	30.97	8.76	Pass
	9239.50	44.10	V	74	PK	29.90	12.38	Pass
	13712.00	48.07	V	74	PK	25.93	15.82	Pass
-	2483.50	56.89	V	74	PK	17.11	-5.67	Pass
	2500.00	40.82	V	74	PK	33.18	-5.59	Pass
	2501.32	45.48	V	74	PK	28.52	-5.58	Pass
	2483.50	50.27	V	54	AV	3.73	-5.67	Pass
	Other		\/					Dest
	Frequency		V	74/54				Pass

Remark:

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205 & RSS-GEN 8.10.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Corrected Amplitude = Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

10 Test Equipment List

Conducted Emission Test

DESCRIPTIO N	MANUFACTU RER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14- 001	101782	1	2022-6-4
LISN	Rohde & Schwarz	ENV432	68-4-87-16- 001	101318	1	2022-6-5
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16- 003	080928189	1	2022-6-3
Test software	Rohde & Schwarz	EMC32	68-4-90-14- 003-A10	Version9.15.0 0	N/A	N/A
Shielding Room	TDK	CSR #1	68-4-90-19- 004		3	2022-11-07

Radiated Emission Test

DESCRIPTIO N	MANUFACTU RER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 7	68-4-74-19- 001	102176	1	2022-6-4
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	68-4-80-14- 002	707	1	2022-7-23
Horn Antenna	Rohde & Schwarz	HF907	68-4-80-14- 005	102294	1	2022-6-23
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14- 006	100398	1	2022-8-25
Pre-amplifier	Rohde & Schwarz	SCU 18	68-4-29-14- 001	102230	1	2022-6-6
Attenuator	Mini-circuits	UNAT-6+	68-4-81-21- 001	15542	1	2022-8-23
3m Semi- anechoic chamber	TDK	SAC-3 #1	68-4-90-14- 001		2	2023-5-28
Test software	Rohde & Schwarz	EMC32	68-4-90-14- 001-A10	Version10.35.0 2	N/A	N/A

Conducted RF Test System

DESCRIPTIO N	MANUFACTU RER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
Vector Signal Generator	Rohde & Schwarz	SMBV100A	68-4-48-18- 001	262825	1	2022-6-3
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14- 004	101030	1	2022-6-3
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	68-4-93-14- 003	101226/10085 1	1	2022-6-3
Power Splitter	Weinschel	1580	68-4-85-14- 001	SC319	1	2022-6-3
10dB Attenuator	Weinschel	4M-10	68-4-81-14- 003	43152	1	2022-6-3
10dB Attenuator	R&S	DNF	68-4-81-14- 004	DNF-001	1	2022-6-3

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 44 of 46

10dB Attenuator	R&S	DNF	68-4-81-14- 005	DNF-002	1	2022-6-3
10dB Attenuator	R&S	DNF	68-4-81-14- 006	DNF-003	1	2022-6-3
10dB Attenuator	R&S	DNF	68-4-81-14- 007	DNF-004	1	2022-6-3
Test software	Tonscend	System for BT/WIFI	68-4-74-14- 006-A13	Version 2.6.77.0518	N/A	N/A
Shielding Room	TDK	TS8997	68-4-90-19- 003		3	2022-11-07

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty					
Test Items	Extended Uncertainty				
Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.31dB				
Uncertainty for Radiated Emission 30MHz-3000MHz	Horizontal: 4.67dB; Vertical: 4.65dB;				
Uncertainty for Radiated Emission 3000MHz-18000MHz	Horizontal: 4.76dB; Vertical: 4.75dB;				
Uncertainty for Radiated Emission 18000MHz-40000MHz	Horizontal: 4.51dB; Vertical: 4.50dB;				
Uncertainty for Conducted RF test	RF Power Conducted: 1.27dB Frequency test involved: 0.6×10 ⁻⁷ or 1%				

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.