

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PAR	T 15 SUBPART C TEST REI	PORT
	FCC PART 15.247	GTING
Report Reference No	· CTA22062801401	ATES
FCC ID		The second se
Compiled by		
position+printed name+signature).	File administrators Kevin Liu	Kenn lan
Supervised by		Star Cartan Control Carta
position+printed name+signature).	. Project Engineer Kevin Liu	Am E
Approved by		approved
position+printed name+signature).	.: RF Manager Eric Wang	Evit Wang
Date of issue	.: Jul. 7, 2022	TIN
Festing Laboratory Name	··· Shenzhen CTA Testing Technology C	co., Ltd.
Address	. Room 106, Building 1, Yibaolai Industria	al Park, Qiaotou Community, en, China
Applicant's name	.: Guangzhou Pearl River Amason Digit	al Musical Instrument Co.,
TESTING	Ltd.	achan Aug. Zangahang
Address	2nd-4th FLoor of Building 1, No.38 Xian .: Economic and Technological Developm	
	China	
est specification	E C V	ESTINC
Standard	.: FCC Part 15.247	ALL
Shenzhen CTA Testing Technolog	gy Co., Ltd. All rights reserved.	
Shenzhen CTA Testing Technology naterial. Shenzhen CTA Testing Te	in whole or in part for non-commercial pur Co., Ltd. is acknowledged as copyright or chnology Co., Ltd. takes no responsibility he reader's interpretation of the reproduce	wner and source of the
Equipment description		
	. N/A	
	 .: Guangzhou Pearl River Amason Digital	Musical Instrument Co., Ltd.
Manufacturer	.: Guangzhou Pearl River Amason Digital	Musical Instrument Co., Ltd.
Nanufacturer Nodel/Type reference	.: Guangzhou Pearl River Amason Digital .: LK06S	Musical Instrument Co., Ltd.
Nanufacturer Nodel/Type reference .isted Models	: Guangzhou Pearl River Amason Digital : LK06S N/A	Musical Instrument Co., Ltd.
Manufacturer Model/Type reference isted Models Modulation	: Guangzhou Pearl River Amason Digital : LK06S : N/A : GFSK	Musical Instrument Co., Ltd.
Frade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency Ratings	: Guangzhou Pearl River Amason Digital : LK06S : N/A : GFSK From 2402MHz to 2480MHz	Musical Instrument Co., Ltd.
Manufacturer Nodel/Type reference isted Models Nodulation	Guangzhou Pearl River Amason Digital LK06S N/A GFSK From 2402MHz to 2480MHz DC 12V From external circuit	Musical Instrument Co., Ltd.

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

TEST REPORT

	Address	JG		nd Technological Development Zone, Guangzhou,
	Address		2nd-4th FL o	or of Building 1, No.38 Xiangshan Ave, Zengcheng
	Manufacturer		Guangzhou	Pearl River Amason Digital Musical Instrument Co.,
CTP	Address	TP		or of Building 1, No.38 Xiangshan Ave, Zengcheng nd Technological Development Zone, Guangzhou,
	Applicant	:	Guangzhou Ltd.	Pearl River Amason Digital Musical Instrument Co.,
	Listed Models	:	N/A	
	Model /Type	:	LK06S	
	Equipment under Test	:	Digital piano	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

CTA " Report No.: CTA22062801401

Contents

	CTATESTING	Contents	
<u>1</u>			. 4
<u>2</u>	<u>SUMMARY</u>		<u>. 5</u>
2.1	General Remarks	r	5
2.2	Product Description		5
2.3	Equipment Under Test		5
2.4	Short description of the Equipmen		5
2.5	EUT operation mode		6
2.6	Block Diagram of Test Setup	e e e e e e e e e e e e e e e e e e e	6
2.7	Related Submittal(s) / Grant (s)		6
2.8	Modifications		6
<u>3</u>	TEST ENVIRONMENT		. 7
3.1	Address of the test laboratory	7	7
3.2	Test Facility	7	7
3.3	Environmental conditions	7	7
3.4	Summary of measurement results	8	8
3.5	Statement of the measurement und		
3.6	Equipments Used during the Test	ç	9
	TESIN		
<u>4</u>	TEST CONDITIONS AND E	RESULTS	10
<u>-</u>			10
4.1	AC Power Conducted Emission	1	10
4.2	Radiated Emissions and Band Edg		13
4.3	Maximum Peak Output Power		20
4.4	Power Spectral Density		21
4.5	6dB Bandwidth		23
4.6	Out-of-band Emissions	2	25
4.7	Antenna Requirement	2	29
	ESTIN		
5	TEST SETUP PHOTOS OF	THE EUT	<u>30</u>
U.			
<u>6</u>	PHOTOS OF THE EUT		<u>31</u>

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 V05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

2 <u>SUMMARY</u>

General Remarks

TING	2.1 General Remarks		
TESI	Date of receipt of test sample	:	Jun. 30, 2022
A	ING		
	Testing commenced on <	:	Jun. 30, 2022
	TATL		
	Testing concluded on	:	Jul. 07, 2022
	9		•••••••, =•==

2.2 Product Description

Product Description:	Digital piano
Model/Type reference:	LK06S
Power supply:	DC 12.0V From external circuit
Adapter information:	Model: FJ-SW20181202000 Input:100-240V~50/60Hz Output:DC 12V 2A
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA220628014-1# (Engineer sample) CTA220628014-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	-0.58dBi

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
TA		0	12 V DC	Ο	24 V DC
	1	•	Other (specified in blank bel	ow)	

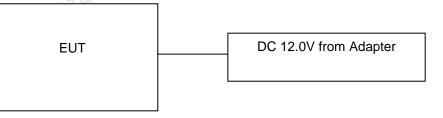
DC 12V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Digital piano .

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode


The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2404
02	2406
: 6	:
19	2440
:	:
37	2476
38	2478
39	2480

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

TEST ENVIRONMENT 3

ATESTING3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	23 ° C
-siG	
Humidity:	44 %
TES	
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

	3
Temperature:	24 ° C
Humidity:	47 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	24 ° C
	101
Humidity:	46 %
CTP CTP	
Atmospheric pressure:	950-1050mbar

TING	Test Specification clause	Test case	Test Mode	Test Channel		ecorded n Report	Test result
TESTING	§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	Lowest	BLE 1Mpbs	Lowest Middle	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
and the second se	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	Lowest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
CIA	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
Đại	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies

Summary of measurement results 3.4

2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

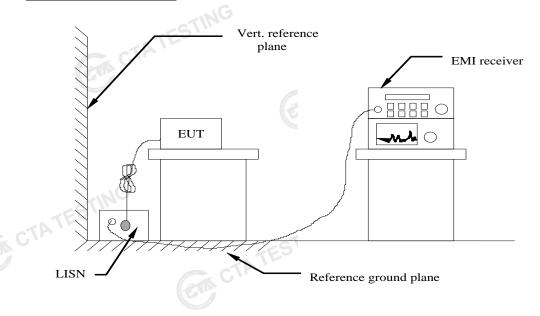
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
16	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
G	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
		CICIATE				

CTATEST

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

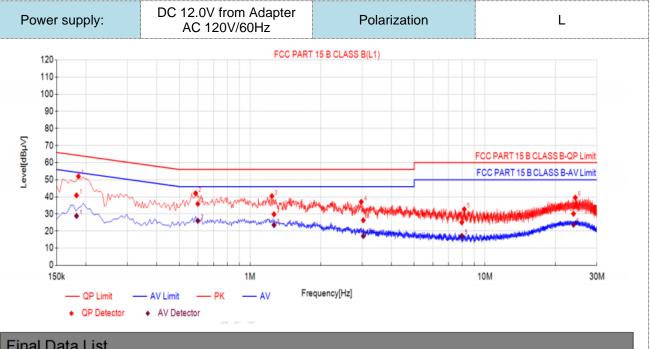
7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency	/				


TEST RESULTS

Remark:

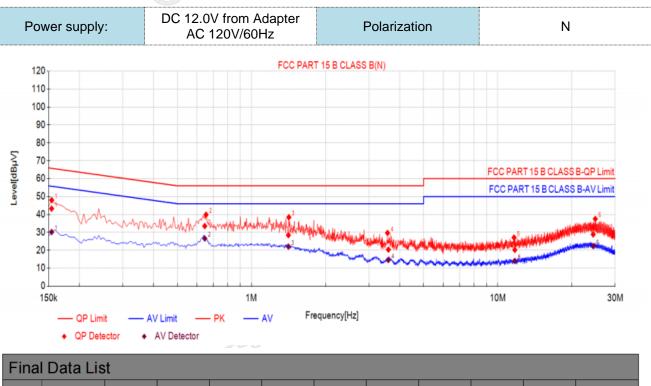
1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Гша													
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict		
1	0.1825	10.50	30.37	40.87	64.37	23.50	18.33	28.83	54.37	25.54	PASS		
2	0.5996	10.50	25.41	35.91	56.00	20.09	15.50	26.00	46.00	20.00	PASS		
3	1.2650	10.50	19.30	29.80	56.00	26.20	13.02	23.52	46.00	22.48	PASS		
4	3.0370	10.50	15.81	26.31	56.00	29.69	6.61	17.11	46.00	28.89	PASS		
5	7.9795	10.50	14.60	25.10	60.00	34.90	6.64	17.14	50.00	32.86	PASS		
6	23.8583	10.50	19.63	30.13	60.00	29.87	13.24	23.74	50.00	26.26	PASS		

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)


TESTING

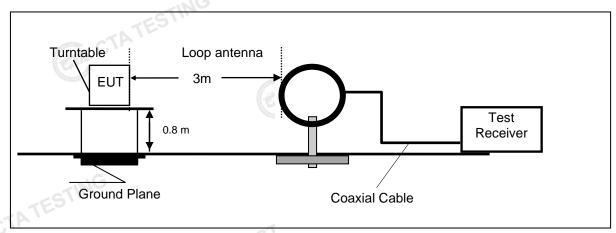
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

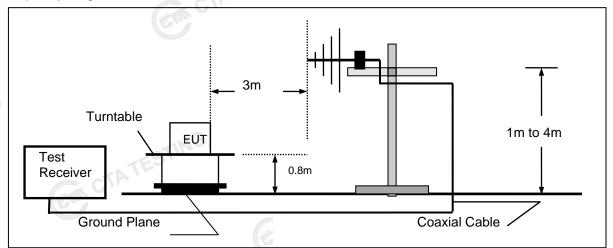
ATESTING

TESTING

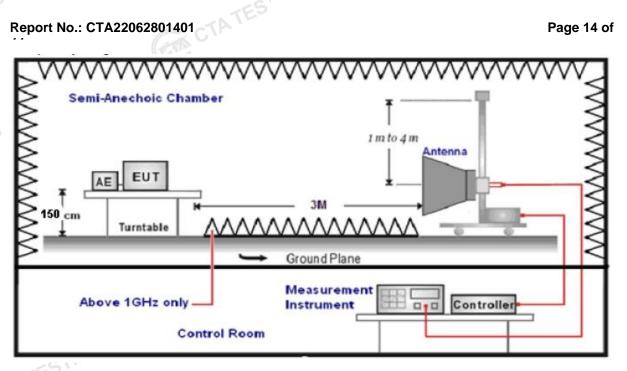
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1544	10.50	32.76	43.26	65.76	22.50	19.70	30.20	55.76	25.56	PASS
2	0.6463	10.50	23.02	33.52	56.00	22.48	16.08	26.58	46.00	19.42	PASS
3	1.4132	10.50	17.93	28.43	56.00	27.57	11.55	22.05	46.00	23.95	PASS
4	3.5982	10.50	9.88	20.38	56.00	35.62	4.12	14.62	46.00	31.38	PASS
5	11.7371	10.50	9.72	20.22	60.00	39.78	3.50	14.00	50.00	36.00	PASS
6	24.4169	10.50	18.34	28.84	60.00	31.16	11.84	22.34	50.00	27.66	PASS


Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing 1. frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360° C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states: 6.

ć	Test Frequency range	Test Antenna Type	Test Distance
U.	9KHz-30MHz	Active Loop Antenna	3
	30MHz-1GHz	Ultra-Broadband Antenna	3
	1GHz-18GHz	Double Ridged Horn Antenna	3
	18GHz-25GHz	Horn Anternna	1
_ '			

Setting test receiver/spectrum as following table states: 7.

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

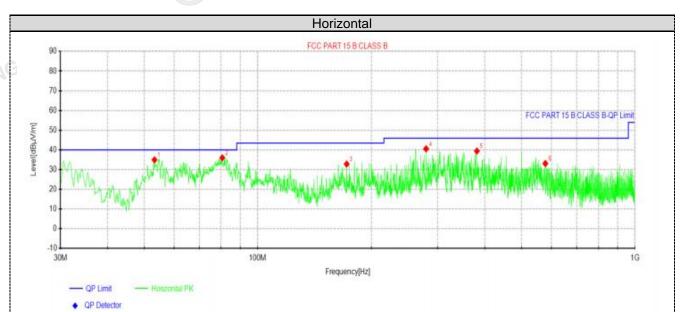
Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

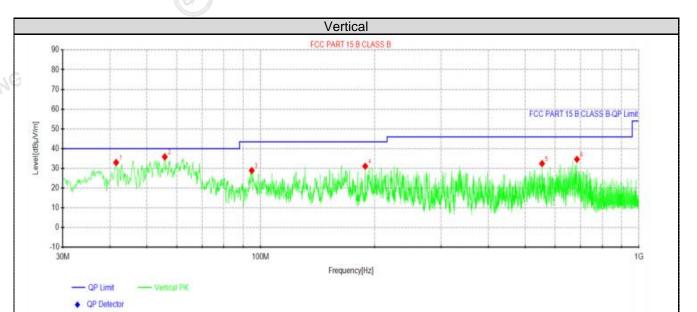

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)	
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30	3	20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	
T <mark>EST RESULTS</mark> Remark:	CTATES			

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz GM CTATESTING


Suspected Data List

Suspe	ecteu Data	LISt			Suspected Data List												
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delerity								
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity								
1	53.28	51.75	34.98	-16.77	40.00	5.02	100	0	Horizontal								
2	80.5612	57.24	35.99	-21.25	40.00	4.01	100	205	Horizontal								
3	172.105	53.77	32.84	-20.93	43.50	10.66	100	342	Horizontal								
4	279.411	58.27	40.57	-17.70	46.00	5.43	100	42	Horizontal								
5	381.018	55.16	39.45	-15.71	46.00	6.55	100	350	Horizontal								
6	578.656	45.93	33.12	-12.81	46.00	12.88	100	140	Horizontal								

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Suspected Data List

Suspe	Suspected Data List												
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delority				
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
1	41.5188	49.93	32.99	-16.94	40.00	7.01	100	115	Vertical				
2	55.8262	53.17	35.86	-17.31	40.00	4.14	100	131	Vertical				
3	94.7475	48.11	28.93	-19.18	43.50	14.57	100	108	Vertical				
4	189.08	51.07	31.10	-19.97	43.50	12.40	100	51	Vertical				
5	554.648	45.98	32.46	-13.52	46.00	13.54	100	84	Vertical				
6	685.841	46.37	34.61	-11.76	46.00	11.39	100	156	Vertical				

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA ' Report No.: CTA22062801401

For 1GHz to 25GHz

	GFSK (abo	ve 1GHz)					
24	02	Pola	Polarity:		HORIZONTAL		

Frequency(MHz):			24	02	Polarity:		F	HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.11	PK	74	12.89	65.38	32.33	5.12	41.72	-4.27	
4804.00	45.14	AV	54	8.86	49.41	32.33	5.12	41.72	-4.27	
7206.00	54.14	PK	74	19.86	54.66	36.6	6.49	43.61	-0.52	
7206.00	43.07	AV	54	10.93	43.59	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.00	PK	74	16.00	62.27	32.33	5.12	41.72	-4.27
4804.00	42.03	AV	54	11.97	46.30	32.33	5.12	41.72	-4.27
7206.00	51.03	PK	74	22.97	51.55	36.6	6.49	43.61	-0.52
7206.00	39.96	AV	54	14.04	40.48	36.6	6.49	43.61	-0.52

Freque	Frequency(MHz):		2440		Polarity:		HORIZONTAL		
Frequency (MHz)	_	vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	60.61	PK	74	13.39	64.49	32.6	5.34	41.82	-3.88
4880.00	46.02	AV	54	7.98	49.90	32.6	5.34	41.82	-3.88
7320.00	53.64	PK	74	20.36	53.75	36.8	6.81	43.72	-0.11
7320.00	43.39	AV	54	10.61	43.50	36.8	6.81	43.72	-0.11

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	57.50	PK	74	16.50	61.38	32.6	5.34	41.82	-3.88
4880.00	42.91	AV	54	<i>🛹</i> 11.09	46.79	32.6	5.34	41.82	-3.88
7320.00	50.53	PK	74	23.47	50.64	36.8	6.81	43.72	-0.11
7320.00	40.28	AV	54	13.72	40.39	36.8	6.81	43.72	-0.11

Frequency(MHz):			2480		Polarity:		HORIZONTAL			
Frequenc (MHz)	y G	Emiss Lev dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.4	19	PK	74	13.51	63.57	32.73	5.66	41.47	-3.08
4960.00	45.5	54	AV	54	8.46	48.62	32.73	5.66	41.47	-3.08
7440.00	55.3	35	PK	74	18.65	54.90	37.04	7.25	43.84	0.45
7440.00	44.1	14	PK	54	9.86	43.69	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	57.38	ΡK	74	16.62	60.46	32.73	5.66	41.47	-3.08	
4960.00	42.43	AV	54	11.57	45.51	32.73	5.66	41.47	-3.08	
7440.00	52.24	PK	74	21.76	51.79	37.04	7.25	43.84	0.45	
7440.00	41.03	PK	54	12.97	40.58	37.04	7.25	43.84	0.45	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

		NG	GFS	K				
ncy(MHz)):	24	02	Pola	rity:	н	ORIZONTA	\L
Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
60.44	PK	74	13.56	70.86	27.42	4.31	42.15	-10.42
43.98	AV	54	10.02	54.40	27.42	4.31	42.15	-10.42
ncy(MHz)):	24	02	Pola	rity:		VERTICAL	
Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
57.33	PK	74	16.67	67.75	27.42	4.31	42.15	-10.42
40.87	AV	54	13.13	51.29	27.42	4.31	42.15	-10.42
ncy(MHz)):	2480		P olarity:		HORIZONTAL		
Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
60.91	PK	74	13.09	71.02	27.7	4.47	42.28	-10.11
43.45	AV	54	10.55	53.56	27.7	4.47	42.28	-10.11
Frequency(MHz):		24	80	Polarity:		VERTICAL		
Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
57.80	PK	74	16.20	67.91	27.7	4.47	42.28	-10.11
40.34	AV	54	13.66	50.45	27.7	4.47	42.28	-10.11
	Emis Le (dBu 60.44 43.98 hcy(MHz) Emis Le (dBu 57.33 40.87 hcy(MHz) Emis Le (dBu 60.91 43.45 hcy(MHz) Emis Le (dBu 60.91 43.45 hcy(MHz) Emis Le (dBu 60.91	43.98 AV hcy(MHz): Emission Level (dBuV/m) 57.33 PK 40.87 AV hcy(MHz): Emission Level (dBuV/m) 60.91 PK 43.45 AV hcy(MHz): Emission Level (dBuV/m) 60.91 PK 43.45 AV hcy(MHz): Emission Level (dBuV/m) 57.80 PK	Emission Level (dBuV/m) Limit (dBuV/m) 60.44 PK 74 43.98 AV 54 hcy(MHz): 24 Emission Level (dBuV/m) Limit (dBuV/m) 57.33 PK 74 40.87 AV 54 hcy(MHz): 24 Emission Level (dBuV/m) Limit (dBuV/m) 60.91 PK 74 43.45 AV 54 hcy(MHz): 24 Emission Level (dBuV/m) Limit (dBuV/m) 60.91 PK 74 43.45 AV 54 hcy(MHz): 24 Emission Level (dBuV/m) Limit (dBuV/m) 57.80 PK 74	cy(MHz): 2402 Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 60.44 PK 74 13.56 43.98 AV 54 10.02 beta AV 54 10.02 beta AV 54 10.02 beta AV 54 10.02 beta Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 57.33 PK 74 16.67 40.87 AV 54 13.13 beta Limit (dBuV/m) Margin (dB) Margin (dB) 60.91 PK 74 13.09 43.45 AV 54 10.55 beta AV 54 10.55 bevel (dBuV/m) Limit (dBuV/m) Margin (dB) Margin (dB) 57.80 PK 74 16.20	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) 60.44 PK 74 13.56 70.86 43.98 AV 54 10.02 54.40 ncy(MHz): 2402 Pola Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) 57.33 PK 74 16.67 67.75 40.87 AV 54 13.13 51.29 ncy(MHz): 2480 P ola Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) 60.91 PK 74 13.09 71.02 43.45 AV 54 10.55 53.56 ncy(MHz): 2480 Pola Value (dBuV) Value (dBuV) 60.91 PK 74 13.09 71.02 43.45 AV 54 10.55 53.56 ncy(MHz): 2480 Pola Value (dBuV) 57.80 PK 74 16.20 <	cy(MHz): 2402 Polarity: Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dBuV) 60.44 PK 74 13.56 70.86 27.42 43.98 AV 54 10.02 54.40 27.42 43.98 AV 54 10.02 54.40 27.42 pcy(MHz): 2402 Polarity: Polarity: Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dBuV) 57.33 PK 74 16.67 67.75 27.42 40.87 AV 54 13.13 51.29 27.42 for(MHz): 2480 P olarity: Polarity: Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dBm) 60.91 PK 74 13.09 71.02 27.7 43.45 AV 54 10.55 53.56 27.7 for(MHz): 2480 <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>hcy(MHz):2402Polarity:HORIZONTAEmission Level (dBuV/m)Limit (dB)Margin (dB)Raw Value (dBuV)Antenna Factor (dBuV)Cable Factor (dB)Pre- amplifier (dB)60.44PK7413.5670.8627.424.3142.15$43.98$AV5410.0254.4027.424.3142.15hcy(MHz):2402Polarity:VERTICALEmission Level (dBuV/m)Limit (dB)Margin (dB)Raw Value (dB)Antenna Factor (dBW)Cable Factor (dB)Pre- amplifier (dB)57.33PK7416.6767.7527.424.3142.1540.87AV5413.1351.2927.424.3142.15hcy(MHz):2480Polarity:HORIZONTA (dB)HORIZONTA (dB)Pre- amplifier (dB)Pre- amplifier (dB)Pre- amplifier (dB)Pre- amplifier (dB)Pre- amplifier (dB)60.91PK7413.0971.0227.74.4742.2843.45AV5410.5553.5627.74.4742.28hcy(MHz):2480Polarity:VERTICAL Factor (dB)Pre- amplifier (dB)Pre- amplifier (dB)Pre- amplifier (dB)60.91PK7413.0971.0227.74.4742.28hcy(MHz):2480Polarity:VERTICAL Factor (dB)Pre- amplifier (dB)</td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	hcy(MHz):2402Polarity:HORIZONTAEmission Level (dBuV/m)Limit (dB)Margin (dB)Raw Value (dBuV)Antenna Factor (dBuV)Cable Factor (dB)Pre- amplifier (dB) 60.44 PK7413.5670.8627.424.3142.15 43.98 AV5410.0254.4027.424.3142.15hcy(MHz):2402Polarity:VERTICALEmission Level (dBuV/m)Limit (dB)Margin (dB)Raw Value (dB)Antenna Factor (dBW)Cable Factor (dB)Pre- amplifier (dB)57.33PK7416.6767.7527.424.3142.1540.87AV5413.1351.2927.424.3142.15hcy(MHz):2480Polarity:HORIZONTA (dB)HORIZONTA (dB)Pre- amplifier (dB)Pre- amplifier (dB)Pre- amplifier (dB)Pre- amplifier (dB)Pre- amplifier (dB)60.91PK7413.0971.0227.74.4742.2843.45AV5410.5553.5627.74.4742.28hcy(MHz):2480Polarity:VERTICAL Factor (dB)Pre- amplifier (dB)Pre- amplifier (dB)Pre- amplifier (dB)60.91PK7413.0971.0227.74.4742.28hcy(MHz):2480Polarity:VERTICAL Factor (dB)Pre- amplifier (dB)

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

3. Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

4.3 Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	0.38		
GFSK 1Mbps	19	0.57	30.00	Pass
	39	0.39		

Note: 1.The test results including the cable lose.S

4.4 Power Spectral Density

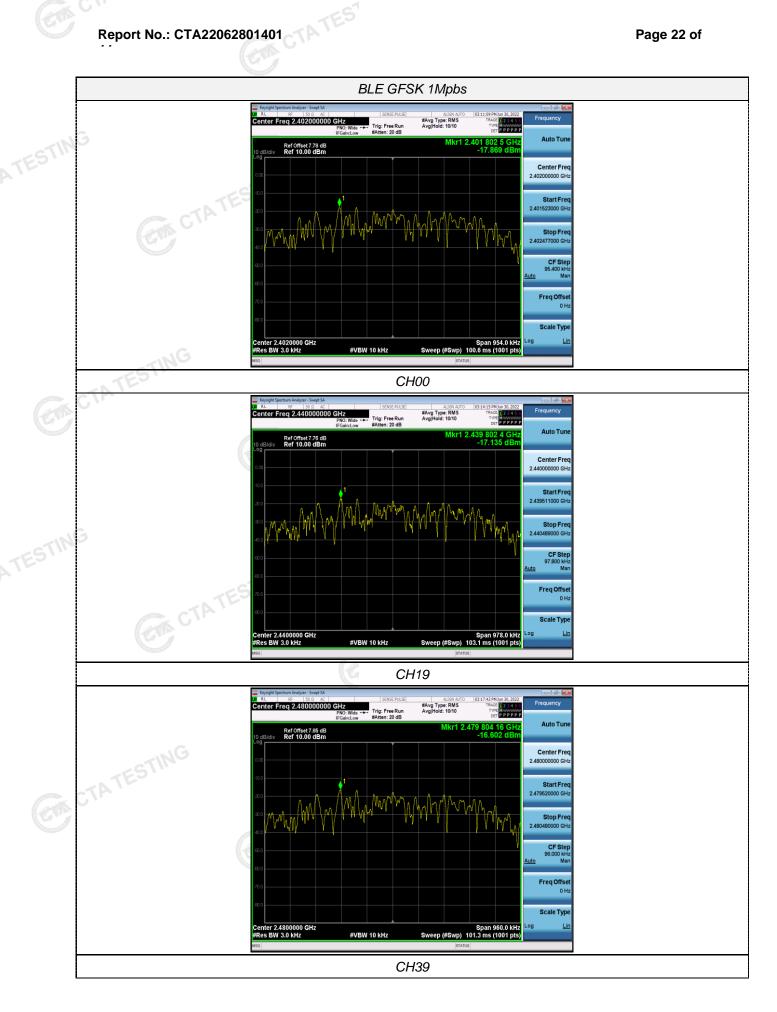
<u>Limit</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \ge 3 kHz.
- 3. Set the VBW \ge 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


EUT		SPECTRUM ANALYZER
CTATESTIN		

Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-17.87		
GFSK 1Mbps	19	-17.14	8.00	Pass
	39	-16.60		

Test plot as follows:

GTA CTA "

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

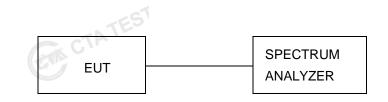
GTA CTA '

Page 24 of

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

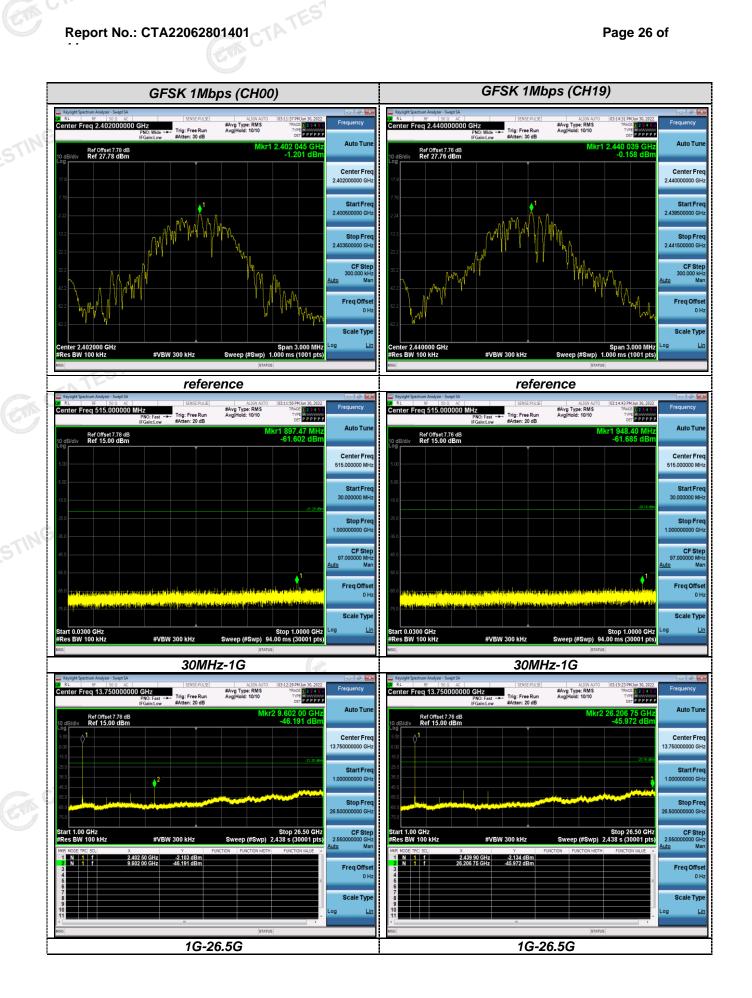
4.6 Out-of-band Emissions


<u>Limit</u>

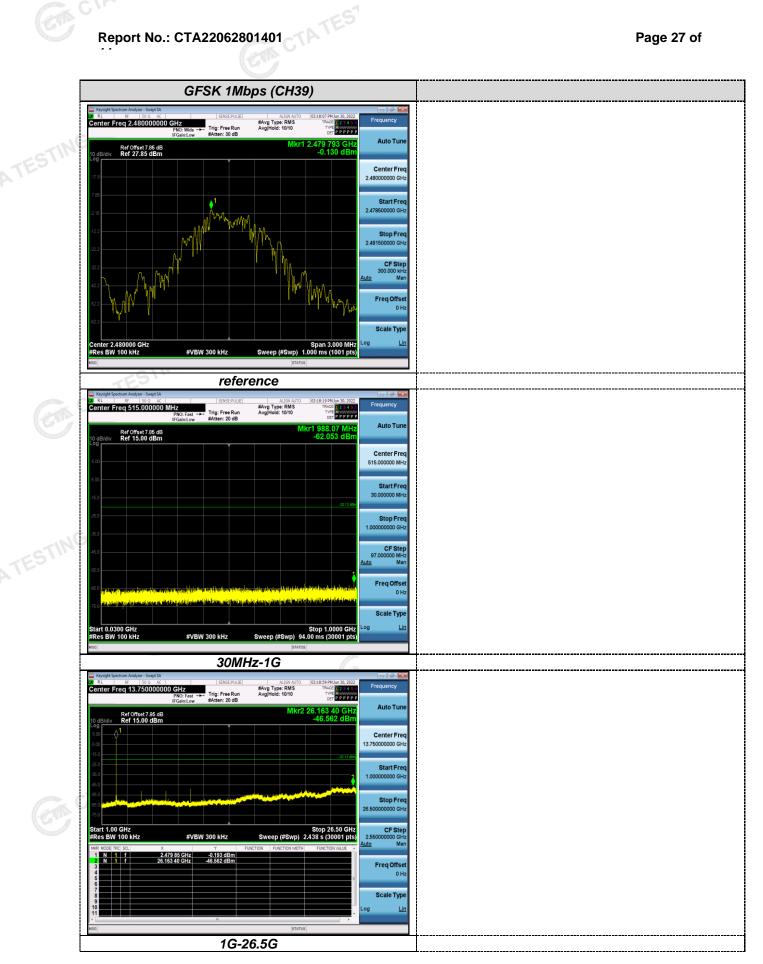
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

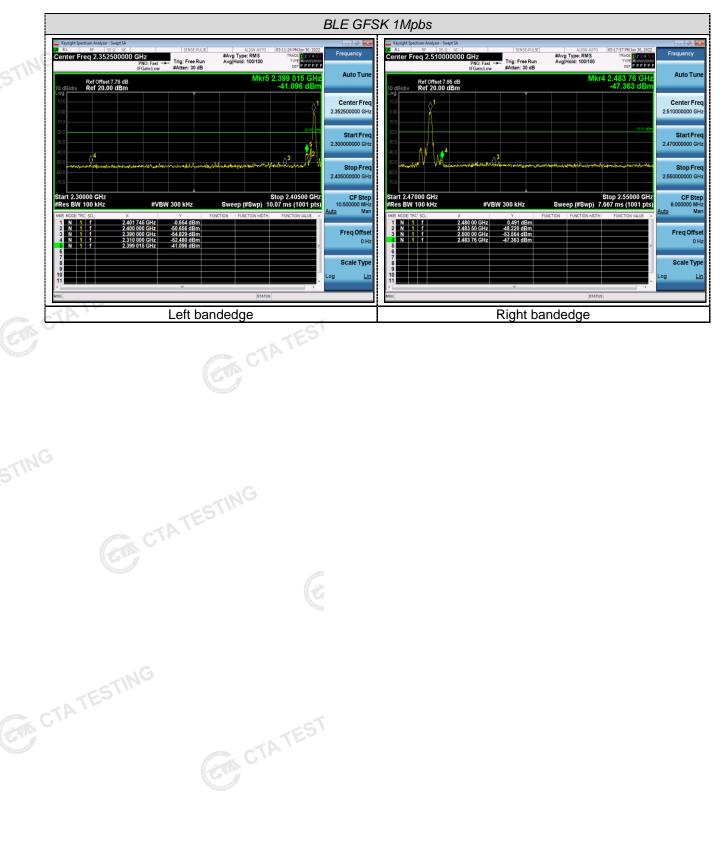
Test Configuration


Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows:



Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Band-edge Measurements for RF Conducted Emissions:

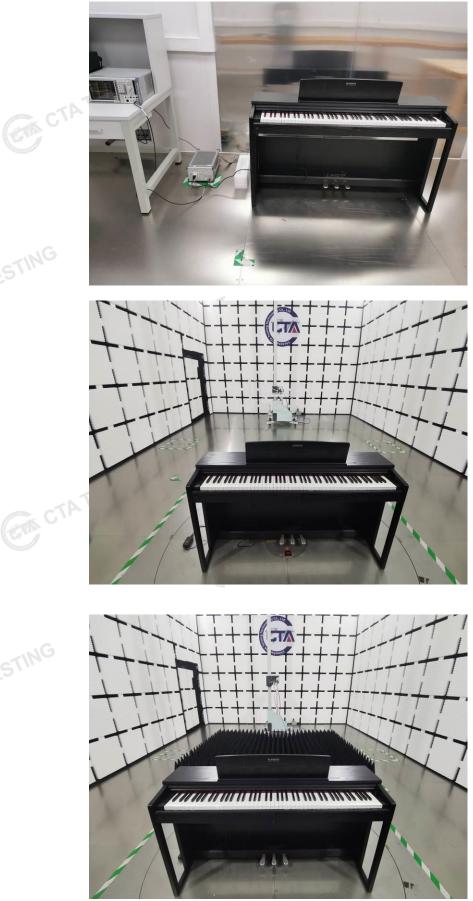
4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

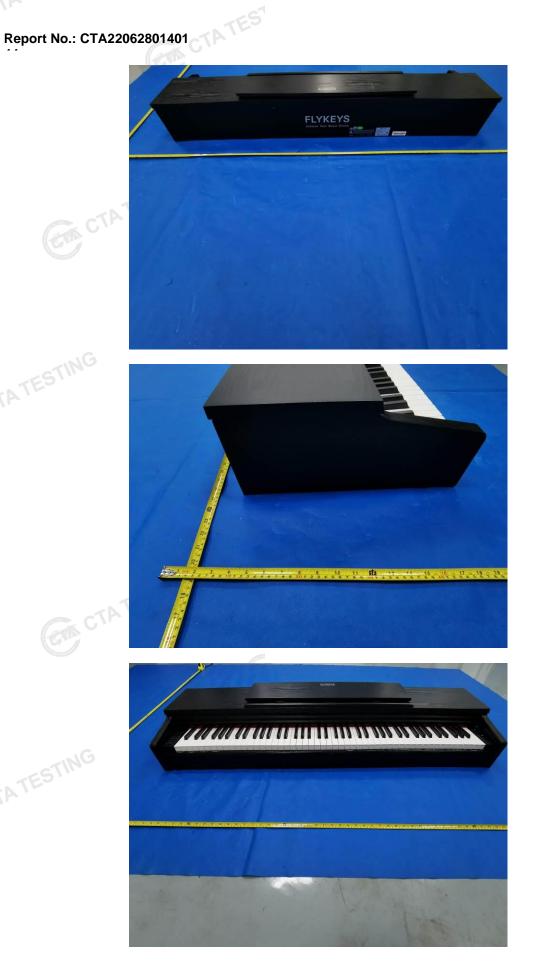

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of PCB antenna was -0.58dBi. This antenna type meets requirement 15.203.

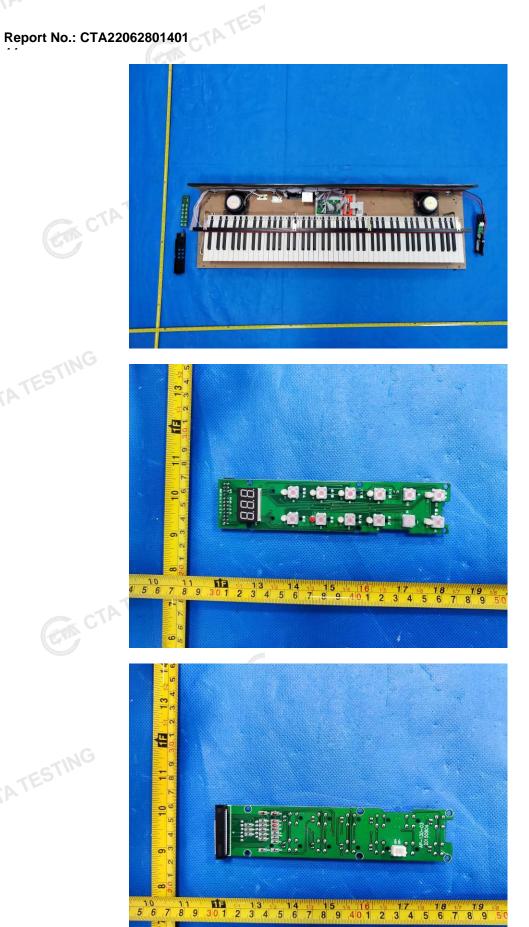
Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

5 Test Setup Photos of the EUT


6 PHOTOS OF THE EUT

Page 32 of

CTA "



GTA CIA "

