

		FRODT		
FCC PART 15 SUBPART C TEST REPORT				
FCC PART 15.407				
Report Reference No FCC ID	GTSR19010009-02 2ASJA-B8821CU1			
Compiled by (position+printed name+signature):	File administrators Jimmy Wang	Jon Mey		
Supervised by (position+printed name+signature):	Test Engineer Aaron Tan	Kuthen TEST State		
Approved by (position+printed name+signature):	Manager Jason Hu	Juser Her		
Date of issue	Feb.25, 2019			
Representative Laboratory Name .:	Shenzhen Global Test Service C	o.,Ltd.		
Address:	No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong			
Applicant's name	REV Robotics LLC			
Address	1621 W Crosby Road Suite 104 Carrollton TX,75006			
Test specification:				
Standard	FCC Part 15.407			
TRF Originator Master TRF	Shenzhen Global Test Service Co. Dated 2014-12	.,Ltd.		
Shenzhen Global Test Service Co.,L	td. All rights reserved.			
This publication may be reproduced in Shenzhen Global Test Service Co.,Ltd Shenzhen Global Test Service Co.,Ltd resulting from the reader's interpretation	. is acknowledged as copyright own . takes no responsibility for and will	er and source of the material. not assume liability for damages		
Test item description	IEEE 802.11a/b/g/n/ac(1T1R) USE	B WLAN And BT Module		
Trade Mark	1			
Manufacturer:	Shenzhen Bilian Electronic Co.,Ltc	1		
Model/Type reference	BL-M8821CU1			
Listed Models	Ι			
Modulation Type	IEEE 802.11a /802.11ac /802.11b/	/802.11g/802.11n		
Operation Frequency	From 2412 - 2462MHz &5180 - 52	40MHz		
Hardware Version	V1.1			
Software Version	V30_20121220			
Rating:	DC 3.3V			
Result	PASS			

TEST REPORT

Test Report No. :		GTSR19010009-02	Feb. 25, 2019 Date of issue
Equipment under Test	:	IEEE 802.11a/b/g/n/ac(1T1R) US	B WLAN And BT Module
Model /Type	:	BL-M8821CU1	
Listed Models	:	1	
Applicant	:	REV Robotics LLC	
Address	:	1621 W Crosby Road Suite 104 C	arrollton TX, 75006
Manufacturer	:	Shenzhen Bilian Electronic Co.,Lto	ł
Address	:	No.3 Building 401, 107 FuQian Ro Street, Longhua District, shenzher	

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

	<u>ARY</u>	
	Remarks	
	Description	
	ent Under Test	
	escription of the Equipment under Test (EUT) Pration mode	
	agram of Test Setup	
	Accessories	
	Submittal(s) / Grant (s)	
Modifica		
<u>test</u>	ENVIRONMENT	<u></u>
Address	of the test laboratory	
Test Fac		
	mental conditions	
	scription	
	nt of the measurement uncertainty	
Equinme	onte llead during tha Taet	
	ents Used during the Test	
	CONDITIONS AND RESULTS	
<u>TEST</u> 4.1.	CONDITIONS AND RESULTS	
TEST 4.1. 4.2.	CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission	
TEST 4.1. 4.2. 4.3.	CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Duty Cycle	
TEST 4.1. 4.2. 4.3. 4.4.	CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Duty Cycle Maximum Average Output Power	
TEST 4.1. 4.2. 4.3. 4.4. 4.5.	CONDITIONS AND RESULTS AC Power Conducted Emission	
TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	AC Power Conducted Emission Radiated Emission Duty Cycle Maximum Average Output Power Power Spectral Density 6dB Bandwidth	
TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	AC Power Conducted Emission Radiated Emission Duty Cycle Maximum Average Output Power Power Spectral Density 6dB Bandwidth	
TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8.	AC Power Conducted Emission Radiated Emission Duty Cycle Maximum Average Output Power Power Spectral Density 6dB Bandwidth	
	AC Power Conducted Emission Radiated Emission Duty Cycle Maximum Average Output Power Power Spectral Density 6dB Bandwidth	
TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9.	AC Power Conducted Emission Radiated Emission Duty Cycle Maximum Average Output Power Power Spectral Density 6dB Bandwidth 26dBc Bandwidth Band Edge Compliance Frequency Stability	

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

FCC Rules Part 15.407: UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE DEVICES. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB 789033 D02: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORAMTION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E KDB 662911 D01 Multiple Transmitter Output v02r01: Emissions Testing of Transmitters with Multiple Outputs in the Same Band

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Feb. 12, 2019
Testing commenced on	•••	Feb. 12, 2019
Testing concluded on	:	Feb. 25, 2019

2.2. Product Description

Product Name:	IEEE 802.11a/b/g/n/ac(1T1R) USB WLAN And BT Module
Trade Mark:	1
Model/Type reference:	BL-M8821CU1
Antenna Type	Connect to external antenna
Power supply:	DC 3.3V
Notebook:	Manufacturer: TOSHIBA Model: Satellite S40Dt-A
WIFI	
WLAN	Supported 802.11 a/b/g/n/ac
Modulation Type	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11ac: OFDM(64QAM, 16QAM, QPSK, BPSK)
Operation frequency	IEEE 802.11a:5180-5240MHz IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz, 5180-5240MHz IEEE 802.11ac VHT20: 5180-5240MHz IEEE 802.11n HT40:2422-2452MHz, 5190-5230MHz IEEE 802.11ac VHT40: 5190-5230MHz IEEE 802.11ac VHT80: 5210-5210MHz
Antenna gain	1.62 dBi Max for 2.4G band; 1.62 dBi Max for 5.2G band
BT	
Modulation Type	GFSK
Operation frequency	2402-2480MHz
Antenna gain	1.62 dBi Max

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		Ο	12 V DC	0	24 V DC
			Other (specified in blank bel	ow	

<u>DC 3.3V</u>

2.4. Short description of the Equipment under Test (EUT)

This is a **Module**.

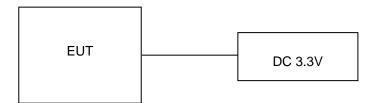
For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The application provider specific test software to control sample in continuous TX and RX.

IEEE 802.11a/IEEE 802.11ac(20MHz)/IEEE 802.11n(20MHz):

UNII-1		
Channel	Frequency (MHz)	
36	5180	
40	5200	
44	5220	
48	5240	


IEEE 802.11ac(40MHz)/IEEE 802.11n(40MHz):

UNII-1		
Channel	Frequency (MHz)	
38	5190	
46	5230	

IEEE 802.11ac(80MHz)

UNII-1		
Channel	Frequency (MHz)	
42	5210	

2.6. Block Diagram of Test Setup

2.7. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
TOSHIBA	Tablet PC	Satellite S40Dt-A	D26T	DOC

2.8. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2ASJA-M8821CU1 filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

2.9. Modifications

No modifications were implemented to meet testing criteria.

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

1F, Building No. 13A, Zhonghaixin Science and Technology City, No.12,6 Road, Ganli Industrial Park, Buji Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Test Description

Test Specification clause	Test case	Test Mode	Test Channel	Record In Rep		Pass	Fail	NA	NP	Remark
§15.203	Antenna gain	802.11ac	⊠ Lowest ⊠ Middle ⊠ Highest	802.11a	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.407(a)	Power spectral density	802.11ac 802.11n HT20	⊠ Lowest ⊠ Middle ⊠ Highest	802.11a 802.11ac 802.11n	 ☑ Lowest ☑ Middle ☑ Highest 	\boxtimes				complies
§15.407(a)	Spectrum bandwidth – 26 dB bandwidth	802.11ac 802.11n HT20	⊠ Lowest ⊠ Middle ⊠ Highest	802.11a 802.11ac 802.11n	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.407(e)	Spectrum bandwidth – 6 dB bandwidth	802.11ac 802.11n HT20	⊠ Lowest ⊠ Middle ⊠ Highest	802.11a 802.11ac 802.11n	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				N/A
§15.407(a)	Maximum output power	802.11ac 802.11n HT20	⊠ Lowest ⊠ Middle ⊠ Highest	802.11a 802.11ac 802.11n	⊠ Lowest ⊠ Middle ⊠ Highest	\mathbb{X}				complies
§15.407(b)	Band edge compliance conducted	802.11ac 802.11n HT20	⊠ Lowest ⊠ Highest	802.11a 802.11ac 802.11n	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.407(b)	Band edge compliance radiated	802.11a 802.11ac 802.11n	⊠ Lowest ⊠ Highest	802.11a	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.407(a)	TX spurious emissions conducted	-/-	-/-	-/-	-/-					complies
§15.407(a)	TX spurious emissions radiated	802.11a 802.11ac 802.11n	⊠ Lowest ⊠ Middle ⊠ Highest	802.11a	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.407(g)	Frequency Stability	802.11a 802.11ac 802.11n	⊠ Lowest ⊠ Highest	802.11a	⊠ Lowest					complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-					complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	802.11a 802.11ac 802.11n	-/-	802.11a	-/-					complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	802.11a 802.11ac 802.11n	-/-	802.11a	-/-					complies

Remark:

1. The measurement uncertainty is not included in the test result.

2. N/A = Not Applicable; NP = Not Performed

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate
Maximum Peak Conducted Output Power	11ac/OFDM	6 Mbps
Power Spectral Density		
6dB Bandwidth		
26dB Bandwidth		
Spurious RF conducted emission	11n/OFDM	6.5 Mbps
Radiated Emission 9kHz~1GHz&		
Radiated Emission 1GHz~10 th Harmonic		
	11ac/OFDM	6 Mbps
Band Edge	11n/OFDM	6.5 Mbps

3.5. Statement of the measurement uncertainty

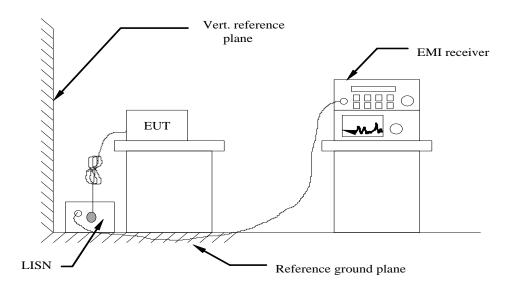
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test


Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2018/09/20	2019/09/19
LISN	R&S	ESH2-Z5	893606/008	2018/09/20	2019/09/19
Bilog Antenna	Schwarzbeck	VULB9163	976	2016/09/20	2019/09/19
EMI Test Receiver	R&S	ESCI7	101102	2018/09/20	2019/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2018/09/20	2019/09/19
Spectrum Analyzer	R&S	FSP40	100019	2018/06/05	2019/06/04
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2016/09/20	2019/09/19
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2016/09/20	2019/09/19
Broadband Horn Antenna	SCHWARZBEC K	BBHA 9170	971	2016/09/20	2019/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2018/09/20	2019/09/19
Amplifier	EMCI	EMC051845B	980355	2018/09/20	2019/09/19
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2018/09/20	2019/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2018/09/20	2019/09/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2018/09/20	2019/09/19
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2018/09/20	2019/09/19
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2018/09/20	2019/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2018/09/20	2019/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2018/09/20	2019/09/19
EMI Test Software	R&S	ES-K1	V1.7.1	2018/09/20	2019/09/19
EMI Test Software	JS Tonscend	JS32-RE	2.0.1.5	2018/09/20	2019/09/19
EMI Test Software	Audix	E3	21.1	2018/09/20	2019/09/19

Note: The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 5V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

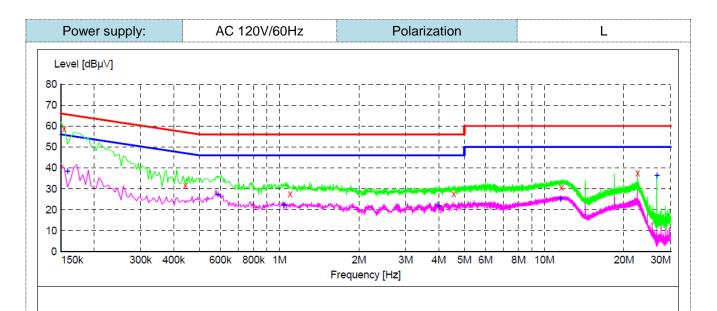
5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

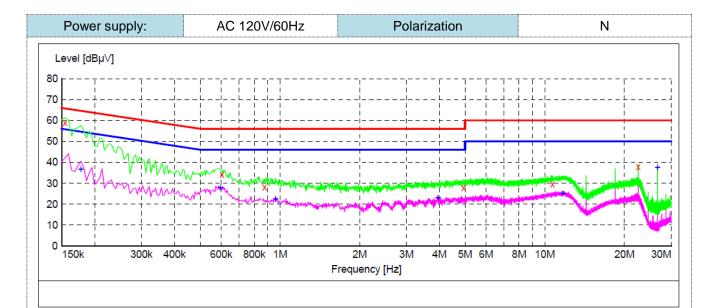

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

k Average 56 to 46*
56 to 16*
501040
46
50

* Decreases with the logarithm of the frequency.

TEST RESULTS

Remark: We measured Conducted Emission at 802.11a/802.11n/802.11ac mode in AC 120V/60Hz and AC 240V/50Hz, Pre-test AC conducted emission at power from AC mains mode and at charge from PC mode, recorded worst case.


MEASUREMENT RESULT:

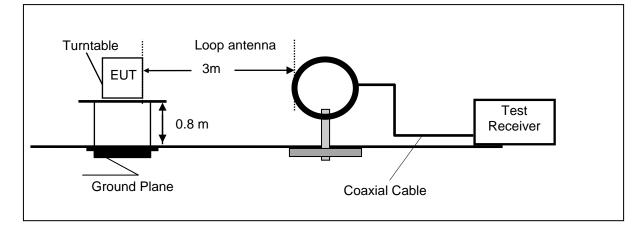
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154500 0.442500 1.099500 4.555500 11.611500 22.528500	58.70 31.50 27.70 27.50 30.70 37.60	10.1 9.8 9.6 9.3 8.6 9.0	66 57 56 60 60	7.1 25.5 28.3 28.5 29.3 22.4	QP QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT:

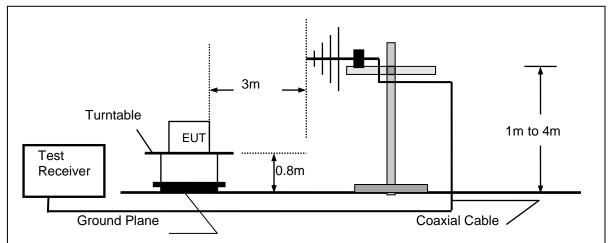
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.159000	38.30	10.0	56	17.2	AV	Ν	GND
0.586500	27.30	9.7	46	18.7	AV	Ν	GND
1.041000	22.20	9.6	46	23.8	AV	Ν	GND
4.006500	21.90	9.4	46	24.1	AV	Ν	GND
11.485500	25.40	8.7	50	24.6	AV	Ν	GND
26.623500	36.50	9.0	50	13.5	AV	Ν	GND

MEASUREMENT RESULT:

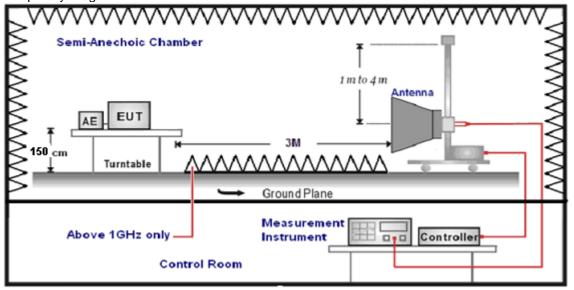
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154500 0.604500 0.874500 4.933500 10.689000 22.528500	58.80 34.20 28.10 27.90 29.50 37.80	10.1 9.7 9.6 9.3 8.8 9.0	66 56 56 60 60	7.0 21.8 27.9 28.1 30.5 22.2	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND


MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.177000	36.70	10.0	55	17.9	AV	L1	GND
0.595500	27.90	9.7	46	18.1	AV	L1	GND
0.960000	22.50	9.6	46	23.5	AV	L1	GND
3.952500	23.00	9.4	46	23.0	AV	L1	GND
11.683500	25.00	8.6	50	25.0	AV	L1	GND
26.623500	37.40	9.0	50	12.6	AV	L1	GND


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing above 1GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 24MHz and maximum operation frequency was 5825MHz.so radiated emission test frequency band from 9KHz to 40GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Antenna Type	Test Distance
Active Loop Antenna	3
Ultra-Broadband Antenna	3
Double Ridged Horn Antenna	3
Horn Anternna	1
	Active Loop Antenna Ultra-Broadband Antenna Double Ridged Horn Antenna

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	I Cak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

According to \$15.407 (b): Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits

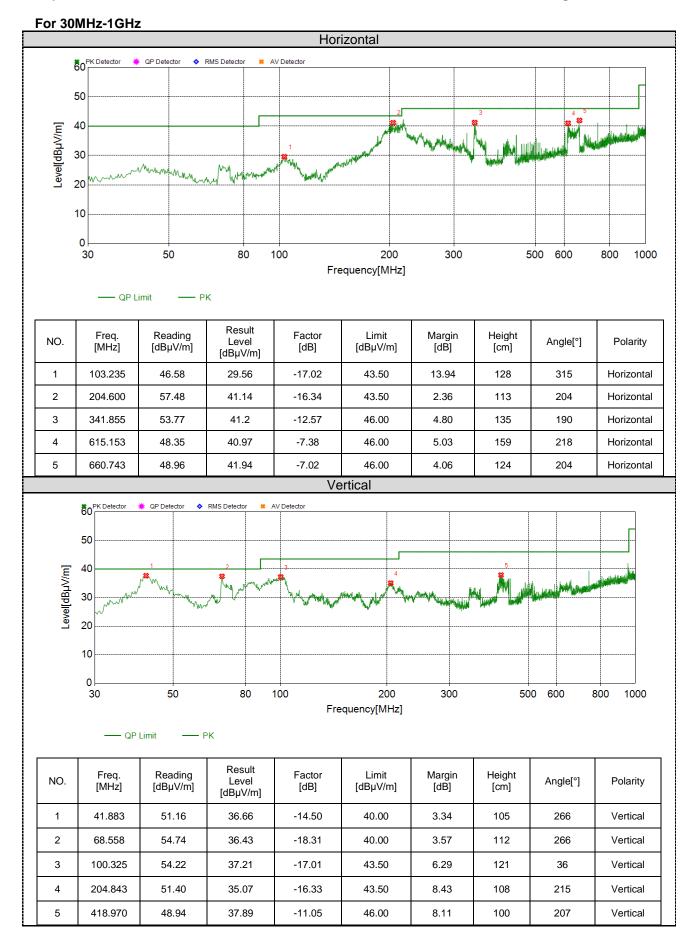
Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m)		
5150-5250	-27 68.3			
5250-5350	-27	68.3		
5470-5725	-27	68.3		
5725-5850	-27 (beyond 10MHz of the bandedge)	68.3		
5725-5650	-17 (within 10 MHz of band edge)	78.3		

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: We tested at 802.11ac/802.11ac/802.11n mode at the antenna single transmitting mode and the Mimo mode in AC 120V/60Hz, and recored the worst data at the Mimo mode of the 802.11a Mode.

For 9 KHz-30MHz


Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Note:

- 1. Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11ac VHT20 mode (Middle Channel, Combined Antenna Chain1 and Antenna Chain2)).
 2. Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor
- 3. Margin value = Emission level-Limits

For 1GHz to 40GHz

802.11a Mode Channel 36 5180 MHz

				002.17u i	nouc_o					
Item	Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin	Detector	Polarization
		Level	Factor		Loss	Level	Line			
(Mark)	(MHz)	(dBµV)	(dB/m)	Factor	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	10360	36.56	38.55	33.64	11.24	52.71	74	-21.29	Peak	Horizontal
2	10360	26.57	38.55	33.64	11.24	42.72	54	-11.28	AV	Horizontal
3	15540	31.47	36.49	36.53	13.72	45.15	74	-28.85	Peak	Horizontal
4	15540	22.84	36.49	36.53	13.72	36.52	54	-17.48	AV	Horizontal

Item	Freq	Read Level	Antenna Factor	PRM	Cable Loss	Result Level	Limit Line	Margin	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	Factor	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	10360	33.96	38.55	33.64	11.24	50.11	74	-23.89	Peak	Vertical
2	10360	24.74	38.55	33.64	11.24	40.89	54	-13.11	AV	Vertical
3	15540	31.29	36.49	36.53	13.72	44.97	74	-29.03	Peak	Vertical
4	15540	22.48	36.49	36.53	13.72	36.16	54	-17.84	AV	Vertical

802.11a Mode_Channel 40 _ 5200 MHz

Item	Freq	Read Level	Antenna Factor	PRM	Cable Loss	Result Level	Limit Line	Margin	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	Factor	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	10400	32.25	38.57	33.66	11.36	48.52	74	-25.48	Peak	Horizontal
2	10400	22.76	38.57	33.66	11.36	39.03	54	-14.97	AV	Horizontal
3	15600	30.74	36.51	36.55	13.91	44.61	74	-29.39	Peak	Horizontal
4	15600	21.58	36.51	36.55	13.91	35.45	54	-18.55	AV	Horizontal

Item	Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin	Detector	Polarization
		Level	Factor		Loss	Level	Line			
(Mark)	(MHz)	(dBµV)	(dB/m)	Factor	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	10400	32.66	38.57	33.66	11.36	48.93	74	-25.07	Peak	Vertical
2	10400	22.75	38.57	33.66	11.36	39.02	54	-14.98	AV	Vertical
3	15600	29.69	36.51	36.55	13.91	43.56	74	-30.44	Peak	Vertical
4	15600	20.43	36.51	36.55	13.91	34.3	54	-19.7	AV	Vertical

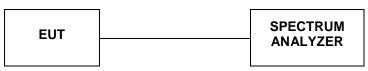
802.11a Mode_ Channel 48_ 5240 MHz Item Freq Read Antenna PRM Cable Result Limit Margin Detector Polarization Level Factor Loss Level Line (dBµV) (dBµV/m) (dBµV/m) (Mark) (MHz) (dB/m) Factor (dB) (dB) 10480 31.81 38.56 33.7 11.41 48.08 74 -25.92 Peak Horizontal 1 2 10480 19.86 38.56 54 -17.87 AV 33.7 11.41 36.13 Horizontal 3 15720 29.46 36.54 36.57 13.98 43.41 74 -30.59 Peak Horizontal 15720 20.08 36.54 34.03 54 Horizontal 4 36.57 13.98 -19.97 AV

Item	Freq	Read Level	Antenna Factor	PRM	Cable Loss	Result Level	Limit Line	Margin	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	Factor	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	10480	31.16	38.56	33.7	11.41	47.43	74	-26.57	Peak	Vertical
2	10480	19.57	38.56	33.7	11.41	35.84	54	-18.16	AV	Vertical
3	15720	28.81	36.54	36.57	13.98	42.76	74	-31.24	Peak	Vertical
4	15720	19.83	36.54	36.57	13.98	33.78	54	-20.22	AV	Vertical

Note:

1). Measuring frequencies from 9 KHz ~ 40 GHz, No emission found between lowest internal used/generated frequency to 30MHz.

2). Radiated emissions measured in frequency range from 9 KHz ~ 40 GHz were made with an instrument using Peak detector mode.


3). 18~40GHz at least have 20dB margin. No recording in the test report.

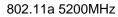
4). Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11a VHT20 and IEEE 802.11ac VHT40;

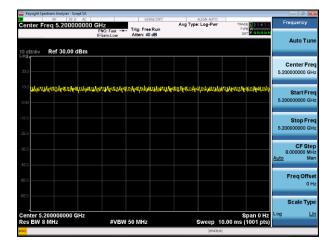
5). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

4.3. Duty Cycle

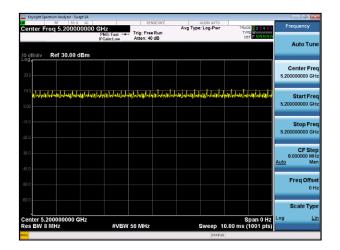
TEST CONFIGURATION

TEST PROCEDURE


According to KDB789033 D02 General UNII Test Procedures New Rules v01 B Duty Cycle (x), Transmission Duration (T):


- a. A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on and off times of the transmitted signal
- b. The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ EBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average. The zerospan measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 1MHz VBW = 1MHz Number of points in Sweep >100 Detector function = peak Trace = Clear writeMeasure Ttotal and Ton Calculate Duty Cycle = Ton / Ttotal and Duty Cycle Factor=10*log(1/Duty Cycle)


TEST RESULTS

Center Freq 5	5.200000	PI	iO: Fast ↔ Sain:Low	Trig: Free Atten: 40		Avg Type	: Log-Pwr	TRAI TVI D	PE WWWWWWW PE WWWWWWW ET P NNNNN		equency
10 dB/div Ref	30.00 dE	3m									Auto Tun
20.0											Center Fre
10.0 <mark>1944/19</mark> 4944/1941	-4/Al-4Ka	institution (ehnapterbag	ahastalma	bolonatelma	hingdog	halanetholana	holou/holo	hijala haias	5.20	Start Fre
-10.0											Stop Fre
-20.0										5.20	CF Ste
-30.0										Auto ⁸	.000000 MH Ma
-50.0											Freq Offs 0 H
-60.0											Scale Typ
Center 5.2000 Res BW 8 MHz	00000 GH	iz	#\/B\/	50 MHz			Sween 1	5 0.00 mc	Span 0 Hz (1001 pts)	Log	Ľ

802.11n(HT20) 5200MHz

802.11ac(VHT20) 5200MHz

4.4. Maximum Average Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB789033 D02 General UNII Test Procedures New Rules v01 Section E3 Measurement using a Power Meter (PM):

- a. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied
 - 1. The EUT is configured to transmit continuously or to transmit with a constant duty cycle
 - 2. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - 3. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- b. If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B
- c. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10 log(1/0.25) if the duty cycle is 25 percent).

<u>LIMIT</u>

According to §15.407(a): The maximum output power should be not exceed follow:

Frequency Range (MHz)	Limit			
5150-5250	Fixed:1 Watt (30dBm)			
5150-5250	Mobile and portable: 250mW (24dBm)			
5250-5350	250mW (24dBm)			
5470-5725	250mW (24dBm)			
5725-5850	1 Watt (30dBm)			
Note: The maximum e.i.r.p at anyelevation angle abov	e 30 degrees as measured from the horizon must not			

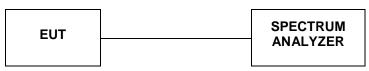
Note: The maximum e.i.r.p at anyelevation angle above 30 degrees as measured from the horizon must not exceed 125mW(21dBm)

TEST RESULTS

	Frequency (MHz)	Average Output Power (dBm)	FCC Limit (dBm)	Result
	5180	13.586	24	Pass
802.11a	5200	14.041	24	Pass
	5240	14.268	24	Pass
802.11n	5180	13.429	24	Pass
(HT20)	5200	14.038	24	Pass
(1120)	5240	14.124	24	Pass
802.11ac	5180	13.745	24	Pass
(VHT20)	5200	14.247	24	Pass
(11120)	5240	14.084	24	Pass
802.11n	5190	12.579	24	Pass
(HT40)	5230	12.359	24	Pass
802.11ac	5190	12.024	24	Pass
(VHT40)	5230	12.837	24	Pass
802.11ac (VHT80)	5210	10.342	24	Pass

Note:

1. Measured output power at difference data rate for each mode and recorded worst case for each mode.


2. Test results including cable loss;

3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11a VHT20 and IEEE 802.11ac VHT40;

4. Report conducted power = Measured conducted average power + Duty Cycle factor;

4.5. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 789033 D02 General UNII Test Procedures New Rules v01 F: The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission

- a. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- b. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- c. Make the following adjustments to the peak value of the spectrum, if applicable:
 - 1. If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
 - 2.) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- d. The result is the Maximum PSD over 1 MHz reference bandwidth.
- e. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:</p>
 - 1. Set RBW \geq 1/T, where T is defined in section II.B.I.a).
 - 2. Set VBW \geq 3 RBW.
 - 3. If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - 5. Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

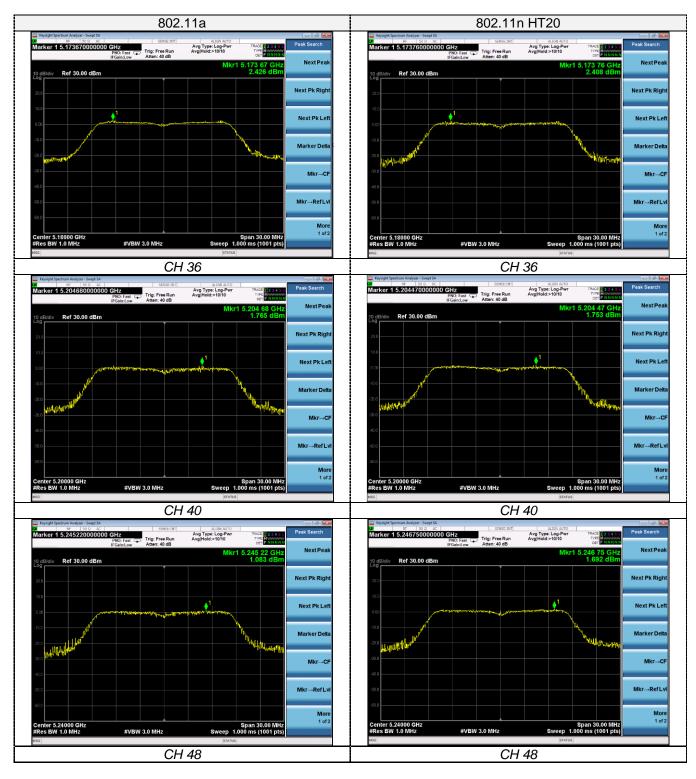
Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHz is available on nearly all spectrum analyzers.

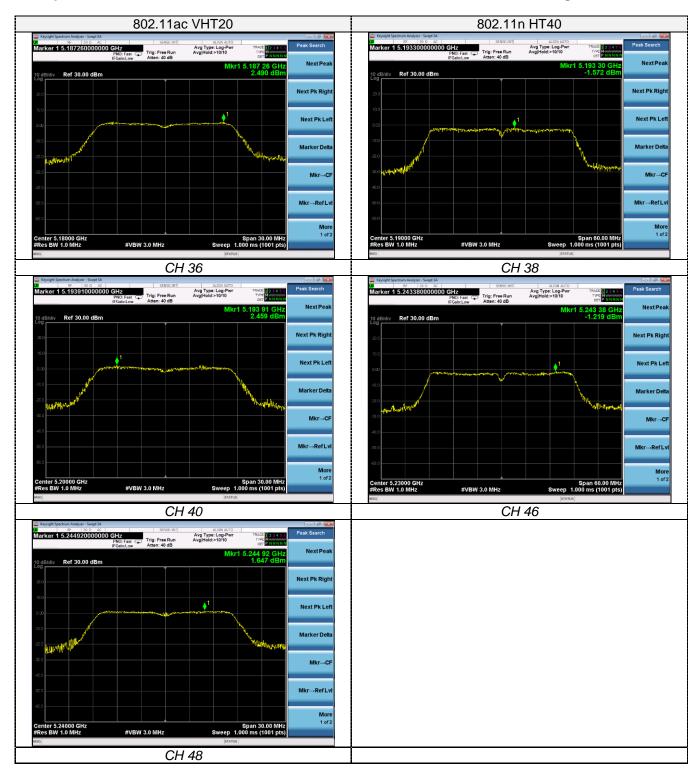
f. Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10 log(1/0.25) if the duty cycle is 25 percent).

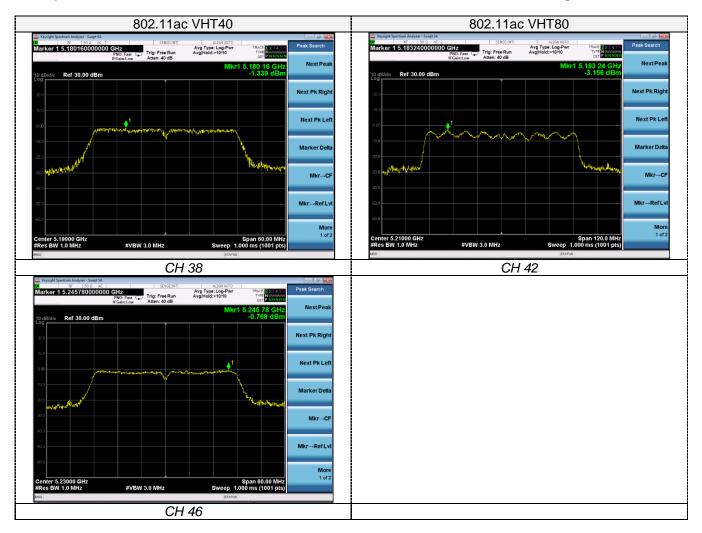
<u>LIMIT</u>

According to §15.407(a): The maximum output power should be not exceed follow:

Frequency Range (MHz)	Limit
5150-5250	Other then Mobile and portable:17dBm/MHz Mobile and portable:11dBm/MHz
5250-5350	11dBm/MHz
5470-5725	11dBm/MHz
5725-5850	30dBm/500kHz

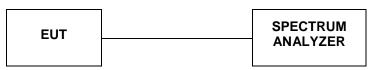

TEST RESULTS


Mode	Frequency (MHz)	Power Density (dBm/MHz)	FCC Limit (dBm)	Remark
802.11a	5180	2.426	11	Pass
	5200	1.765	11	Pass
	5240	1.083	11	Pass
802.11n (HT20)	5180	2.408	11	Pass
	5200	1.753	11	Pass
	5240	1.692	11	Pass
802.11n (HT40)	5190	-1.572	11	Pass
	5230	-1.219	11	Pass
902 1100	5180	2.49	11	Pass
802.11ac (VHT20)	5200	2.459	11	Pass
	5240	1.647	11	Pass
802.11ac (VHT40)	5190	-1.339	11	Pass
	5230	-0.768	11	Pass
802.11ac (VHT80)	5210	-3.156	11	Pass


Note:

1. Measured power spectrum density at difference data rate for each mode and recorded worst case for each mode.

- Test results including cable loss;
 Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11a VHT20 and IEEE 802.11ac VHT40;
- 4. Please refer to following test plots;



4.6. 6dB Bandwidth

TEST CONFIGURATION

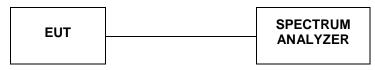
TEST PROCEDURE

According to KDB789033 D02 General UNII Test Procedures New Rules v01 for one of the following procedures may be used for section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a. Set RBW = 100 kHz.
- b. Set the video bandwidth (VBW) \ge 3 × RBW
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

<u>LIMIT</u>


For Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.725-5.85 GHz

TEST RESULTS

This product is not applicable to this project.

4.7. 26dBc Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

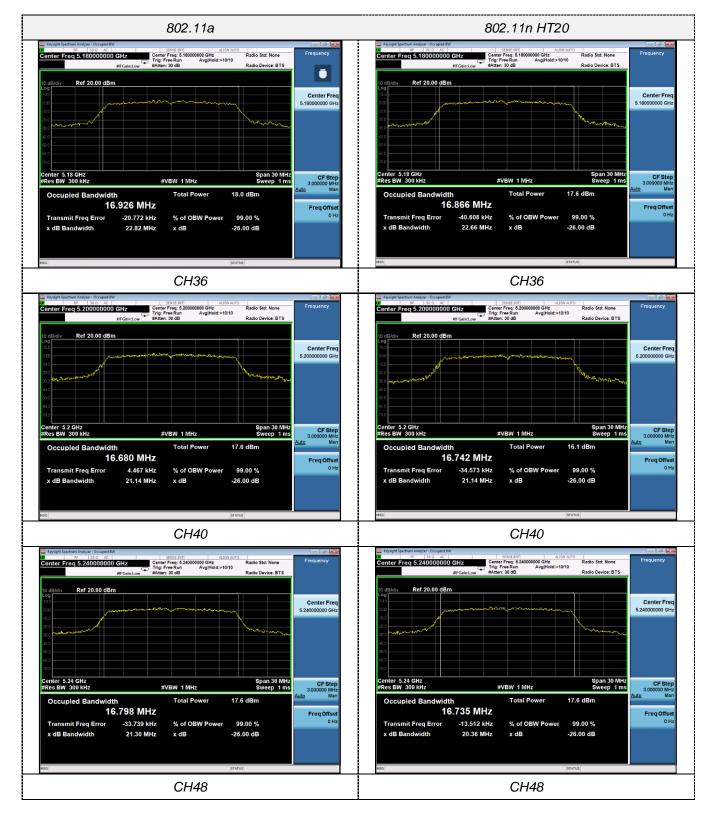
Emission Bandwidth (EBW)

a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

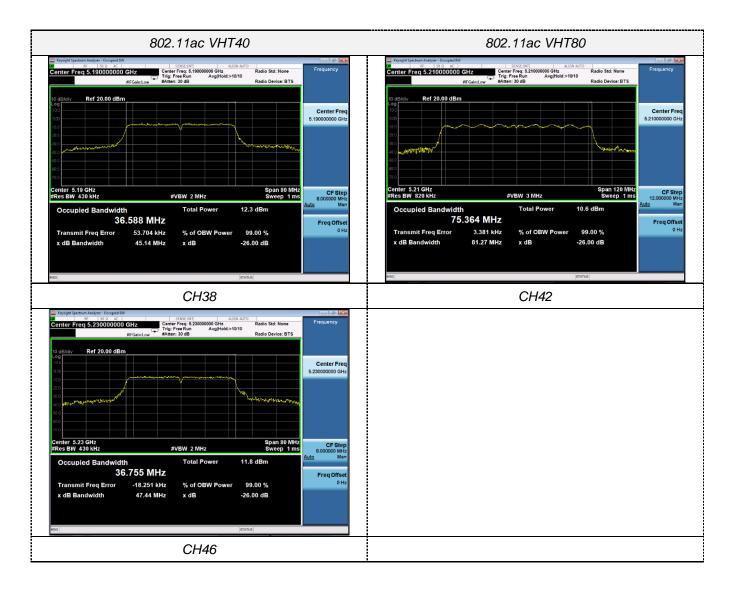
c) Detector = Peak.

- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

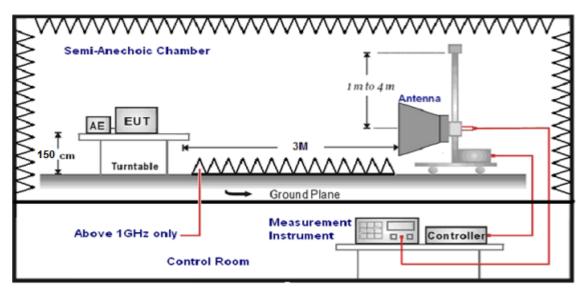

<u>LIMIT</u>

No Limits for 26dBc Bandwith

TEST RESULTS


Туре	Channel	26dB Bandwidth (MHz)	Limit (KHz)	Result
802.11ac	36	22.82		Pass
	40	21.14		
	48	21.3		
802.11n HT20	36	22.66		Pass
	40	21.14		
	48	20.36		
802.11ac VHT20	36	21.34		Pass
	40	21.16		
	48	20.71		
802.11n HT 40	38	46.73		Pass
	46	47.47		
802.11ac VHT40	38	45.14		Pass
	46	47.44		
802.11ac VHT80	42	81.27		Pass

Page 33 of 48


Page 34 of 48

4.8. Band Edge Compliance

TEST CONFIGURATION

<u>LIMIT</u>

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

According to §15.407 (b):

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band:

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Report No.: GTSR19010009-02

Frequency (MHz)		EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m)		
5150-5250		-27	68.3		
5250-5350		-27	68.3		
5	470-5725	-27	68.3		
	Below 5650	-27	68.3		
	5650-5700	-27~10	68.3~105.3		
	5700-5720	10~15.6	105.3~110.9		
5705	5720-5725	15.6~27	110.9~68.3		
5725- 5850	5725-5850	27	122.3		
5650	5850-5855	27~15.6	122.3~110.9		
	5855-5875	15.6~10	110.9~105.3		
	5875-5925	10~-27	105.3~68.3		
	Above 5925	-27	68.3		

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above 1GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT as following table states:

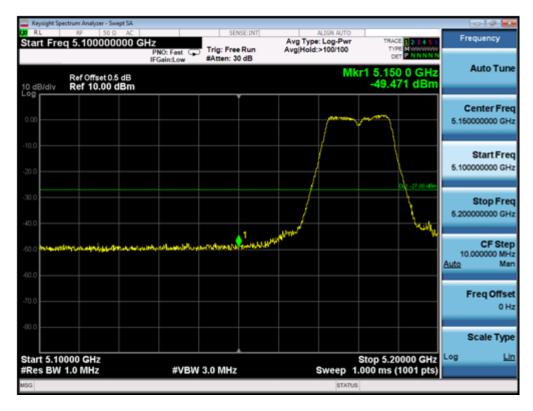
Test Frequency range	Test Antenna Type	Test Distance		
1GHz-18GHz	Double Ridged Horn Antenna	3		
O attice that we also developed as falls, i.e. table states				

6.	Setting test receiver/spectrum as following table states:				
	Test Frequency range	cy range Test Receiver/Spectrum Setting			
	1GHz-18GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak		

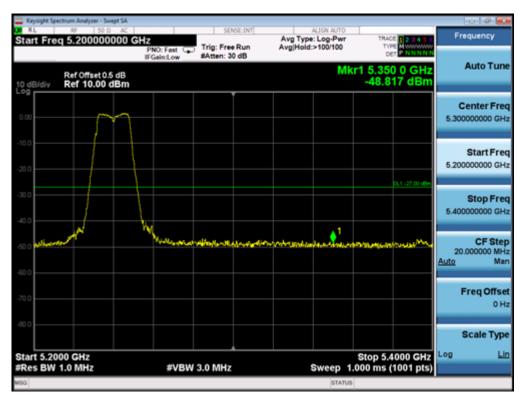
Field Strength Calculation

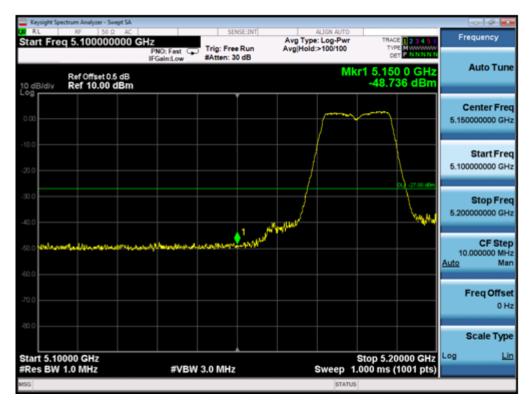
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

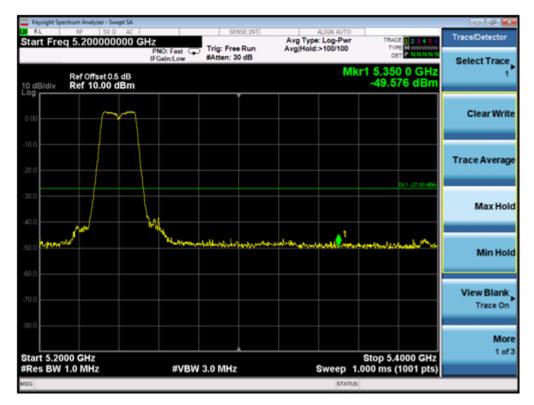

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	


TEST RESULTS


Remark: We tested at all modes at the antenna single transmitting mode and the Mimo mode, and recored the worst data at the Mimo mode of the 802.11a Mode.

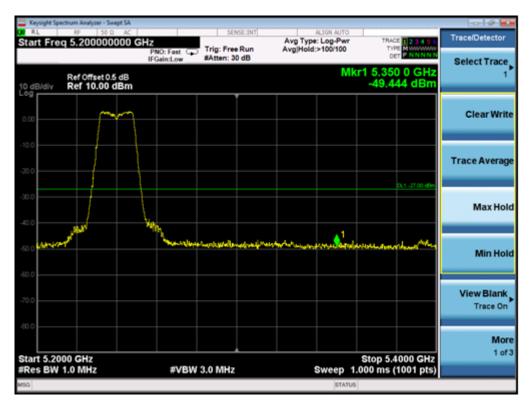

For Radiated Bandedge Measurement

Fraguanay	Meter	antenna	cable	preamp	Emission	EIRP	Lingit		
Frequency	Reading	Factor	loss	factor	Level	EIRP	Limit	Result	C
(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	[dBm]	[dBm]		Comment
			•	802.11a		•	•	•	
5150	35.12	28.66	12.93	27.62	49.09	-46.11	-27.00	Pass	Vertical
5350	35.55	28.73	13.09	27.62	49.75	-45.45	-27.00	Pass	Vertical
5150	31.75	27.63	15.16	27.67	46.87	-48.33	-27.00	Pass	Horizontal
5350	32.98	27.82	15.66	27.68	48.78	-46.42	-27.00	Pass	Horizontal
			8	302.11n(HT2))				
5150	34.84	28.66	12.93	27.62	48.81	-46.39	-27.00	Pass	Vertical
5350	34.12	28.73	13.09	27.62	48.32	-46.88	-27.00	Pass	Vertical
5150	30.34	27.63	15.16	27.67	45.46	-49.74	-27.00	Pass	Horizontal
5350	31.65	27.82	15.66	27.68	47.45	-47.75	-27.00	Pass	Horizontal
			8	302.11n(HT4	D)				
5150	34.12	28.66	12.93	27.62	48.09	-47.11	-27.00	Pass	Vertical
5350	34.35	28.73	13.09	27.62	48.55	-46.65	-27.00	Pass	Vertical
5150	30.74	27.63	15.16	27.67	45.86	-49.34	-27.00	Pass	Horizontal
5350	31.43	27.82	15.66	27.68	47.23	-47.97	-27.00	Pass	Horizontal
802.11ac(VHT20)									
5150	34.23	28.66	12.93	27.62	48.20	-47.00	-27.00	Pass	Vertical
5350	34.74	28.73	13.09	27.62	48.94	-46.26	-27.00	Pass	Vertical
5150	30.13	27.63	15.16	27.67	45.25	-49.95	-27.00	Pass	Horizontal
5350	31.37	27.82	15.66	27.68	47.17	-48.03	-27.00	Pass	Horizontal
802.11ac(VHT40)									
5150	34.03	28.66	12.93	27.62	48.01	-47.2	-27.00	Pass	Vertical
5350	34.12	28.73	13.09	27.62	48.32	-46.88	-27.00	Pass	Vertical
5150	30.45	27.63	15.16	27.67	45.57	-49.63	-27.00	Pass	Horizontal
5350	31.32	27.82	15.66	27.68	47.12	-48.08	-27.00	Pass	Horizontal
802.11 ac(VHT80)									
5150	34.12	28.66	12.93	27.62	48.09	-47.11	-27.00	Pass	Vertical
5350	34.35	28.73	13.09	27.62	48.55	-46.65	-27.00	Pass	Vertical
5150	30.74	27.63	15.16	27.67	45.86	-49.34	-27.00	Pass	Horizontal
5350	31.43	27.82	15.66	27.68	47.23	-47.97	-27.00	Pass	Horizontal

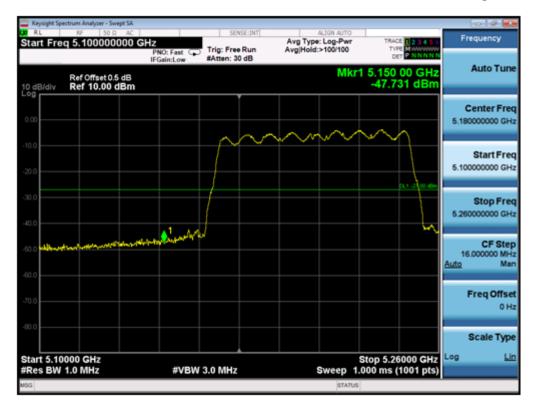




802.11n(HT20): Band Edge,Right Side

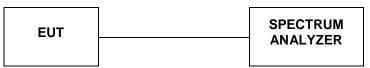


802.11n(HT40): Band Edge,Right Side


802.11ac(20): Band Edge, Right Side



802.11ac(40): Band Edge, Right Side



802.11ac(80): Band Edge, Right Side

4.9. Frequency Stability

TEST CONFIGURATION

TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port
- b. Spectrum setting as follows:
 - RBW=10KHz VBW=30KHz

Span= Entire absence of modulation emissionsbandwidth Sweep Time= Auto Attenuation= Auto

c. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

<u>LIMIT</u>

Frequency Range (MHz)	Limit		
5150-5250	Specifiedin the user's manual		
5250-5350			
5470-5725			
5725-5850			

TEST RESULTS

Antenna 1

802.11 a/ Channel 36: 5180MHz

Voltage. Frequency Stability

Voltage (V)	Measurement Frequency (MHz)		
3.7V	5180.000024		
3.3V	5180.000016		
3.0V	5180.000022		
Maximum Deviation (MHz)	0.000024		
Maximum Deviation (ppm)	0.0046		

Temperature. Frequency Stability

Temperature (°C)	Measurement Frequency (MHz)			
-10	5180.000018			
5	5180.000021			
15	5180.000019			
25	5180.000016			
35	5180.000022			
45	5180.000020			
55	5180.000019			
Maximum Deviation (MHz)	0.000022			
Maximum Deviation (ppm)	0.0041			

4.10. Antenna Requirement

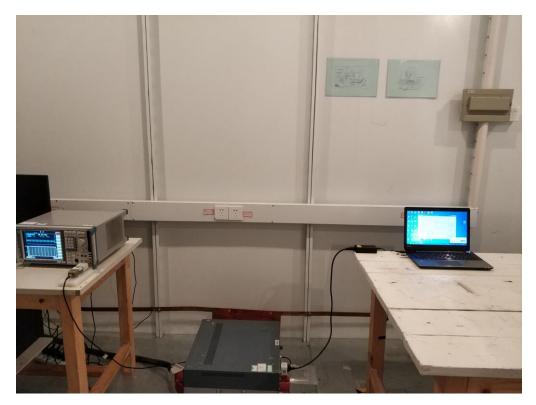
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna used for this product is external Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 1.62dBi.


5. Test Setup Photos of the EUT

Radiated Emission Test

Conducted Emission

6. External and Internal Photos of the EUT

Reference to the test report No. GTSR19010009-01.

.....End of Report.....