

FCC RADIO TEST REPORT

FCC ID: 2ASH7-HUB

Product: Bluetooth earphone

Trade Name: Hub

Model Name: Hub

Serial Model: N/A

Report No.: UNIA19010415FR1-01

Prepared for

Dynamic Technology Group Limited Office A 17/F Loyong Court Comm BLDG NO 212-220 Lockhart RD Wan Chai, Hong Kong

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

LN

TEST RESULT CERTIFICATION

Applicant's name	Dynamic Technology Group Limited
Address	Office A 17/F Loyong Court Comm BLDG NO 212-220 Lockhart RD Wan Chai, Hong Kong
Manufacture's Name:	Dynamic Technology Group Limited
Address	Office A 17/F Loyong Court Comm BLDG NO 212-220 Lockhart RD Wan Chai, Hong Kong

Product description

Product name	Bluetooth earphone
Trade Mark:	Hub
Model and/or type reference .:	Hub
Standards:	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

KDB558074 D01 V05: Guidance for Performing Compliance

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test	Jan. 03, 2019
Date (s) of performance of tests:	Jan. 03, 2019 Feb. 13, 2019
Date of Issue:	Feb. 13, 2019
Test Result	Pass

Prepared by:

Kahn Yan

Kahn vang/Editor Sherwii Qia /S ervisor

Liuze/Manager

Reviewer:

Approved & Authorized Signer:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA19010415FR1-01

Table of Contents

1	Т	EST SUMMARY			4
2	G	ENERAL INFORMATION	$\mathbf{\nabla}$	<u> </u>	5
	2.1	GENERAL DESCRIPTION OF EUT			5
	2.2	CARRIER FREQUENCY OF CHANNELS			6
	2.3	OPARATION OF EUT DURING TESTING		~	6
	2.4	DESCRIPTION OF TEST SETUP			6
	2.5	MEASUREMENT INSTRUMENTS LIST	<u> </u>	<u> </u>	7
3	Т	EST CONDITIONS AND RESULTS			9
	3.1	CONDUCTED EMISSIONS TEST		<u> </u>	9
	3.2	RADIATED EMISSION TEST			
	3.3	BAND EDGE			
	3.4	CONDUCTED OUTPUT POWER			21
	3.5	POWER SPECTRAL DENSITY			23
	3.6	OCCUPIED BANDWIDTH MEASUREMENT			26
	3.7	OUT-OF BAND EMISSIONS			
	3.8	ANTENNA REQUIREMENT			33
4	Р	HOTOGRAPH OF TEST			34
5	Р	HOTOGRAPH OF EUT		<u></u>	35

1 TEST PROCEDURES AND RESULTS

FCC PART 15.247					
FCC Part 15.207 AC Conducted Emission N/A					
FCC Part 15.205 / 15.209	Radiated Emissions	PASS			
FCC Part 15.247(d)	Band Edge	PASS			
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	PASS			
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS			
FCC Part 15.247(e)	Power Spectral Density	PASS			
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS			
FCC Part 15.203	Antenna Requirement	PASS			

2 TEST FACILITY

Test Firm

: Shenzhen United Testing Technology Co., Ltd.

Address

: 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

3 MEASUREMENT UNCERTAINTY

ty

Conducted Emission Expanded Uncertainty

Radiated emission expanded uncertainty(9kHz-30MHz)

Radiated emission expanded uncertainty(30MHz-1000MHz)

Radiated emission expanded uncertainty(Above 1GHz)

- = 2.23dB, k=2 = 3.08dB, k=2
- = 4.42dB, k=2
- = 4.06dB, k=2

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Bluetooth earphone
Trade Mark	Hub
Model Name	Hub
Serial No.	N/A
Model Difference	N/A
FCC ID	2ASH7-HUB
Antenna Type	Internal antenna
Antenna Gain	0 dBi
Frequency Range	2402MHz - 2480MHz
Number of Channels	40
Modulation Type	GFSK
Battery	3.7V 45mAh
Power Source	3.7V from battery
Adapter Model	N/A

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.2 CARRIER FREQUENCY OF CHANNELS

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

2.3 OPARATION OF EUT DURING TESTING

Operating Mode

The mode is used: Transmitting mode

Low Channel	2402MHz
Middle Channel	2440MHz
High Channel	2480MHz

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

N/A

Operation of EUT during Radiation and Above1GHz Radiation testing:

EUT

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.5 MEASUREMENT INSTRUMENTS LIST

ltem	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
	5	CONDUCTED	EMISSIONS TEST	-	
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.09.09
2 AMN		ETS	3810/2	00020199	2019.09.09
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.09.09
4	AAN	TESEQ	T8-Cat6	38888	2019.09.09
	1	RADIATED E	EMISSION TEST		
1	Horn Antenna	Sunol	DRH-118	A101415	2019.09.29
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.09.29
3	PREAMP	HP	8449B	3008A00160	2019.09.09
4	PREAMP	HP	8447D	2944A07999	2019.09.09
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.09.09
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.09.28
7	Signal Generator	Agilent	E4421B	MY4335105	2019.09.28
8	Spectrum Analyzer	Agilent	E4407B	MY41440676	2019.09.28
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.09.28
10 MXA Signal Analyzer		Agilent	N9020A	MY51110104	2019.09.09
11	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.09.28
12	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.09.09
13	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.09.09
14	RF Power sensor	DARE	RPR3006W	15100041SNO88	2019.03.14
15	RF Power sensor	DARE	RPR3006W	15100041SNO89	2019.03.14
16	RF power divider	Anritsu	K241B	992289	2019.09.28
17	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.09.28
18	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.09.08
19	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.09.08
20	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.09.08
21	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2020.01.12
22	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.11.02
23	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019.03.14
24	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.10.24
25	Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10
26	Power Meter	KEYSIGHT	N1911A	MY50520168	2019.05.10
27	EMI Test Software	FALA	EZ-EMC	FA-03A	2019.05.10

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.09.28
Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.09.08
Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.09.08
Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.09.08
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2020.01.12
Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.11.02
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019.03.14
Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.10.24
Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10
Power Meter	KEYSIGHT	N1911A	MY50520168	2019.05.10
EMI Test Software	FALA	EZ-EMC	FA-03A	2019.05.10
	communication tester Biconical antenna Biconical antenna Broadband Hybrid Antennas Horn Antenna Active Receive Loop Antenna Horn Antenna Microwave Broadband Preamplifier Active Loop Antenna Power Meter	communication testerRohde&SchwarzBiconical antennaSchwarzbeckBiconical antennaSchwarzbeckBroadband Hybrid AntennasSchwarzbeckHorn AntennaSchwarzbeckActive Receive Loop AntennaSchwarzbeckHorn AntennaSchwarzbeckMicrowave Broadband PreamplifierSchwarzbeckActive Loop AntennaSchwarzbeckMicrowave Broadband PreamplifierSchwarzbeckActive Loop AntennaCom-PowerPower MeterKEYSIGHT	communication testerRohde&SchwarzCMW500Biconical antennaSchwarzbeckVHA 9103Biconical antennaSchwarzbeckVHA 9103Broadband Hybrid AntennasSchwarzbeckVULB9163Horn AntennaSchwarzbeckBBHA9120DActive Receive Loop AntennaSchwarzbeckFMZB 1919BHorn AntennaSchwarzbeckBBHA 9170Microwave Broadband PreamplifierSchwarzbeckBBHA 9170Active Loop AntennaCom-PowerAL-130RPower MeterKEYSIGHTN1911A	communication testerRohde&SchwarzCMW500154987Biconical antennaSchwarzbeckVHA 910391032360Biconical antennaSchwarzbeckVHA 910391032361Broadband Hybrid AntennasSchwarzbeckVULB9163VULB9163#958Horn AntennaSchwarzbeckBBHA9120D9120D-1680Active Receive Loop AntennaSchwarzbeckFMZB 1919B00023Horn AntennaSchwarzbeckBBHA 9170BBHA9170651Microwave Broadband PreamplifierSchwarzbeckBBV 9721100472Active Loop AntennaCom-PowerAL-130R10160009Power MeterKEYSIGHTN1911AMY50520168

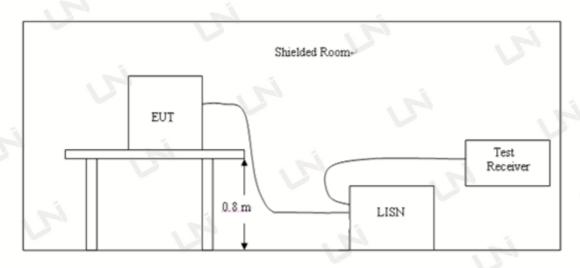
2.6 Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
HP	notebook	HP-CQ45	CNU1254XFC	FCC ID
				V

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3.1 CONDUCTED EMISSIONS TEST

Limit


According to FCC CFR Title 47 Part 15 Subpart C Section 15.207, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

	Limit (dBu∨)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

Test Setup

Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. A wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

Test Result

Note: when charging, earphone can not transmit

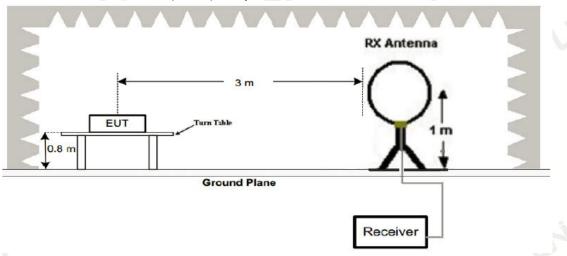
Not application to this device, which is power by battery

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3.2 RADIATED EMISSION TEST

Radiation Limit

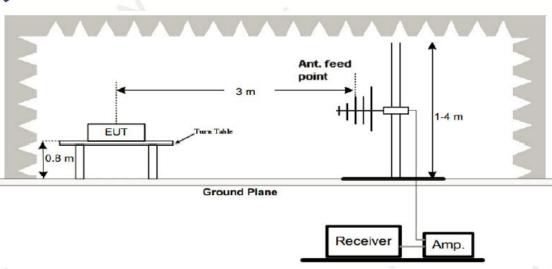
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

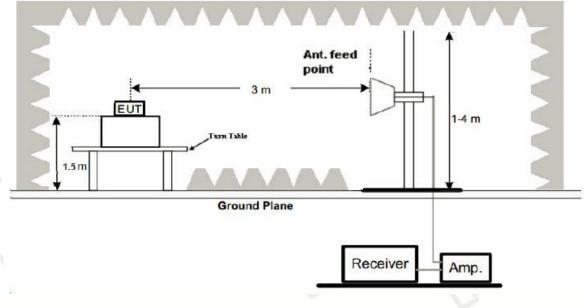

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Except when the requirements applicable to a given device state otherwise, emissions from licence - exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

Radiated emission limits						
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)			
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)			
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)			
1.705-30	3	20log(30)+ 40log(30/3)	30			
30-88	3	40.0	100			
88-216	3	43.5	150			
216-960	3	46.0	200			
Above 960	3	54.0	500			

Test Setup


1. Radiated Emission Test-Up Frequency Below 30MHz


2. Radiated Emission Test-Up Frequency 30MHz~1GHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. Radiated Emission Test-Up Frequency Above 1GHz

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.

	5	
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

6. The distance between test antenna and EUT as following table states:

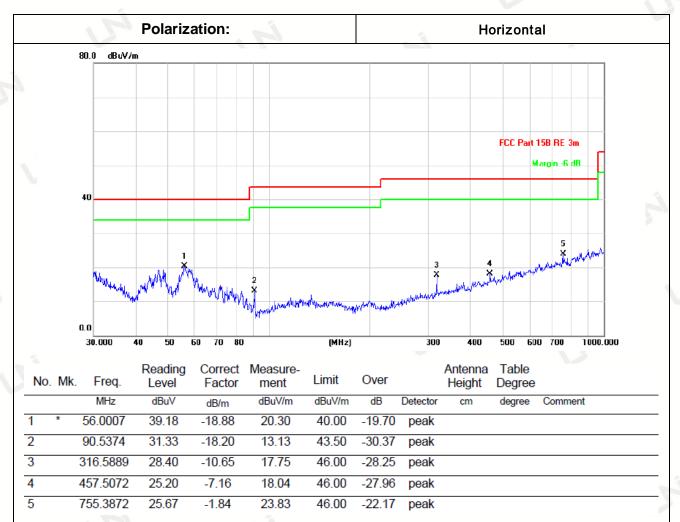
7. Setting test receiver/spectrum as following table states:

	ing test receiver/spect	run as following table states.	
	Test Frequency range	Test Receiver/Spectrum Setting	Detector
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	PK,AV,QP
9	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	PK,AV,QP
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

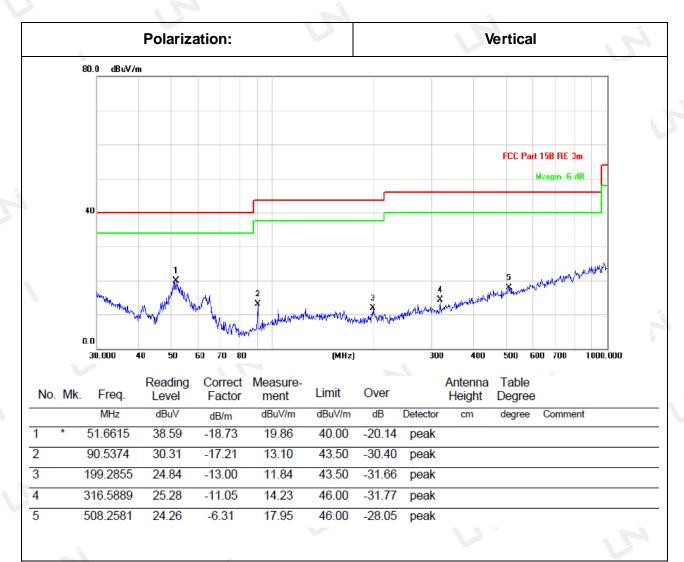
Test Result

--PASS----

Remark: 1. All the test modes completed for test. The worst case of Radiated Emission is Middle channel, the test data of this mode was reported.


2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

3. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.


Below 1GHz Test Results:

Temperature:	25℃	Relative Humidity:	48%
Test Date:	Jan .15, 2019	Pressure:	1030hPa
Test Voltage:	DC 3.7V from battery	Polarization:	Horizontal / Vertical

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 kHz to the 1 GHz, Radiated emission test from 9kHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
 (2) The provision of 15.205 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4804	58.49	-3.64	54.85	74	19.15	PK	
4804	44.42	-3.64	40.78	54	13.22	AV	
7206	54.64	-0.95	53.69	74	20.31	PK	
7206	42.69	-0.95	41.74	54	12.26	AV	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit							

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	58.26	-3.64	54.62	74	19.38	PK
4804	44.03	-3.64	40.39	54	13.61	AV
7206	54.43	-0.95	53.48	74	20.52	PK
7206	40.61	-0.95	39.66	54	14.34	AV

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4880	57.53	-3.51	54.02	74	19.98	PK	
4880	44.51	-3.51	41.00	54	13.00	AV	
7320	55.29	-0.82	54.47	74	19.53	РК	
7320	43.89	-0.82	43.07	54	10.93	AV	
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit						

Vertical:

lioun						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4880	57.94	-3.51	54.43	74	19.57	PK
4880	46.14	-3.51	42.63	54	11.37	AV
7320	55.23	-0.82	54.41	74	19.59	РК
7320	41.64	-0.82	40.82	54	13.18	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-amplif	ier. Margin=	Absolute Le	vel – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960.00	58.24	-3.43	54.81	74	19.19	PK
4960.00	45.28	-3.43	41.85	54	12.15	AV
7440.00	54.92	-0.75	54.17	74	19.83	РК
7440.00	42.90	-0.75	42.15	54	11.85	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit						

Vertical:

				Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре 🚿
58.00	-3.43	54.57	74	19.43	PK
45.19	-3.43	41.76	54	12.24	AV
54.99	-0.75	54.24	74	19.76	PK
41.39	-0.75	40.64	54	13.36	AV
	58.00 45.19 54.99	58.00 -3.43 45.19 -3.43 54.99 -0.75	58.00 -3.43 54.57 45.19 -3.43 41.76 54.99 -0.75 54.24	58.00 -3.43 54.57 74 45.19 -3.43 41.76 54 54.99 -0.75 54.24 74	58.00 -3.43 54.57 74 19.43 45.19 -3.43 41.76 54 12.24 54.99 -0.75 54.24 74 19.76

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

(3) Margin= Limits - Emission Level

(4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.</p>
(6) All modes of operation were investigated and the worst-case emissions are reported.

Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. RBW 1MHz VBW 3MHz peak detector is for PK value; RBW 1MHz VBW 10Hz peak detector is for AV value .

<u>Test Result</u>

Radiated Band Edge Test:

Operation Mode: TX CH Low (2402MHz)

Horizontal (Worst case):

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2332.4	61.13	-5.8	55.33	74	18.67	PK
2332.4	38.39	-5.8	32.59	54	21.41	AV
2390	56.67	-5.84	50.83	74	23.17	PK
2390	39.70	-5.84	33.86	54	20.14	AV
2400	68.77	-5.84	62.93	74	11.07	PK
2400	45.78	-5.84	39.94	54	14.06	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 19 of 40

-	

Vertical:	V	1	5			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2332.4	61.45	-5.8	55.65	74	18.35	PK
2332.4	37.37	-5.8	31.57	54	22.43	AV
2390	57.01	-5.84	51.17	74	22.83	🐴 РК
2390	40.37	-5.84	34.53	54	19.47	AV
2400	66.18	-5.84	60.34	74	13.66	PK
2400	45.10	-5.84	39.26	54	14.74	AV
			5.			-

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Operation Mode: TX CH High (2480MHz)

Horizontal	(Worst case)):
------------	--------------	----

TIONZONIA	110101000/.							
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2483.5	58.70	-5.65	53.05	74	20.95	PK		
2483.5	38.89	-5.65	33.24	54	20.76	AV		
2500	58.79	-5.72	53.07	74	20.93	PK		
2500	39.37	-5.72	33.65	54	20.35	AV		
2545.80	66.43	-5.75	60.68	74	13.32	РК		
2545.80	45.47	-5.75	39.72	54	14.28	AV		
Remark: Fac	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Vertical:	1	5	7.	2	1	1
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	59.32	-5.65	53.67	74	20.33	РК
2483.5	38.41	-5.65	32.76	54	21.24	AV
2500	58.02	-5.72	52.30	74	21.70	РК
2500	42.27	-5.72	36.55	54	17.45	AV
2545.80	68.75	-5.75	63.00	74	11.00	РК
2545.80	43.13	-5.75	37.38	54	16.62	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

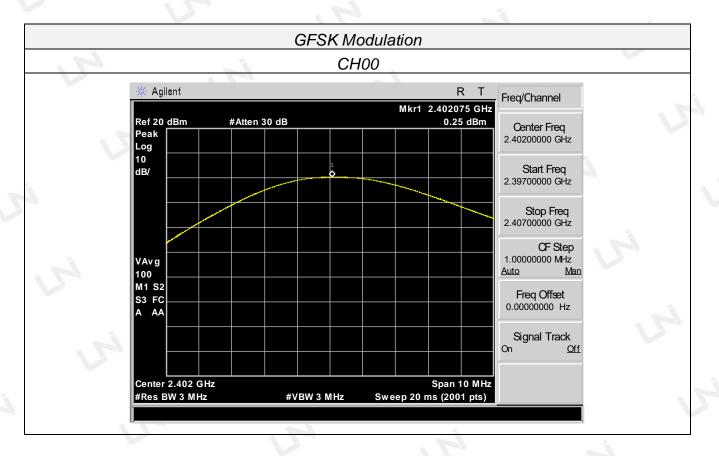
3.4 CONDUCTED OUTPUT POWER

<u>Limit</u>

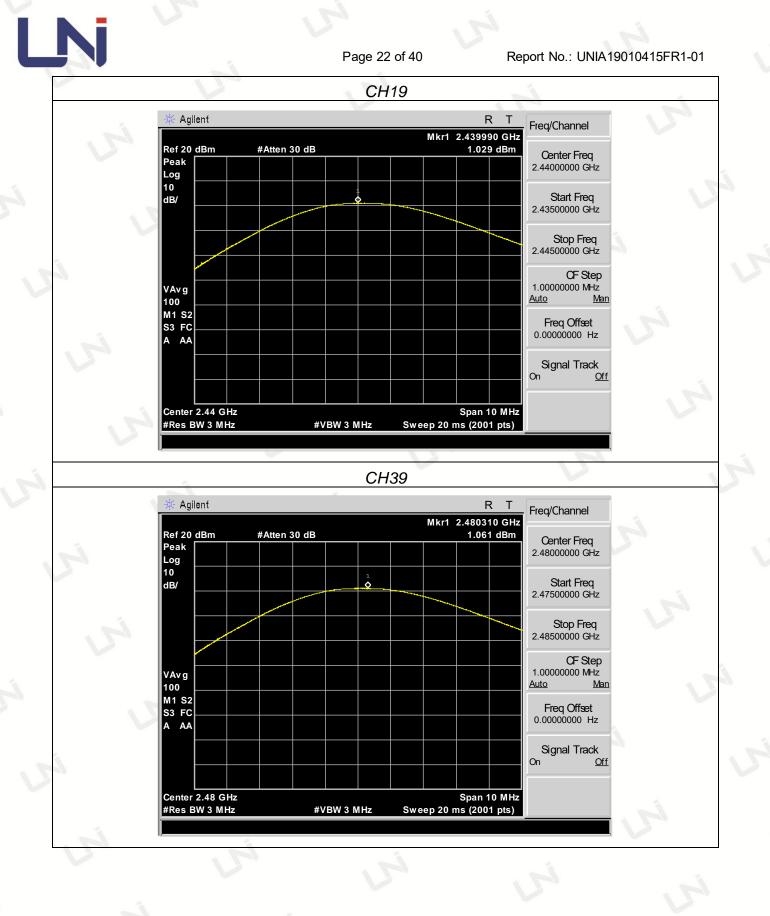
The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.



PASS---


<u>Test Result</u>

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
4	00	0.250		
GFSK	19	1.029	30.00	Pass
	39	1.061	1	

Note: 1.The test results including the cable lose.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3.5 POWER SPECTRAL DENSITY

<u>Limit</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to

theantenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous

transmission.

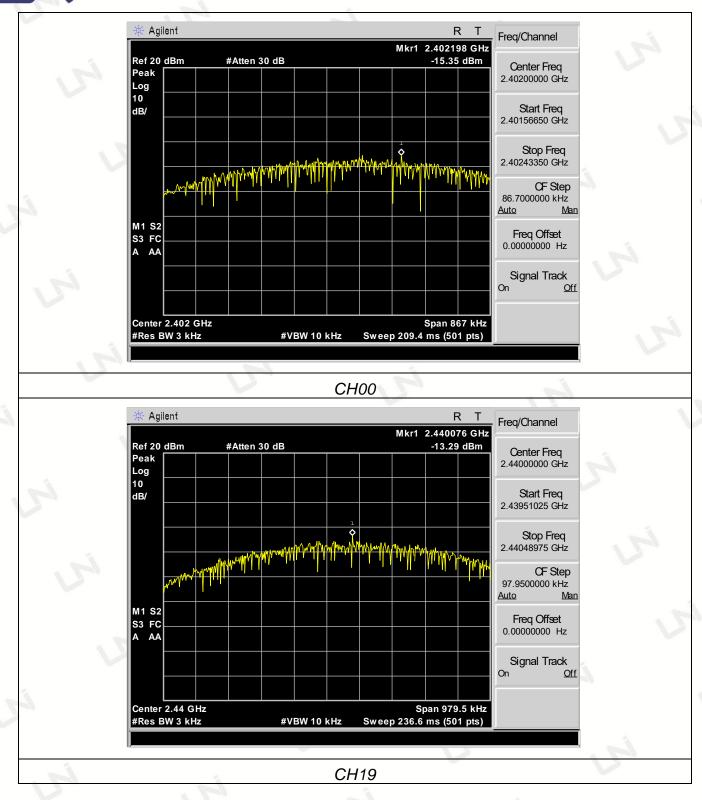
Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \ge 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

EUT	4	SPECTRUM ANALYZER

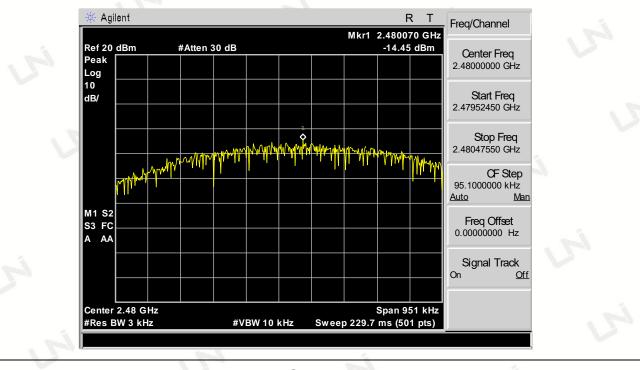
Test Results


Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
in.	00	-15.35		
GFSK	19	-13.29	8.00	Pass
	39	-14.45	S	

Test plot as follows:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 24 of 40


Report No.: UNIA19010415FR1-01

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 25 of 40

Report No.: UNIA19010415FR1-01

CH39

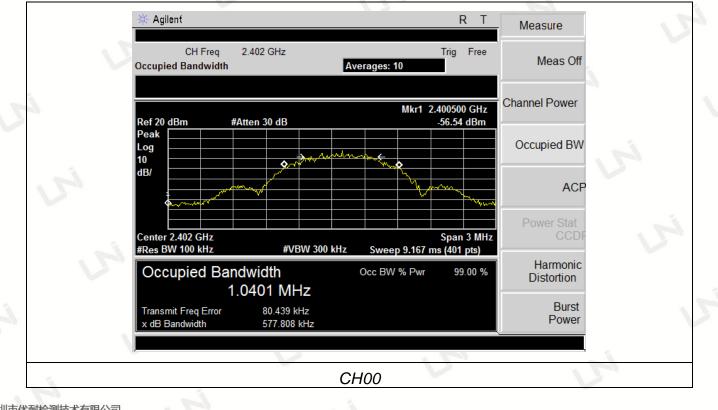
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

N

3.6 OCCUPIED BANDWIDTH MEASUREMENT

Test Setup

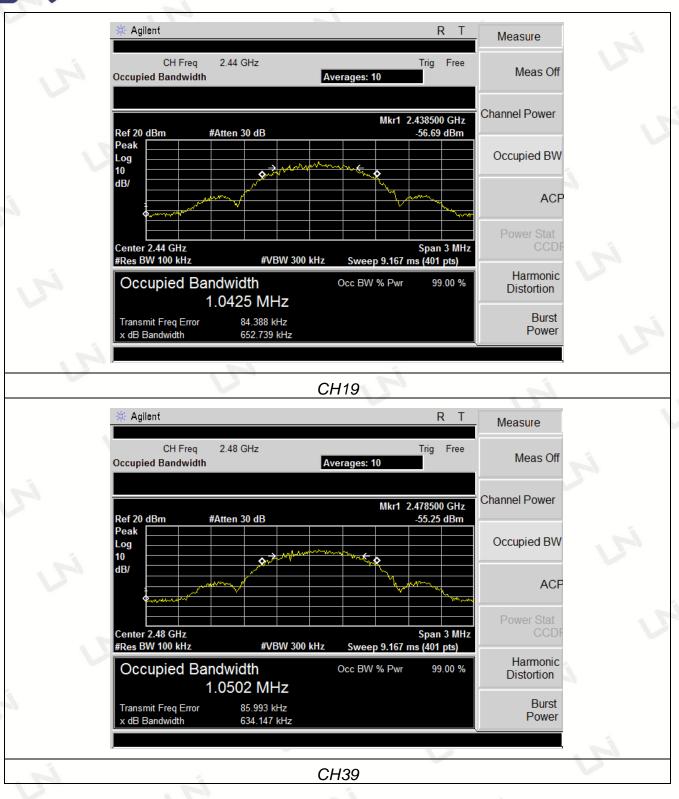
FCC Part15(15.247), Subpart C					
Section Test Item Frequency Range (MHz) Result					
15.247(a)(2)	6dB BW	2400-2483.5	PASS		


Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. RBW=100KHz, VBW=300KHz, Span=3MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

Test Result

---PASS----


Modulation	Channel	-6dB bandwidth (MHz)	Limit (KHz)	Result
à	CH00	0.57781		5
GFSK	CH19	0.65274	N/A	Pass
	CH39	0.63415	N.	2

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 27 of 40

Report No.: UNIA19010415FR1-01

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3.7 OUT-OF BAND EMISSIONS

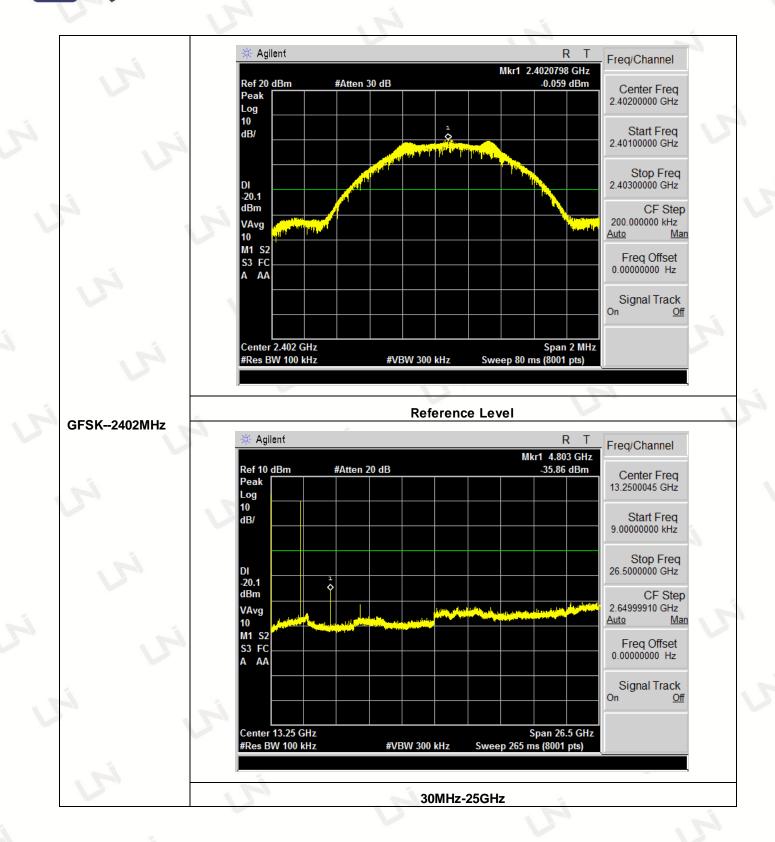
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

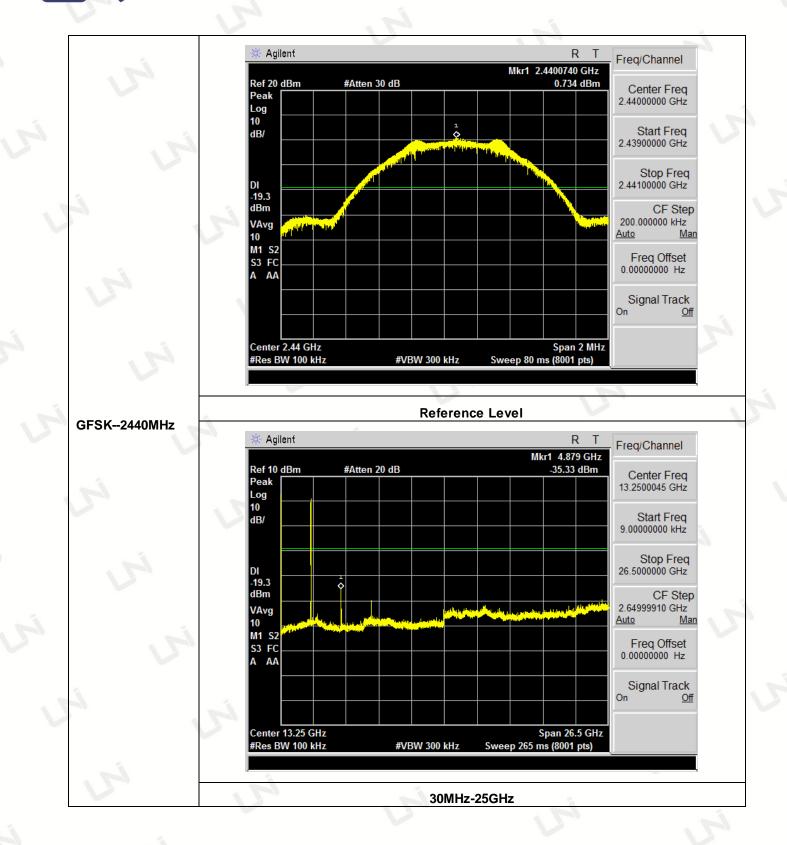
Test Configuration



Test Results

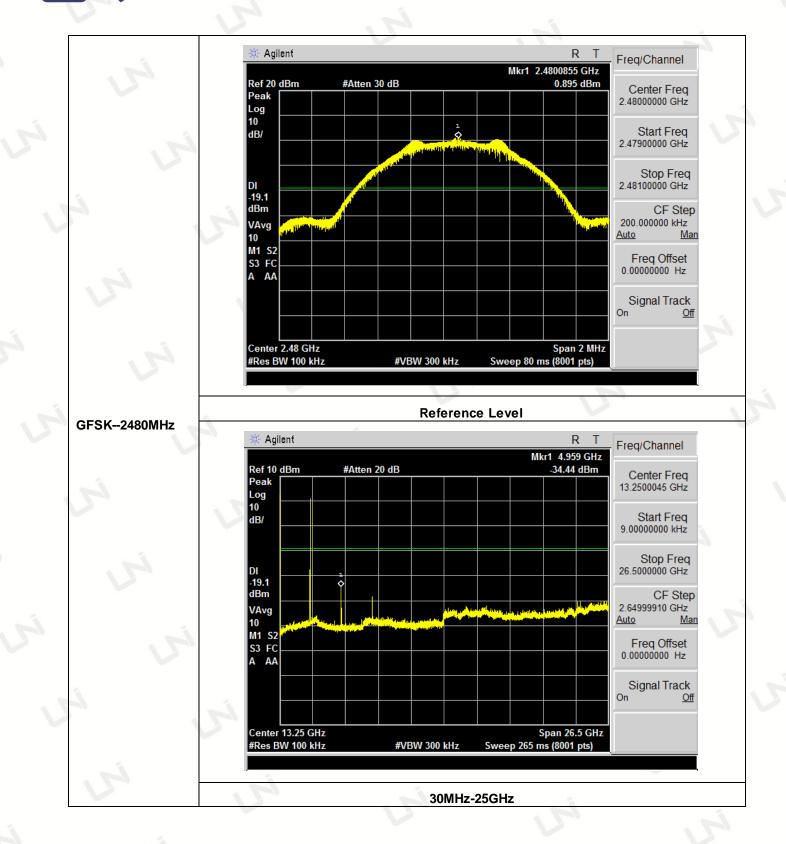
Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

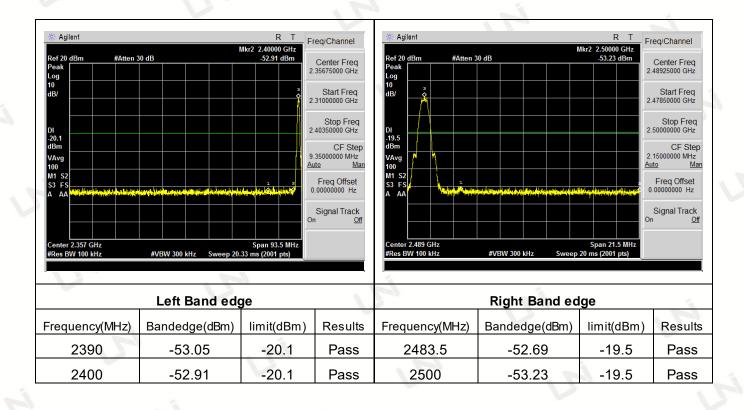
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited


Page 29 of 40

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 30 of 40


Report No.: UNIA19010415FR1-01


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 31 of 40

Report No.: UNIA19010415FR1-01

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3.8 ANTENNA REQUIREMENT

Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is an Integral Antenna, the directional gains of antenna used for transmitting is 0.00dBi.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA19010415FR1-01

DGRAPH OF TEST

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

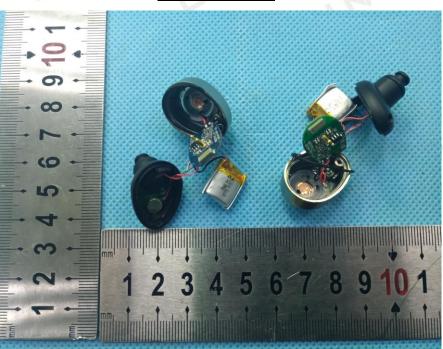
External Photos

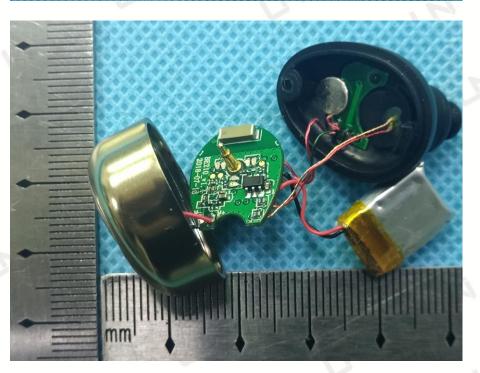
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 36 of 40

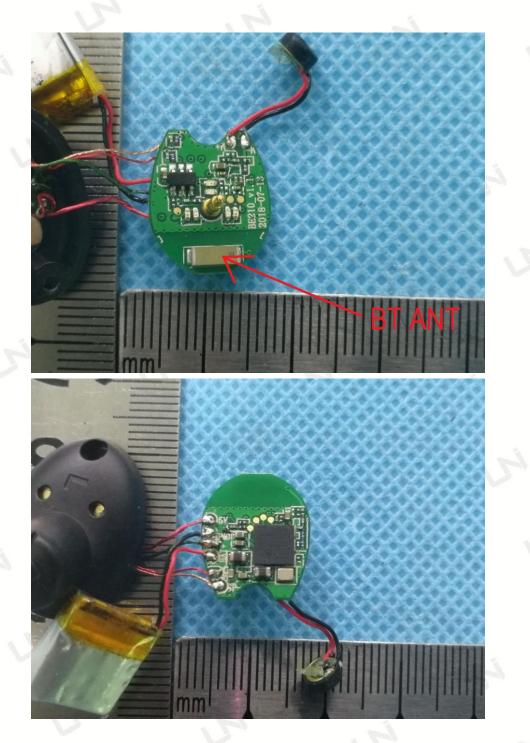

Report No.: UNIA19010415FR1-01

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited




深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 38 of 40


Internal Photos

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 40 of 40

Report No.: UNIA19010415FR1-01

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited