

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC163825 1 of 31 Page:

FCC Radio Test Report FCC ID: 2ASGR-EC002NS

Report No. TB-FCC163825

Applicant : Zhongshan Yihu Electronics Co.,ltd

Equipment Under Test (EUT)

EUT Name : PKE Push Start Button Kit

Model No. **EC002-NS**

EC002, EC002-HY-NS, EC002-V-NS, EC002-T2-NS Serial No.

Brand Name EASYGUARD

: 2019-01-08 **Receipt Date**

Test Date : 2019-01-15 to 2019-02-14

Issue Date 2019-02-15

Standards : FCC Part 15, Subpart C (15.231:2018)

: ANSI C63.10:2013 Test Method

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

WAN SU

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Page: 2 of 31

Contents

COL	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	Test Facility	
2.	TEST SUMMARY	
3.	CONDUCTED EMISSION TEST	
	3.1 Test Standard and Limit	
	3.2 Test Setup	
	3.3 Test Procedure	
	3.4 Test Equipment Used	10
	3.5 Test Data	
4.	RADIATED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Condition	14
	4.5 Test Equipment	
	4.7 Test Data	15
	Radiated Emission Bellow 1 GHz	15
5.	BANDWIDTH	22
	5.1 Test Standard and Limit	22
	5.2 Test Setup	22
	5.3 Test Procedure	22
	5.4 EUT Operating Condition	22
	5.5 Test Equipment	23
	5.6 Test Condition	23
	5.7 Test Data	
6.	RELEASE TIME MEASUREMENT	25
	6.1 Test Standard and Limit	25
	6.2 Test Setup	25
	6.3 Test Procedure	25
	6.4 EUT Operating Condition	25
	6.5 Test Equipment	26

Page: 3 of 31

	6.6 Test Condition	27
	6.7 Test Data	27
7.	DUTY CYCLE	28
	7.1 Test Standard and Limit	28
	7.2 Test Setup	28
	7.3 Test Procedure	28
	7.4 EUT Operating Condition	28
	7.5 Test Equipment	29
	7.6 Test Condition	
	7.7 Test Data	30
8.	ANTENNA REQUIREMENT	31
	8.1 Standard Requirement	31
	8.2 Antenna Connected Construction	
	8.3 Result	31

Page: 4 of 31

Revision History

Report No.	Version	Description	Issued Date
TB-FCC163825	Rev.01	Initial issue of report	2019-02-15
		The Course	
Wind of			
			4000
133	(MIII)		
	5037		No.
	10	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	A MAIL
CHILIT			11197
	W. C.		
4000			
	33		

Page: 5 of 31

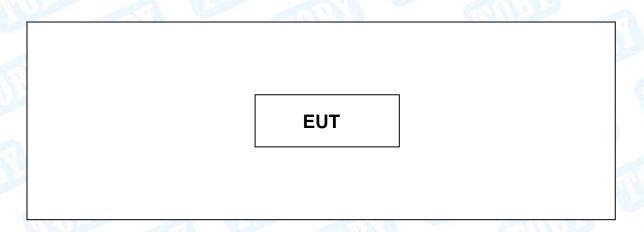
1. General Information about EUT

1.1 Client Information

Applicant : Zhongshan Yihu Electronics Co.,ltd		Zhongshan Yihu Electronics Co.,ltd
Address : Rm 2008, 2nd floor, building 3, NO.77 Caihong Rd, Zhongshan, Guangdong, China 528400		Rm 2008, 2nd floor, building 3, NO.77 Caihong Rd, Zhongshan, Guangdong, China 528400
Manufacturer : Zhongshan Yihu Electronics Co.,ltd		Zhongshan Yihu Electronics Co.,ltd
Address : Rm 2008, 2nd floor, building 3, NO.77 Caihong Rd, Zhongs		Rm 2008, 2nd floor, building 3, NO.77 Caihong Rd, Zhongshan, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name):	PKE Push Start Button Kit		
Models No.	:	EC002-NS, EC002, EC002-HY-NS, EC002-V-NS, EC002-T2-NS		
Brand Name		EASYGUARD		
Model Difference		All models are in the same PCB layout interior structure and electrical circuits, The only difference is appearance.		
C.Same		Operation Frequency:	433.92 MHz	
Product		Out Power:	73.36 dBuV/m (PK Max.) 73.36 dBuV/m (AV Max.)	
Description	:	Antenna Gain:	PCB Antenna(0 dBi)	
000		Modulation Type:	FSK	
Power Supply	?	DC Voltage supplied from battery.		
Power Rating	:	DC Battery: DC 3V		
Connecting I/O Port(S)		Please refer to the User's Manual		


Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 31

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Items	Note
Radiated Emission	Continuously transmitting
Bandwidth	Continuously transmitting
Duty Cycle	Continuously transmitting
Release Time	Normal Mode

Note

- (1) During the testing procedure, the continuously transmitting mode was programmed by the customer.
- (2) The EUT is considered a portable unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on Z-plane. There for only the test data of this Z-plane were used for radiated emission measurement test.

Page: 7 of 31

Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 31

2. Test Summary

FCC Part 15 Subpart (15.231)				
Standard Section	Test Item	Judgment	Remark	
15.203	Antenna Requirement	PASS		
	Conducted Emission	N/A	Alto	
	Release Time	PASS		
15.231	Radiation Emission	PASS	ann B	
	20 dB Bandwidth	PASS	The same	
	Duty Cycle	PASS		

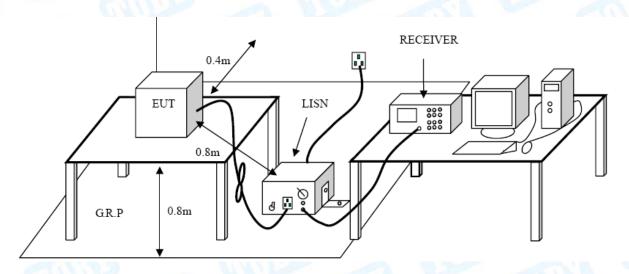
Page: 9 of 31

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.207

3.1.2 Test Limit


Conducted Emission Test Limit

Eraguanay	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 10 of 31

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test Receiver	ROHDE& SCHWARZ	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019

3.5 Test Data

The test is not applicable.

Page: 11 of 31

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.231(a)

4.1.2 Test Limit

According to FCC 15.231(a) requirement:

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

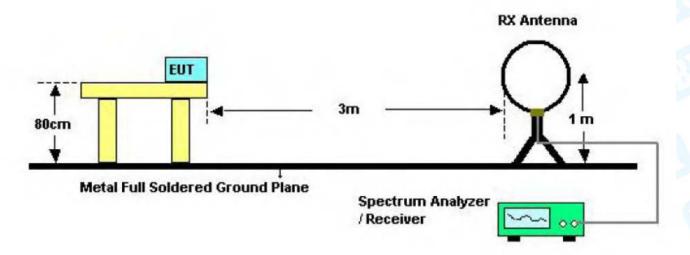
Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m	Field Strength of Spurious Emissions (microvolt/meter) at 3m	
40.66~40.70	2250	225	
70~130	1250	125	
130~174	1250 to 3750(**)	125 to 375(**)	
174~260	3750	375	
260~470	3750 to 12500(**)	375 to 1250(**)	
Above 470	12500	1250	

^{**} Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) for the band 130~174 MHz, uV/m at 3 meters= 56.81818(F)-6136.3636;
- (2) for the band 260~470 MHz, uV/m at 3 meter= 41.6667(F)-7083.3333.
- (3) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in Section 15.209(a).

Page: 12 of 31

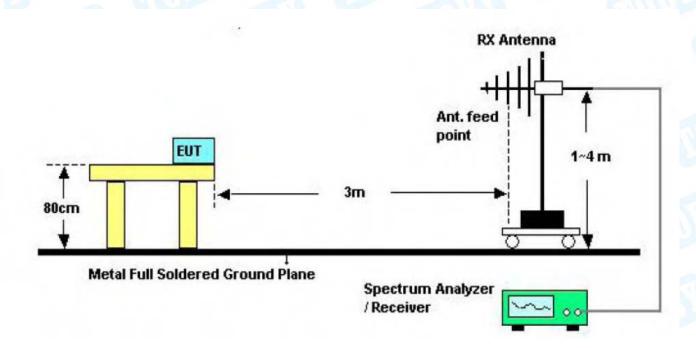
Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	2400/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

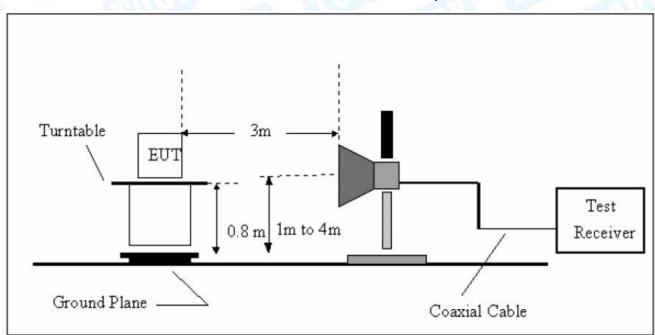

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

So the field strength of emission limits have been calculated in below table.

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m
433.92 MHz	80.83 (Average)
433.92 MHz	100.83 (Peak)


4.2 Test Setup


Bellow 30MHz Test Setup

Page: 13 of 31

Bellow 1000MHz Test Setup

Above 1GHz Test Setup

Page: 14 of 31

4.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

4.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

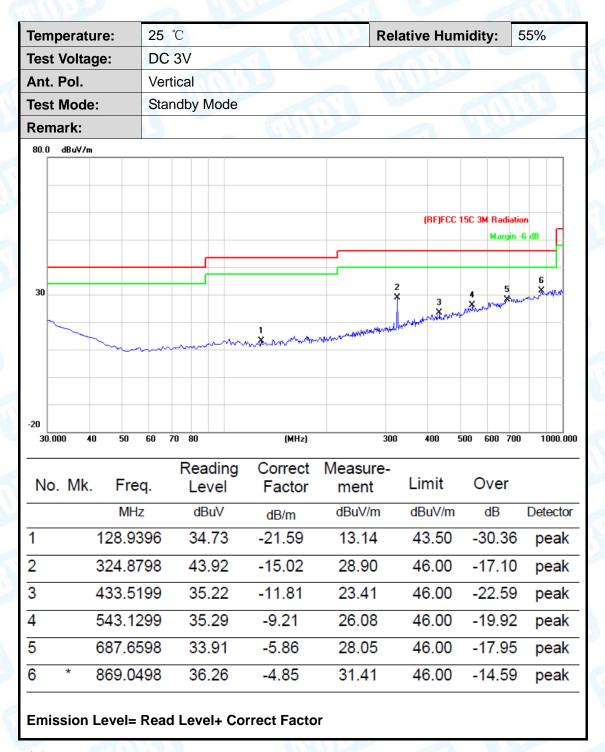
Page: 15 of 31

4.7 Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB


below the permissible value has no need to be reported.

Radiated Emission Bellow 1 GHz

Temperature:	25 °C			Rel	ative Humi	dity: 5	5%	
Test Voltage:	DC 3	DC 3V						
Ant. Pol.	Horiz	Horizontal						
Test Mode:	Stand	dby Mode		MILL				
Remark:			111			6.5		
80.0 dBuV/m								
					(RF)FCC 15C	3M Radiation Margin -6 o		
						Margin -0		
				- 3 X		- 5 *	6	
30					4	War w	1 ×	
				1 2	Hally Hope of the State of the			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	many physical	www.				
-20								
30.000 40 5	0 60 70	80	(MHz)	300	400 500	600 700	1000.000	
		Reading	Correct	Measure-		_		
No. Mk. F	req.	Level	Factor	ment	Limit	Over		
1	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto	
1 225	.9397	34.53	-18.28	16.25	46.00	-29.75	peak	
2 280	.2599	34.42	-16.35	18.07	46.00	-27.93	peak	
3 324	.8798	50.82	-15.02	35.80	46.00	-10.20	peak	
4 543	.1299	37.26	-9.21	28.05	46.00	-17.95	peak	
	.7698	43.99	-7.62	36.37	46.00	-9.63	peak	
6 847	.7100	36.05	-5.33	30.72	46.00	-15.28	peak	



Page: 16 of 31



#### Note:

- (1) All Readings are Peak Value.
- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss
- (3) The QP measurement was not performed when the peak measured data under the limit of QP detection.



Page: 17 of 31

# **Fundamental and Harmonics emissions**

### Below 1G

Temperature:		25 ℃				Relative H	55%	
Test Voltage:		D	C 3V	MAGE			No. of Lot	
Test Mode:		T	X Mode		COL	1130		MAD
Remark:		1	100	-	1/2		100	
Freq.	Ant.P	a (abuv/m)			Limit 3m (dBuV/m)		n(dB)	
(MHz)	H/V		PK	AV	PK	AV	PK	AV
433.921	Н		73.36	73.36	100.83	80.83	-27.47	-7.47
869.1302	Н		58.87	58.87	80.83	60.83	-21.96	-1.96
433.921	V		72.78	72.78	100.83	80.83	-28.05	-8.05
869.1302	V		56.66	56.66	80.83	60.83	-24.17	-4.17
Note: AVG Va	Note: AVG Value=Peak Value +20log (duty cycle)							
Margin= Emiss	sion Le	vel	- Limit 3m					



Page: 18 of 31

### Above 1G

Temperature: 25		25	${\mathbb C}$		R	elative Hum	idity:	55%	
Test Voltage: DC 3\			3V		6	THE			
Ant.	Pol.		Hori	izontal					1.1
Test	Mode	):	TXI	Mode				MAT D	
Rema	ark:			1	Al Do			The state of the s	65.
No	. Mk	. Fre	eq.	Reading Level	Correct Factor	Measure ment	- Limit	Over	
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1301.	332	51.49	-5.33	46.16	74.00	-27.84	peak
2		1301.	332	39.28	-5.33	33.95	54.00	-20.05	AVG
3		1736.	483	51.51	-3.07	48.44	74.00	-25.56	peak
4		1736.	483	39.30	-3.07	36.23	54.00	-17.77	AVG
5		2168.	510	56.55	-0.07	56.48	74.00	-17.52	peak
6		2168.	510	44.34	-0.07	44.27	54.00	-9.73	AVG
7		2603.	351	49.83	2.02	51.85	74.00	-22.15	peak
8		2603.	351	37.35	2.02	39.37	54.00	-14.63	AVG
9		3037.	063	54.18	4.56	58.74	74.00	-15.26	peak
10	*	3037.	063	41.97	4.56	46.53	54.00	-7.47	AVG

**Emission Level= Read Level+ Correct Factor** 



Page: 19 of 31

Temp	eratu	re:	25	${\mathbb C}$	00	Rel	ative Hum	idity: 5	55%
Test V	Test Voltage: DO		DC	3V					6
Ant. F	ol.		Vert	ical	20		M.		
Test N	/lode	-	TX	Mode		2.0			
Rema	rk:				0.44		-	A British	
No.	Mk.	Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1301.3	332	62.13	-5.33	56.80	74.00	-17.20	peak
2		1301.3	332	49.92	-5.33	44.59	54.00	-9.41	AVG
3		1736.4	483	59.10	-3.07	56.03	74.00	-17.97	peak
4		1736.4	483	46.89	-3.07	43.82	54.00	-10.18	AVG
5		2168.	510	59.64	-0.07	59.57	74.00	-14.43	peak
6		2168.	510	47.43	-0.07	47.36	54.00	-6.64	AVG
7		3037.0	063	54.73	4.56	59.29	74.00	-14.71	peak
8		3037.0	063	42.52	4.56	47.08	54.00	-6.92	AVG
9		3909.9	967	52.29	9.57	61.86	74.00	-12.14	peak
10	*	3909.9	967	40.08	9.57	49.65	54.00	-4.35	AVG
Emiss	sion I	_evel=	Read	Level+ Cor	rect Facto	r			



Page: 20 of 31

### Other harmonics emissions are lower than 20dB below the allowable limit.

Note:

(1) All Readings are Peak Value and AV. And AV is calculated by the following:

Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.

Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values.

Average Values=Peak Values+20log (Duty Cycle)

- (2) Emission Level= Reading Level + Probe Factor +Cable Loss
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



Page: 21 of 31

### **Pulse Desensitization Correction Factor**

Note:

(1)The Total Pulse Width (PW)= 100ms

(2) 2/PW=2/100 (ms)= 0.02 kHz<100 kHz

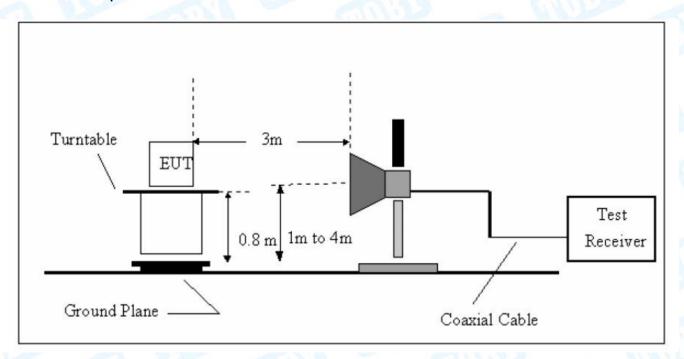
Because 2/PW<RBW, so the PDCF is not needed.



Page: 22 of 31

### 5. Bandwidth

### 5.1 Test Standard and Limit


5.1.1 Test Standard FCC Part 15.231

#### 5.1.2 Test Limit

The bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

Fundamental Frequency	20 dB Bandwidth Limits (MHz)
433.92 MHz	1.0848

### 5.2 Test Setup



#### 5.3 Test Procedure

- (1) Set Spectrum Analyzer Center Frequency= Fundamental Frequency, RBW=10 kHz, VBW= 30 kHz, Span= 1 MHz.
- (2) Measured the spectrum width with power higher than 20 dB below carrier.

### 5.4 EUT Operating Condition

The Equipment Under Test was Programmed to be in continuously transmitting mode.



Page: 23 of 31

# 5.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

# 5.6 Test Condition

Temperature	: .	25 ℃
Relative Humidity		65 %
Pressure		1010 hPa
Test Power		DC 3V



Page: 24 of 31

### 5.7 Test Data

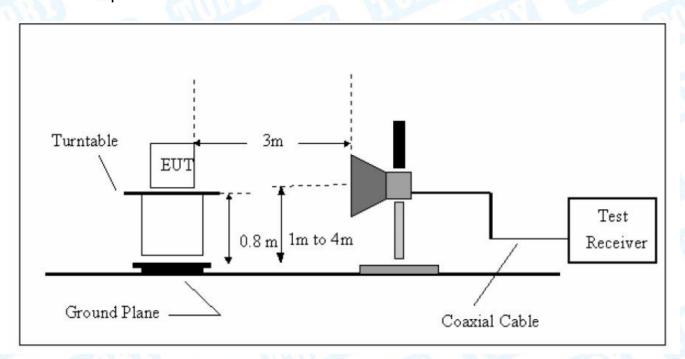
Frequency (MHz)	20 dBc Bandwidth (kHz)	Result	
433.92	75.802	PASS	





Page: 25 of 31

### 6. Release Time Measurement


### 6.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.231 (a)(1)

#### 5.1.2 Test Limit

According to FCC Part 15.231 (a)(1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

### 6.2 Test Setup



#### 6.3 Test Procedure

- (1) Setup the EUT as show in the block diagram above.
- (2) Set Spectrum Analyzer Centre Frequency= Fundamental Frequency, RBW=100 kHz, VBW= 100 kHz, Span= 0 Hz. Sweep Time= 5 Seconds.
- (3) Setup the EUT as normal operation and press Transmitter button.
- (4) Set Spectrum Analyzer View, Delta Mark time.

### 6.4 EUT Operating Condition

The EUT was set to work in transmitting mode.

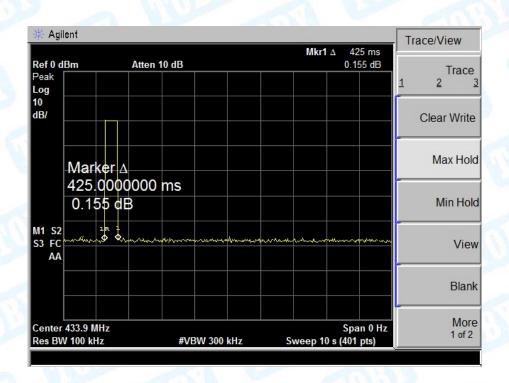


Page: 26 of 31

# 6.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A




Page: 27 of 31

### 6.6 Test Condition

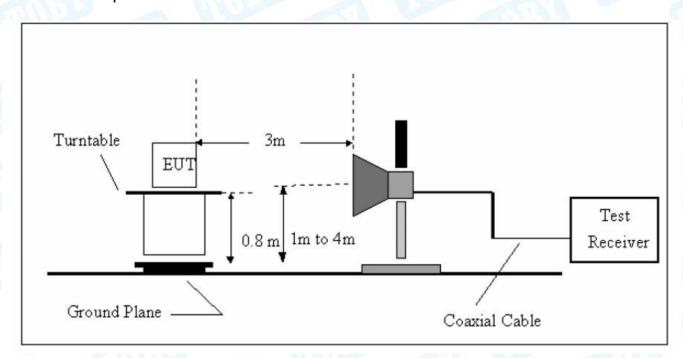
Temperature	1:	25 ℃
Relative Humidity	:	65 %
Pressure	1111	1010 hPa
Test Power		DC 3V

### 6.7 Test Data

Release Time (s)	Limit (s)	Result
0.425	5	PASS






Page: 28 of 31

# 7. Duty Cycle

### 7.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.231

### 7.2 Test Setup



#### 7.3 Test Procedure

- (1) The EUT was placed on a turntable which is 0.8m above ground plane.
- (2) Set EUT operating in continuous transmitting mode.
- (3) Set the Spectrum Analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth (RBW) to 100 kHz and video bandwidth (VBW) to 300 kHz, Span was set to 0 Hz.
- (4) The Duty Cycle was measured and recorded.

### 7.4 EUT Operating Condition

The EUT was programmed to be in transmitting mode.



Page: 29 of 31

# 7.5 Test Equipment

Equipmen t	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

## 7.6 Test Condition

Temperature	9: 100	25 ℃
Relative Humidity		65 %
Pressure		1010 hPa
Test Power	C. HILL	DC 3V



Page: 30 of 31

### 7.7 Test Data

Please refer the following pages:

**Duty Cycle=100%** 





Page: 31 of 31

## 8. Antenna Requirement

### 8.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 8.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

#### 8.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type				
	▶ Permanent attached antenna			
A. S.	□ Unique connector antenna			
	☐ Professional installation antenna			