

RADIO TEST REPORT

S T S

Report No:STS1904210W02

Issued for

Beijing Jinshan Security Software Co., Ltd.

East Zone, 2/f, No. 33 Xiaoying West Road, Haidian District, Beijing, China

Product Name:	cm translator
Brand Name:	СМ
Model Name:	B02G
Series Model:	B02J
FCC ID:	2ASGM-B02G
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented Test Sample VAL

Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Page 2 of 42

Report No.: STS1904210W02

TEST RESULT CERTIFICATION

Applicant's Name	Beijing Jinshan Security Software Co., Ltd.
	East Zone, 2/f, No. 33 Xiaoying West Road, Haidian District, Beijing, China
	Shenzhen Haipai Communication Technology Co., Ltd. Longhua Branch
Address	Building 8, Instrument World Industrial Zone, Gui Yue Road, guanlan street, Longhua New District, Shenzhen City
Product Description	
Product Name:	cm translator
Brand Name:	СМ
Model Name:	B02G
Series Model:	B02J
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests	18 Apr. 2019 ~ 05 May 2019
Date of Issue	05 May 2019

Test Result..... Pass

Testing Engineer (Chris Chen) day fin **Technical Manager** (Sunday Hu) Authorized Signatory : (Vita Li)

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1904210W02

Table of Contents

Page 3 of 42

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.5 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 TEST PROCEDURE	15
3.3 TEST SETUP	15
3.4 EUT OPERATING CONDITIONS	15
3.5 TEST RESULTS	16
4. RADIATED EMISSION MEASUREMENT	18
4.1 RADIATED EMISSION LIMITS	18
4.2 TEST PROCEDURE	19
4.3 TEST SETUP	20
4.4 EUT OPERATING CONDITIONS	20
4.5 FIELD STRENGTH CALCULATION	21
4.6 TEST RESULTS	22
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	29
5.1 LIMIT	29
5.2 TEST PROCEDURE	29
5.3 TEST SETUP	29
5.4 EUT OPERATION CONDITIONS	29
5.5 TEST RESULTS	30
6. POWER SPECTRAL DENSITY TEST	33
6.1 LIMIT	33
6.2 TEST PROCEDURE	33
6.3 TEST SETUP	33
6.4 EUT OPERATION CONDITIONS	33

Т

Report No.: STS1904210W02

Page 4 of 42

Table of Contents

6.5 TEST RESULTS	34
7. BANDWIDTH TEST	36
7.1 LIMIT	36
7.2 TEST PROCEDURE	36
7.3 TEST SETUP	36
7.4 EUT OPERATION CONDITIONS	36
7.5 TEST RESULTS	37
8. PEAK OUTPUT POWER TEST	39
8.1 LIMIT	39
8.2 TEST PROCEDURE	39
8.3 TEST SETUP	39
8.4 EUT OPERATION CONDITIONS	39
8.5 TEST RESULTS	40
9. ANTENNA REQUIREMENT	41
9.1 STANDARD REQUIREMENT	41
9.2 EUT ANTENNA	41
10. EUT TEST PHOTO	42

Page 5 of 42

Report No.: STS1904210W02

Revision History

Rev.	Issue Date Report NO.		Effect Page	Contents
00	05 May 2019	May 2019 STS1904210W02		Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

FCC Part 15.247,Subpart C						
Standard Section	Judgment	Remark				
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)(3)	Output Power	PASS				
15.247 (c)	Radiated Spurious Emission	PASS				
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.205	Restricted Band Edge Emission	PASS				
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China FCC test Firm Registration Number: 625569 A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Page 7 of 42

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±0.63dB
3	All emissions, radiated 30-200MHz	±3.43dB
4	All emissions, radiated 200MHz-1GHz	±3.57dB
5	All emissions, radiated>1G	±4.13dB
6	Conducted Emission (9KHz-150KHz)	±3.18dB
7	Conducted Emission (150KHz-30MHz)	±2.70dB

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1904210W02

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	cm translator		
Trade Name	СМ		
Model Name	B02G		
Series Model	B02J		
Model Difference	Only different in mod	del name.	
	The EUT is a cm tra Operation Frequency:	nslator 2402~2480 MHz	
	Modulation Type:	GFSK	
Product Description	Radio Technology	BLE	
	Number Of Channel	40	
	Antenna Designation:	Please see Note 3.	
	Antenna Gain (dBi)	3.66 dBi	
Channel List	Please refer to the N	lote 2.	
Power Rating	Input: 5V,500mA		
Battery	Rated Voltage: 3.8V Charge Limit: 4.35V Capacity: 700mAh		
Hardware version number	V2.2		
Software version number	1.2.3		
Connecting I/O Port(s)	Please refer to the L	Jser's Manual	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

\sim	

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
37	2402	09	2422	18	2442	28	2462
00	2404	10	2424	19	2444	29	2464
01	2406	38	2426	20	2446	30	2466
02	2408	11	2428	21	2448	31	2468
03	2410	12	2430	22	2450	32	2470
04	2412	13	2432	23	2452	33	2472
05	2414	14	2434	24	2454	34	2474
06	2416	15	2436	25	2456	35	2476
07	2418	16	2438	26	2458	36	2478
08	2420	17	2440	27	2460	39	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	СМ	B02G	PCB	N/A	3.66 dBi	BLE ANT.

Page 10 of 42

Report No.: STS1904210W02

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH37(2402MHz)	1 MHz/GFSK
Mode 2	TX CH17(2440MHz)	1 MHz/GFSK
Mode 3	TX CH39(2480MHz)	1 MHz/GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

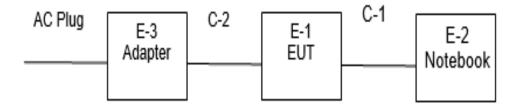
(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report

(3) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.

For AC Conducted Emission

AC Conducted	
Emission Mode 4 : Keeping BT TX	

Page 11 of 42


Report No.: STS1904210W02

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

Shenzhen STS Test Services Co., Ltd.

Page 12 of 42

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Necessary accessories							
Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note			
E-3	Adapter	LITEON	PA-1650-86	N/A	N/A			
C-2	DC Cable	N/A	110cm	N/A	N/A			

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	Notebook	DELL	VOSTRO.3800	N/A	N/A
C-1	USB Cable	N/A	100cm	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength_a column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.5 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY51110105	2019.03.02	2020.03.01
Active loop Antenna	ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.1
Horn Antenna	SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2018.10.13	2019.10.12
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK201808090 1	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10
turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2018.10.13	2019.10.12
LISN	R&S	ENV216	101242	2018.10.11	2019.10.10
LISN	EMCO	3810/2NM	23625	2018.10.11	2019.10.10
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY49100060	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10

Page 14 of 42

Report No.: STS1904210W02

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

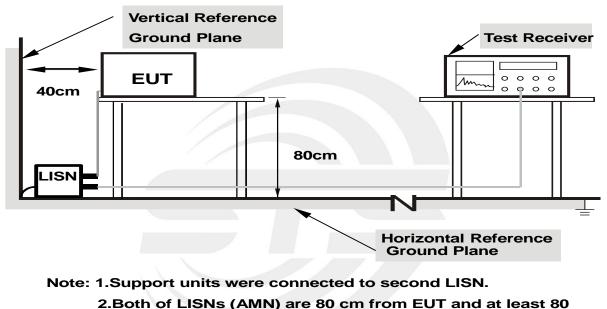
(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

Shenzhen STS Test Services Co., Ltd.


Report No.: STS1904210W02

Page 15 of 42

3.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

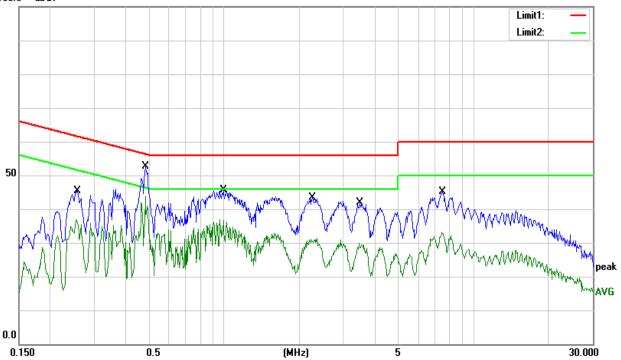
from other units and other metal planes

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Temperature:	24.4°C	Relative Humidity:	62%
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2580	24.79	20.58	45.37	61.50	-16.13	QP
2	0.2580	14.52	20.58	35.10	51.50	-16.40	AVG
3	0.4820	32.08	20.44	52.52	56.30	-3.78	QP
4	0.4820	13.90	20.44	34.34	46.30	-11.96	AVG
5	0.9900	25.48	20.16	45.64	56.00	-10.36	QP
6	0.9900	13.49	20.16	33.65	46.00	-12.35	AVG
7	2.2580	23.31	20.13	43.44	56.00	-12.56	QP
8	2.2580	10.69	20.13	30.82	46.00	-15.18	AVG
9	3.4940	21.84	20.07	41.91	56.00	-14.09	QP
10	3.4940	6.57	20.07	26.64	46.00	-19.36	AVG
11	7.5180	25.34	19.90	45.24	60.00	-14.76	QP
12	7.5180	6.28	19.90	26.18	50.00	-23.82	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

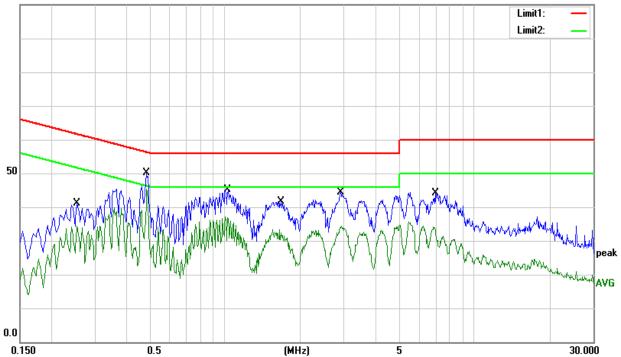
 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 17 of 42 Report No.:

Report No.: STS1904210W02

Temperature:	24.4°C	Relative Humidity:	62%
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 4		


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2540	20.60	20.56	41.16	61.63	-20.47	QP
2	0.2540	16.67	20.56	37.23	51.63	-14.40	AVG
3	0.4820	29.73	20.44	50.17	56.30	-6.13	QP
4	0.4820	15.15	20.44	35.59	46.30	-10.71	AVG
5	1.0300	25.07	20.16	45.23	56.00	-10.77	QP
6	1.0300	11.25	20.16	31.41	46.00	-14.59	AVG
7	1.6780	21.39	20.16	41.55	56.00	-14.45	QP
8	1.6780	12.93	20.16	33.09	46.00	-12.91	AVG
9	2.9140	24.23	20.09	44.32	56.00	-11.68	QP
10	2.9140	12.46	20.09	32.55	46.00	-13.45	AVG
11	6.9820	24.30	19.91	44.21	60.00	-15.79	QP
12	6.9820	9.29	19.91	29.20	50.00	-20.80	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

100.0 dBu¥

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com

Page 18 of 42

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	4 MUL / 2 MUL	
band)	1 MHz / 3 MHz	

For Band edge

Spectrum Parameter	Setting		
Detector	Peak/AV		
	Lower Band Edge: 2300 to 2403 MHz		
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz		
RB / VB (emission in restricted band)	1 MHz / 3 MHz		

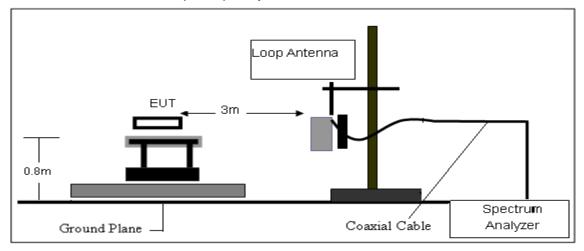
Shenzhen STS Test Services Co., Ltd.

Page 19 of 42

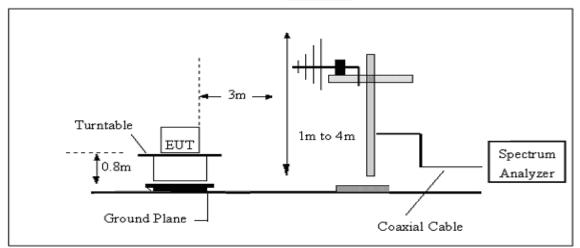
Report No.: STS1904210W02

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

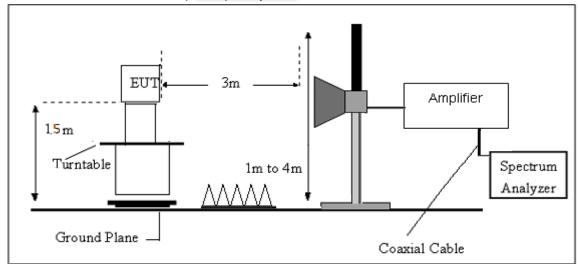
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field StrengthCL = Cable Attenuation Factor (Cable Loss)RA = Reading AmplitudeAG = Amplifier GainAF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1904210W02

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

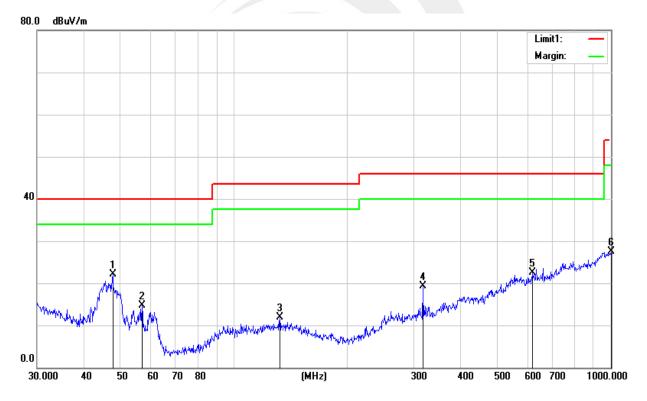
Temperature:	23.8℃	Relative Humidtity:	66%
Test Voltage:	DC 3.8V	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

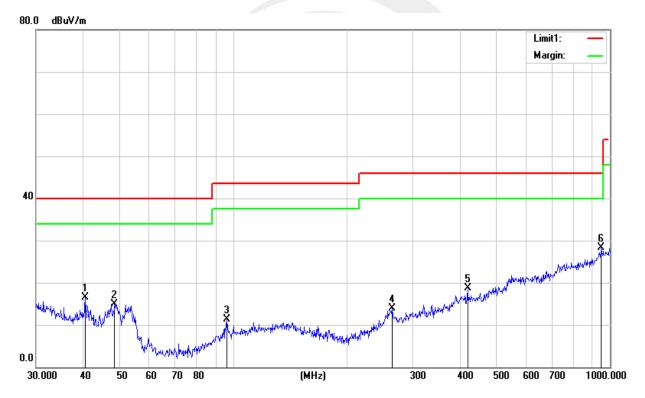

(30MHz -1000MHz)

Temperature:	23.8°C	Relative Humidity:	66%		
Test Voltage:	DC 3.8V	Phase:	Horizontal		
Test Mode:	Mode 1/2/3 (Mode 1 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	47.6586	42.37	-20.27	22.10	40.00	-17.90	QP
2	56.9912	38.24	-23.48	14.76	40.00	-25.24	QP
3	132.2206	29.43	-17.54	11.89	43.50	-31.61	QP
4	316.5890	33.62	-14.28	19.34	46.00	-26.66	QP
5	618.5370	29.07	-6.50	22.57	46.00	-23.43	QP
6	1000.0000	27.64	-0.07	27.57	54.00	-26.43	QP

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit


Page 24 of 42 Report No.: STS1904210W02

Temperature:	23.8°C	Relative Humidity:	66%		
Test Voltage:	DC 3.8V	Phase:	Vertical		
Test Mode:	Mode 1/2/3 (Mode 1 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	40.5591	33.14	-16.62	16.52	40.00	-23.48	QP
2	48.5016	35.67	-20.71	14.96	40.00	-25.04	QP
3	96.4362	30.90	-19.55	11.35	43.50	-32.15	QP
4	264.7457	29.23	-15.26	13.97	46.00	-32.03	QP
5	419.1081	29.60	-10.92	18.68	46.00	-27.32	QP
6	948.7610	28.72	-0.45	28.27	46.00	-17.73	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Page 25 of 42

Report No.: STS1904210W02

(1GHz-25GHz)Restricted band and Spurious emission Requirements

,	,			•	GFSK	ritoquiron				
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	00111011
				Low C	Channel (2402	MHz)				
3264.74	60.84	44.70	6.70	28.20	-9.80	51.04	74.00	-22.96	PK	Vertical
3264.74	51.56	44.70	6.70	28.20	-9.80	41.76	54.00	-12.24	AV	Vertical
3264.82	61.23	44.70	6.70	28.20	-9.80	51.43	74.00	-22.57	PK	Horizontal
3264.82	51.32	44.70	6.70	28.20	-9.80	41.52	54.00	-12.48	AV	Horizontal
4804.35	58.44	44.20	9.04	31.60	-3.56	54.88	74.00	-19.12	PK	Vertical
4804.35	50.02	44.20	9.04	31.60	-3.56	46.46	54.00	-7.54	AV	Vertical
4804.32	59.21	44.20	9.04	31.60	-3.56	55.65	74.00	-18.35	PK	Horizontal
4804.32	49.48	44.20	9.04	31.60	-3.56	45.92	54.00	-8.08	AV	Horizontal
5359.75	48.25	44.20	9.86	32.00	-2.34	45.91	74.00	-28.09	PK	Vertical
5359.75	40.22	44.20	9.86	32.00	-2.34	37.88	54.00	-16.12	AV	Vertical
5359.68	47.40	44.20	9.86	32.00	-2.34	45.06	74.00	-28.94	PK	Horizontal
5359.68	38.64	44.20	9.86	32.00	-2.34	36.30	54.00	-17.70	AV	Horizontal
7205.80	53.71	43.50	11.40	35.50	3.40	57.11	74.00	-16.89	PK	Vertical
7205.80	44.86	43.50	11.40	35.50	3.40	48.26	54.00	-5.74	AV	Vertical
7205.84	54.27	43.50	11.40	35.50	3.40	57.67	74.00	-16.33	PK	Horizontal
7205.84	43.60	43.50	11.40	35.50	3.40	47.00	54.00	-7.00	AV	Horizontal
				Middle	Channel (244	0 MHz)				
3264.79	62.00	44.70	6.70	28.20	-9.80	52.20	74.00	-21.80	PK	Vertical
3264.79	51.20	44.70	6.70	28.20	-9.80	41.40	54.00	-12.60	AV	Vertical
3264.86	60.82	44.70	6.70	28.20	-9.80	51.02	74.00	-22.98	PK	Horizontal
3264.86	50.42	44.70	6.70	28.20	-9.80	40.62	54.00	-13.38	AV	Horizontal
4880.53	58.39	44.20	9.04	31.60	-3.56	54.83	74.00	-19.17	PK	Vertical
4880.53	49.33	44.20	9.04	31.60	-3.56	45.77	54.00	-8.23	AV	Vertical
4880.40	59.45	44.20	9.04	31.60	-3.56	55.89	74.00	-18.11	PK	Horizontal
4880.40	49.87	44.20	9.04	31.60	-3.56	46.31	54.00	-7.69	AV	Horizontal
5359.77	48.89	44.20	9.86	32.00	-2.34	46.55	74.00	-27.45	PK	Vertical
5359.77	40.21	44.20	9.86	32.00	-2.34	37.87	54.00	-16.13	AV	Vertical
5359.66	48.55	44.20	9.86	32.00	-2.34	46.21	74.00	-27.79	PK	Horizontal
5359.66	39.31	44.20	9.86	32.00	-2.34	36.97	54.00	-17.03	AV	Horizontal
7320.80	54.94	43.50	11.40	35.50	3.40	58.34	74.00	-15.66	PK	Vertical
7320.80	43.75	43.50	11.40	35.50	3.40	47.15	54.00	-6.85	AV	Vertical
7320.70	54.65	43.50	11.40	35.50	3.40	58.05	74.00	-15.95	PK	Horizontal
7320.70	43.66	43.50	11.40	35.50	3.40	47.06	54.00	-6.94	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Page 26 of 42 Report No.: STS1904210W02

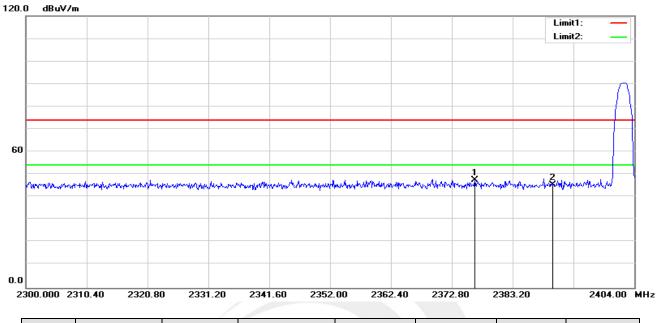
				High C	hannel (248	0 MHz)				
3264.61	62.12	44.70	6.70	28.20	-9.80	52.32	74.00	-21.68	PK	Vertical
3264.61	51.07	44.70	6.70	28.20	-9.80	41.27	54.00	-12.73	AV	Vertical
3264.80	61.22	44.70	6.70	28.20	-9.80	51.42	74.00	-22.58	PK	Horizontal
3264.80	50.51	44.70	6.70	28.20	-9.80	40.71	54.00	-13.29	AV	Horizontal
4960.51	58.85	44.20	9.04	31.60	-3.56	55.29	74.00	-18.71	PK	Vertical
4960.51	49.17	44.20	9.04	31.60	-3.56	45.61	54.00	-8.39	AV	Vertical
4960.59	59.55	44.20	9.04	31.60	-3.56	55.99	74.00	-18.01	PK	Horizontal
4960.59	49.61	44.20	9.04	31.60	-3.56	46.05	54.00	-7.95	AV	Horizontal
5359.72	48.20	44.20	9.86	32.00	-2.34	45.86	74.00	-28.14	PK	Vertical
5359.72	39.06	44.20	9.86	32.00	-2.34	36.72	54.00	-17.28	AV	Vertical
5359.62	48.05	44.20	9.86	32.00	-2.34	45.71	74.00	-28.29	PK	Horizontal
5359.62	38.40	44.20	9.86	32.00	-2.34	36.06	54.00	-17.94	AV	Horizontal
7439.92	53.80	43.50	11.40	35.50	3.40	57.20	74.00	-16.80	PK	Vertical
7439.92	43.90	43.50	11.40	35.50	3.40	47.30	54.00	-6.70	AV	Vertical
7439.78	54.18	43.50	11.40	35.50	3.40	57.58	74.00	-16.42	PK	Horizontal
7439.78	44.15	43.50	11.40	35.50	3.40	47.55	54.00	-6.45	AV	Horizontal

Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor

The frequency emission of peak points that did not show above the forms are at least 20dB 2)


below the limit, the frequency emission is mainly from the environment noise.

Report No.: STS1904210W02

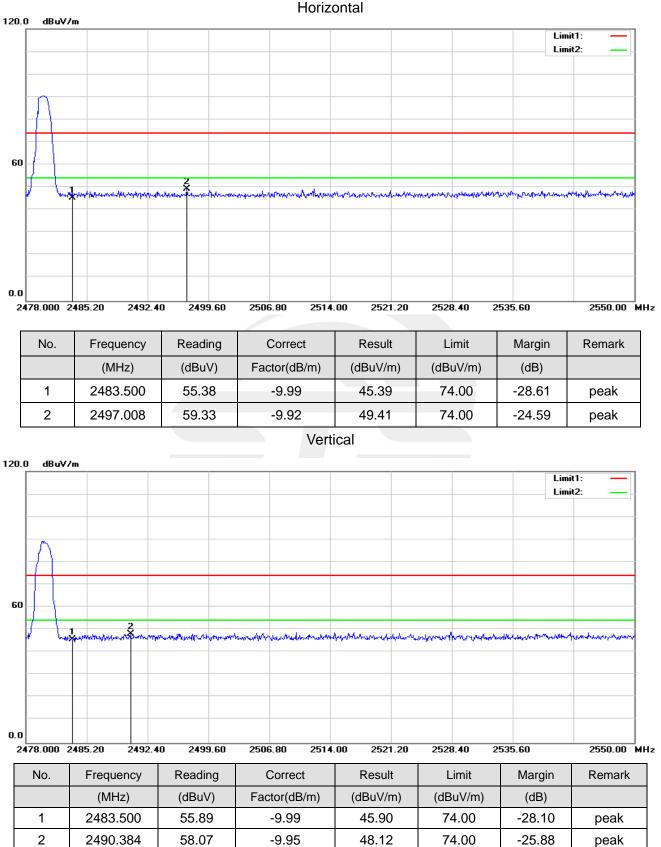
4.6 TEST RESULTS (Restricted Bands Requirements)

GFSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2376.752	58.19	-10.56	47.63	74.00	-26.37	peak
2	2390.000	55.99	-10.48	45.51	74.00	-28.49	peak

Vertical

No) .	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1		2379.352	58.65	-10.54	48.11	74.00	-25.89	peak
2	2	2390.000	56.88	-10.48	46.40	74.00	-27.60	peak


Shenzhen STS Test Services Co., Ltd.

Page 28 of 42

Report No.: STS1904210W02

GFSK-High Horizontal

Shenzhen STS Test Services Co., Ltd.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting					
Detector	Peak					
Stort/Stop Fraguenes/	Lower Band Edge: 2300 – 2403 MHz					
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz					
RB / VB (emission in restricted band)	100 KHz/300 KHz					
Trace-Mode:	Max hold					

5.3 TEST SETUP

The EUT which is powered by the Battery, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

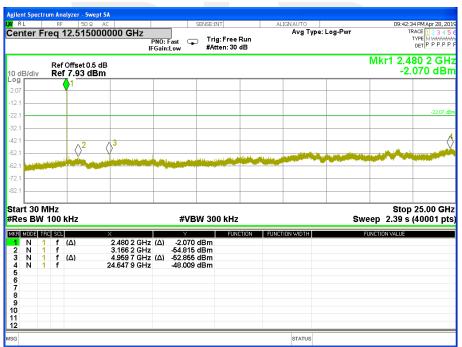
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 3.8V		TX Mode /CH37, CH17, CH39

37 CH

RL	RF	50 Ω	AC		SENSE:INT		ALIGNAUTO		09:31:0	9 PM Apr 28, 20
enter			00000 GHz	PNO: Fast C FGain:Low	Trig: Fre #Atten: 3	ee Run	Avg Type:	-	TI	RACE 1 2 3 4 5 TYPE M WANNA DET P P P P F
0 dB/di		f Offset 0.5 f_8.16 dE							Mkr1 2.4 -1.	02 2 GH 843 dBi
og 1.84		1								
1.8										
1.8										-21.84 c
1.8				2						
1.8		2								
1.8	na de Hannad		and the second s	No.						
1.8										
1.8										
tart 3	0 MHz									25.00 GH
Res B	SW 100	kHz		#V	BW 300 kH	łz		Swe	eep 2.39 s	(40001 p
KR MODI	e tro sol 1 f		× 2.402 2 GHz	× (Δ) -1.84	FI I3 dBm		CTION WIDTH		eep 2.39 s	(40001 p
(R) MOD 1 N 2 N 3 N	E TRC SCL 1 f 1 f 1 f	-	2.402 2 GHz 2.793 6 GHz 7.205 8 GHz	(Δ) -1.84 -55.97 (Δ) -50.15	I3 dBm 3 dBm 3 dBm 52 dBm		CTION WIDTH		•	(40001 p
KE MODI 1 N 2 N 3 N 4 N 5	e tric sci 1 f 1 f	(Δ)	2.402 2 GHz 2.793 6 GHz	(Δ) -1.84 -55.97 (Δ) -50.15	I3 dBm /3 dBm		CTION WIDTH		•	(40001 p
4 N 5 7	E TRC SCL 1 f 1 f 1 f	(Δ)	2.402 2 GHz 2.793 6 GHz 7.205 8 GHz	(Δ) -1.84 -55.97 (Δ) -50.15	I3 dBm 3 dBm 3 dBm 52 dBm		CTION WIDTH		•	(40001 p
KR MODI 1 N 2 N 3 N 4 N 5 6 7 8 9	E TRC SCL 1 f 1 f 1 f	(Δ)	2.402 2 GHz 2.793 6 GHz 7.205 8 GHz	(Δ) -1.84 -55.97 (Δ) -50.15	I3 dBm 3 dBm 3 dBm 52 dBm		CTION WIDTH		•	(40001 pt
KR MOD 1 N 2 N 3 N	E TRC SCL 1 f 1 f 1 f	(Δ)	2.402 2 GHz 2.793 6 GHz 7.205 8 GHz	(Δ) -1.84 -55.97 (Δ) -50.15	I3 dBm 3 dBm 3 dBm 52 dBm		CTION WIDTH		•	(40001 pi

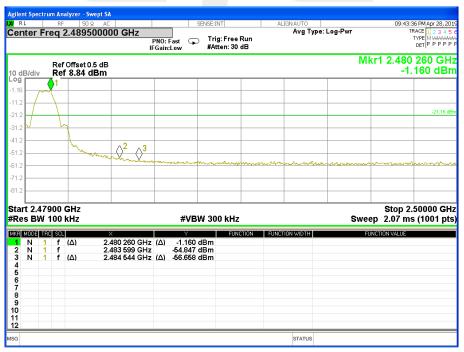

Shenzhen STS Test Services Co., Ltd.

17 CH

RL	RF	50 Ω	AC		9	ENSE:INT		ALI	GNAUTO		0	9:39:31 PM Apr 28
enter F	req	12.5150	000000 GHz	PNO: F FGain:l] ast 😱	Trig: Free #Atten: 30			Avg Type:	Log-Pwr		TRACE 1 2 3 TYPE MWM DET P P P
dB/div		Offset 0.4 f 7.74 d									Mkr1	2.440 2 C -2.261 d
26		1										
2.3												-22.
.3												
		2	~ ~	3								
2.3	اخاليناهم	$\downarrow 0^{2}$			و و و و و و و و و	ار ماندار در مرجع می مر		and a set			No.	
2.3 	-11-41-0-11-1											
2.3												
art 30 I Res BW		kHz			#VBI	N 300 kH:	z			s	s weep 2.3	top 25.00 (9 s (40001
R MODE T	'RC SCI		×		Y	FU	NCTION	FUNCTI	ON WIDTH		FUNCTION VA	
N 2 N 3 N	1 f 1 f 1 f	(Δ) (Δ)	2.440 2 GHz 3.297 3 GHz 7.320 6 GHz		-2.261 -56.208 -51.022	dBm						
	1 f	(<u></u>	24.568 6 GHz		-48.204							
5 7												
3												
) 2												

39 CH

Page 32 of 42



For Band edge

37 CH

L	n Analyzer - S RF 50	Ω AC		SENSE:	INT		IAUTO		09:32	2:10 PM Apr 2
nter Fre	q 2.351	500000 GHz	PNO: Fa IFGain:L		ig: Free Run tten: 30 dB		Avg Type:	Log-Pwr		TRACE 1 2 3 TYPE MWW DET P P F
B/div	Ref Offset Ref 8.92							М	kr1 2.40 -1	2 279 C I.080 d
<u> </u>										
<u> </u>										-21.
										2
Line mathering	and how many	And the second second	mana	who have a second	and the second	mand-south	- martine man	An the state of th	man	mander
rt 2.300 s BW 1				#VBW 30	10 kHz			Swe	Stop 2 ep 9.87 m	2.40300 ns (1001
MODE TRC		×		Y	FUNCTION	FUNCTION	WIDTH	F	UNCTION VALUE	
N 1 N 1	f (∆) f	2.402 279 GH 2.396 305 GH	Iz -	-1.080 dBm 57.069 dBm						
N 1	f (Δ)	2.399 704 GH	lz (Δ) -	53.389 dBm						
			1							

39 CH

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS					

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

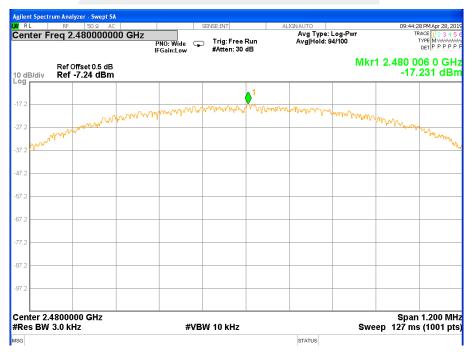
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.8V		TX Mode /CH37, CH17, CH39

Fraguaday	Power Density	Limit (dPm/2KHz)	Result	
Frequency	(dBm/3kHz)	Limit (dBm/3KHz)		
2402 MHz	-17.231	≤8	PASS	
2440 MHz	-17.274	≤8	PASS	
2480 MHz	-17.746	≤8	PASS	

TX CH37


RL RF 50Ω AC	SENSE:INT	ALIGN AUTO	09:33:01 PM Apr 28, 20:
enter Freq 2.402000000 GHz		Avg Type: Log-Pwr Avg Hold: 95/100	TRACE 1 2 3 4 5 TYPE M MMMM DET P P P P
Ref Offset 0.5 dB 0 dB/div Ref -7.27 dBm		MI	(r1 2.402 019 2 GH -17.274 dBr
	↓ 1		
7.3	Auhun and an and and and	wayn allow a construction	mmmm ~
77.3 27.3 37.3 Marshar Ma Marshar Marshar M Marshar Marshar Marsh			and by Mary and a
7.3			
7.3			
7.3			
7.3			
7.3			
7.3			
enter 2.4020000 GHz Res BW 3.0 kHz	#VBW 10 kHz	SI	Span 1.200 MH weep 127 ms (1001 pt

TX CH17

TX CH39

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

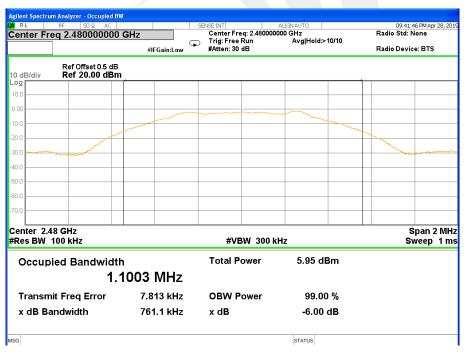
7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.8V		TX Mode /CH37, CH17, CH39

Frequency	6dB Bandwidth	Channel Separation	Result	
ricquency	(KHz)	(KHz)	Result	
2402 MHz	753.100	≥500KHz	PASS	
2440 MHz	760.100	≥500KHz	PASS	
2480 MHz	761.100	≥500KHz	PASS	

TX CH 37

Shenzhen STS Test Services Co., Ltd.


1

TX CH 17

RL	RF 50 Ω AC			ALIGN AUTO	09:38:45 PM Apr 28, 20
enter Fr	eq 2.440000000	GHz	Center Freq: 2.440000		Radio Std: None
	7	G	Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	
		#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
0 dB/div	Ref Offset 0.5 dB Ref 20.00 dBm				
og					
0.0					
).00					
0.0					
0.0					
0.0	- marker				
0.0					
50.0					
0.0					
0.0					
enter 2. Res BW			#VBW 300 k	Hz	Span 2 MH Sweep 1 m
Occup	ied Bandwidth		Total Power	5.62 dBm	
	1.0	944 MHz			
Transn	nit Freq Error	7.519 kHz	OBW Power	99.00 %	
v dB B	andwidth	760.1 kHz	x dB	-6.00 dB	

TX CH 39

STATUS

MSG

Report No.: STS1904210W02

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&PC

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.8V		TX Mode /CH37, CH17, CH39

Test Channe	Frequency	Peak Conducted Output Power	Average Conducted Output Power	LIMIT
root onarmo	(MHz)	(dBm)	(dBm)	dBm
CH37	2402	-0.46	-0.55	30
CH17	2440	-0.62	-0.68	30
CH39	2480	-0.60	-0.67	30

Shenzhen STS Test Services Co., Ltd.

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1904210W02

10. EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

Shenzhen STS Test Services Co., Ltd.