

EMC Technologies (NZ) Ltd 47 Mackelvie St, Grey Lynn Auckland 1021 New Zealand Phone 09 360 0862 Fax 09 360 0861 E-Mail Address: aucklab@emctech.co.nz

Web Site: www.emctech.co.nz

# **TEST REPORT**

WTE UHF TReX 460 Digital Transceiver

tested to the

Code of Federal Regulations (CFR) 47

Part 90 - Private Land Mobile Services

for

WTE Limited Certification

This Test Report is issued with the authority of:

**Andrew Cutler- General Manager** 



All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

# **Table of Contents**

| 3  |
|----|
| 4  |
| •  |
| 5  |
| 5  |
| 7  |
| 54 |
| 54 |
|    |

# 1. COMPLIANCE STATEMENT

The WTE UHF TReX 460 complies with the limits defined in 47 CFR Part 90 and 47 CFR Part 2 when tested in-accordance with the test methods described in 47 CFR Part 2 and ANSI / TIA-603-D-2010.

# 2. RESULT SUMMARY

The results of testing carried out between 9<sup>th</sup> January and the 20<sup>th</sup> February 2019 are summarised below.

| Clause  | Description                              | Result     |
|---------|------------------------------------------|------------|
| 90.203  | Certification required                   | Noted      |
|         |                                          |            |
| 2.1046  | RF power output                          | Noted      |
| 90.205  | Power and antenna height limits          | Complies   |
|         |                                          |            |
| 2.1049  | Occupied bandwidth                       | Noted      |
| 2.202   | Bandwidths                               | Noted      |
|         |                                          |            |
| 20.207  |                                          |            |
| 90.207  | Types of emissions                       | Complies   |
| 90.209  | Bandwidth limitations                    | Complies   |
| 90.210  | Emission masks                           | Complies   |
| 2.10.71 | Tochnolo                                 | gios       |
| 2.1051  | Spurious emissions at antenna terminals  | Complies   |
| 2.1052  |                                          | N 1        |
| 2.1053  | Field strength of spurious radiation     | Not tested |
| 2.1055  | Engage av atability                      | Natad      |
| 2.1055  | Frequency stability                      | Noted      |
| 90.213  | Frequency stability  Frequency stability | Complies   |
| 70.213  | requency stability                       | Complies   |
| 90.214  | Transient frequency behaviour            | Complies   |
| 3.21.   |                                          |            |
| 1.1310  | Radio frequency exposure limits          | Complies   |
|         | 1 7 1                                    |            |

### 3. ATTESTATION

This report describes the tests and measurements performed for the purpose of determining compliance with the specification with the following conditions:

The client selected the test sample.

The report relates only to the sample tested.

This report does not contain corrections or erasures.

Measurement uncertainties with statistical confidence intervals of 95% are shown below test results. Both Class A and Class B uncertainties have been accounted for, as well as influence uncertainties where appropriate.

In addition this equipment has been tested in accordance with the requirements contained in the appropriate Commission regulations.

All compliance statements have been made with respect of the specification limit with no reference to the measurement uncertainty.

To the best of my knowledge, these tests were performed using measurement procedures that are consistent with industry or Commission standards and demonstrate that the equipment complies with the appropriate standards.

I further certify that the necessary measurements were made by EMC Technologies NZ Ltd, 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand.

Andrew Cutler General Manager

EMC Technologies NZ Ltd

# 4. CLIENT INFORMATION

**Company Name** WTE Limited

**Postal Address** 1 Pukeko Place, Southshore

Christchurch 8062

**Physical Address** 175 Lawford Road,

RD6 West Melton, Christchurch 7676

**Country** New Zealand

**Contact** Mr Shannon Reardon

# 5. TEST SAMPLE DESCRIPTION

**Brand Name** WTE TReX UHF

**Model Number** TReX 460

**Product** Digital Transceiver

Manufacturer WTE Limited

Serial Number Not serialized

FCC ID 2ASGC-TREX460

# Rated Transmitter Output Power

100 mW up to 4 watts (+36.0 dBm)

#### **Transmitter Certification Range**

Part 90: 421–512 MHz

#### **Test frequencies**

| Frequency (MHz) | Power (Watts) | Emission |
|-----------------|---------------|----------|
| 421.000         | 4.0           | F1D      |
| 451.000         | 4.0           | F1D      |
| 480.000         | 4.0           | F1D      |

12.5 kHz and 25 kHz offsets from the above mentioned frequencies have been used during testing and have been clearly mentioned in the test description and results.

# **Standard Temperature and Humidity**

Temperature: +15 °C to +30 °C maintained.

Relative Humidity: 20% to 75% observed.

#### **Standard Test Power Source**

Standard Test Voltage: 13.8 Vdc

# **Extreme Temperature**

High Temperature: + 50 °C maintained. Low Temperature: - 30 °C maintained.

# **Extreme Test Voltages**

High Voltage: 15.6 Vdc Low Voltage: 10.8 Vdc

#### **Product Overview:**

The TReX is an Ethernet, Serial (RS232 plus RS485/RS422) and USB capable transceiver for data, paging and general telemetry use.

The TReX Transceiver can be configured through

- A simple integrated display and keypad
- Serial commands
- TCP
- USB
- Web browser.

The TReX Transceiver is suitable for commercial, industrial and remotely managed control/monitoring applications.

#### 6. TEST RESULTS

#### **Certification required**

Part 90.203(j)

4) Applications for part 90 certification of transmitters designed to operate on frequencies in the 150.8–162.0125 MHz, 173.2–173.4 MHz, and/or 421–512 MHz bands, received on or after January 1, 2011;

The product tested operates in the frequency range 421- 480 MHz which falls within 421-512 MHz band and hence certification is required

(ii) 12.5 kHz for multi-bandwidth mode equipment with a maximum channel bandwidth of 12.5 kHz if it is capable of operating on channels of 6.25 kHz or less;

The multi bandwidth mode product tested is capable of operating using channel bandwidths of 25 kHz, 12.5 kHz and 6.25 kHz.

(5), Applications for part 90 certification of transmitters designed to operate on frequencies in the 150.8–162.0125 MHz, 173.2–173.4 MHz, and/or 421–512 MHz bands, after January 1, 2011, must include a certification that the equipment meets a spectrum efficiency standard of one voice channel per 6.25 kHz of channel bandwidth;

The product tested is a digital modulated transceiver that has been shown to meet the spectrum efficiency standard of one voice channel per 6.25 kHz of channel bandwidth.

Additionally, if the equipment is capable of transmitting data, has transmitter output power greater than 500 mW, and has a channel bandwidth of more than 6.25 kHz, the equipment must be capable of supporting a minimum data rate of 4800 bits per second per 6.25 kHz of channel bandwidth:

The product tested supports 4800 bits per second per 6.25 kHz of channel bandwidth.

Result: Complies.

# RF power output

Measurements were carried out at the RF output terminals of the transmitter using a 30 dB power attenuator and a 50  $\Omega$  dummy load.

Measurements were carried out when the transmitter was not being modulated.

Testing was carried out at maximum power output.

Maximum transmitter power (CW) - Rated 4 W (+36.0 dBm)

| Frequency | Voltage | Carrier Power (dBm) |        |        |
|-----------|---------|---------------------|--------|--------|
| (MHz)     | (Vdc)   | +22° C              | +55° C | -30° C |
|           | 15.6    | 35.4                | 35.5   | 35.4   |
| 421.0125  | 13.8    | 35.4                | 35.4   | 35.4   |
|           | 10.8    | 35.3                | 35.3   | 35.3   |
|           | 15.6    | 35.6                | 35.7   | 35.7   |
| 451.0000  | 13.8    | 35.5                | 35.5   | 35.5   |
|           | 10.8    | 34.8                | 34.9   | 34.9   |
|           | 15.6    | 35.5                | 35.5   | 35.6   |
| 479.9875  | 13.8    | 35.4                | 35.4   | 35.6   |
|           | 10.8    | 35.3                | 35.3   | 35.3   |

#### **Limits:**

Part 90 does not specify the transmitter output power

**Result:** Complies.

Measurement Uncertainty: ± 0.5 dB

### **Emission types and bandwidth limitations:**

The following emission types are used:

F1D: Digital CPM Continuous Phase Modulation using channel bandwidths of 6.25 kHz, 12.5 kHz and 25.0 kHz.

Following emission designators been declared by the client:

6k00F1D for 6.25 kHz channel spacing

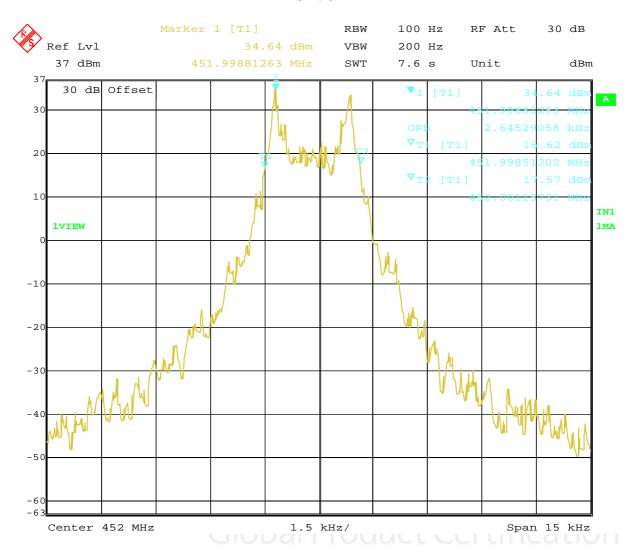
11k2F1D for 12.5 kHz channel spacing

20k0F1D for 25.0 kHz channel spacing

The authorised bandwidth is taken to be the necessary bandwidth.

Measurements have been made to verify this declared bandwidth using the various modulation types and data rates that this radio can support at each test frequency.

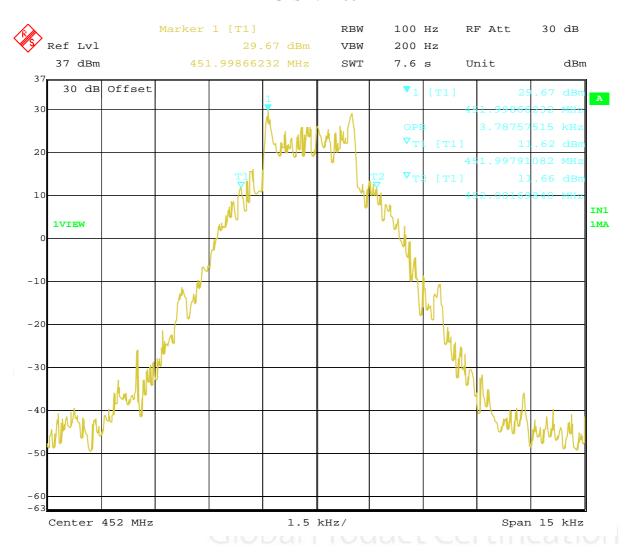
Measurements were made using a spectrum analyser that was operating in occupied bandwidth mode with the 99% power points being determined automatically.


The analyser was set up with a resolution bandwidth of 100 Hz and a video bandwidth of 200 Hz while operating in peak hold mode.

Attached to the input of the spectrum analyser was an external 30 dB attenuator.

**Result:** Complies

# F1D - 6.25 kHz spacing


#### 2FSK / 512



#### 2FSK/512

| Emission | Frequency (MHz) | Measured (kHz) | Designated |
|----------|-----------------|----------------|------------|
|          | 421.0125        | 2.640          |            |
| 2FSK/512 | 451.0000        | 2.645          | 6.0 kHz    |
|          | 479.9875        | 2.652          |            |

#### GFSK / 2400

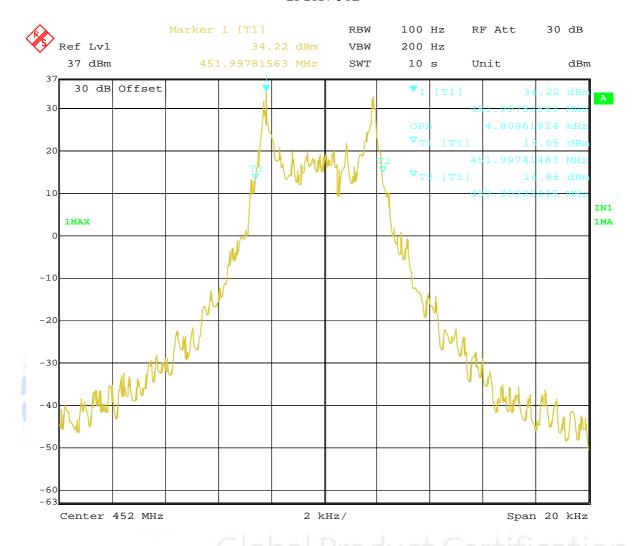


| Emission  | Frequency (MHz) | Measured<br>(kHz) | Designated (kHz) |
|-----------|-----------------|-------------------|------------------|
| GFSK/2400 | 451.0000        | 3.787             | 6.0 kHz          |

The following measurements were made but the plots have not been included in the test report in order to simplify the test report.

#### GFSK/4800

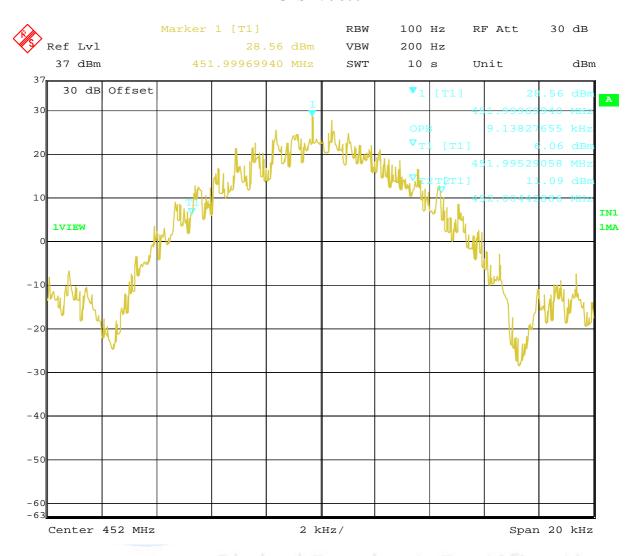
| Emission  | Frequency (MHz) | Measured (kHz) | Designated (kHz) |
|-----------|-----------------|----------------|------------------|
| GFSK/4800 | 451.0000        | 3.096          | 6.0 kHz          |


#### **GFSK/1200**

| Emission  | Frequency<br>(MHz) | Measured (kHz) | Designated (kHz) |
|-----------|--------------------|----------------|------------------|
| GFSK/1200 | 451.0000           | 3.006          | 6.0 kHz          |



# F1D – 12.5 kHz spacing,


#### 2FSK / 512



# 2FSK/512

| Emission | Frequency (MHz) | Measured (kHz) | Designated (kHz) |
|----------|-----------------|----------------|------------------|
|          | 421.0125        | 4.769          |                  |
| 2FSK/512 | 451.0000        | 4.801          | 11.250 kHz       |
|          | 479.9875        | 4.759          |                  |

#### 4GFSK / 9600



| Emission   | Frequency (MHz) | Measured (kHz) | Designated (kHz) |
|------------|-----------------|----------------|------------------|
| 4GFSK/9600 | 451.0000        | 6.316          | 11.250 kHz       |

The following measurements were made but the plots have not been included in the test report in order to simplify the test report.

#### 2FSK/1200

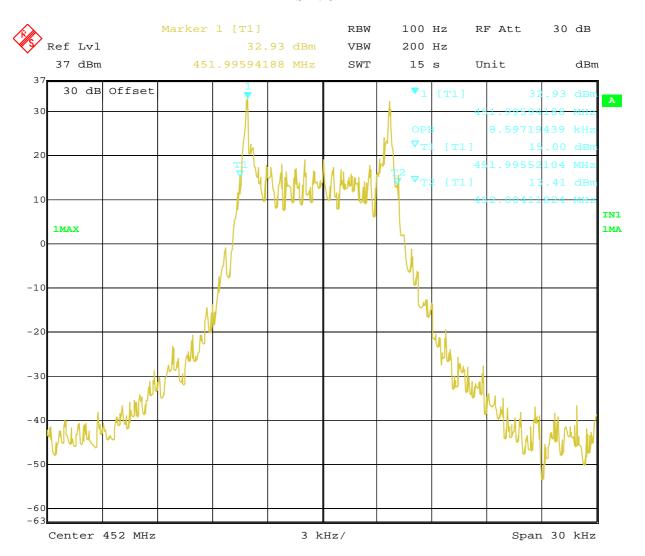
| Emission  | Frequency<br>(MHz) | Measured<br>(kHz) | Designated (kHz) |
|-----------|--------------------|-------------------|------------------|
| 2FSK/1200 | 451.0000           | 5.561             | 11.250 kHz       |

#### 2FSK/2400

| Emission  | Frequency (MHz) | Measured<br>(kHz) | Designated<br>(kHz) |
|-----------|-----------------|-------------------|---------------------|
|           | 421.0125        | 6.153             |                     |
| 2FSK/2400 | 451.0000        | 6.162             | 11.250 kHz          |
|           | 479.9875        | 6.161             |                     |

#### 2GFSK/4800

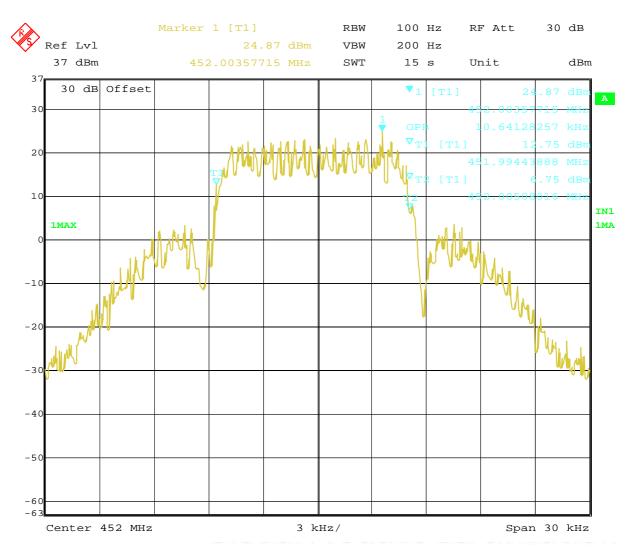
| Emission   | Frequency (MHz) | Measured (kHz) | Designated (kHz) |
|------------|-----------------|----------------|------------------|
|            | 421.0125        | 7.563          |                  |
| 2GFSK/4800 | 451.0000        | 7.565          | 11.250 kHz       |
|            | 479.9875        | 7.564          | 8163             |


# GFSK/9600

| Emission  | Frequency (MHz) | Measured<br>(kHz) | Designated (kHz) |
|-----------|-----------------|-------------------|------------------|
|           | 421.0125        | 9.195             |                  |
| GFSK/9600 | 451.0000        | 9.138             | 11.250 kHz       |
|           | 479.9875        | 9.168             |                  |

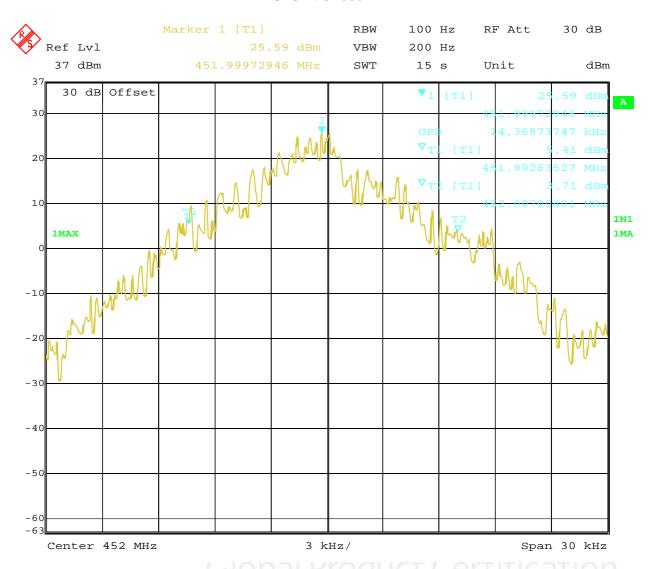
| Emission    | Frequency | Measured | Designated |
|-------------|-----------|----------|------------|
|             | (MHz)     | (kHz)    | (kHz)      |
| 4GFSK/16000 | 451.0000  | 8.116    | 11.250 kHz |

# F1D - 25.0 kHz spacing


2FSK / 512



# 2FSK/512


| Emission  | Frequency (MHz) | Measured<br>(kHz) | Designated (kHz) |
|-----------|-----------------|-------------------|------------------|
| 2ECIZ/512 | 421.0250        | 8.466             |                  |
| 2FSK/512  | 451.0000        | 8.667             | 20.0 kHz         |
|           | 479.9750        | 8.568             |                  |

# GFSK / 9600



| Emission              | Frequency (MHz) | Measured<br>(kHz) | Designated<br>(kHz) |
|-----------------------|-----------------|-------------------|---------------------|
| GFSK/9600<br>25.0 kHz | 451.0000        | 10.672            | 20.0 kHz            |

#### 4GFSK / 32000



| Emission    | Frequency (MHz) | Measured (kHz) | Designated<br>(kHz) |
|-------------|-----------------|----------------|---------------------|
| 4GFSK/32000 | 451.0000        | 14.368         | 20.0 kHz            |

The following measurements were made but the plots have not been included in the test report in order to simplify the test report.

#### 2FSK/1200

| Emission  | Frequency (MHz) | Measured (kHz) | Designated (kHz) |
|-----------|-----------------|----------------|------------------|
| 2FSK/1200 | 451.0000        | 9.669          | 20.0 kHz         |

#### FSK/1600

| Emission  | Frequency<br>(MHz) | Measured (kHz) | Designated<br>(kHz) |
|-----------|--------------------|----------------|---------------------|
| 2FSK/1600 | 451.0000           | 10.070         | 20.0 kHz            |

#### FSK/2400

| Emission | Frequency (MHz) | Measured (kHz) | Designated (kHz) |
|----------|-----------------|----------------|------------------|
| FSK/2400 | 451.0000        | 10.070         | 20.0 kHz         |

#### 4GFSK/3200

| Emission  | Frequency (MHz) | Measured<br>(kHz) | Designated (kHz) |
|-----------|-----------------|-------------------|------------------|
|           | 421.0250        | 10.500            |                  |
| GFSK/3200 | 451.0000        | 10.521            | 20.0 kHz         |
|           | 479.9750        | 10.543            |                  |

| Emission  | Frequency (MHz) | Measured (kHz) | Designated (kHz) |
|-----------|-----------------|----------------|------------------|
|           | 421.0250        | 10.168         |                  |
| GFSK/4800 | 451.0000        | 10.173         | 20.0 kHz         |
|           | 479.9750        | 10.172         |                  |

The following measurements were made but the plots have not been included in the test report in order to simplify the test report.

#### 4GFSK/9600

| Emission   | Frequency (MHz) | Measured (kHz) | Designated (kHz) |
|------------|-----------------|----------------|------------------|
|            | 421.0250        | 6.300          |                  |
| 4GFSK/9600 | 451.0000        | 6.212          | 20.0 kHz         |
|            | 479.9750        | 6.215          |                  |

#### 4GFSK/16000

| Emission    | Frequency<br>(MHz) | Measured (kHz) | Designated (kHz) |
|-------------|--------------------|----------------|------------------|
| 4GFSK/16000 | 451.0000           | 10.220         | 20.0 kHz         |

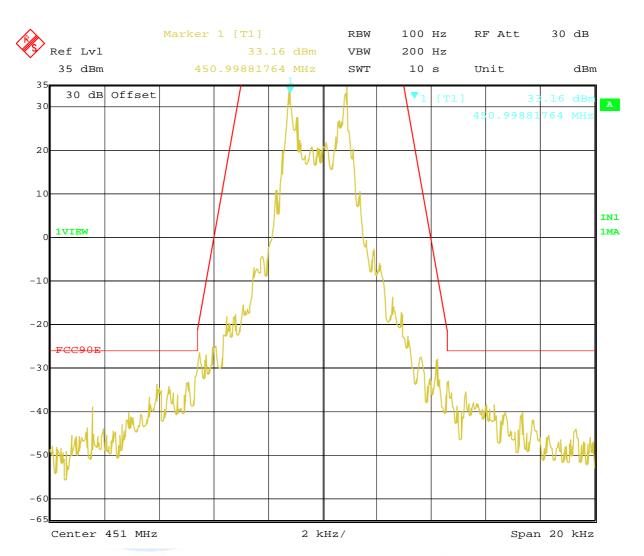


#### **Spectrum Masks**

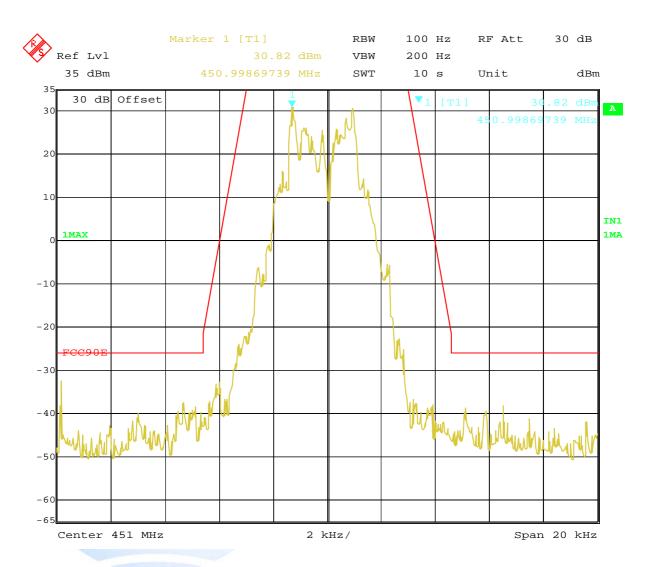
The spectrum masks are defined in:

Section 90.210(d) – Mask C, D and E have been applied as the transmitter can operate in the band 421.000–512.000 MHz using an authorised bandwidth of 25.0 kHz, 12.5 kHz and 6.25 kHz respectively as per Section 90.209(b)(5).

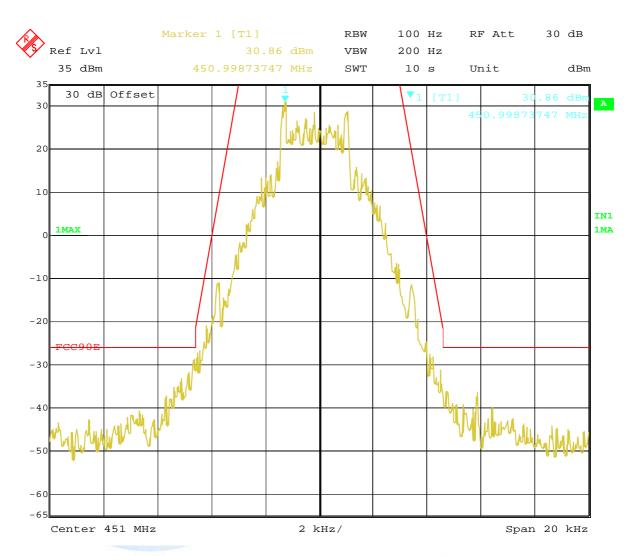
The reference level for the following emission mask measurements has been determined using a resolution bandwidth of 120 kHz with the transmitter modulated.


For all measurements a 30 dB attenuator is placed between the transmitter and the spectrum analyser. Measurements were made in peak hold

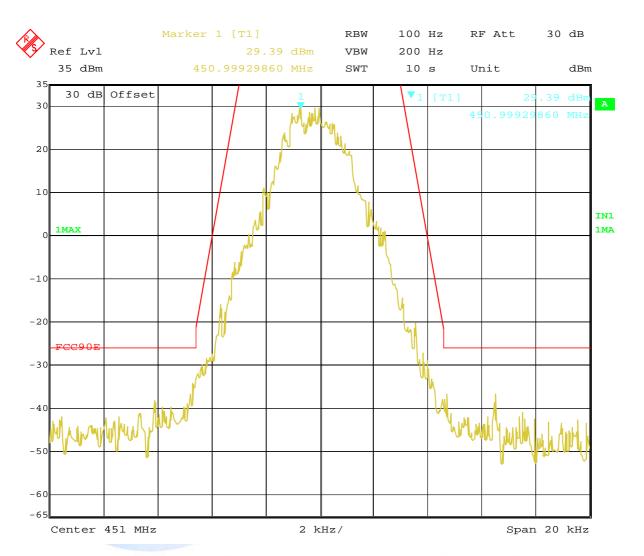
For the F1D mode the transmitter was modulated using the modulation sources internal to the transmitter as supplied by the client.


Result: Complies.

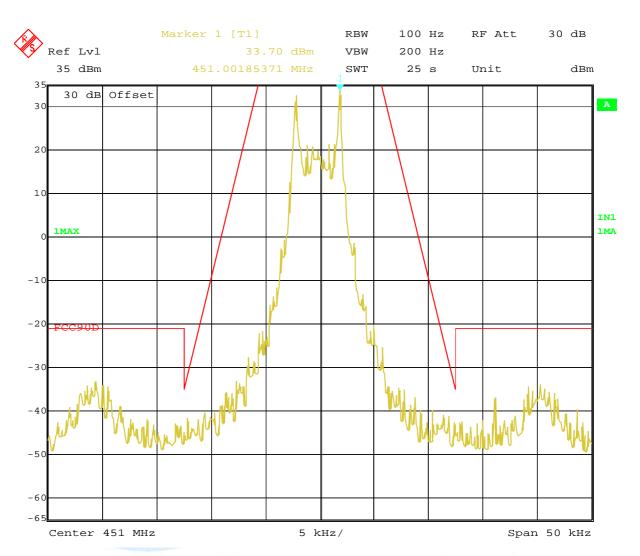



# 451.000 MHz, 6.25 kHz spacing, 2FSK/512

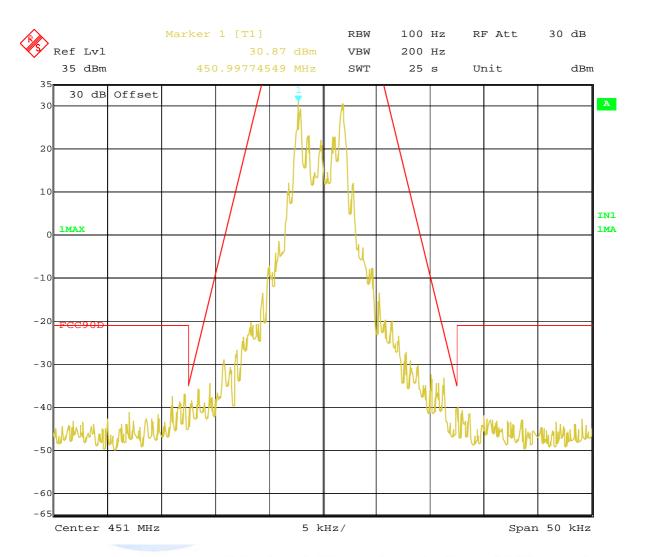



# 451.000 MHz, 6.25 kHz spacing, GFSK/1200

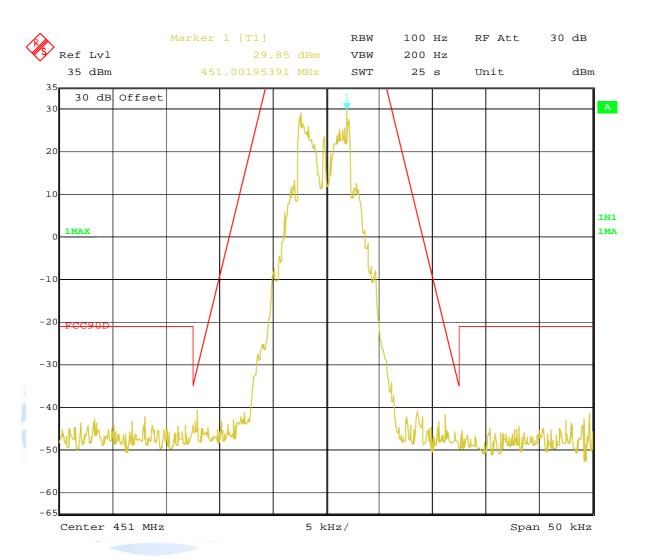



# 451.000 MHz, 6.25 kHz spacing, GFSK/2400

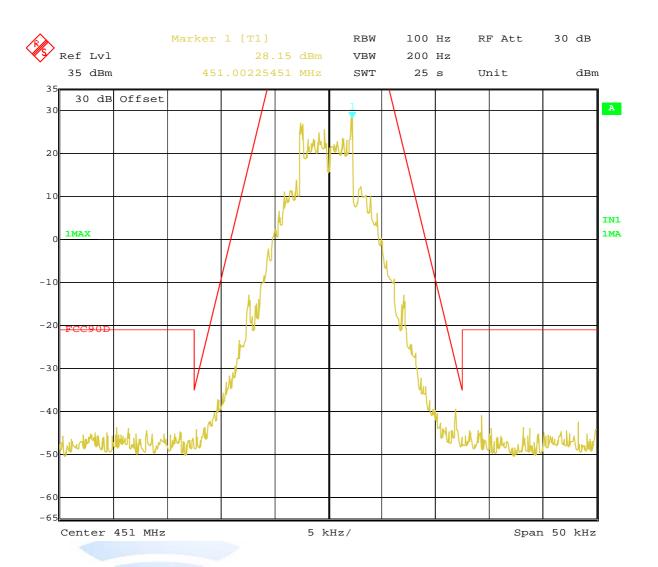



# 451.000 MHz, 6.25 kHz spacing, GFSK/4800




# 451.000 MHz, 12.5 kHz spacing, 2FSK/512

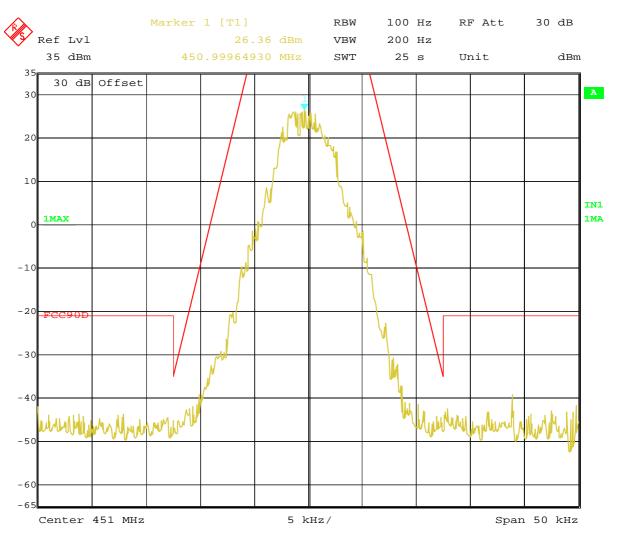



# 451.000 MHz, 12.5 kHz spacing, 2FSK/1200

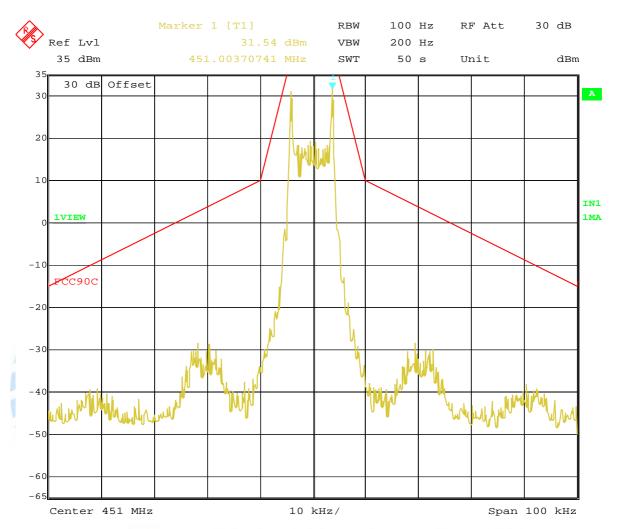


# 451.000 MHz, 12.5 kHz spacing, 2FSK/2400




# 451.000 MHz, 12.5 kHz spacing, 2GFSK/4800

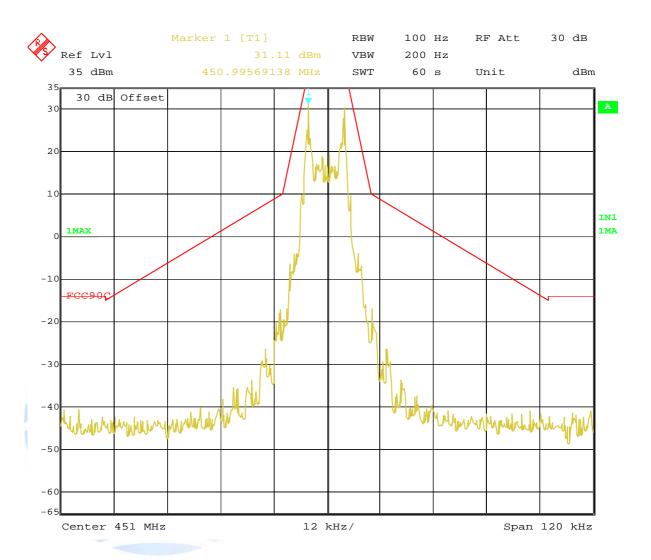



Global Product Certification

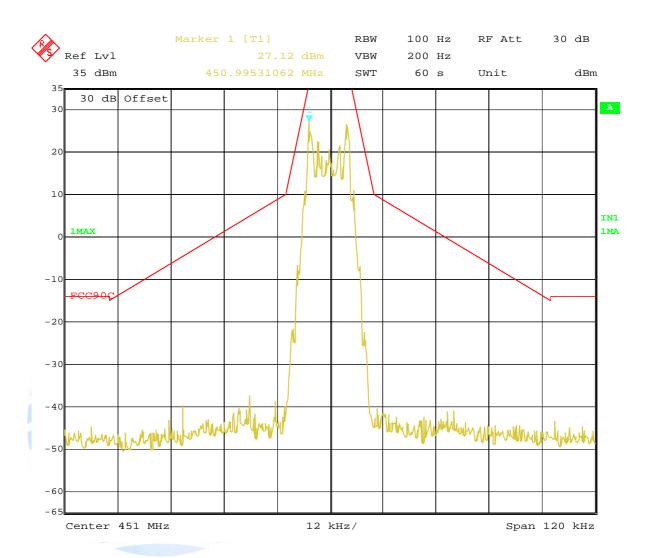
Page 29 of 54


# 451.000 MHz, 12.5 kHz spacing, 4GFSK/9600

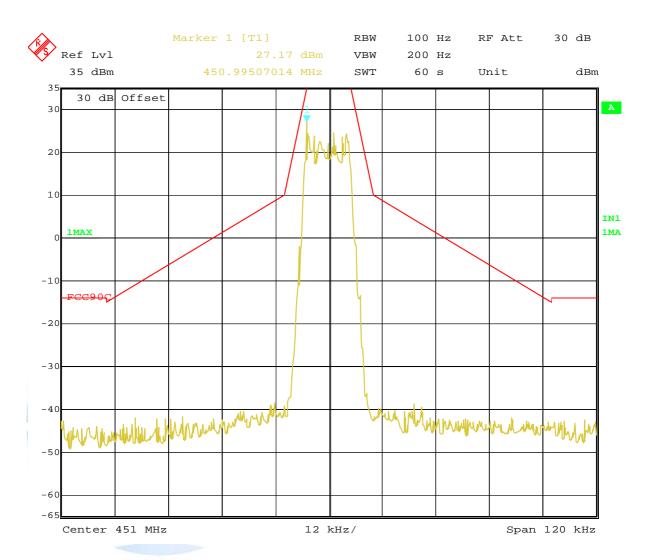



# 451.000 MHz, 25.0 kHz spacing, 2FSK/512

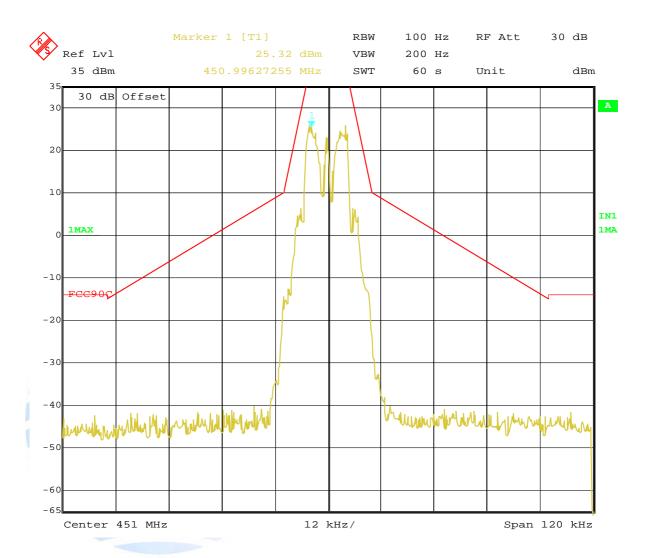



# 451.000 MHz, 25.0 kHz spacing, 2FSK/1200

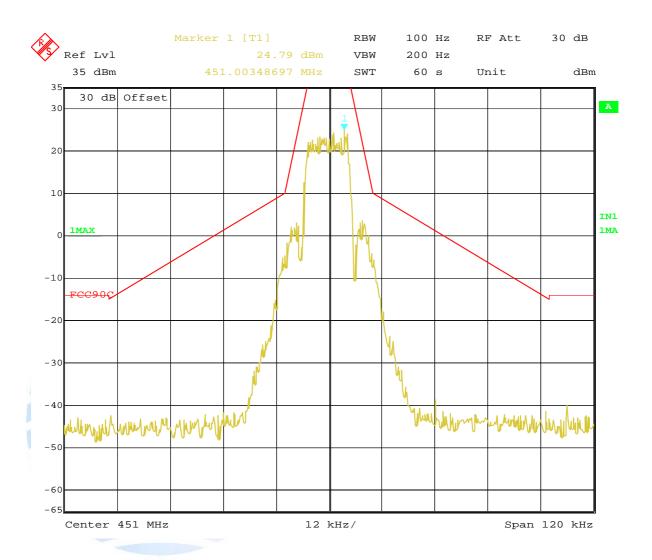



# 451.000 MHz, 25.0 kHz spacing, FSK/1600

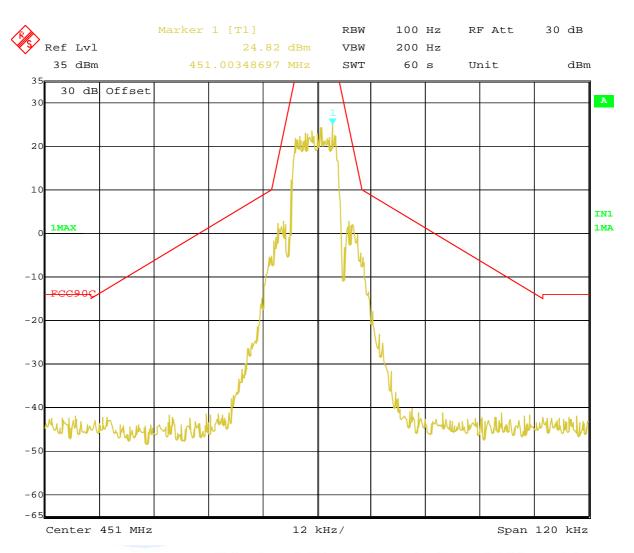



# 451.000 MHz, 25.0 kHz spacing, FSK/2400

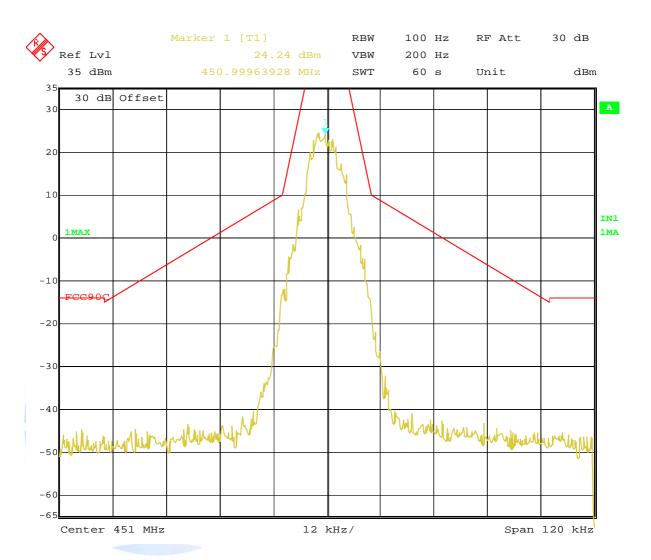



# 451.000 MHz, 25.0 kHz spacing, 4GFSK/3200




# 451.000 MHz, 25.0 kHz spacing, GFSK/4800




# 451.000 MHz, 25.0 kHz spacing, GFSK/9600



# 451.000 MHz, 25.0 kHz spacing, 4GFSK/9600



# 451.000 MHz, 25.0 kHz spacing, 4GFSK/16000



# 451.000 MHz, 25.0 kHz spacing, 4GFSK/32000



## Transmitter spurious emissions at the antenna terminals

Frequency: 421.0125 MHz

| Spurious emission (MHz) | Emission level (dBm) | Limit<br>(dBm) |
|-------------------------|----------------------|----------------|
| 324.6554                | -49.6                | -20.0          |
| 368.7431                | -48.6                | -20.0          |
| 394.7950                | -44.8                | -20.0          |
| 446.8987                | -46.4                | -20.0          |
| 842.0250                | -44.3                | -20.0          |
| 1263.0375               | -45.3                | -20.0          |
| 1684.0500               | -45.0                | -20.0          |
| 2105.0625               | -44.6                | -20.0          |

Frequency: 479.9870 MHz

| Spurious emission | <b>Emission level</b> | Limit |
|-------------------|-----------------------|-------|
| (MHz)             | (dBm)                 | (dBm) |
| 402.8109          | -46.0                 | -20.0 |
| 428.8629          | -45.4                 | -20.0 |
| 454.9147          | -43.2                 | -20.0 |
| 507.0185          | -40.7                 | -20.0 |
| 959.9750          | -46.9                 | -20.0 |
| 1439.9625         | -41.5                 | -20.0 |
| 1919.9500         | -45.5                 | -20.0 |
| 2399.9375         | -45.3                 | -20.0 |
|                   | Ganaoio:              | 2162  |
|                   |                       | 0     |

#### Limit:

Part 90.210(d) Mask D, (3) on any frequency removed from the centre of the authorised bandwidth by a displacement frequency of more than 12.5 kHz shall be attenuated by at least 50 + 10 log (P) or 70 dB whichever is the lesser attenuation.

The spurious emission limit defined by Mask D has been applied as this transmitter can operate using channel spacing of 12.5 kHz.

Part 2.1051 states that emissions greater than 20 dB below the limit need not be specified.

Part 2.1057 states that the spectrum should be investigated up to the 10<sup>th</sup> harmonic if the transmitter operates below 10 GHz.

A rated power of 4.0 watts gives a limit of -20.0 dBm.

No measurements were made above the 10<sup>th</sup> harmonic.

**Result:** Complies.

Measurement Uncertainty:  $\pm 3.3 \text{ dB}$ 

## Field strength of the transmitter spurious emissions

Nominal Frequency: 451.100 MHz

| Frequency (MHz) | Level (dBuV/m) | Level (dBm) | Limit (dBm) | Polarity   | Margin (dB) | Result |
|-----------------|----------------|-------------|-------------|------------|-------------|--------|
| 902.2000        | 58.8           | -38.6       | -24.0       | Vertical   | 14.6        | Pass   |
|                 | 55.1           | -42.3       | -24.0       | Horizontal | 18.3        | Pass   |
| 1353.3000       | 67.1           | -30.3       | -24.0       | Vertical   | 6.3         | Pass   |
|                 | 61.7           | -35.7       | -24.0       | Horizontal | 11.7        | Pass   |
| 1804.4000       | 45.2           | -52.2       | -24.0       | Vertical   | 28.2        | Pass   |
|                 | 45.3           | -52.1       | -24.0       | Horizontal | 28.1        | Pass   |
| 2255.5000       | 59.9           | -37.5       | -24.0       | Vertical   | 13.5        | Pass   |
|                 | 57.1           | -40.3       | -24.0       | Horizontal | 16.3        | Pass   |
| 2706.6000       | 63.1           | -34.3       | -24.0       | Vertical   | 10.3        | Pass   |
|                 | 59.6           | -37.8       | -24.0       | Horizontal | 13.8        | Pass   |
| 3157.7000       | 61.7           | -35.7       | -24.0       | Vertical   | 11.7        | Pass   |
|                 | 59.5           | -37.9       | -24.0       | Horizontal | 13.9        | Pass   |
| 3608.8000       | 62.6           | -34.8       | -24.0       | Vertical   | 10.8        | Pass   |
|                 | 61.2           | -36.2       | -24.0       | Horizontal | 12.2        | Pass   |
| 4059.9000       | 50.4           | -47.0       | -24.0       | Vertical   | 23.0        | Pass   |
|                 | 47.8           | -49.6       | -24.0       | Horizontal | 25.6        | Pass   |
| 4511.0000       | 55.2           | -42.2       | -24.0       | Vertical   | 18.2        | Pass   |
|                 | 50.3           | -47.1       | -24.0       | Horizontal | 23.1        | Pass   |
| 4962.1000       | 60.9           | -36.5       | -24.0       | Vertical   | 12.5        | Pass   |
|                 | 57.9           | -39.5       | -24.0       | Horizontal | 15.5        | Pass   |

The transmitter was tested while transmitting continuously while attached to a dummy load.

When operating in transmit mode no significant emissions were detected between the harmonic emissions that were detected.

Device was tested on an open area test site at a distance of 3 metres.

Testing was carried out at EMC Technologies NZ Ltd Open Area Test Site, which is located at Driving Creek, Orere Point, Auckland.

The level recorded is the signal generator output level in dBm less any gains / losses due to the coax cable and the dipole antenna.

#### Limit:

All spurious emissions are to be attenuated by at least 60 dB from below the mean power of the transmitter. The rated power of 4.0 watts gives a limit of –24 dBm.

No measurements were made above the 10<sup>th</sup> harmonic.

Result: Complies.

Measurement Uncertainty:  $\pm 4.1 \text{ dB}$ 

# **Frequency Stability**

Frequency stability measurements were between - 30 °C and + 50 °C in 10 °C increments.

At each temperature the transmitter was given a period of 30 minutes to stabilise.

The transmitter was then turned on and the frequency error measured after a period of 1 minute.

Frequency: 421.0125 MHz

| Temperature | 10.8 Vdc | 13.8 Vdc | 15.6 Vdc |
|-------------|----------|----------|----------|
| (°C)        | (Hz)     | (Hz)     | (Hz)     |
| +50         | 230      | 231      | 230      |
| +40         | 160      | 160      | 160      |
| +30         | 135      | 136      | 136      |
| +20         | 124      | 125      | 125      |
| +10         | 33       | 31       | 32       |
| 0           | 28       | 28       | 28       |
| -10         | 20       | 20       | 20       |
| -20         | 68       | 67       | 69       |
| -30         | 27       | 27       | 27       |

Frequency: 451.0125 MHz

| <b>Temperature</b> | 10.8 Vdc | 13.8 Vdc      | 15.6 Vdc |
|--------------------|----------|---------------|----------|
| (°C)               | (Hz)     | (Hz)          | (Hz)     |
| +50                | 252      | 252           | 252      |
| +40                | 168      | 170           | 170      |
| +30                | 142      | 142           | 141      |
| +20                | 110      | 110           | 110      |
| +10                | 45       | 46            | 46       |
| 0                  | 50       | Drod 51 ct Co | 50       |
| -10                | 50       | 50-1-64       | - 51 -   |
| -20                | 67       | 68            | 68       |
| -30                | 35       | 35            | 36       |

Frequency: 479.0125 MHz

| Temperature | 10.8 Vdc | 13.8 Vdc | 15.6 Vdc |
|-------------|----------|----------|----------|
| (°C)        | (Hz)     | (Hz)     | (Hz)     |
| +50         | 265      | 267      | 267      |
| +40         | 175      | 175      | 176      |
| +30         | 152      | 153      | 153      |
| +20         | 120      | 120      | 121      |
| +10         | 98       | 98       | 97       |
| 0           | 50       | 49       | 51       |
| -10         | 41       | 42       | 42       |
| -20         | 97       | 96       | 96       |
| -30         | 31       | 32       | 32       |

#### **Limits:**

Part 90.213 states that fixed station transmitters operating between 421.000-512.000 MHz with 12.5 kHz channelling are required to have a frequency tolerance of 1.5 ppm.

A worst case error of 0.559 ppm (252 Hz / 451.0125 MHz) was observed.

**Result:** Complies.

Measurement Uncertainty:  $\pm 30 \text{ Hz}$ 



## Transient frequency behaviour

Measurements were carried out using the method described in TIA-603 and EN 300-086.

The modulation analyser produces an amplitude difference signal and a frequency difference signal, which are applied to the input of a storage oscilloscope.

The unmodulated transmitter is then keyed which produces a trigger pulse that is AC coupled to the oscilloscope that produces a display on the screen.

The result of the change in the ratio of power between the test signal from the signal generator and the transmitter output will produce 2 separate sides on the oscilloscope picture. One will show the 1000 Hz test modulation and the other will be the frequency difference of the transmitter versus time.

| Channel Spacing (kHz) | Transient Period t <sub>1</sub> | Frequency<br>Period t <sub>2</sub> | Deviation (kHz) Period t <sub>3</sub> |
|-----------------------|---------------------------------|------------------------------------|---------------------------------------|
| 6.25                  | Nil                             | Nil                                | Nil                                   |
| 12.5                  | Nil                             | Nil                                | Nil                                   |
| 25.0                  | Nil                             | Nil                                | Nil                                   |

#### Limits:

| Time<br>Interval | Period (ms) | 6.25 kHz<br>Deviation (kHz) | 12.5 kHz<br>Deviation<br>(kHz) | 25 kHz<br>Deviation<br>(kHz) |
|------------------|-------------|-----------------------------|--------------------------------|------------------------------|
| t <sub>1</sub>   | 10          | ± 6.25                      | ± 12.5                         | ± 25.0                       |
| t <sub>2</sub>   | 25          | ± 3.125                     | ± 6.25                         | ± 12.5                       |
| t <sub>3</sub>   | 10          | ± 6.25                      | ± 12.5                         | ± 25.0                       |

Result: Complies.

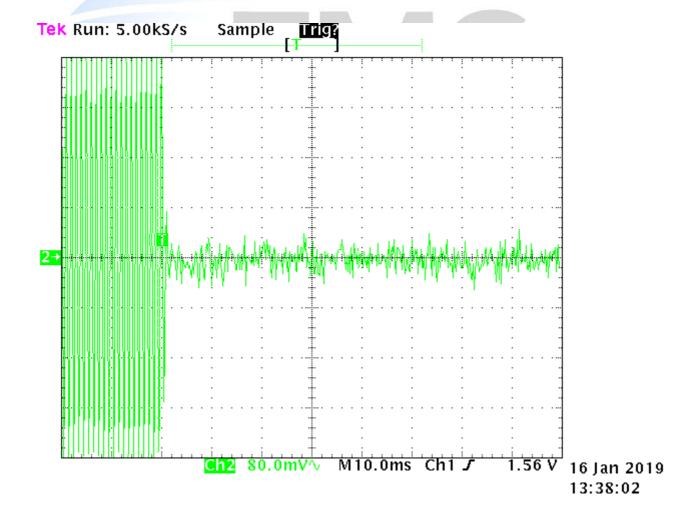
**Measurement Uncertainty**: Frequency difference  $\pm 1.6$  kHz, Time period  $\pm 1$  ms.

## 6.25 kHz Transmitter

#### Transmitter turn on

Green Trace = 1 kHz tone with FM deviation of 6.25 kHz.

Green trace has been maximised to give full screen indication of +/- 6.25 kHz. Therefore each Y axis division = 1.5 kHz per division.


The X axis has been set to a sweep rate of 10 ms/division.

Triggering has been set to occur 2 divisions from the left hand edge (20 ms).

ton occurs at 20 ms.

*t*1 occurs between 2.0 and 3.0 divisions from the left hand edge. *t*2 occurs between 3.0 and 5.5 divisions from the left hand edge.

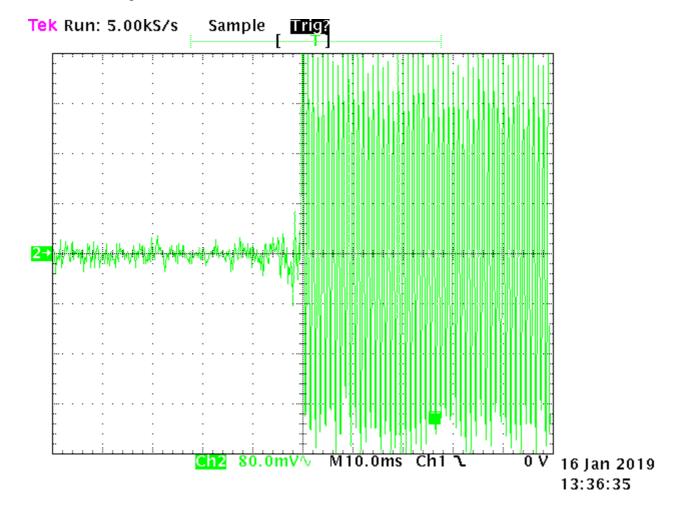
No transient was observed during t1 and t2.



## Transmitter turn off

Green Trace = 1 kHz tone with FM deviation of 6.25 kHz.

Green trace has been maximised to give full screen indication of +/- 6.25 kHz.


Therefore each Y axis division = 1.5 kHz per division.

The X axis has been set to a sweep rate of 10 ms/division

The display of the 1 kHz signal rising has been positioned 5 divisions from the left hand edge (50 ms). This is position *t*off.

t3 occurs between 4.0 and 5.0 divisions from the left hand edge.

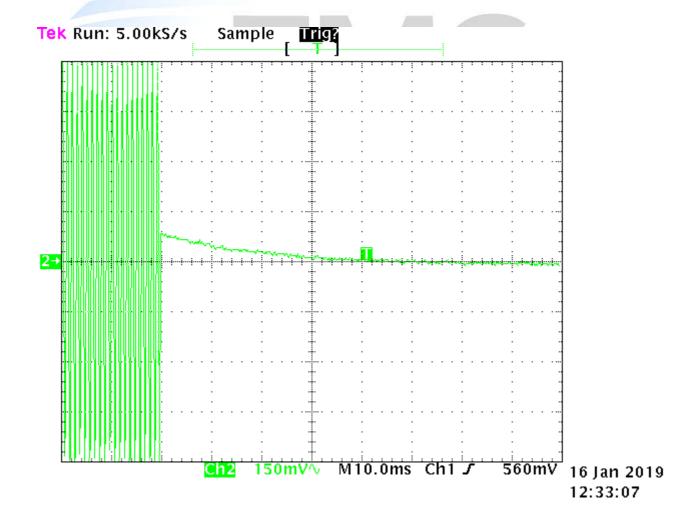
No transient response was observed before *t*off.



## 12.5 kHz Transmitter

#### Transmitter turn on

Green Trace = 1 kHz tone with FM deviation of 12.5 kHz.


Green trace has been maximised to give full screen indication of +/- 12.5 kHz. Therefore each Y axis division = 3.125 kHz per division. The X axis has been set to a sweep rate of 10 ms/division.

Triggering has been set to occur 2 divisions from the left hand edge (20 ms).

ton occurs at 20 ms.

*t*1 occurs between 2.0 and 3.0 divisions from the left hand edge. *t*2 occurs between 3.0 and 5.5 divisions from the left hand edge.

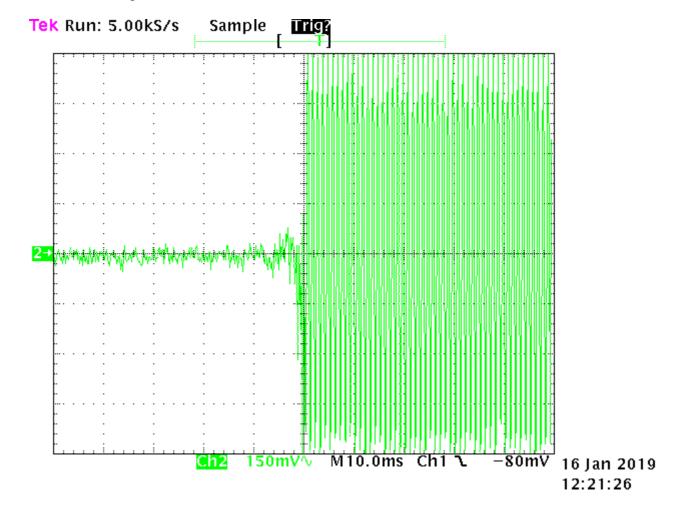
No transient was observed during t1 and t2.



## Transmitter turn off

Green Trace = 1 kHz tone with FM deviation of 12.5 kHz.

Green trace has been maximised to give full screen indication of +/- 12.5 kHz.


Therefore each Y axis division = 3.125 kHz per division.

The X axis has been set to a sweep rate of 10 ms/division

The display of the 1 kHz signal rising has been positioned 5 divisions from the left hand edge (50 ms). This is position *t*off.

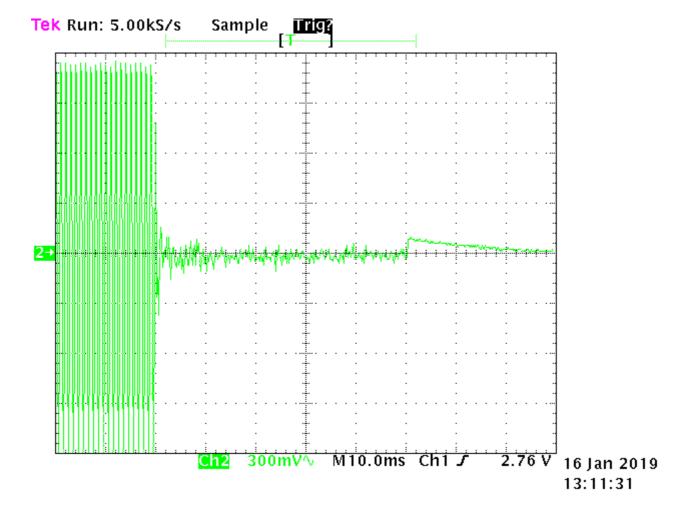
t3 occurs between 4.0 and 5.0 divisions from the left hand edge.

No transient response was observed before *t*off.



## 25.0 kHz Transmitter

#### Transmitter turn on


Green Trace = 1 kHz tone with FM deviation of 25 kHz.

Green trace has been maximised to give full screen indication of  $\pm$ -25 kHz. Therefore each Y axis division = 6.25 kHz per division. The X axis has been set to a sweep rate of 10 mS/division.

Triggering has been set to occur 3 divisions from the left hand edge (30 mS).

ton occurs 2 divisions from the left of the display (20 mS).

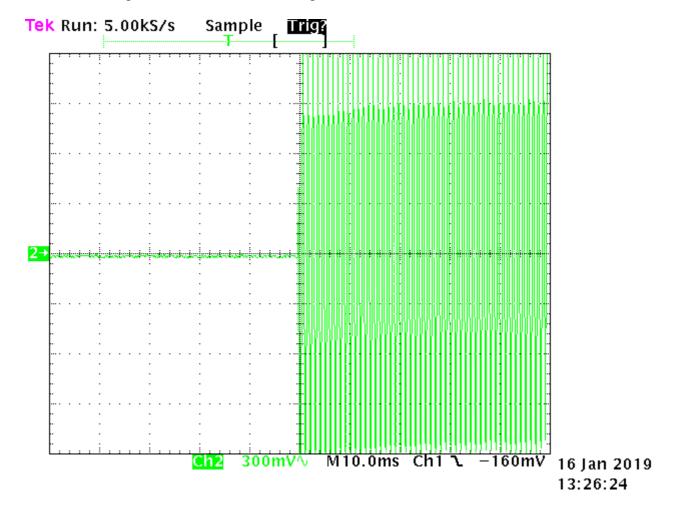
A small transient was observed after ton.



## Transmitter turn off

Green Trace = 1 kHz tone with FM deviation of 25 kHz.

Green trace has been maximised to give full screen indication of +/- 25 kHz.


Therefore each Y axis division = 6.25 kHz per division.

The X axis has been set to a sweep rate of 10 mS/division

The display of the 1 kHz signal rising has been positioned 5 divisions from the left hand edge (50 mS).

This is position *t*off.

No transient response can be observed during *t*off.



## **Exposure of humans to RF fields**

As per FCC KDB 447498 D01 and Section 2.1091 radio frequency transmitters are required to be operated in a manner that ensures the public is not exposed to RF energy levels.

Calculations have been made using the General Public/Uncontrolled Exposure limits that are defined in Section 1.1310.

Minimum safe distances have been calculated below.

Power density,  $mW/cm^2 = E^2/3770$ 

| Limits for General Population / Uncontrolled Exposure |                                      |                                      |                                |                                               |  |  |
|-------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------|-----------------------------------------------|--|--|
| Frequency Range<br>(MHz)                              | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/ cm²) | Averaging Time<br> E ², H ² or S<br>(minutes) |  |  |
| 0.3-1.34                                              | 614                                  | 1.63                                 | (100)*                         | 30                                            |  |  |
| 1.34-30                                               | 824/f                                | 2.19/f                               | (180/f)*                       | 30                                            |  |  |
| 30-300                                                | 27.5                                 | 0.073                                | 0.2                            | 30                                            |  |  |
| 300-1500                                              |                                      |                                      | F/1500                         | 30                                            |  |  |
| 1500-100,000                                          |                                      |                                      | 1.0                            | 30                                            |  |  |

Note 1: f = frequency in MHz; \*Plane-wave equivalent power density Note 2: For the applicable limit, see FCC 1.1310

As this radio can operate over the range of 421.0 to 480.0 MHz the lowest frequency of operation in the USA, which will give the worst case result, would be 421.0 MHz.

The power density at 421.0 MHz comes out to be 0.281 mW/cm<sup>2</sup>.

# For Uncontrolled Environment

Power Density =  $0.281 \text{ mW/cm}^2 = E^2/3770$ 

 $E = \sqrt{0.281*3770}$ 

E = 32.5 V/m

The rated maximum transmitter power = 4 watts (+36 dBm).

The client has stated that the unit is rated for 100% duty cycle for first 2 minutes, then 80% continuously.

A worst case scenario duty cycle of 100% has been used for the calculations.

The client has declared that this transmitter can be operated using quarter wave whip or dipole antennas which typically have a gain of 2.15 dBi or a numeric gain of 1.64.

<sup>-</sup> General Population / Uncontrolled exposure is (f/1500) mW/cm<sup>2</sup>

The minimum distance from the antenna at which the MPE is met is calculated from the following

Field strength in V/m (FS), Transmit power in watts (P) Transmit antenna gain (G) Transmitter duty cycle (DC) Separation distance in metres (D)

The calculation is as follows:

$$FS = (\sqrt{(30 * P * G * DC)}) / D$$

Therefore

$$D = (\sqrt{(30 * P * G * DC)}) / FS$$

$$D = (\sqrt{(30 * 4 * 1.64 * 1)}) / 32.5$$

d=0.43 m or 43 cm

**Result:** Complies if the safe distances defined for this environment is applied.

**Technologies** 

# 7. TEST EQUIPMENT USED

| Instrument            | Manufacturer    | Model        | Serial #    | Last Cal   | Cal Due    | Interval |
|-----------------------|-----------------|--------------|-------------|------------|------------|----------|
| Aerial Controller     | EMCO            | 1090         | 9112-1062   | N/a        | N/a        | N/a      |
| Aerial Mast           | EMCO            | 1070-1       | 9203-1661   | N/a        | N/a        | N/a      |
| Biconical Antenna     | Schwarzbeck     | BBA 9106     | =           | 28/09/2017 | 28/09/2020 | 3 years  |
| Horn Antenna          | EMCO            | 3115         | 9511-4629   | 08/08/2017 | 08/08/2020 | 3 years  |
| Log Periodic Antenna  | Schwarzbeck     | VUSLP 91111  | 9111-112    | 24/09/2017 | 24/09/2020 | 3 years  |
| Modulation Analyzer   | Rohde & Schwarz | FMA          | 837807/020  | 08/05/2018 | 08/05/2021 | 3 years  |
| Modulation Analyzer   | Hewlett Packard | 8901B        | -           | 13/10/2016 | 13/10/2019 | 3 years  |
| Power Attenuator      | JFW             | 50FH-030-100 | -           | N/a        | N/a        | N/a      |
| Power Supply          | Hewlett Packard | 6032A        | 2743A-02859 | N/a        | N/a        | N/a      |
| Receiver              | Rohde & Schwarz | ESIB-40      | 100295      | 26/08/2018 | 26/08/2019 | 1 years  |
| Selective Level Meter | Anritsu         | ML422C       | M35386      | 22/05/2018 | 22/05/2020 | 2 years  |
| Signal Generator      | Rohde & Schwarz | SMHU         | 838923/028  | 22/05/2017 | 22/05/2019 | 2 years  |
| Spectrum Analyzer     | Hewlett Packard | E7405A       | US39150142  | 21/05/2018 | 21/05/2019 | 1 year   |
| Thermal chamber       | Contherm        | M180F        | 86025       | N/a        | N/a        | N/a      |
| Thermometer           | DSIR            | RT200        | 35          | 10/10/2016 | 10/10/2021 | 5 years  |
| Turntable             | EMCO            | 1080-1-2.1   | 9109-1578   | N/a        | N/a        | N/a      |
| VHF Balun             | Schwarzbeck     | VHA9103      | -           | N/a        | N/a        | N/a      |

At the time of testing all test equipment was within calibration.

## 8. ACCREDITATIONS

Testing was carried out in accordance with EMC Technologies NZ Ltd designation as a FCC Accredited Laboratory by International Accreditation New Zealand, designation number: NZ0002 under the APEC TEL MRA, which expires on the 15<sup>th</sup> August 2019.

All testing was carried out in accordance with the terms of EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025.

All measurement equipment has been calibrated in accordance with the terms of the EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025.

International Accreditation New Zealand has Mutual Recognition Arrangements for testing and calibration with various accreditation bodies in a number of economies. This includes NATA (Australia), UKAS (UK), SANAS (South Africa), NVLAP (USA), A2LA (USA), SWEDAC (Sweden). Further details can be supplied on request.