

Page 1 of 64

Verified code: 555348

Test Report

Report No.: E20221228512201-2

Customer:	Shenzhen Bipu Technology Co., Ltd.	
Address:	Building 2, Floor 2, Wenkeng Industrial Area, Dafa Road No.24, Bantia District, Shenzhen, China	an, Long Gang
Sample Name:	Mechanical Keyboard	
Sample Model:	PKKE221	
Receive Sample Date:	Dec.30,2022	
Test Date:	Jan.05,2023 ~ Apr.10,2023	
Reference	CFR 47, FCC Part 15 Subpart C	
Document:	RADIO FREQUENCY DEVICES:Subpart C—Intentional Radiators	
Test Result:	Pass	

Prepared by: Hung Lifang Reviewed by: Un Unoting

Approved by: Zhao Zethan

GRG METROLOGY & TEST GROUP CO., LTD.

Issued Date: 2023-05-12

GRG METROLOGY & TEST GROUP CO., LTD.

Address: No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, Guangdong, China Tel: (+86) 400-602-0999 FAX: (+86) 020-38698685 Web: http://www.grgtest.com

Statement

1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is invalid if it is altered or missing; The report is invalid without the signature of the person who prepared, reviewed and approved it.

2. The sample information is provided by the client and responsible for its authenticity; The content of the report is only valid for the samples sent this time.

3. When there are reports in both Chinese and English, the Chinese version will prevail when the language problems are inconsistent.

4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the report.

5. Without the agreement of the laboratory, the client is not authorized to use the test results for unapproved propaganda.

TABLE OF CONTENTS

1.	TEST RI	ESULT SUMMARY	6
2.	GENER	AL DESCRIPTION OF EUT	7
	2.1	APPLICANT	7
	2.2	MANUFACTURER	7
	2.3	FACTORY	7
	2.4	BASIC DESCRIPTION OF EQUIPMENT UNDER TEST	7
	2.5	TEST OPERATION MODE	8
	2.6	LOCAL SUPPORTIVE	8
	2.7	CONFIGURATION OF SYSTEM UNDER TEST	9
	2.8	DUTY CYCLE	10
3.	LABOR	ATORY AND ACCREDITATIONS	. 11
	3.1	LABORATORY	11
	3.2	ACCREDITATIONS	. 11
4.	MEASU	REMENT UNCERTAINTY	12
5.	LIST OF	USED TEST EQUIPMENT AT GRGT	13
6.	E.U.T. T	EST CONDITIONS	13
7.	20dB BA	ANDWIDTH	16
	7.1	LIMITS	16
	7.2	TEST PROCEDURES	16
	7.3	TEST SETUP	16
	7.4	TEST RESULTS	16
8.	CARRIE	R FREQUENCIES SEPARATED	19
	8.1	LIMITS	19
	8.2	TEST PROCEDURES	19
	8.3	TEST SETUP	. 19
	8.4	TEST RESULTS	19
9.	HOPPIN	G CHANNEL NUMBER	21
	9.1	LIMITS	21
	9.2	TEST PROCEDURES	21
	9.3	TEST SETUP	21
	9.4	TEST RESULTS	21
10.	DW	ELL TIME	23
	10.1	LIMITS	23
	10.2	TEST PROCEDURES	23
	10.3	TEST SETUP	23
	10.4	TEST RESULTS	24
11.	CO	NDUCTED EMISSION MEASUREMENT	27
	11.1	LIMITS	27
	11.2	TEST PROCEDURES	27
	11.3	TEST SETUP	28
	11.4	DATA SAMPLE	28

	11.5	TEST RESULTS	29
12.	MA	XIMUM PEAK OUTPUT POWER	31
	12.1	LIMITS	31
	12.2	TEST PROCEDURES	31
	12.3	TEST SETUP	31
	12.4	TEST RESULTS	32
13.	CO	NDUCTED BAND EDGES AND SPURIOUS EMISSIONS	33
	13.1	LIMITS	33
	13.2	TEST PROCEDURES	33
	13.3	TEST SETUP	33
	13.4	TEST RESULTS	34
14.	RA	DIATED SPURIOUS EMISSIONS	41
	14.1	LIMITS	41
	14.2	TEST PROCEDURES	41
	14.3	TEST SETUP	
	14.4	DATA SAMPLE	46
	14.5	TEST RESULTS	47
15.	RES	STRICTED BANDS OF OPERATION	56
	15.1	LIMITS	56
	15.2	TEST PROCEDURES	57
	15.3	TEST SETUP	57
	15.4	TEST RESULTS	58
APF	PENDIX A	A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM	64
APF	PENDIX I	3. PHOTOGRAPH OF THE EUT	64

REPORT ISSUED HISTORY

Report Version Report No.		Description	Compile Date
1.0 E20221228512201-2		Original Issue	2023-04-17

1. TEST RESULT SUMMARY

FCC 47 CFR Part 15 Subpart C 15.247,ANSI C63.10-2013 KDB 558074 D01 15.247 measurement guidance v05r02				
Standard Item Limit / Severity				
	Antenna Requirement	Section 15.203	PASS	
	20dB Bandwidth	Section 15.247(a)(1)	PASS	
AND	Carrier Frequencies Separated	Section 15.247(a)(1)	PASS	
(Cr	Hopping Channel Number	Section 15.247(a)(1)(iii)	PASS	
FCC 47 CFR Part 15	Dwell Time	Section 15.247(a)(1)(iii)	PASS	
Subpart C (15.247)	Maximum Peak Output Power	Section 15.247(b)(1)	PASS	
	Conducted Emission	Section 15.207	PASS	
	Conducted band edges and Spurious Emission	Section 15.209 &15.247(d)	PASS	
	Radiated Spurious Emission	Section 15.209 &15.247(d)	PASS	
(S ^R)	Restricted bands of operation	Section 15.247 (d) &15.205	PASS	

Note: The EUT antenna is FPC antenna. Max Antenna gain is 1.53dBi .Which accordance 15.203.is considered sufficient to comply with the provisions of this section.

2. GENERAL DESCRIPTION OF EUT

2.1 APPLICANT

Name:	Shenzhen Bipu Technology Co., Ltd.
Address:	Building 2, Floor 2, Wenkeng Industrial Area, Dafa Road No.24, Bantian, Long Gang District, Shenzhen, China

2.2 MANUFACTURER

Name:	Shenzhen Bipu Technology Co., Ltd.
Address:	Building 2, Floor 2, Wenkeng Industrial Area, Dafa Road No.24, Bantian, Long Gang District, Shenzhen, China

2.3 FACTORY

Name:	Dongguan Jieguan Industrial Technology Co., Ltd.
Address:	Room 301,No.1 Building,No.5, xifa Road,Lin Village,Tangxia Town,Dongguan City,Guangdong Province.

2.4 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

Equipment:	Mechanical Keyboard
Model No.:	PKKE221
Adding Model:	/
Trade Name:	Keychron
FCC ID:	2ASF4-PKKE221
Power supply:	DC 3.87V power supplied by battery DC 5V power supplied by notebook
Battery Specification:	Name:Rechargeable Li-ion Polymer Battery Model:BLP959 Nominal Voltage:3.87Vdc Rated Capacity:4880mAh/18.88Wh Typical Capacity:5000mAh/19.35Wh
Frequency Range:	2402MHz~2480MHz
Transmit Power:	GFSK:-3.04dBm
Type of Modulation:	GFSK for 1Mbps
Antenna Specification:	1.53dBi

Page 8 of 64

Temperature Range:	-10°C~+50°C
Hardware Version:	V2.6
Software Version:	V1.02
Sample No:	E20221228512201-0004,E20221228512201-0009
Note:	

2.5 TEST OPERATION MODE

Mode No.	Description of the modes	
1	Bluetooth(BT) fixed frequency transmitting	

2.6 LOCAL SUPPORTIVE

Name of equipment	Manufacturer	Model	Serial number	Note
Notebook	DELL	Latitude 3400	8RZFJW2	/
Test board	1	8/1	/	/

No.	Cable Type	Qty.	Shielded Type	Ferrite Core(Qty.)	Length
1	USB cable	1	No	0	1.0m

2.7 CONFIGURATION OF SYSTEM UNDER TEST

For Conducted Emission, 20dB bandwidth, Carrier Frequencies Separated, Hopping Channel Number, Dwell Time, Maximum Peak Output Power, Conducted band edges and Spurious Emission measurement

For Radiated Spurious Emission, Restricted bands of operation

Test software:

Software version	Test level		
Bluetool	default		

2.8 DUTY CYCLE

EUT Name	Mechanical Keyboard	Model	PKKE221
Environmental Conditions	23.6°C/55%RH/101.0kPa	Test Voltage	DC 3.87V
Tested By	Qin Tingting	Tested Date	2023-01-05

TestMode	Antenna	Frequency [MHz]	ON Time [ms]	Period [ms]	DC [%]	T [s]
DH5	Ant1	2441	2.94	3.75	78.40	0.00294

	W		1010 Street					
10 dBm-					M1[1]			-5.20 dBm
2022000					01711			0.00000000 s
0.05m-		122	541	-		177		2,94000 ms
-10 dBm		4G -9.900	dim				-	
						4	1	
-20 dBm	-							
-30 dBm	-	_				_		
			100000000000000000000000000000000000000					
-40 dBm		DALIA	spostalation.			WHAT	(Later	_
50 dBm	-					-	-	_
-60 dBm								_
02020								
70 dBm	-						_	
-80 dBrr	-					_	_	
CF 2.4-	1 GH	lz .		1001 pt	5			700.0 µs/
larker								
Type	Ref	Trc	X-value	Y-value	Function	1	unction R	esult
M1		1	0.0 s	-5.23 dBm				
D1	M1	1	2.94 mis	-9.68 dB				

DH5_2441MHz

Date: 5.JAN.2023 11:20:10

3. LABORATORY AND ACCREDITATIONS

3.1 LABORATORY

Add

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of GRG METROLOGY & TEST GROUP CO., LTD.

No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua District Shenzhen, 518110, People's Republic of China

P.C.	:	518110
Tel	:	0755-61180008
Fax	:	0755-61180008

3.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to GB/T 27025(ISO/IEC 17025:2017)

USA A2LA(Certificate #2861.01)

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada ISED (Company Number: 24897, CAB identifier:CN0069)

USA FCC (Registration Number: 759402, Designation Number:CN1198)

Copies of granted accreditation certificates are available for downloading from our web site, http://www.grgtest.com

4. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement		Frequency	Uncertainty
		9kHz~30MHz	5.1dB ¹⁾
		30MHz~200MHz	4.5dB ¹⁾
	Horizontal	200MHz~1000MHz	4.4dB ¹⁾
		1GHz~18GHz	5.6dB ¹⁾
		18GHz~26.5GHz	3.7dB ¹⁾
Radiated Emission	1	9kHz~30MHz	5.1dB ¹⁾
		30MHz~200MHz	4.4dB ¹⁾
	Vertical	200MHz~1000MHz	4.5dB ¹⁾
	(Č	1GHz~18GHz	5.6dB ¹⁾
		18GHz~26.5GHz	3.7dB ¹
Conduction Emission		150kHz~30MHz	3.40dB ¹⁾

Measurement	Uncertainty		
RF frequency	6.0×10 ⁻⁶		
RF power conducted	0.78dB		
Occupied channel bandwidth	0.4dB		
Unwanted emission, conducted	0.68dB		
Humidity	6%		
Temperature	2°C		

Note:

¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95%.

This uncertainty represents an expanded uncertainty factor of k=2.

5. LIST OF USED TEST EQUIPMENT AT GRGT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Conducted Emissions	1							
EMI TEST RECEIVER	R&S	ESCI	100783	2023-08-28				
LISN(EUT)	R&S	ENV216	101543	2023-09-13				
Test S/W	EZ	CCS-3A1-CE						
Hopping Channel Number	•							
Spectrum Analyzer	R&S	FSV30	104381	2023-11-17				
Dwell Time	Dwell Time							
Spectrum Analyzer	R&S	FSV30	104381	2023-11-17				
Radiated Spurious Emission&Restricted bands of operation								
Test S/W	EZ	CCS-03A1		(A)				
Test Receiver	R&S	ESR7	102444	2023-09-02				
Preamplifier	EMEC	EM330	I00426	2024-02-06				
Bi-log Antenna	TESEQ	CBL6143A	26039	2024-10-23				
Loop Antenna	TESEQ	HLA6121	52599	2024-02-03				
Spectrum Analyzer	KEYSIGHT	N9010A	MY52221469	2023-06-29				
Horn Antenna	Schwarzbeck	BBHA9120D	02143	2023-10-15				
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	BBHA 9170-497	2023-10-14				
Amplifier	Tonscend	TAP01018048	AP20E8060075	2023-05-05				
Amplifier	Tonscend	TAP184050	AP20E806071	2023-05-05				
Amplifier	SHIRONG ELECTRONIC	DLNA-1G18G- G40	20200928005	2023-05-08				
Test S/W	Tonscend	JS36-RE/2.5.1.5		S				
20 dB Bandwidth	·							
Spectrum Analyzer	R&S	FSV30	104381	2023-11-17				
Maximum Peak Output Pe	ower							
Pulse power sensor	Anritsu	MA2411B	1126150	2023-03-01				
Power meter	Anritsu	ML2495A	1204003	2023-02-28				
Conducted band edges and	l Spurious Emission		-					
Spectrum Analyzer	R&S	FSV30	104381	2023-11-17				
Carrier Frequencies Separ	rated							
Spectrum Analyzer	R&S	FSV30	104381	2023-11-17				

Note: The calibration interval of the above test instruments is 12 months except Bi-log Antenna, The calibration interval of the Bi-log Antenna is 24 months.

6. E.U.T. TEST CONDITIONS

Type of antenna:	FPC				
Test frequencies:	According to the 15.31(m receivers, other than TV b required. reported for eac the device operating at the in the following table:	According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. if required. reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:			
Frequency range over which device operates	Number of frequencies	Location in the range of operation			
1 MHz or less	<u> </u>	Middle			
1 to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top 1 near middle and 1 near bottom			

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2416	28	2430
<u>ک</u> 1	2403	15	2417	29	2431
2	2404	16	2418	30	2432
3	2405	17	2419	31	2433
4	2406	18	2420	32	2434
5	2407	19	2421	33	2435
6	2408	20	2422	34	2436
7	2409	21	2423	35	2437
8	2410	22	2424	36	2438
9	2411	23	2425	37	2439
10	2412	s) 24	2426	38	2440
11	2413	25	2427	39	2441
12	2414	26	2428	40	2442
13	2415	27	2429	41	2443

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	2444	55	2457	68	2470
43	2445	56	2458	69	2471
44	2446	57	2459	70	2472
45	2447	58	2460	71	2473
46	2448	59	2461	72	2474
47	2449	60	2462	73	2475
48	2450	61	2463	74	2476
49	2451	62	2464	75	2477
50	2452	63	2465	76	2478
51	2453	64	2466	77	2479
52	2454	65	2467	78	2480
53	2455	66	2468		
54	2456	67	2469		

Test frequency is the lowest channel: 0 frequency(2402MHz), middle channel: 39 frequency (2441MHz) and highest channel: 78 frequency(2480MHz)

7. 20dB BANDWIDTH

7.1 LIMITS

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

7.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Set the spectrum analyzer as RBW=30 kHz, VBW=100 kHz, Span=3MHz, Sweep = auto. Allow the trace to stabilize, record 20dB bandwidth value
- 3) Repeat until all the test channels are investigated.

7.3 TEST SETUP

7.4 TEST RESULTS

Environment: 23.6°C/55%RH/101.0kPa Tested By:Qin Tingting Voltage:DC 3.87V Date: 2023-01-05

Test mode	Channel	Frequency (MHz)	20 dB Bandwidth (kHz)
	Lowest	2402	1041
DH5	Middle	2441	1044
	Highest	2480	1041

Result plot as follows:

DH5

LowestChannel

Date: 5-000-2022 1110020

Middle Channel

Ref Le Att Count 1	vel 3	90.00 ///9 40 ; 00	n Offset 1 IS SWT	1.09 #8 # 62.2 µ1	• 88W 30 Hz	Mode Auto F	ΨT	
20 dim-	*					MULTI MULTI		-24.53 (85) 2.44847550 (44 -4.88) (85) 2.4489(105 (45)
0 dijm	0	1 =4.00	0 dbre	y.	n the	n n	*	~~~~~
-50 dBm -60 dBm CF 2,44	I GH	lr.			1001 g4	*		Spen 3.0 MHz
Markor Type Rof M1 M2	Rof M1	Trc X-value 1 2,440475 GH 1 2,440921 GH 1 1 044 MH		75 GH2 21 GH2 14 MH2	Y-value -24.53 dBm -4.00 dBm -0.16 dB	Function	Fun	tion Result

Dates 5.008.0000 11100410

Page 18 of 64

Highest Channel

Page 19 of 64

8. CARRIER FREQUENCIES SEPARATED

8.1 LIMITS

1) Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

8.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2) Set center frequency of spectrum analyzer = middle of hopping channel.
- 3) Set the spectrum analyzer as RBW=100kHz, VBW=300kHz, Adjust Span to 2MHz, Sweep = auto
- 4) Use the marker-delta function to mark hopping channel carrier frequencies and record the channel separation.

8.3 TEST SETUP

8.4 TEST RESULTS

Environment: 23.6°C/55%RH/101.0kPa Tested By:Qin Tingting Voltage:DC 3.87V Date: 2023-01-05

DH5

Channel Separation (MHz)	Two-thirds of the 20 dB Bandwidth (kHz)	Channel Separation Limit	Result
0.997	696	> Two-thirds of the 20 dB Bandwidth	Pass

Result plot as follows:

DH5

Measurement of Channel Separation

D 154 Viaw			
20 dilm		M1(1) 02(1)	-3.06.400 2.44116557 GH 0.04.40 997.10 km
10 dim			
0.0541	int.		tur.
-10 mm			
-20 dBm			
-30 dbm			
-40 dBm-			
-50 dbm	_		
-60 dbm			
Start 2,4405 GHz		691 pts	Stop 2.4425 GHz

Test result: The unit does meet the FCC requirements.

9. HOPPING CHANNEL NUMBER

9.1 LIMITS

Regulation 15.247 (a) (1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

9.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2) Set the spectrum analyzer as RBW=100kHz, VBW=300kHz.
- 3) Set the spectrum analyzer: start frequency = 2400MHz. stop frequency = 2483.5MHz. Submit the test result graph.

9.3 TEST SETUP

		a
EUT	P	Spectrum analyzer

9.4 TEST RESULTS

Environment: 23.6°C/55%RH/101.0kPa Tested By:Qin Tingting Voltage:DC 3.87V Date: 2023-01-05

Type of Modulation	Result (No. of CH)	Limit (No. of CH)	Result		
GFSK	79	≥15	PASS		

2.400 GHz – 2.4835 GHz

Test result: The unit does meet the FCC requirements.

10. DWELL TIME

10.1 LIMITS

Regulation 15.247(a)(1)(iii) Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 TEST PROCEDURES

1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2) Set spectrum analyzer span = 0. centered on a hopping channel;
- 3) Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = Max hold;
- 4) Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.). Repeat this test for each variation.
- 5) DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX).So, the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds
- 6) DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slotsTX, 1 time slot RX).So, the dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds
- 7) DH5 Packet permit maximum 1600/79/6 = 3.37 hops per second in each channel (5 time slotsTX, 1 time slot RX).So, the dwell time is the time duration of the pulse times $3.37 \times 31.6 = 106.6$ within 31.6 seconds

10.3 TEST SETUP

Page 24 of 64

10.4 TEST RESULTS

Environment: 23.6°C/55%RH/101.0kPa Tested By:Qin Tingting Voltage:DC 3.87V Date:2023-01-05

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

GFSK: Middle Channel (2.441GHz)

DH1	time slot=	0.436	(ms)*	(1600/(2*79))	*	31.6	=	140	ms
DH3	time slot=	1.680	(ms)*	(1600/(4*79))	*	31.6	=	268.8	ms
DH5	time slot=	2.920	(ms)*	(1600/(6*79))	*	31.6	=	311.47	ms

The results are not greater than 0.4 seconds. The unit does meet the requirements.

Please refer the graph as below:

					H	1[1]			27.33 dbir
25 d8m-		-			D	22.13			16.95 48
10 dim						-		-	\$30.00 p
0 :81:		_							
-Lű ditry	NO -5.600 MM	1							
-20 dBm	192								
IN TOWN	STRUCT	14AP	(m)m ^(m)	HEFT	Net and	ni ankali	deployed and	AN ALLING	UNDER NO.
the lite	appart ap	in pro-	al the state	NP. NT		and the second	-	in phillipp	STATIS
-50 dBm					10001007	1	China Con	1 Contract	1

Tel Scowiczen Likking

Ref Level 30.00 d8m Offse	t 11.09 d8 🗰 RBW 1 MHz	0	
All 40 dB # BWT SGL Count 1/1 TRG	10 mil # VBW 3 MHI		
15k Cirw			
		MALAI	-22.61 db
35 dilim		DULL	34.424
226		E I	1,60000 1
10 dBm			
die			
TRO -8 400 000			
LŰ ditry			
20 (26/11-			
RO/Ren Balles M.	A March 10 March 10	and the second second second second second	A LAND A LAND A
the law of the state of the	and a second	A Desiligner dittal and the	and a state of the
A THE PARTY OF A PARTY	A STATE OF A	Manute in the line of a	ALC: NOT THE OWNER.
50 dBm	100 100 100		7.500 MC.5.07.5
250			
60 dbm			
	1		
3F 2.441 GHz	8800 p	its :	1.0 ms/

Page 26 of 64

DH5

11. CONDUCTED EMISSION MEASUREMENT

11.1 LIMITS

Frequency range	Limits	Limits (dBµV)			
Frequency range	Quasi-peak	Average			
$150 \mathrm{kHz} \sim 0.5 \mathrm{MHz}$	66~56	56~46			
0.5MHz~5MHz	56	46			
5MHz~30MHz	60	50			

11.2 TEST PROCEDURES

Procedure of Preliminary Test

For measurement of the disturbance voltage the equipment under test (EUT) is connected to the power supply mains and any other extended network via one or more artificial network(s). An EUT, whether intended to be grounded or not, and which is to be used on a table is configured as follows:

- Either the bottom or the rear of the EUT shall be at a controlled distance of 40 cm from a reference ground plane. This ground plane is normally the wall or floor of a shielded room. It may also be a grounded metal plane of at least 2 m by 2 m. This is physically accomplished as follows:

1) Place the EUT on a table of non-conducting material which is at least 80 cm high. Place the EUT so that it is 40 cm from the wall of the shielded room, or

2) place the EUT on a table of non-conducting material which is 40 cm high so that the bottom of the EUT is 40 cm above the ground plane;

- All other conductive surfaces of the EUT shall be at least 80 cm from the reference ground plane;

- The EUT are placed on the floor that one side of the housings is 40 cm from the vertical reference ground plane and other metallic parts;

- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth forming a bundle 30 cm to 40 cm long, hanging approximately in the middle between the ground plane and the table.

- I/O cables that are connected to a peripheral shall be bundled in the centre. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.

The test mode(s) described in Item 2.5 were scanned during the preliminary test. After the preliminary scan, we found the test mode described in Item 2.5 producing the highest emission level. The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

11.3 TEST SETUP

11.4 DATA SAMPLE

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
X.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor

Limit = Limit stated in standard

Margin = Result (dBuV) – Limit (dBuV)

11.5 TEST RESULTS

EUT Name	Mechanical Keyboard	Model	PKKE221
Environmental Conditions	23.1°C/52%RH/101.0kPa	Test Mode	DH5 2480MHz
Tested By	Wang Xinyuan	Line	L
Tested Date	2023-01-10	Test Voltage	AC 120V/60Hz

(The chart below shows the highest readings taken from the final data.)

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1539	44.26	27.99	9.61	53.87	37.60	65.78	55.79	-11.91	-18.19	Pass
2	0.2540	36.90	21.25	9.61	46.51	30.86	61.62	51.63	-15.11	-20.77	Pass
3*	1.3580	34.52	25.17	9.63	44.15	34.80	56.00	46.00	-11.85	-11.20	Pass
4	1.8180	34.61	21.57	9.65	44.26	31.22	56.00	46.00	-11.74	-14.78	Pass
5	5.4860	22.70	3.37	9.71	32.41	13.08	60.00	50.00	-27.59	-36.92	Pass
6	13.4340	27.00	18.53	9.79	36.79	28.32	60.00	50.00	-23.21	-21.68	Pass

REMARKS: L = Live Line

Pre-scan all mode and recorded the worst case results in this report (TX-highest Channel)

EUT Name	Mechanical Keyboard	Model	PKKE221
Environmental Conditions	23.1°C/52%RH/101.0kPa	Test Mode	DH5 2480MHz
Tested By	Wang Xinyuan	Line	N
Tested Date	2023-01-10	Test Voltage	AC 120V/60Hz

(The chart below shows the highest readings taken from the final data.)

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1580	45.79	26.65	9.60	55.39	36.25	65.56	55.57	-10.17	-19.32	Pass
2	0.1860	43.12	22.57	9.60	52.72	32.17	64.21	54.21	-11.49	-22.04	Pass
3	0.5780	31.07	21.69	9.60	40.67	31.29	56.00	46.00	-15.33	-14.71	Pass
4*	1.6580	36.74	24.03	9.64	46.38	33.67	56.00	46.00	-9.62	-12.33	Pass
5	2.1900	36.24	23.41	9.64	45.88	33.05	56.00	46.00	-10.12	-12.95	Pass
6	14.0060	25.40	16.14	9.86	35.26	26.00	60.00	50.00	-24.74	-24.00	Pass

REMARKS: N = Neutral Line.

Pre-scan all mode and recorded the worst case results in this report (TX-highest Channel)

12. MAXIMUM PEAK OUTPUT POWER

12.1 LIMITS

Regulation 15.247 (b)(1)For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

12.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the power meter and enable the EUT transmit continuously.
- 2) Keep the EUT in transmitting at lowest, middle and highest channel individually. Record the max value.

12.4 TEST RESULTS

Environment: 23.6°C/55%RH/101.0kPa Tested By:Qin Tingting

DH5

DIIS					
Test Channel	Fundamental Frequency (GHz)	Max Output Power(dBm)	Limit (dBm)	Peak/ Average	Pass/Fail
Lowest	2.402	-3.51			Pass
Middle	2.441	-3.27	20.97	Peak	Pass
Highest	2.480	-3.04			Pass

Test result: The unit does meet the FCC requirements.

----- The following blanks ------

Page 32 of 64

Voltage:DC 3.87V Date: 2023-01-05

13. CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS

13.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB.

13.2 TEST PROCEDURES

Test procedures follow KDB 558074 D01 DTS Measurement Guidance v05r02.

- 1) Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.
- Set the spectrum analyzer: RBW =100kHz; VBW =300kHz, Frequency range = 30MHz to 26.5GHz;
 Sweep = auto; Detector Function = Peak. Trace = Max, hold.
- 3) Measure and record the results in the test report.
- 4) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Page 34 of 64

13.4 TEST RESULTS

Environment: 23.6°C/55%RH/101.0kPa Tested By:Qin Tingting Voltage:DC 3.87V Date: 2023-01-05

Test result plot as follows:

Band Edges

DH5

CH Low (2.35GHz ~2.405GHz)

Ref Lovel	20.00 dBn 30 dB	0 Offset 11.24 d8	 RBW 100 HH VBW 200 HH 	l Mula Lin	O FET	
LEK View	100.10	- 9111 (1250 Ju		1999498 19915	87.00	
10 dBm				91(1)		-4.69 dhi 2.4020150 G8 -48.52 dbi 3.40000pg G8
() mini						Ā
-III dhin			-			
-00.48m						1
20 0001	2 -24.890	(B)()	_			1
-30 dbm						
10.00			-			
-40 0811					ein.	10
St Marth	in the second	his and the second	and and the	CiCobada	and a second	aportune W N
10.000					-	
00.0811						
-70 dBm						
10722-012						
Start 2.35.0	Hz		691 p	ts		Stop 2,405 GHz
Marker	100		1	12	50	
Type Rot	Tru	X-value	Y-value	Function	Fill Fill	inction Result
MI	1.	2.402015 GHE	-4.89 diller	13		
M3	1	2,14,640	-40.52 SBN			
M6	1	2.3936012 GHz	-46.77 d6m	1		
	17					1 445

Deter \$1000.0000 Lighter

25-8, 118-W		5 11 1 1 1 2 0 M			and the local scie		
10 dBm				H	2(1) 2(1)		-5.39 d3 2.40 49400 G -49.60 d3 3.4000000 G
() tain							0.00
-10 dim			_				fill
-20 dBm-						-	111
-	125,390	- Contraction of the second se					
-30 2011							
-40 dBm				111		-	
Sec. 1		- James States a	10000000	Leve		112	121
-50 0811		- de la competitione					
60 dBm			-			-	
-							
-70 dim							
Start 2.35.0	Hz		691	pts	-	_	Stop 2,405 GH
Harkar	10.000		1	0.00			and the second sec
Type Ref	Tro	X-value	Y-value	Func	tion [Func	tion Result
M1	1	2.40496 GHz	~5.39 db	1			
M2		2.4 GHz	-49.68 58	N			
Ma		2.39 GHz	-50.02 89				

Mater 9-000.0000 11100107

Att	30 d	8 8WT 94.8 µs	VBW 300 HHz	Mode Auto	FFT			
10 dBm	n i			H2[1]		- 3.70 dBir 2.400010 GH - 48.04 dbir 2.403500 GH		
-10 dkm	6 -113:700	6 11						
-40 dBm -80 3BW	N.J.	and a start			300 miliunga	"m¥-	1996 ana na bira	
-50 dBm								
Marker	212		ear be				ab staa eus	
Type Ref M1 M2 M3	Tro: X-value 1 2.40001 GHz 3 3.4635 GHz 1 2.5 GHz 1 2.5 GHz		Y-value -1.70 diter -48.84 dBm -49.57 dBm	Function	E E	inction Resi	ut	

CH High (2.47GHz ~ 2.55GHz)

Tetes \$.398.003 11025445

Att .	30 d	8 BWT	94.8 µs a	NBM 300 II	it Mode	AURO FF	1.		
10 dBm					- 19 - 19	411 2011		2	-3.01 68m 476650 GH -49.17 68m 403500 GH
	1 4380	1.3511							
40 dBm	L.ME	je na seconda de la constante	in lend	Lun	standigen	-theor			
-70 dilim			1						
Start 2,47 G	Hz			691	pts			細い	p 2.55 GHz
tarkur Type Rof M1 M2	Ref Tec X-volve M1 1 2,47005 GHz M2 1 2,4635 GHz		15 GH2	Y-value -3.61 db -49.17 d8	Func n	tion	F	unction Resu	n
M3 M4	1	2.50371	S GHz	-49.66 dB -45.77 dB	n				

Interstate COOLINGLE Inter

Spurious Emissions DH5 CH Low

Dete: 9.000.0020 11100193

Count; 30/10	69 R.C.S			2010			
Tak were			361[1]		-53.55 dBm		
to dem				- T - 14	832.2760 MHz		
o aita m							
10 dim		_					
20 dBm		_		_			
-30 dBm	10 (200-						
40 dBm		_		_			
60 dim-					*		
actual and	www	ANNAL AND	MUM	wwww	www.		
-70 dim-							
-85 dBm		-					
Pract 00 0 Mikin		3000	of pts		Stop 1.0 GHz		

Dete: 5.000.0003 11481405

CH Mid

100000	
341[1]	2.84099130 G
1.075	Enac 1.5 M

Dete: \$1000.0000 11183104

Seter SLOWLOOD LIESSAW

Count 10/10	in and	50000.000			Halp Sheep			
10 dBm			-	н	1[1]		2.4	4.50 dBr
o iller					2[1]		17.6	93.10 dto 91428 GH
-10 dim	-		_					
20 (89)	90,48/11		_	_				
-30 dBm			_			_		
-40 dBm			-					
60 dim	1	(Veren		-	I.		and the second second	
and the second			****	W		ALC NO		
-71 dim-			-					
-80 dBm		-	-			_		00.00
BIANT LU GH2			30001	pes			stop	26,8 042

Sete: 5.000.0000 [1128405

CH High

19K View	tu.									
					38	11[1]		-5.75 dbm		
20 dilm	-	-	-		_	-		4,400		
LII dilm			-			-				
0.185m	_					-0-				
10 dilm			1				-			
CC140014		-								
20 dBm	1							1		
50 gam		-	-						1	
40 (Bri	_	-	-							
50 dim-										
60 dbm										
CF 2,48 ()	Hz		-	691 p	ts			Spa	n 1.5 MHz	

Count 10/1	0	and.			in the second	many r.c. t			
LPK Yeave						11			56.29 dite
to open									5,5640 MH
0 #811			-	-					
-10 dim				-					
-20 cBm	N. 49.79	1000	-						
-30 cRm			-						
-40 dBm	_		-	-	-				
-50 dim			-						MES.
AL ADAL			a different			tents.	dian t	Lun	Lun

Mate: 5.000.0000 11128105

14. RADIATED SPURIOUS EMISSIONS

14.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required.

Frequency (MHz)	Quasi-peak(µV/m)	Measurement distance(m)	Quasi-peak(dBµV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30 ~ 88	100	3	40
88~216	150	3	43.5
216 ~ 960	200	3	46
Above 960	500	3	54

NOTE:

- (1) The emission limits for the ranges 9-90kHz and 110-490kHz are based on measurements employing a linear average detector.
- (2) The lower limit shall apply at the transition frequencies.
- (3) Above 18GHz test distance is 1m, so the Peak Limit= $74+20*\log(3/1)=83.54$ (dBµV/m). The Avg Limit= $54+20*\log(3/1)=63.54$ (dBµV/m).

14.2 TEST PROCEDURES

1) Sequence of testing 9kHz to 30MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Set the EUT transmit continuously with maximum output power.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0 ° to 360 °) and by rotating the elevation axes (0 ° to 360 °).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30MHz to 1GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Set the EUT transmit continuously with maximum output power.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0 ° to 360 °.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0° to 360 and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1GHz to 18GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Set the EUT transmit continuously with maximum output power.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0° to 360° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Set the EUT transmit continuously with maximum output power.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector. --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

NOTE:

(a).The frequency from 9kHz to 150kHz, Set RBW=300Hz(for Peak&AVG), RBW=300Hz(for Peak&AVG). the frequency from 150kHz to 30MHz, Set RBW=9kHz, RBW=9kHz, (for QP Detector).

(b).The frequency from 30MHz to 1GHz, Set RBW=120kHz, RBW=300kHz, (for QP Detector).

(c).The frequency above 1GHz, for Peak detector: Set RBW=1MHz, RBW=3MHz.

(d).The frequency above 1GHz, for Avg detector: Set RBW=1MHz, if the EUT is configured to transmit with duty cycle \geq 98%, set VBW \leq RBW/100 (i.e.,10kHz) but not less than 10 Hz. if the EUT duty cycle is <98%, set VBW \geq 1/T, Where T is defined in section 2.8.

14.3 TEST SETUP

Pre-amp

٨

Page 46 of 64

14.4 DATA SAMPLE

30MHz to 1GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	37.06	-15.48	21.58	40.00	-18.42	QP	Vertical

1GHz-18GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	xxx	65.45	-11.12	54.33	74.00	-19.67	peak	Vertical
XXX	XXX	63.00	-11.12	51.88	54.00	-2.12	AVG	Vertical
							1 1/2/ /	

Above 18GHz

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	68.86	57.66	-11.20	83.54	25.88	peak	Vertical
XXX	XXX	68.89	-11.20	57.69	63.54	5.85	AVG	Vertical

Frequency (MHz)	= Emission frequency in MHz
Ant.Pol. (H/V)	= Antenna polarization
Reading (dBuV)	= Uncorrected Analyzer / Receiver reading
Correction Factor (dB/m)	= Antenna factor + Cable loss – Amplifier gain
Result (dBuV/m)	= Reading (dBuV) + Correction Factor (dB/m)
Limit (dBuV/m)	= Limit stated in standard
Margin (dB)	= Remark Result (dBuV/m) – Limit (dBuV/m)
Peak	= Peak Reading
QP	= Quasi-peak Reading
AVG	= Average Reading

14.5 TEST RESULTS

Below 1GHz

The chart below shows the highest readings taken from the final data.

Mode: DH5 Highest Frequency (2480MHz) Environment: 22.6°C/51%RH/101.0kPa Test Engineer: Wang Xinyuan

Date: 2023-04-10 Test Voltage: DC 3.87V Probe : Horizontal

No.	Frequency	Reading	Correction	Result	Limit	Margin	Degree	Height	Detector
	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(deg.)	(cm)	type
1	34.8500	35.42	-18.99	16.43	40.00	-23.57	10	100	QP
2	191.9900	44.01	-27.03	16.98	43.50	-26.52	112	100	QP
3	408.3000	49.81	-19.80	30.01	46.00	-15.99	252	100	QP
4*	504.3300	56.48	-18.06	38.42	46.00	-7.58	56	200	QP
5	551.8600	54.67	-16.49	38.18	46.00	-7.82	56	200	QP
6	600.3600	49.84	-16.12	33.72	46.00	-12.28	49	200	QP

Mode: DH5 Highest Frequency (2480MHz) Environment: 22.6°C/51%RH/101.0kPa Test Engineer: Wang Xinyuan

Date: 2023-04-10 Test Voltage: DC 3.87V Probe : Vertical

Remark:

- 1 No emission found between lowest internal used/generated frequency to 30MHz.
- 2 Pre-scan all mode and recorded the worst case results in this report (TX-Highest Channel(DH5))
- 3 Measuring frequencies from 9kHz to the 1GHz.
- 4 Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
- 5 Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 6 The IF bandwidth of SPA between 30MHz to 1GHz was 120kHz.

Above 1GHz to 18GHz

Mode: DH5 Lowest Frequency (2402MHz) Environment: 25.0°C/60%RH/101.0kPa Test Engineer: Zhang Zishan

Date: 2023-02-16 Test Voltage: DC 3.87V

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1120.015	70.96	45.66	-25.30	74.00	28.34	100	228	Horizontal
2	1994.1243	65.49	44.32	-21.17	74.00	29.68	100	228	Horizontal
3	2498.9374	61.68	43.01	-18.67	74.00	30.99	100	238	Horizontal
4	2998.7498	62.42	45.28	-17.14	9/ 74.00	28.72	200	189	Horizontal
5	3266.2833	60.88	44.45	-16.43	74.00	29.55	100	260	Horizontal
6	10499.0624	47.44	53.01	5.57	74.00	20.99	200	191	Horizontal

AV Fina	al Data List								
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBµV/m]	AV Limit [dBµV/m]	AV Margin [dB]	Height [cm]	Angle []	Polarity
1	10499.0624	5.57	42.15	47.72	54.00	6.28	200	191	Horizontal

Suspect	ed Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
<u> </u>	1118.0148	69.69	46.84	-22.85	74.00	27.16	200	226	Vertical
2	2653.2067	62.05	44.24	-17.81	74.00	29.76	100	276	Vertical
3	4254.5318	59.23	44.93	-14.30	74.00	29.07	100	279	Vertical
4	4803.9755	58.67	45.78	-12.89	74.00	28.22	200	172	Vertical
5	6396.0495	57.00	49.87	-7.13	74.00	24.13	100	259	Vertical
6	10699.7125	46.74	52.34	5.60	74.00	21.66	200	319	Vertical

AV Fina	al Data List								
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBµV/m]	AV Limit [dBµV/m]	AV Margin [dB]	Height [cm]	Angle []	Polarity
1	6367.0773	-7.13	49.42	42.29	54.00	11.71	100	242.9	Vertical
2	10699.7125	5.60	42.14	47.74	54.00	6.26	200	319	Vertical
		$/ \rho_{\Lambda} \vee$						$/ \alpha > /$	

Mode: DH5 Middle Frequency (2441MHz) Environment: 25.0°C/60%RH/101.0kPa Test Engineer: Zhang Zishan

Date: 2023-02-16 Test Voltage: DC 3.87V

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1119.2649	70.61	45.30	-25.31	74.00	28.70	100	219	Horizontal
2	1995.6245	67.16	45.98	-21.18	74.00	28.02	<100	248	Horizontal
3	2848.9811	64.63	48.33	-16.30	74.00	25.67	100	189	Horizontal
4	3266.2833	62.70	46.27	-16.43	74.00	27.73	100	251	Horizontal
5	10465.3082	47.09	52.89	5.80	74.00	21.11	100	65	Horizontal
6	17713.0891	43.97	52.64	8.67	74.00	21.36	100	319	Horizontal
				(<u>_</u>	\sim /				

AV Fina	al Data List								
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBµV/m]	AV Limit [dBµV/m]	AV Margin [dB]	Height [cm]	Angle []	Polarity
1	2843.7862	-16.30	45.70	29.40	54.00	24.60	183	274.8	Horizontal
2	10465.3082	5.80	42.12	47.92	54.00	6.08	100	65	Horizontal
3	17713.0891	8.67	39.14	47.81	54.00	6.19	100	319	Horizontal

Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity			
<1	1118.2648	68.71	45.85	-22.86	74.00	28.15	200	217	Vertical			
2	1993.1241	64.98	44.29	-20.69	74.00	29.71	200	208	Vertical			
3	2593.9492	61.25	42.86	-18.39	74.00	31.14	100	51	Vertical			
4	4880.8601	56.81	45.28	-11.53	74.00	28.72	200	171	Vertical			
5	6414.8018	58.79	51.73	-7.06	74.00	22.27	100	251	Vertical			
6	10465.3082	46.23	52.24	6.01	74.00	21.76	100	280	Vertical			

AV Fina	al Data List								
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBµV/m]	AV Limit [dBµV/m]	AV Margin [dB]	Height [cm]	Angle []	Polarity
1	6401.6198	-7.06	50.44	43.38	54.00	10.62	100	242.4	Vertical
2	10465.3082	6.01	41.14	47.15	54.00	6.85	100	280	Vertical

Mode: DH5 Highest Frequency (2480MHz) Environment: 25.0°C/60%RH/101.0kPa Test Engineer: Zhang Zishan

Date: 2023-02-16 Test Voltage: DC 3.87V

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1121.0151	71.18	45.89	-25.29	74.00	28.11	100	226	Horizontal
2	1194.7743	71.89	47.86	-24.03	74.00	26.14	<100	246	Horizontal
3	1997.8747	63.51	42.34	-21.17	74.00	31.66	100	266	Horizontal
4	2845.9807	60.42	44.04	-16.38	74.00	29.96	100	140	Horizontal
5	4940.8676	55.21	43.76	-11.45	74.00	30.24	200	113	Horizontal
6	9859.6075	48.12	52.50	4.38	74.00	21.50	100	316	Horizontal
				(~	5/				

AV Fina	al Data List								
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBµV/m]	AV Limit [dBµV/m]	AV Margin [dB]	Height [cm]	Angle []	Polarity
1	9859.6075	4.38	42.15	46.53	54.00	7.47	100	316	Horizontal

Suspect	ed Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1065.0081	69.32	46.54	-22.78	74.00	27.46	200	186	Vertical
2	1119.5149	68.85	45.94	-22.91	74.00	28.06	200	234	Vertical
3	1793.8492	66.38	44.04	-22.34	74.00	29.96	100	63	Vertical
৯ 4	3189.3987	59.82	43.32	-16.50	74.00	30.68	100	94	Vertical
5	6379.1724	60.11	53.00	-7.11	74.00	21.00	100	241	Vertical
6	9801.4752	48.32	52.78	4.46	74.00	21.22	100	75	Vertical

AV Fina	al Data List								
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBµV/m]	AV Limit [dBµV/m]	AV Margin [dB]	Height [cm]	Angle []	Polarity
1	6388.5885	-7.11	52.01	44.90	54.00	9.10	101	241.8	Vertical
2	9801.4752	4.46	42.21	46.67	54.00	7.33	100	75	Vertical

Remark:

- 1 Measuring frequencies from 1 GHz to 18GHz harmonic of highest fundamental frequency.
- 2 Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3 Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4 Spectrum setting:
 - a. Peak Setting 1GHz–26.5GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = auto.

b. AV Setting 1GHz–26.5GHz, Set RBW=1MHz, if the EUT is configured to transmit with duty cycle \geq 98% , set VBW \leq RBW/100 (i.e.,10kHz) but not less than 10 Hz. if the EUT duty cycle is <98% , set VBW \geq 1/T, Where T is defined in section 2.8.

Test result: The unit does meet the requirements.

18GHz to 26.5GHz

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Mode: DH5

Lowest Frequency (2402MHz) Environment: 20.3°C/45%RH/101.0kPa Test Engineer: Zhang Zishan Date: 2023-01-31 Test Voltage: DC 3.87V

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	18436.05	53.13	40.86	-12.27	83.54	42.68	100	18	Horizontal
2	19803.7	53.69	42.51	-11.18	83.54	41.03	200	328	Horizontal
3	20847.925	51.12	40.92	-10.20	83.54	42.62	100	233	Horizontal
4	21708.55	51.32	41.56	-9.76	83.54	41.98	100	18	Horizontal
5	22998	49.59	40.95	-8.64	83.54	42.59	200	247	Horizontal
6	25370.35	47.59	40.34	-7.25	83.54	43.20	100	312	Horizontal

Suspect	ed Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	18750.975	53.05	41.11	-11.94	83.54	42.43	200	30	Vertical
2	19803.7	53.66	42.58	-11.08	83.54	40.96	100	15	Vertical
3	21313.3	51.03	41.15	-9.88	83.54	42.39	100	109	Vertical
<u> </u>	23373.7	49.76	41.14	-8.62	83.54	42.40	200	15	Vertical
∞∕5	25062.65	49.03	41.90	-7.13	83.54	41.64	100	92	Vertical
6	26357.2	47.17	40.08	-7.09	83.54	43.46	100	92	Vertical

Mode: DH5 Middle Frequency (2441MHz) Environment: 20.3 °C/45% RH/101.0kPa Test Engineer: Zhang Zishan

Date: 2023-01-31 Test Voltage: DC 3.87V

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	19795.625	54.38	43.19	-11.19	83.54	40.35	100	346	Horizontal
2	20709.375	51.88	41.56	-10.32	83.54	41.98	< 200	282	Horizontal
3	22785.075	50.24	41.49	-8.75	83.54	42.05	200	251	Horizontal
4	24571.35	49.10	41.39	-7.71	83.54	42.15	100	94	Horizontal
5	25262.825	47.71	40.56	-7.15	83.54	42.98	100	189	Horizontal
6	26276.45	46.80	39.40	-7.40	83.54	44.14	100	127	Horizontal
-					\mathbb{S}^{\prime}				

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	18702.1	53.13	41.15	-11.98	83.54	42.39	100	172	Vertical
2	19795.625	54.65	43.56	-11.09	83.54	39.98	200	358	Vertical
3	20547.45	51.49	41.16	-10.33	83.54	42.38	100	282	Vertical
4	24328.25	48.91	40.92	-7.99	83.54	42.62	100	282	Vertical
5	25549.275	47.96	40.54	-7.42	83.54	43.00	100	265	Vertical
6	26342.75	47.68	40.55	-7.13	83.54	42.99	100	235	Vertical

Mode: DH5 Highest Frequency (2480MHz) Environment: 20.3 °C/45% RH/101.0kPa Test Engineer: Zhang Zishan

Date: 2023-01-31 Test Voltage: DC 3.87V

Suspect	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity				
1	18863.6	52.76	40.87	-11.89	83.54	42.67	100	189	Horizontal				
2	19803.7	55.11	43.93	-11.18	83.54	39.61	< 200	16	Horizontal				
3	20822	51.05	40.83	-10.22	83.54	42.71	100	266	Horizontal				
4	21915.95	50.05	40.28	-9.77	83.54	43.26	100	111	Horizontal				
5	25406.9	47.61	40.32	-7.29	83.54	43.22	100	189	Horizontal				
6	26368.25	46.44	39.23	-7.21	83.54	44.31	100	189	Horizontal				
-					\mathbb{S}^{\prime}								

Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity			
1	19065.9	53.77	42.02	-11.75	83.54	41.52	200	2	Vertical			
2	19795.625	54.30	43.21	-11.09	83.54	40.33	100	345	Vertical			
3	21990.325	50.74	41.07	-9.67	83.54	42.47	100	127	Vertical			
4	23900.7	48.76	40.34	-8.42	83.54	43.20	200	188	Vertical			
5	25259.85	47.89	40.84	·7.05	83.54	42.70	100	111	Vertical			
6	26201.225	47.12	39.64	-7.48	83.54	43.90	100	111	Vertical			

15. RESTRICTED BANDS OF OPERATION

15.1 LIMITS

Section 15.247(d) In addition, Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
$^{1}0.495 - 0.505$	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41	(\mathbb{Q}_{2})		

Frequency (MHz)	Quasi-peak(µV/m)	Measurement distance(m)	Quasi-peak(dBµV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30 ~ 88	100	3	40
88~216	150	3	43.5
216 ~ 960	200	3	46
Above 960	500	3	54

15.2 TEST PROCEDURES

- 1) The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - a) PEAK: RBW=1MHz / VBW=1MHz / Sweep=AUTO.
 - b) AVERAGE: RBW=1MHz / VBW=1/T / Sweep=AUTO.Where T is defined in section 2.8.
- 5) Repeat the procedures until all the PEAK and AVERAGE versus polarization are measured.

15.4 TEST RESULTS

DH5

Lowest Channel Frequency 2402MHz Environment: 25.3°C/54%RH/101.0kPa Tested By: Chen Xiaocong Detector mode: Peak

Test Voltage: DC 3.87V Date: 2023-02-16 Polarity: Horizontal

Detector mode: Peak

Polarity: Vertical

Page 59 of 64

No.	Frequency MHz	Reading dBuV/m	Level dBµV/m	Factor dB	Limit dBuV/m	Margin dB	Height cm	Angle	Pole	Remark
_1	2310	44.11	53.46	9.35	74.00	20.54	200	157	Horizontal	/
2	2351.0961	46.14	54.67	8.53	74.00	19.33	100	311	Horizontal	/
3	2390	42.61	51.54	8.93	74.00	22.46	100	300	Horizontal	/
4	2401.9728	66.41	75.45	9.04	74.00	-1.45	200	224	Horizontal	No limit
1	2310	43.40	53.33	9.93	74.00	20.67	100	182	Vertical	
2	2335.3684	45.89	56.00	10.11	74.00	18.00	100	248	Vertical	
3	2390	44.15	54.22	10.07	74.00	19.78	200	23	Vertical	/
4	2401.9928	73.22	83.21	9.99	74.00	-9.21	100	193	Vertical	No limit

Page 60 of 64

Detector mode: Average

Polarity: Vertical

						\frown				
No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Remark
	MHz	$dB\mu V/m$	$dB\mu V/m$	dB	dBuV/m	dB	cm	0		
1	2310	30.94	40.29	9.35	54.00	13.71	200	346	Horizontal	/
2	2344.629	31.45	40.08	8.63	54.00	13.92	100	266	Horizontal	
3	2390	31.05	39.98	8.93	54.00	14.02	200	126	Horizontal	1
4	2401.7728	65.45	74.48	9.03	54.00	-20.48	200	237	Horizontal	No limit
1	2310	30.96	40.89	9.93	54.00	13.11	200	66	Vertical	/
26	2349.956	31.42	41.64	10.22	54.00	12.36	200	210	Vertical	/
3	2390	31.18	41.25	10.07	54.00	12.75	100	213	Vertical	1
4	2401.7595	72.57	82.57	10.00	54.00	-28.57	100	181	Vertical	No limit

Test Voltage: DC 3.87V Date: 2023-02-16 Polarity: Horizontal

Detector mode: Peak

Polarity: Vertical

								1 1052 1		
No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Remark
	MHz	$dB\mu V/m$	$dB\mu V/m$	dB	dBuV/m	dB	cm	0		
1	2480.1807	67.20	77.05	9.85	74.00	-3.05	200	299	Horizontal	No limit
2	2483.5	44.06	53.98	9.92	74.00	20.02	100	81	Horizontal	/
3	2488.2432	45.76	55.77	10.01	74.00	18.23	200	200	Horizontal	/
4	2500	42.58	52.83	10.25	74.00	21.17	100	224	Horizontal	/
1	2480.1907	77.19	86.46	9.27	74.00	-12.46	200	181	Vertical	No limit
2	2483.5	43.17	52.45	9.28	74.00	21.55	200	336	Vertical	/
3	2485.303	45.86	55.15	9.29	74.00	18.85	200	82	Vertical	/
4	2500	42.64	51.99	9.35	74.00	22.01	200	137	Vertical	1

(()

Highest Channel Frequency 2480MHz Environment: 25.3 °C/54% RH/101.0kPa Tested By: Chen Xiaocong Detector mode: Average

Test Voltage: DC 3.87V Date: 2023-02-16 Polarity: Horizontal

Polarity: Vertical

No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Remark
	MHz	dBµV/m	dBµV/m	dB	dBuV/m	dB	cm	0		
_1	2479.8567	66.48	76.33	9.85	54.00	-22.33	200	300	Horizontal	No limit
2	2483.5	31.17	41.09	9.92	54.00	12.91	200	255	Horizontal	/
3	2489.7773	31.39	41.44	10.05	54.00	12.56	200	23	Horizontal	/
4	2500	30.92	41.17	10.25	54.00	12.83	100	204	Horizontal	12
1	2479.8707	76.86	86.13	9.27	54.00	-32.13	200	184	Vertical	No limit
2	2483.5	31.15	40.43	9.28	54.00	13.57	200	338	Vertical	
3	2485.139	31.36	40.65	9.29	54.00	13.35	100	299	Vertical	/
4	2500	30.93	40.28	9.35	54.00	13.72	100	333	Vertical	/

Remark:

1) Max field strength in 3m distance. No any other emission which falls in restricted bands can be detected and be reported.

Page 64 of 64

APPENDIX A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM

Please refer to the attached document E20221228512201-7-Test photo.

APPENDIX B. PHOTOGRAPH OF THE EUT

Please refer to the attached document E20221228512201-8-EUT photo.

----- End of Report -----