

Shenzhen Linklite Smart Lighting Co., Ltd

TEST REPORT •

SCOPE OF WORK FCC TESTING-KT-B01A, KT-B02A

REPORT NUMBER 190130004SZN-001

ISSUE DATE

[REVISED DATE]

4 March 2019

[-----]

PAGES

71

DOCUMENT CONTROL NUMBER FCC ID 247_b © 2017 INTERTEK

TEST REPORT

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen. Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 www.intertek.com

Intertek Report No.: 190130004SZN-001

Shenzhen Linklite Smart Lighting Co., Ltd

Application For Certification

FCC ID: 2ASF2KTB01

LED Table Lamp

Model: KT-B01A, KT-B02A

Brand Name: LINKLITE

2.4GHz Transceiver

Report No.: 190130004SZN-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-17]

Prepared and Checked by:

Approved by:

Leo Li Project Engineer

Kidd Yang Technical Supervisor Date: 4 March 2019

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen. Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1:	Summary of Tests
EXHIBIT 2:	General Description
EXHIBIT 3:	System Test Configuration
EXHIBIT 4:	Measurement Results
EXHIBIT 5:	Equipment Photographs
EXHIBIT 6:	Product Labeling
EXHIBIT 7:	Technical Specifications
EXHIBIT 8:	Instruction Manual
EXHIBIT 9:	Confidentiality Request
EXHIBIT 10:	Miscellaneous Information
EXHIBIT 11:	Test Equipment List

MEASUREMENT/TECHNICAL REPORT

Shenzhen Linklite Smart Lighting Co., Ltd

Model: KT-B01A, KT-B02A

FCC ID: 2ASF2KTB01

This report concerns (check one) Original Grant X Class II Change			
Equipment Type: DTS - Part 15 Digital Transmission Systems (Wi-Fi transmitter			
portion)			
Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes NoX	_		
If yes, defer until :	_		
date Company Name agrees to notify the Commission by:			
date	_		
of the intended date of announcement of the product so that the grant can be issued on that date.	Э		
Transition Rules Request per 15.37? Yes NoX	_		
If no, assumed Part 15, Subpart C for intentional radiator - the new 47 CFR [10-1-17] Edition] provision.			
Report prepared by:	-		
Leo Li Intertek Testing Services Shenzhen Ltd. Longh Branch 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistric LongHua District, ShenZhen. Tel: (86 755) 8614 0743 Fax: (86 755) 8601 675			

Table of Contents

1.0	Summary of Test results	7
2.0	General Description	9
2.1 2.2 2.3 2.4	Product Description Related Submittal(s) Grants Test Methodology Test Facility	9 9 9
<u>3.0</u>	System Test Configuration	11
3.1 3.2 3.3 3.4 3.5 3.6	Justification EUT Exercising Software Special Accessories Measurement Uncertainty Equipment Modification Support Equipment List and Description	11 12 12 12
4.0	Measurement Results	14
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Transmitter Duty Cycle Calculation and Measurements	15 21 45 46 46 47 48 53 56 57
5.0	Equipment Photographs	
6.0 7.0	Product Labelling <u>Technical Specifications</u> Instruction Manual	63
8.0	Instruction Manual	
<u>9.0</u> 10.0	Discussion of Pulse Desensitization	
11.0	Test Equipment List	

List of attached file

Exhibit type	File Description	Filename
Test Report	Test Report	report.pdf
Test Setup Photo	Radiated Emission	radiated photos.pdf
External Photo	External Photo	external photos.pdf
Internal Photo	Internal Photo	internal photos.pdf
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
Operation Description	Technical Description	descri.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf
Cover Letter	Confidentiality Letter	request.pdf
Cover Letter	Letter of Agency	agency.pdf

EXHIBIT 1 SUMMARY OF TEST RESULTS

1.0 Summary of Test results

LED Table Lamp

Model: KT-B01A

FCC ID: 2ASF2KTB01

TEST ITEM	REFERENCE	RESULTS
Max. Output power	15.247(b)(3)	Pass
6 dB Bandwidth	15.247(a)(2)	Pass
Max. Power Density	15.247(e)	Pass
Out of Band Antenna Conducted Emission	15.247(d)	Pass
Radiated Emission in Restricted Bands	15.247(d)	Pass
AC Conducted Emission	15.207	Pass
Antenna Requirement	15.203	Pass (See Notes)


Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

EXHIBIT 2

GENERAL DESCRIPTION

2.0 General Description

2.1 Product Description

The Equipment Under Test (EUT) is a LED Table Lamp with WIFI function operating at 2412-2462MHz for 802.11b/g/n-HT20, 11 channels with 5MHz channel spacing. The EUT can be powered by AC 120V/60Hz. For more detailed features description, please refer to the user's manual.

Antenna Type: Integral antenna Type of Modulation: BPSK, QPSK, 16QAM, 64QAM, CCK, DQPSK, DBPSK. Antenna Gain: 2.5dBi

The Model: KT-B02A is the same as the Model: KT-B01A in hardware and electrical aspect. The difference in model number and colour serves as marketing strategy.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of DTS- Part 15 Digital Transmission Systems (2.4GHz Wi-Fi transmitter portion).

For other functions were reported in the SDOC report: 190130004SZN-002.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10: 2013 and KDB 558074 D01 v05r01. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The Semi-Anechoic chamber and shield room used to collect the radiated data and conducted data are **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: CN1188).

EXHIBIT 3

SYSTEM TEST CONFIGURATION

Version: 01-November-2017

3.0 System Test Configuration

3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables were manipulated to produce worst case emissions. The EUT was powered by AC 120V/60Hz during the test, only the worst data was reported in this report.

For maximizing emissions, the EUT was rotated through 360°, the EUT was placed on the styrene turntable with 0.8m up to 1GHz and 1.5 m above 1GHz. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

The rear of unit was flushed with the rear of the table.

Radiated emission measurement were performed the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

3.2 EUT Exercising Software

The EUT exercise program (provided by client) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The worst case configuration is used in all specified testing.

The parameters of test software setting:

During the test, Channel and power controlling software provided by the applicant was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the application and is going to be fixed on the firmware of the end product.

3.3 Special Accessories

N/A.

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

3.5 Equipment Modification

Any modifications installed previous to testing by Shenzhen Linklite Smart Lighting Co., Ltd will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Longhua Branch.

3.6 Support Equipment List and Description

This product was tested in the following configuration:

Refer List:

Description	Manufacturer	Model No.
Mobile Phone	SAMSUNG	S7
Adapter	provided by applicant	XY06J-0501000Q-UW

EXHIBIT 4

MEASUREMENT RESULTS

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019

Model: KT-B01A

4.0 Measurement Results

4.1 Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(3):

The antenna power of the EUT was connected to the input of a broadband peak RF power meter. The power meter has a video bandwidth that is greater than DTS bandwidth and utilize a fast-responding diode detector. Power was read directly at the EUT antenna terminals with cable loss added.

For antennas with gains of 6 dBi or less, maximum allowed Transmitter output is 1 watt (+30 dBm).

IEEE 802.11b (Antenna Gain = 2.5dBi) (CCK, 1Mbps)		
Frequency (MHz)	Output in dBm (Peak Reading) Output in mW	
Low Channel: 2412	23.54	225.9
Middle Channel: 2437	23.41	219.3
High Channel: 2462	23.17	207.5

IEEE 802.11g (Antenna Gain = 2.5dBi) (16QAM, 6Mbps)		
Frequency (MHz)	Output in dBm (Peak Reading) Output in mWa	
Low Channel: 2412	23.74	236.6
Middle Channel: 2437	23.78	238.8
High Channel: 2462	23.75	237.1

IEEE 802.11n-HT20 (Antenna Gain = 2.5dBi) (16QAM, 6.5Mbps)		
Frequency (MHz)	Output in dBm (Peak Reading)	Output in mWatt
Low Channel: 2412	23.85	242.7
Middle Channel: 2437	23.89	244.9
High Channel: 2462	23.84	242.1

Cable loss: <u>1.0</u> dB External Attenuation: 0 dB Cable loss, external attenuation has been included in OFFSET function

EUT max. output level = 23.89dBm EUT max. radiated output level = 23.89dBm + 2.5dBi = 26.39dBm

For RF Exposure, the information is saved with filename: RF exposure.pdf.

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019

Model: KT-B01A

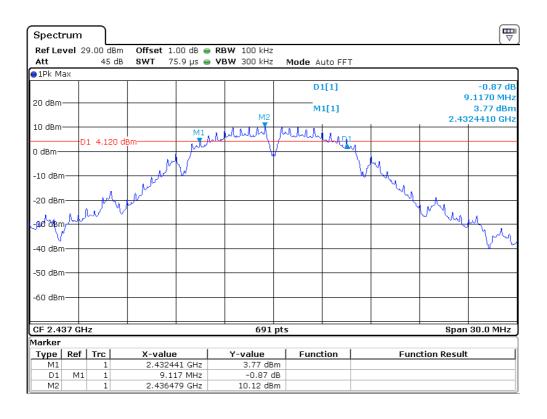
4.2 Minimum 6 dB RF Bandwidth, FCC Rule 15.247(a) (2):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100 KHz according to FCC KDB 558074 D01 v05r01. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

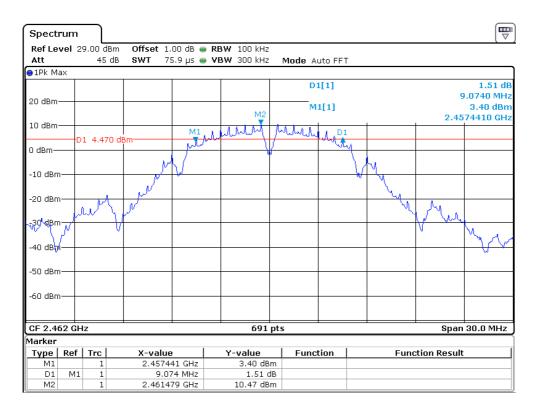
Limit: The 6 dB Bandwidth is at least 500 kHz.

IEEE 802.11b (CCK, 1Mbps)	
Frequency (MHz)6 dB Bandwidth (MHz)	
2412	10.03
2437	9.12
2462	9.07

IEEE 802.11g (16QAM, 6Mbps)		
Frequency (MHz)6 dB Bandwidth (MHz)		
2412	15.50	
2437	15.50	
2462	15.85	


IEEE 802.11n-HT20	(16QAM, 6.5Mbps)
Frequency (MHz)	6 dB Bandwidth (MHz)
2412	15.67
2437	15.80
2462	16.02

The test plots are attached as below.



802.11b

Specti	um									
Ref Le [.] Att	vel 2	9.00 de 45 (3W 100 kHz 3W 300 kHz	Mode A	uto FFT			
😑 1Pk Ma	эх									
20 dBm-							ı[1] 1[1]		10	0.00 dB 1.0290 MHz 3.66 dBm
10 dBm-					M2				2.40	69640 GHz
	D	1 3.610) dŖm	M1 wh	MMM	Minh	hh 101			
0 dBm—			1 m	/	4	/	1	Why.		
-10 dBm -20 dBm		Л	u fuludur -					- and h		
-20 dbli _J.J.J.J. -30 dBlf	M	w	*V						N. Yuy	Mung
-40 dBm									· · ·	
-50 dBm										
-60 dBm										
CF 2.41					601				0	00.0 ML
GF 2.4. Marker	LZ GH	2			691	prs			span	30.0 MHz
Type	Ref	Trc	X-value	1	Y-value	Func	tion 1	Fund	tion Result	1
M1	NOT	1	2.406964	GHz	3.66 dBi			- i une	Alon Result	
D1 M2	M1	1	10.029 2.409482		-0.00 d 9.61 dBi					

802.11g

Spect	rum														E
Ref Le Att	vel 2		Bm Of dB SV				/ 100 kHz / 300 kHz		Mode Au	uto FFT	-				
😑 1Pk M	ах														
20 dBm									D1	L[1]				15	1.76 dB .4990 MHz
				Ma					M:	1[1]				2.40	1.75 dBn 40550 GH;
10 dBm			M			1	undry		here alla		Λ.	J., 91			
0 dBm—	D	1 2.37	'0 dBm-7	(JAAN AN A	ed vy ruffindi	LANCH		P	e i nalifica i ni	مهاني ما المغيرة	K MOV	" Laboration			
-10 dBm	ι <u> </u>														
-10 dBm	m	$\sqrt{2}$	WWV V										Mr.U.	w.	MANN
-30 dBm															
-40 dBm	۱ <u> </u>							-							
-50 dBm	<u>ا</u> _ر														
-60 dBm	η														
CF 2.4	12 GH	lz					691	pts	;					Span	30.0 MHz
Marker															
Туре	Ref				<u> </u>	'-value				Fur	nction F	Result			
M1		1					1.75 dB								
D1 M2	M1	1		15.49	99 MHz 48 GHz		1.76 (8.37 dB								
		-													

Spectr	um									
Ref Lev Att	el 21	9.00 d 45			RBW 100 kHz VBW 300 kHz		Auto FFT	-		
⊖1Pk Ma	х									
							D1[1]		1	1.78 dB 5.4990 MHz
20 dBm-							M1[1]			1.92 dBm
10 dBm-			N	-					2.43	290550 GHz
	D	1 2.53	M1 م dBm جبالمام	Julyon	Industry	pontage	malia	har Di		
0 dBm—			1.5			1		1		
-10 dBm-			n of f				-		Knor a	
-10 dBm· /////// /-20 dBm·	m	᠕᠈ᠬᡟ					_		howing	massig
-30 dBm-										
-50 0511										
-40 dBm-	+						-			
-50 dBm-	_						_			
-60 dBm-										
-00 0011										
CF 2.43	7 GH	Iz	<u> </u>		691	pts	-		Spar	1 30.0 MHz
Marker										
	Ref		X-valu		Y-value		nction	Fur	nction Resul	t
M1		1		055 GHz	1.92 dB					
D1 M2	M1	1		99 MHz 748 GHz	1.78 (8.53 dB					

Spect	rum										
Ref Le Att	vel 2	9.00 d 45			RBW 100 kHz VBW 300 kHz	Mode A					
ALL 1Pk Ma		45	ub awı 7.	era he 💻	YOW SUUKHZ	MODE A	uto FFT				,
UPK M	ax T					D					-0.11 dB
						D.	1[1]			1.1	-0.11 uB 5.8470 MHz
20 dBm·						м	1[1]			1.	-0.46 dBm
							-1-1			2.45	40550 GHz
10 dBm·			M							1	1
			м1,	A	hope hurber 1	An als	. 6	8 0	ID 1		
0 dBm	D	1 -0.2	40 dBm թվիկան	Martin	inter and the	July Delling	mm	man	- C		
					Υ Y				- 1		
-10 dBm	י_+-								<u> </u>		
			N.						ો		
-20 dBm	ι 	~ M	Length						4	h a a a	
-20 dBm 1000000000000000000000000000000000000	rm	Mer	ř							1 march	mmy
-30 dBm	י−+-										
-40 dBm	ו—ו										
-50 dBm	י − ⊢										
-60 dBm	η 										
CF 2.40	62 GH	z			691 p	ts				Span	30.0 MHz
Marker					•						
Type	Ref	Trc	X-value	9	Y-value	Func	tion		Fund	tion Result	:
M1		1	2.4540		-0.46 dBm						
D1	M1	1		47 MHz	-0.11 dB						
M2		1	2.4557	48 GHz	5.76 dBm						

802.11n-HT20

Spect	rum									
Ref Lev	vel 2	9.00 dE	m Offset 1	.00 dB 🔵	RBW 100 kH	z				
Att		45	dB SWT 7	5.9 µs 👄	• VBW 300 kH	z Mode A	uto FFT	-		
😑 1Pk Ma	эx									
20 dBm-				D1[1] 0.45 15.6730 M						
			M	a		M	1[1]		2.40	2.01 dBm 42290 GHz
10 dBm-		1 0 00		h. Ara	And Annalian	malant	halar	Indruce1		
0 dBm—		1 2.22	/ Congoo			1		<u>, , , , , , , , , , , , , , , , , , , </u>		
-10 dBm	ı——	. л. л.	M						101	
-10 dBm	m	N W ~							WWWW	Mulah
-30 dBm										
-40 dBm	۱ <u> </u>									
-50 dBm	ı									
-60 dBm										
CF 2.41	12 GH	z			691	. pts			Span	30.0 MHz
Marker										
Туре	Ref		X-value		Y-value	Func	tion	Fund	ction Result	
M1 D1	M1	1		29 GHz	2.01 d					
M2	IMI	1		73 MHz 48 GHz	0.45 8.22 d					

Spect	rum										
Ref Le Att	vel 2	9.00 dBm 45 dB			RBW 100 kHz VBW 300 kHz		Auto FFT	-			
∋1Pk M	эх										
20 dBm							D1[1] M1[1]			13	0.45 d 5.8030 MH 2.08 dBr
10 dBm			M2							2.42	90980 GH
0 dBm—	D	1 2.580 de	3m June	mbro	Moor American	mertred	halar	hefe			
			ľ			1			પ		
-10 dBm	1111	Norm								mann	R.A. a a
-20`dBn	ا (L
-30 dBm	۱ 										
-40 dBm											
-50 dBm	-										
-60 dBm	<u>ا</u> ــــ										
CF 2.4	37 GH	z			691	pts				Span	30.0 MHz
Marker											
Туре	Ref		X-value		Y-value		ction		Fund	ction Result	
M1		1	2.42909		2.08 dB						
D1 M2	M1	1	2.43074	13 MHz 18 GHz	0.45 (8.58 dB						
102		-	2,1001		0.00 dE						

Specti	rum											
Ref Le [.] Att	vel 2	9.00 dBm 45 dB				₩ 100 kHz ₩ 300 kHz	Mode A	uto FFT	-			
⊖1Pk Ma	эx											
20 dBm-								1[1]			16	0.48 dB 5.0200 MHz
10 dBm-							М	1[1]		1	2.45	-0.33 dBm 38810 GHz
0 dBm	D	1 -0.220 c	Bmthink	mular	ha	Amalina	mohant	whe	he	Ann P1		
-10 dBm			ſ~				/			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-20 dBm		March									h.	nonthi
-30 dBm)										• •	manghau
-40 dBm												
-50 dBm												
-60 dBm	۱ <u> </u>											
CF 2.46	CF 2.462 GHz 691 pts Span 30.0 MHz											
Marker												
Туре	Ref	Trc	X-value			Y-value	Func	tion		Func	ction Result	
M1		1	2.45388			-0.33 dB						
D1 M2	M1	1	16.0 2.4557	12 MHz 48 GHz		0.48 c 5.78 dB						

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019

Model: KT-B01A

4.3 Maximum Power Density Reading, FCC Rule 15.247(e):

The Measurement Procedure PKPSD was set according to the FCC KDB 558074 D01 v05r01.

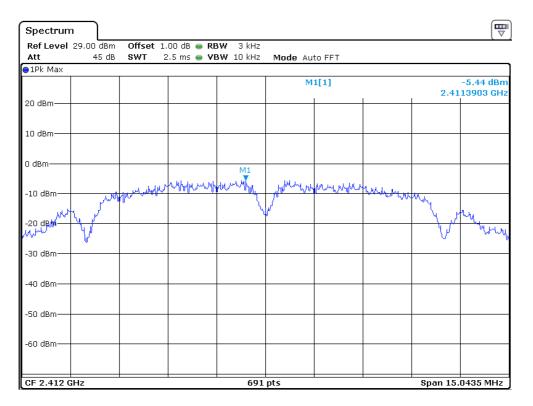
Antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function.

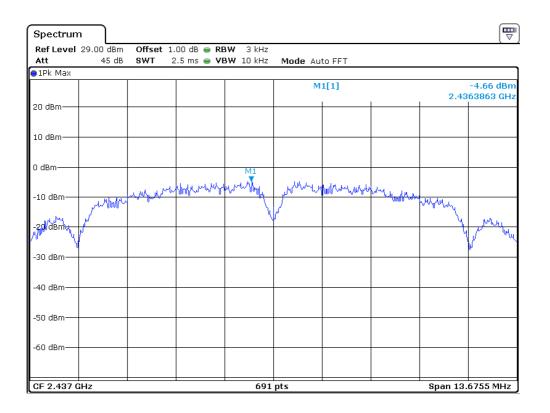
For antennas with gains of 6 dBi or less, maximum allowed Transmitter output is 8dBm/3 kHz.

IEEE 802.11b (IEEE 802.11b (CCK, 1Mbps)								
Frequency (MHz)	Power Density with RBW 3KHz								
2412	-5.44								
2437	-4.66								
2462	-4.50								

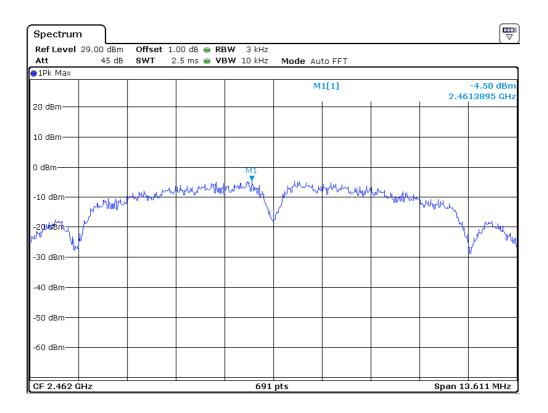
IEEE 802.11g (1	IEEE 802.11g (16QAM, 6Mbps)									
Frequency (MHz)	Power Density with RBW 3KHz									
2412	-7.38									
2437	-7.29									
2462	-9.30									

IEEE 802.11n-HT20	(16QAM, 6.5Mbps)
Frequency (MHz)	Power Density with RBW 3KHz
2412	-8.05
2437	-7.79
2462	-9.69

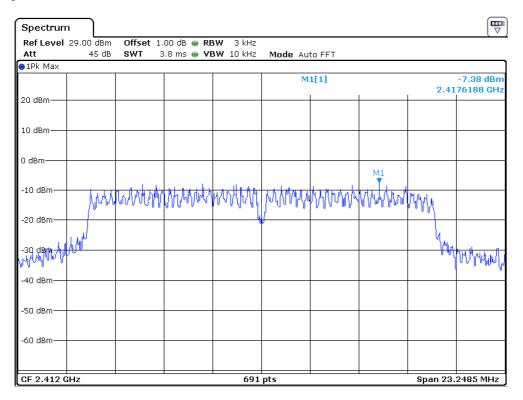

Cable loss: <u>1.0</u> dB External Attenuation: 0 dB

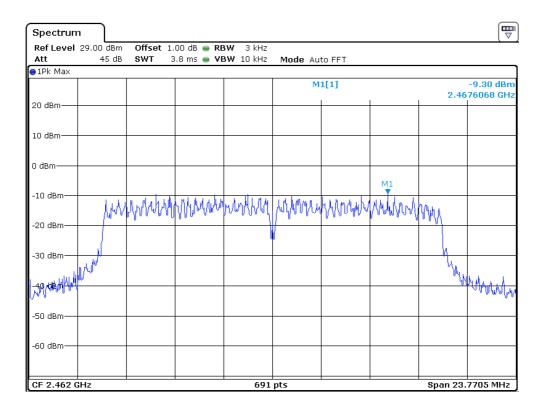

Cable loss, external attenuation has been included in OFFSET function

The test plots are attached as below.

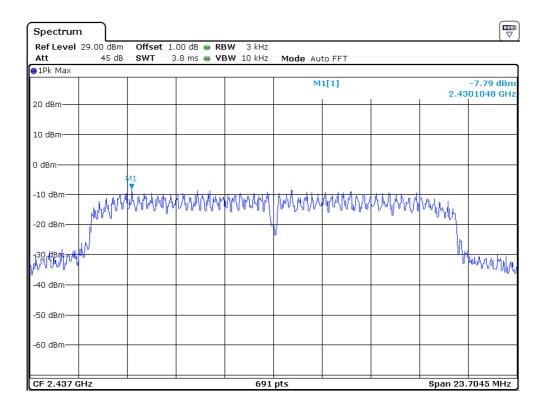


802.11b





802.11g


Spectrum	'n								
Ref Level Att	29.00 dBm 45 dB		00 dB 👄 RE .8 ms 👄 VE		Mode Au	to FFT			
●1Pk Max			_						
					м	1[1]		2.44	-7.29 dBm 26188 GHz
20 dBm									
10 dBm									
0 dBm							M1		
-10 dBm	<u>I</u> MI	white	hand	workly	pillip	hhminh	WAAN	1444	
-20 dBm	1 del			ų	ľ			- "N	
-39.4910-44	<u>A</u> (*							- Vilit	white
-40 dBm									
-50 dBm									
-60 dBm									
CF 2.437 G	iHz			691	pts			Span 23.	2485 MHz

802.11n-HT20

Spectrun	ī										
Ref Level Att	29.00 dBm 45 dB		00 dB 👄 RE .8 ms 👄 VE		Mode Au	to FFT					
●1Pk Max									0.05.40		
					M	M1[1]			-8.05 dBm 2.4050933 GHz		
20 dBm											
10 dBm											
0 dBm		11									
-10 dBm		ANNANA	CANANAAN	humund	MWM	MMM	MMM	hunder of the second se			
-20 dBm				l	V			4			
	U							l l	MANNAN AN		
-40 dBm											
-50 dBm											
-60 dBm											
CF 2.412 C	iHz			691	pts			span 23.	5095 MHz		

Spectrun	n									
Ref Level	29.00 dBm	Offset :	1.00 dB 😑 RE	3W 3 kHz						
Att	45 dB	SWT	3.8 ms 👄 ۷	3W 10 kHz	Mode Au	to FFT				
⊖1Pk Max										
					М	1[1]		-9.69 dBm 2.4550800 GHz		
20 dBm										
10 dBm										
0 dBm										
-10 dBm		MI Kanaan	MAR MAR	unhakeut	MANATAA	AALLALA	KALALAA	uut i		
-20 dBm	14/11"	Antra A		100-10-1	1	1.81800	e - a c l ĝi			
-30 dBm	H.							H.		
	[which the second	
-50 dBm										
-60 dBm—										
CF 2.462 (CF 2.462 GHz 691 pts Span 24.03 MHz									

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019

Model: KT-B01A

4.4 Out of Band Conducted Emissions, FCC Rule 15.247(d)

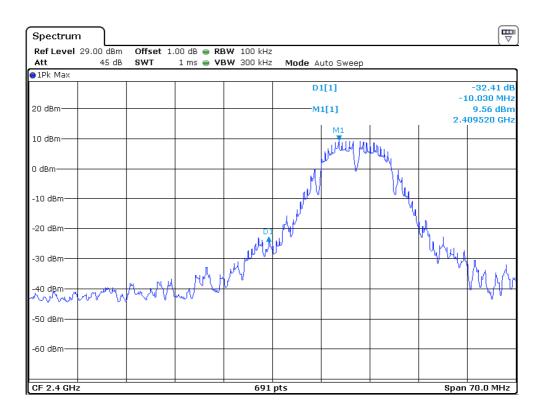
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. The Measurement Procedure was set according to the FCC KDB 558074 D01 v05r01.

All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the passband.

Refer to the attached test plots for out of band conducted emissions data.

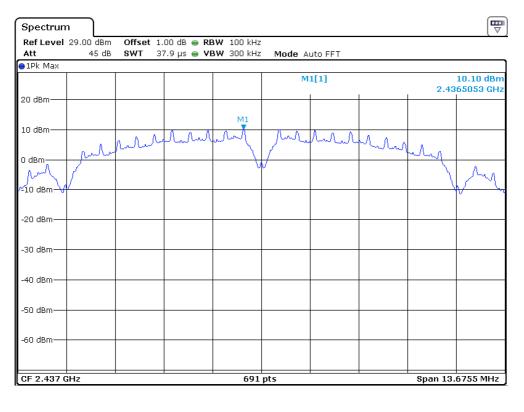
The test plots showed all spurious emission up to the tenth harmonic were measured and they were found to be at least 20 dB below the highest level of the desired power in the passband.

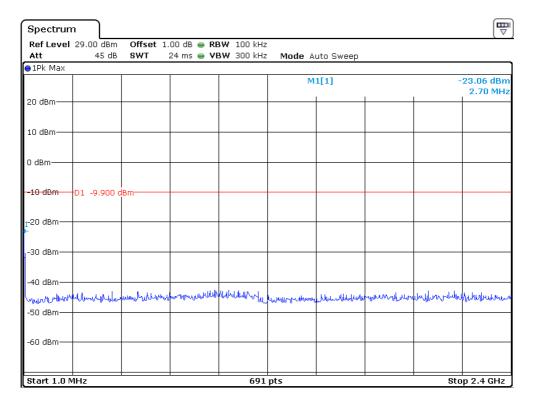
The test plots are attached as below.


802.11b Channel 01 (2412MHz) Reference Level: 9.39dBm

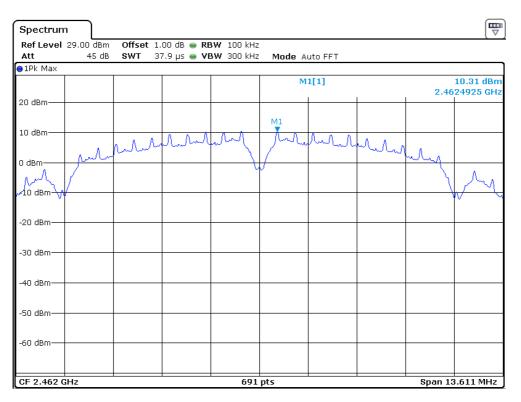
Spectrum Ref Level 29.00 dBm Offset 1.00 dB 👄 RBW 100 kHz 37.9 µs 😑 **VBW** 300 kHz Att 45 dB SWT Mode Auto FFT 😑 1Pk Max M1[1] 9.39 dBm 2.4094963 GHz 20 dBm M1 10 dBm Mulu M Mul ral -Δ And. And N 0 dBm Δ -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm-Span 15.0435 MHz CF 2.412 GHz 691 pts

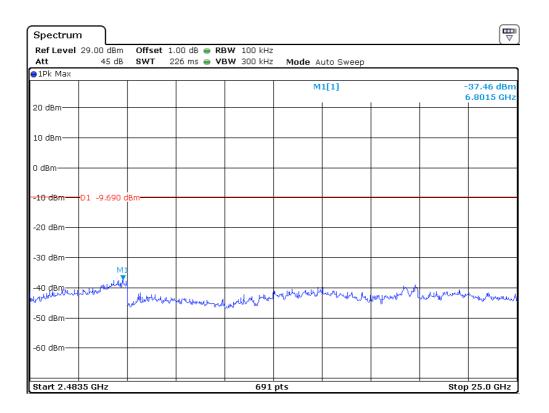
Spectrun Ref Level	29.00 dBm	Offset 1	00 dB 👄 RE	W 100 kHz						
Att	45 dB		24 ms 👄 VE			uto Sweep				
∋1Pk Max										
					М	1[1]		-19.24 dBm 2.70 MHz		
20 dBm										
10 dBm										
0 dBm										
-10 dBm	D1 -10.610	dBm 								
-20 dBm										
-30 dBm										
-40 dBm		a informa		utrestre kert.		an water a state of the state o		al dila ana baha		
-50 dBm	whencerthing		100folliorer	······································	hulunduruh	ann an the second s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	etrestremented.	Martallin	
-60 dBm										



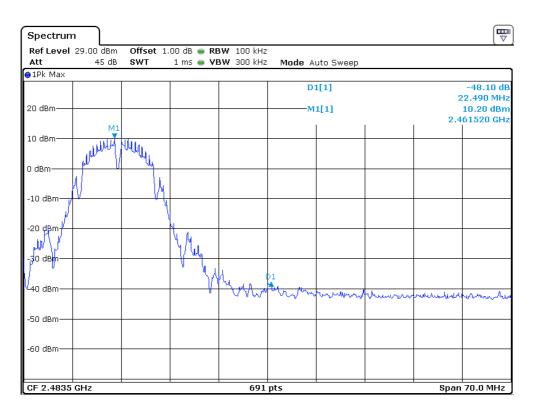

Spectrum 🕎									
	29.00 dBm	Offset 1.		3W 100 kHz					
Att	45 dB	SWT 23	26 ms 👄 VE	3W 300 kHz	Mode A	uto Sweep			
●1Pk Max						1111			38.05 dBm
					IVI	1[1]			38.05 dBm 6.6705 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -10.610	dBm 							
-20 dBm—									
-30 dBm—	M1								
-40 dBm	T	. An Mader	بر رار البلار	. I peli liveur	ununun	when	annor	ريداوريالسريواوره	mander
		φμ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	how w			• •		
-50 dBm									
-60 dBm									
Start 2.48	Start 2.4835 GHz 691 pts Stop 25.0 GHz								

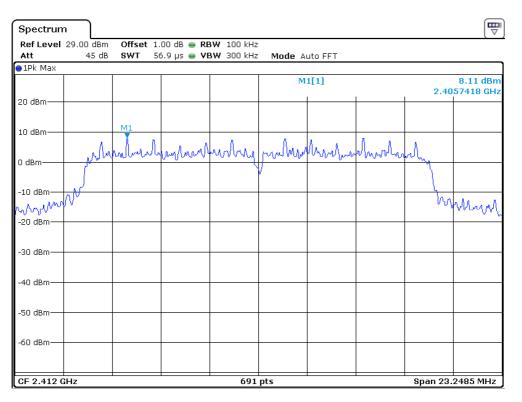
Channel 06 (2437MHz) Reference Level: 10.1dBm

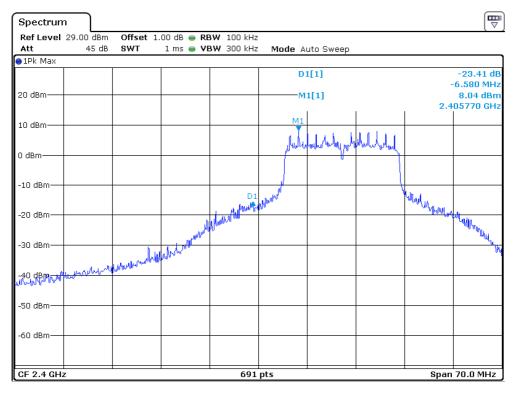


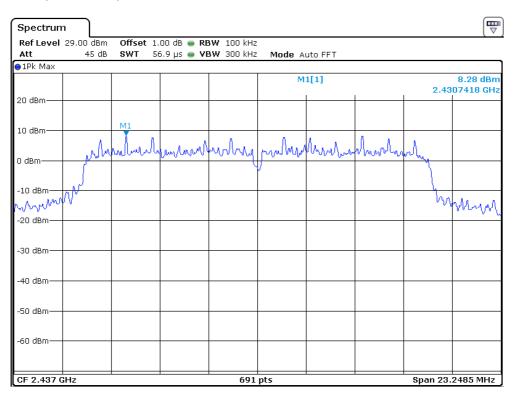

Spectrun	n								(₩)
	29.00 dBm			W 100 kHz					
Att 1Pk Max	45 dB	SWT 22	26 ms 🖷 VE	3W 300 kHz	Mode A	uto Sweep			
TEK May					м	1[1]			37.24 dBm
						-[-]			.8335 GHz
20 dBm									
10 dBm									
0 dBm									
o ubili									
-10 dBm	D1 -9.900 d	Bm							
-20 dBm—									
-30 dBm									
	M1								
-40 dBm	marin about	Antraina	معاريبا الما	للهلمي والمعاد	Mongorwa	WMWW-WAU	whenever	wohnwhenthe	Warthan
-50 dBm		~~ ~~	··· moneya	Linghan C.					
-30 0011									
-60 dBm									
01							L	01	05.0.011-
Start 2.48	Start 2.4835 GHz 691 pts Stop 25.0 GHz								

Channel 11 (2462MHz) Reference Level: 10.31dBm

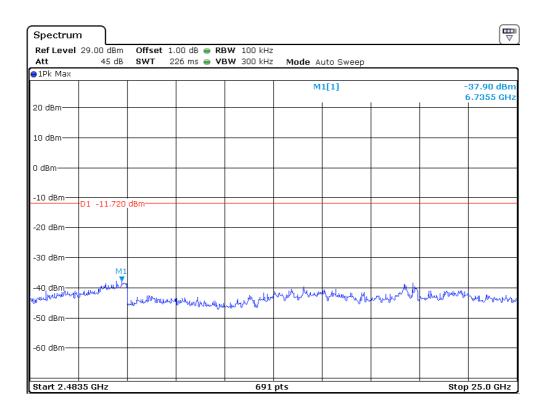



Spectrun	n								
Ref Level	29.00 dBm	Offset 1.	00 dB 🔵 RE	W 100 kHz					
Att	45 dB	SWT	24 ms 👄 🛛 🛛	3W 300 kHz	Mode Au	uto Sweep			
⊖1Pk Max									
					M	1[1]		-	27.17 dBm
20 dBm									2.70 MHz
10 dBm									
0 dBm									
-10 dBm	•D1 -9.690 c	Bm 							
-20 dBm									
1 - -30 dBm									
-40 dBm									
munhound	whentherefore	en able and adams	pentholecolecolec	mundul	our for the	munnut	whenter	Construction of the second	hananahaintaa
-50 dBm									
-60 dBm									
Start 1.0 N	/IHz			691	pts			Sto	p 2.4 GHz

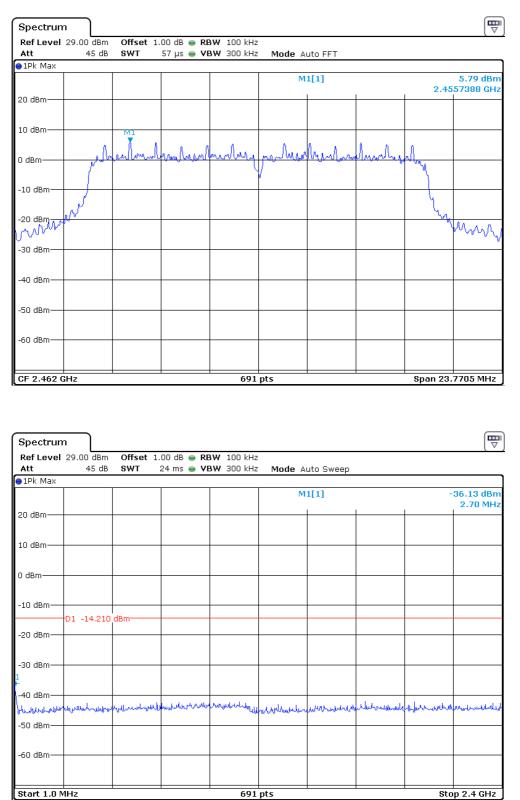



Spectrun	n									
Ref Level	29.00 dBm	Offset 1.	00 dB 😑 RE	3W 100 kHz						
Att	45 dB	SWT	24 ms 👄 ۷	3W 300 kHz	Mode A	uto Sweep				
⊖1Pk Max										
					М	1[1]		-15.29 dBm 2.39830 GHz		
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
	D1 -11.890	dBm							M ≓	
-20 dBm—										
-30 dBm										
-40 dBm										
hourson	Murbenjelon	whitement	Lona Maran	withmused	www.www.	munun	mound	hound-round	republication	
-50 dBm										
-60 dBm										
Start 1.0 N	/Hz			691	pts			Sto	p 2.4 GHz	

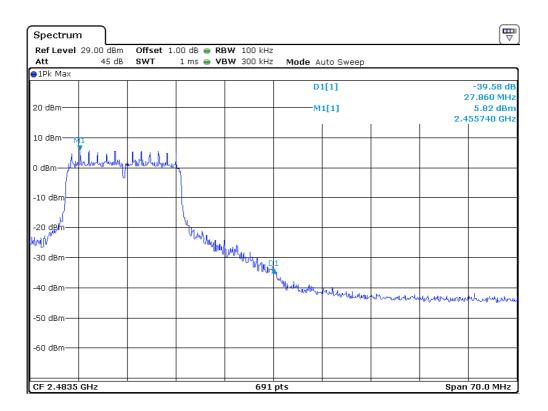
Spectrum	n								
	29.00 dBm			3W 100 kHz					
Att	45 dB	SWT	226 ms 👄 ۷	3W 300 kHz	Mode A	uto Sweep			
⊖1Pk Max									
					м	1[1]			38.06 dBm 5.9965 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -11.890	dBm	_						
-20 dBm									
-30 dBm	м	1							
-40 dBm 			- which the here we	where the start	Law Marin	Mahaman	www.un	ymamore	how how have
-50 dBm									
-60 dBm									
Start 2.48	35 GHz			691	pts			Stop	25.0 GHz



Channel 06 (2437MHz) Reference Level: 8.28dBm

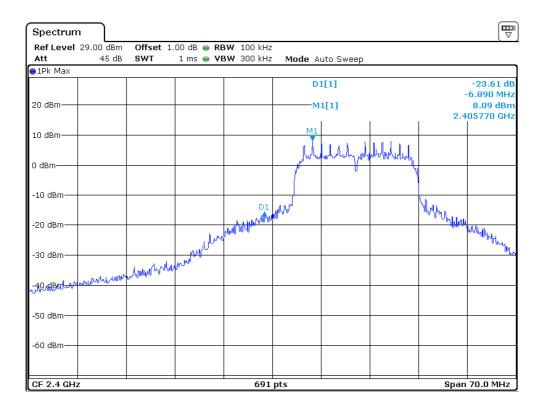


Spectrun	n									
Ref Level				1.00 dB 😑 RB						
Att	45	dB	SWT	24 ms 🖷 ۷	3W 300 kHz	Mode A	uto Sweep			
😑 1Pk Max										
						M	1[1]		-	29.72 dBm
00 40							I	I		2.70 MHz
20 dBm										
10 dBm										
0 dBm										
-10 dBm—	D1 -11	720	dBm							
-20 dBm				-						
1 30 dBm										
1										
-40 dBm				in mound	Here was a britte			L. A		1. 10 A. 1
Myungung	Lundhe	العلمه	onulling	warmeli	maprovidu	formente	matroparticity	mmullitere	howard	within
-50 dBm										
-60 dBm										
00 00111										
Start 1.0 M	/Hz			-1	691	pts	l		Sto	p 2.4 GHz



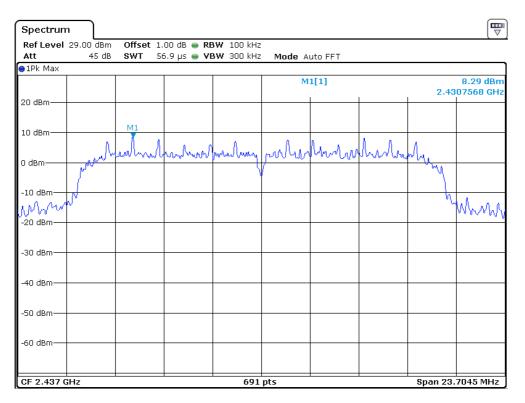
Channel 11 (2462MHz) Reference Level: 5.79dBm

Spectrun	Spectrum 🕎										
	29.00 dBm		00 dB 🔵 RB								
Att	45 dB	SWT 23	26 ms 👄 🛛 🛛	W 300 kHz	Mode A	uto Sweep					
●1Pk Max											
					M	1[1]			37.86 dBm		
20 dBm								6	.7035 GHz		
10 dBm											
0 dBm											
-10 dBm—											
-20 dBm	D1 -14.210	dBm									
-30 dBm—											
-40 dBm 	M1						uth a				
-40 dBm	annous	n Holumbar	Munullan	allahan Malla	Mungayrum	where	Man m	And Hundy	mundresshall		
-50 dBm		-		04							
-60 dBm											
Start 2.48	35 GHz			691	pts			Stop	25.0 GHz		


802.11n-HT20 Channel 01 (2412MHz) Reference Level: 8.09dBm

₽ Spectrum Ref Level 29.00 dBm Offset 1.00 dB 👄 RBW 100 kHz Att 45 dB SWT 56.8 µs 👄 **VBW** 300 kHz Mode Auto FFT 😑 1Pk Max M1[1] 8.09 dBm 2.4057403 GHz 20 dBm м 10 dBm Mandrey handrandra March March marter A κA. 0 dBm 5 -10 dBm then ĸ٨ -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm CF 2.412 GHz 691 pts Span 23.5095 MHz

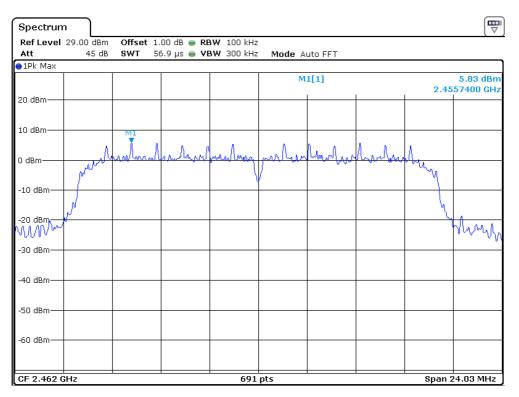
Spectrum	'n									
Ref Level Att	29.00 dBm 45 dB			3W 100 kHz 3W 300 kHz						
ALL 1Pk Max	45 UB	3111	24 ms 🔲 ¥t	344 300 KHZ	MODE A	uto Sweep				
					М	1[1]		-15.68 dBm 2.39830 GHz		
20 dBm										
10 dBm										
0 dBm										
-10 dBm	D1 -11.910	dBm							M	
-20 dBm										
-30 dBm										
-40 dBm	hoursonwholes	un white	narnall	maballing	multeradaret	www.whenter	let med man elisaber	un habel haven	www.	
-50 dBm										
-60 dBm										
Start 1.0 M	1Hz			691	pts			Sto	p 2.4 GHz	



Spectrun	ī								
Ref Level	29.00 dB	m Offset	1.00 dB 😑 RB	3W 100 kHz					
Att	45 (db SWT	226 ms 👄 ۷	3W 300 kHz	Mode A	uto Sweep			
●1Pk Max									
					М	1[1]			38.18 dBm 5.9635 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm—	D1 -11.9	10 dBm							
-20 dBm—									
-30 dBm		M1							
-40 dBm	mutora	Harler Harler	www.una	mondation	www.Mrv	when block	wyw M	u hu who	monor
-50 dBm									
-60 dBm									
Start 2.48	35 GHz			691	pts			Stop	25.0 GHz

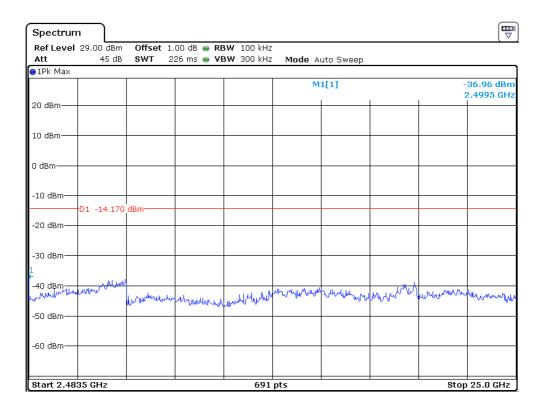
Channel 06 (2437MHz) Reference Level: 8.29dBm

Spectrun	n										
Ref Level Att	29.00 dBm 45 dB		00 dB 👄 RE 24 ms 👄 VE			uto Sweep					
⊖1Pk Max											
					М	1[1]		-	-31.05 dBm 2.70 MHz		
20 dBm											
10 dBm											
0 dBm											
-10 dBm	D1 -11.710	dBm									
-20 dBm—											
-30 dBm											
-40 dBm											
	alreal-drandshow	hikunderrehdensele	bolimeter	un marine du	oliworoundele-	personal hyproserve	a-habba hadbara	etra production with	rounderworkend		
-50 dBm											
-60 dBm											
Start 1.0 M	/Hz			691	pts			Sto	p 2.4 GHz		

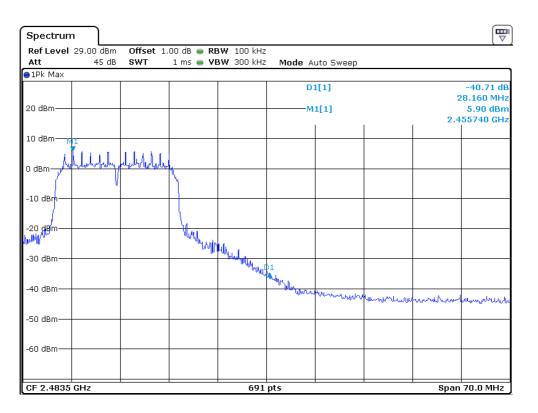

Spectrun	Γ										
Ref Level	29.00 dBm	Offset 1.	00 dB 👄 RE	3W 100 kHz							
Att	45 dB	SWT 2	26 ms 🔵 VE	3W 300 kHz	Mode A	uto Sweep					
●1Pk Max											
					М	1[1]			-37.82 dBm 6.4755 GHz		
20 dBm											
10 dBm											
0 dBm											
-10 dBm	D1 -11.710	dBm									
-20 dBm											
-30 dBm	M1										
-40 dBm	. 🔻	. And INHIN	all sugar	مىلەر بىد	MM Marker	whenne	whomewerthy	www.www.	Luphhan		
-50 dBm		₩ [₩] [₩]	e. nannaradal	norman an a							
-60 dBm											
Start 2.48	35 GHz			691	pts			Stop	25.0 GHz		

Channel 11 (2462MHz) Reference Level: 5.83dBm

intertek


Total Quality. Assured.

TEST REPORT



Spectrun	Spectrum										
Ref Level	29.00 dBm	Offset 1	.00 dB 🔵 RE	3W 100 kHz							
Att	45 dB	SWT	24 ms 🔵 🛛	3W 300 kHz	Mode A	uto Sweep					
●1Pk Max											
					М	1[1]		-37.16 dBm 2.70 MHz			
20 dBm											
10 dBm											
0 dBm											
-10 dBm—	D1 -14.170	dBm									
-20 dBm	51 -14.170										
-30 dBm											
- 40 dBm											
hungerland	hubberry	oburblehand	la more realling	lower	rudelatra	Hungobera	hunnause	munnanu	Number		
-50 dBm											
-60 dBm											
Start 1.0 M	Hz	ł	1	691	pts	ł	ł	Sto	p 2.4 GHz		

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019

Model: KT-B01A

4.5 Out of Band Radiated Emissions (for emissions in 4.4 above that are less than 20dB below carrier), FCC Rule 15.247(d):

For out of band emissions that are close to or that exceed the 20dB attenuation requirement described in the specification, radiated measurements were performed at a 3m separation distance to determine whether these emissions complied with the general radiated emission requirement.

[×] Not required, since all emissions are more than 20dB below fundamental

[] See attached data sheet

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019

Model: KT-B01A

4.6 Transmitter Radiated Emissions in Restricted Bands, FCC Rule 15.35(b) (c):

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019 Model: KT-B01A

4.7 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD

Where FS = Field Strength in $dB\mu V/m$ RA = Receiver Amplitude (including preamplifier) in $dB\mu V$ CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB AG = Amplifier Gain in dBPD = Pulse Desensitization in dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB. The net field strength for comparison to the appropriate emission limit is 42 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 62.0 dB μ V AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB PD = 0 dB FS = 62 + 7.4 + 1.6 - 29 + 0 = 42 dB μ V/m

Level in mV/m = Common Antilogarithm [(42 dB μ V/m)/20] = 125.9 μ V/m

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019

Model: KT-B01A

4.8 Radiated Spurious Emission

Worst Case Radiated Spurious Emission (802.11b-Channel 11) at 335.065MHz is passed by 5.7dB margin.

For the electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

Applicant: Shenzhen Linklite Smart Lighting Co., LtdDate of Test: February 28, 2019Model: KT-B01AWorst Case Operating Mode:802.11b-Channel 11

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	95.475	42.6	20.0	8.6	31.2	43.5	-12.3
Horizontal	335.065	45.1	20.0	15.2	40.3	46.0	-5.7
Horizontal	480.080	36.8	20.0	18.4	35.2	46.0	-10.8
Vertical	47.460	33.0	20.0	9.8	22.8	40.0	-17.2
Vertical	95.475	32.5	20.0	8.6	21.1	43.5	-22.4
Vertical	640.130	30.8	20.0	21.4	32.2	43.5	-11.3

NOTES: 1. Quasi-Peak detector is used for frequency below 1GHz.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. All emissions are below the QP limit.

Applicant: Shenzhen Linklite Smart Lighting Co., LtdDate of Test: February 28, 2019Model: KT-B01AWorst Case Operating Mode:Transmitting (11b-2412MHz)

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	*4824.000	48.4	36.3	33.5	45.6	74.0	-28.4
Horizontal	*2386.790	65.8	36.4	27.3	56.7	74.0	-17.3

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	*4824.000	40.2	36.3	33.5	37.4	54.0	-16.6
Horizontal	*2386.790	55.6	36.4	27.3	46.5	54.0	-7.5

NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz/VBW=10Hz for average value.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: Shenzhen Linklite Smart Lighting Co., LtdDate of Test: February 28, 2019Model: KT-B01AWorst Case Operating Mode:Transmitting (11b-2437MHz)

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	*4874.000	47.2	36.3	33.6	44.5	74.0	-29.5
Horizontal	*7311.000	50.7	36.3	37.8	52.2	74.0	-21.8

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	*4874.000	39.3	36.3	33.6	36.6	54.0	-17.4
Horizontal	*7311.000	40.9	36.3	37.8	42.4	54.0	-11.6

NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz / VBW=10Hz for average value.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: Shenzhen Linklite Smart Lighting Co., LtdDate of Test: February 28, 2019Model: KT-B01AWorst Case Operating Mode:Transmitting (11b-2462MHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	*4924.000	49.0	36.3	33.6	46.3	74.0	-27.7
Horizontal	*7386.000	51.5	36.3	37.8	53.0	74.0	-21.0
Horizontal	*2484.320	63.5	36.4	27.5	54.6	74.0	-19.4

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	*4924.000	40.1	36.3	33.6	37.4	54.0	-16.6
Horizontal	*7386.000	42.7	36.3	37.8	44.2	54.0	-9.8
Horizontal	*2484.320	54.8	36.4	27.5	45.9	54.0	-8.1

NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz / VBW=10Hz for average value.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

4.9 Conducted Emission at Mains Terminal

4.9.1 Conducted Emissions Configuration Photograph

For electronic filing, the worst case conducted emission configuration photograph is saved with filename: conducted photos.pdf.

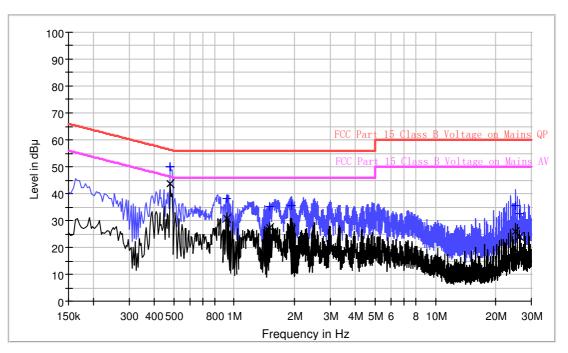
4.9.2 Conducted Emissions

Worst Case Live-Conducted Configuration At

0.482 MHz

Judgement: Passed by 2.7 dB margin

TEST PERSONNEL:


Sign on file

Leo Li, Project Engineer Typed/Printed Name

February 28, 2019 Date

Applicant: Shenzhen Linklite Smart Lighting Co., LtdDate of Test: February 28, 2019Model: KT-B01AWorst Case Operating Mode:WIFI Link

Conducted Emission Test - FCC

Result Table QP

Frequency (MHz)	QuasiPeak (dB µ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.482000	49.8	L1	9.6	6.5	56.3
0.914000	38.2	L1	9.7	17.8	56.0
1.506000	35.1	L1	9.7	20.9	56.0
1.930000	35.6	L1	9.7	20.4	56.0
24.898000	35.7	L1	10.5	24.3	60.0
26.282000	32.5	L1	10.6	27.5	60.0

Result Table AV

Frequency (MHz)	Average (dB μ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.482000	43.6	L1	9.6	2.7	46.3
0.914000	30.9	L1	9.7	15.1	46.0
1.506000	27.6	L1	9.7	18.4	46.0
1.930000	26.7	L1	9.7	19.3	46.0
24.898000	26.0	L1	10.5	24.0	50.0
26.282000	24.0	L1	10.6	26.0	50.0

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Limit (dBuV) Level (dBuV)

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019 Model: KT-B01A Worst Case Operating Mode: WIFI Link

100 90 80 70 Par 15 Class B Voltage on Mains QP 60 Level in dBµ 50 40 30 20 10 0 150k 300 400 500 800 1M 2M 3M 4M 5M 6 8 10M 20M 30M Frequency in Hz

Conducted Emission Test - FCC

Result Table QP

Frequency (MHz)	QuasiPeak (dB µ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.470000	36.8	N	9.7	19.7	56.5
0.490000	43.6	Ν	9.7	12.6	56.2
1.006000	33.9	Ν	9.7	22.1	56.0
1.334000	33.4	N	9.7	22.6	56.0
24.886000	34.2	Ν	10.5	25.8	60.0
25.506000	33.6	Ν	10.6	26.4	60.0

Result Table AV

Frequency (MHz)	Average (dB µ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.470000	32.7	N	9.7	13.8	46.5
0.490000	39.6	Ν	9.7	6.6	46.2
1.006000	27.4	Ν	9.7	18.6	46.0
1.334000	25.6	Ν	9.7	20.4	46.0
24.886000	23.9	Ν	10.5	26.1	50.0
25.506000	23.3	Ν	10.6	26.7	50.0

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) = Limit (dBuV) – Level (dBuV)

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019 Model: KT-B01A

- 4.10 Radiated Emissions from Digital Section of Transceiver, FCC Ref: 15.109
- [] Not required No digital part
- [] Test results are attached
- [x] Included in the separated report.

Applicant: Shenzhen Linklite Smart Lighting Co., Ltd Date of Test: February 28, 2019 Model: KT-B01A

4.11 Transmitter Duty Cycle Calculation and Measurements, FCC Rule 15.35(b), (c)

The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SWEP function on the analyzer was set to ZERO SPAN. The Transmitter ON time was determined from the resultant time-amplitude display:

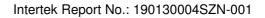
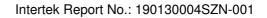

	See attached spectrum analyzer chart (s) for Transmitter timing
	See Transmitter timing diagram provided by manufacturer
Х	Not applicable, duty cycle was not used.

EXHIBIT 5


EQUIPMENT PHOTOGRAPHS

5.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.pdf & internal photos.pdf.

EXHIBIT 6

PRODUCT LABELLING

6.0 Product Labeling

For electronic filing, the FCC ID label artwork and location is saved with filename: label.pdf.

EXHIBIT 7

TECHNICAL SPECIFICATIONS

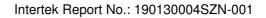
7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and circuit diagram are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 8

INSTRUCTION MANUAL

8.0 Instruction Manual


For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

EXHIBIT 9

CONFIDENTIALITY REQUEST

.

9.0 Confidentiality Request

For electronic filing, the confidentiality request of the tested EUT is saved with filename: request.pdf.

EXHIBIT 10 MISCELLANEOUS INFORMATION

10.0 Discussion of Pulse Desensitization

The determination of pulse desensitivity was made in accordance with Hewlett Packard Application Note 150-2, *Spectrum Analysis ... Pulsed RF.*

Pulse desensitivity is not applicable for this device since the transmitter transmits the RF signal continuously.

EXHIBIT 11

TEST EQUIPMENT LIST

TEST REPORT

11.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ182-02	RF Power Meter	Anritsu	ML2496A	1302005	5-Jun-2018	5-Jun-2019
SZ182-02-01	Power Sensor	Anritsu	MA2411B	1207429	5-Jun-2018	5-Jun-2019
SZ061-06	Active Loop Antenna	Electro- Metrics	EM-6876	217	11-May-2018	11-May-2019
SZ067-04	Notch Filter	Micro-Tronics	BRM5070 2-02		5-Jun-2018	5-Jun-2019
SZ061-03	Biconilog Antenna	ETS	3142C	00078828	16-Oct-2018	16-Oct-2019
SZ061-08	Horn Antenna	ETS	3115	00092346	14-Sep-2018	14-Sep-2019
SZ061-07	Pyramidal Horn Antenna	ETS	3160-09	00083067	17-Mar-2018	17-Mar-2019
SZ056-03	Spectrum Analyzer	R&S	FSP30	101148	05-Jun-2018	05-Jun-2019
SZ185-01	EMI Receiver	R & S	ESCI	100547	4-Jan-2019	4-Jan-2020
SZ181-04	Preamplifier	Agilent	8449B	3008A02474	15-Jan-2019	15-Jan-2020
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	15-Dec-2018	15-Dec-2020
SZ062-02	RF Cable	RADIALL	RG 213U		02-Jan-2019	02-Jul-2019
SZ062-05	RF Cable	RADIALL	0.04- 26.5GHz		31-Aug-2018	28-Feb-2019
SZ062-12	RF Cable	RADIALL	0.04- 26.5GHz		31-Aug-2018	28-Feb-2019
SZ185-02	EMI Test Receiver	R&S	ESCI	100692	26-Oct-2018	26-Oct-2019
SZ187-01	Two-Line V- Network	R&S	ENV216	100072	26-Oct-2018	26-Oct-2019
SZ187-02	Two-Line V- Network	R&S	ENV216	100073	04-Jul-2018	04-Jul-2019
SZ188-03	Shielding Room	ETS	RFD-100	4100	16-Jan-2017	16-Jan-2020
SZ062-16	RF Cable	HUBER+SUH NER	CBL2-BN- 1m	110127- 2231000	29-Oct-2018	29-Oct-2019