

1 of 55

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT FCC PART 15 SUBPART C REQUIREMENT

OF

Camping Light

Model No.: ML6 Connect WL

Trademark:

LEDLENSER

FCC ID:2ASEU-ML6

Report No.: EA2006511F09001

Issue Date: July 21, 2020

Prepared for

Ledlenser Corporation Ltd. No.25, Yudong 1 Road, Dongcheng Town, Yangdong District, Yangjiang City, GD, 529931, China

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China..

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

VERIFICATION OF COMPLIANCE

Applicant:	Ledlenser Corporation Ltd. No.25, Yudong 1 Road, Dongcheng Town, Yangdong District,
	Yangjiang City, GD, 529931, China
Manufacturer:	Ledlenser Corporation Ltd. No.25, Yudong 1 Road, Dongcheng Town, Yangdong District, Yangjiang City, GD, 529931, China
Product Description:	Camping Light
Trade Mark:	
Model Number:	ML6 Connect WL

2 of 55

We hereby certify that:

The above equipment was tested by Dong Guan Anci Electronic Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2019).

Date of Test :

July 04, 2020 to July 20, 2020

Prepared by :

mans lang

Tomas Yang/Editor

an. Ne

Approved & Authorized Signer :

Alan He/Manager

Modified Information

Version	Summary	Revision Date	Report No.
Ver.1.0	Original Report	1	EA2006511F09001

^{4 of 55} Table of Contents

1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION	6
1.2 TEST METHODOLOGY	6
2. TEST FACILITY	7
3. DESCRIPTION OF TEST MODES	
4. SUMMARY OF TEST RESULTS	
6DB BANDWIDTH MEASUREMENT	
5. TEST SYSTEM UNCERTAINTY	
6. CONDUCTED EMISSIONS TEST	
6.1Measurement Procedure:	12
6.2Test SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3MEASUREMENT EQUIPMENT USED:	
6.4 CONDUCTED EMISSION LIMIT	
6.5 MEASUREMENT RESULT:	
7. RADIATED EMISSION TEST	
7.1Measurement Procedure	
7.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3MEASUREMENT EQUIPMENT USED:	
7.4 RADIATED EMISSION LIMIT	
7.5 MEASUREMENT RESULT	21
7.6 RADIATED MEASUREMENT PHOTOS:	
8. 6DB BANDWIDTH MEASUREMENT	
8.1MEASUREMENT PROCEDURE	
8.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3 MEASUREMENT EQUIPMENT USED:	
8.4 LIMIT	
8.5MEASUREMENT RESULTS:	
9. MAXIMUM PEAK OUTPUT POWER TEST	
9.1Measurement Procedure	
9.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	31
9.3 MEASUREMENT EQUIPMENT USED:	
9.4 Peak Power output limit	
9.5 MEASUREMENT RESULTS:	-
10. POWER SPECTRAL DENSITY MEASUREMENT	

Report No.: EA2006511F09001	5 of 55	
10.1MEASUREMENT PROCEDURE.		
10.2 TEST SET-UP (BLOCK DIAG	RAM OF CONFIGURATION)	
10.3 MEASUREMENT EQUIPMENT	USED:	
10.4 MEASUREMENT PROCEDURE		
10.5 MEASUREMENT RESULTS:		
11. BAND EDGE TEST		
11.1 MEASUREMENT PROCEDURE		
11.2 TEST SET-UP (BLOCK DIAG	RAM OF CONFIGURATION)	
11.3 MEASUREMENT EQUIPMENT	USED:	
11.4 MEASUREMENT RESULTS:		
12 ANTENNA APPLICATION		
12.1 ANTENNA REQUIREMENT		46
12.2 RESULT		
APPENDIX (PHOTOS OF EUT) (6 PA	GES)	

6 of 55

1. GENERAL INFORMATION

1.1 Product Description

Characteristics	Description
Product Name	Camping Light
Model number	ML6 Connect WL
Input Rating	DC 5V
Power Supply	Battery 3.63V and AC 120V/60Hz
Kind of Device	Bluetooth Ver.5.0 BLE
Modulation	GFSK
Operating Frequency Range	2402-2480MHz
Number of Channels	40
Transmit Power Max(PK)	-1.45dBm(0.0007W)
Antenna Type	Internal ceramic antenna
Antenna Gain	2.7dBi

1.2 Test Methodology

All the test program has follow FCC new test procedure KDB 558074 D01 DTS Meas Guidance v05 and in accordance with the procedures given in ANSI C63.10-2013.

Report No.: EA2006511F09001 2. Test Facility Site Description	7 of 55
EMC Lab.	 Accredited by CNAS, 2017.06.26 The certificate is valid until 2022.10.28 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L6214. Accredited by A2LA, 2018.03.15 The Certificate Number is 4422.01.
Name of Firm Site Location	 Dong Guan Anci Electronic Technology Co., Ltd. 1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City,
	Guangdong Pr., China.

Report No.: EA2006511F09001 8 of 55

3. Description of test modes

The EUT has been tested under its typical operating condition and fully-charged battery for EUT tested alone. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

For Radiated: The EUT's antenna was pre-tested under the following modes:

Test Mode	Description
Mode A	X-Y axis
Mode B	Y-Z axis
Mode C	X-Z axis

From the above modes, the worst case was found in Mode C. Therefore only the test data of the mode was recorded in this report.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

Configuration of Tested System

EUT

Equipment Used in Tested System

Item	Equipment	Trademark	Model No.	FCC ID	Note
1.	Camping Light	LEDLENSER	ML6 Connect WL	2ASEU-ML6	EUT

Report No.: EA2006511F090019 of 55The EUT has been tested under TX operating condition.Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454	_	
13	2428	27	2456		

Note:

1. Test of channel was included the lowest 2402MHz, middle 2440MHz and highest frequency 2480MHz in highest data rate and to perform the test, then record on this report.

Report No.: EA2006511F09001 4. Summary of Test Results

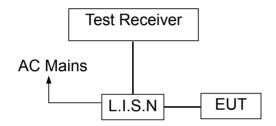
FCC Rules	Description Of Test	Result	
§15.207	AC Power Conducted Emission	Compliant	
§15.247(d),§15.209	Radiated Emission	Compliant	
§15.247(a)(2)	6dB Bandwidth Measurement	Compliant	
§15.247(b)	MAXIMUM PEAK OUTPUT POWER TEST	Compliant	
§15.247(e)	Power Spectral Density Compliant Measurement		
§15.247(d)	Band EDGE test	E test Compliant	
§15.203	Antenna Requirement Compliant		
Remark: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.			

11 of 55 **5. TEST SYSTEM UNCERTAINTY**

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%


12 of 55

6. Conducted Emissions Test

6.1 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.2 Test SET-UP (Block Diagram of Configuration)

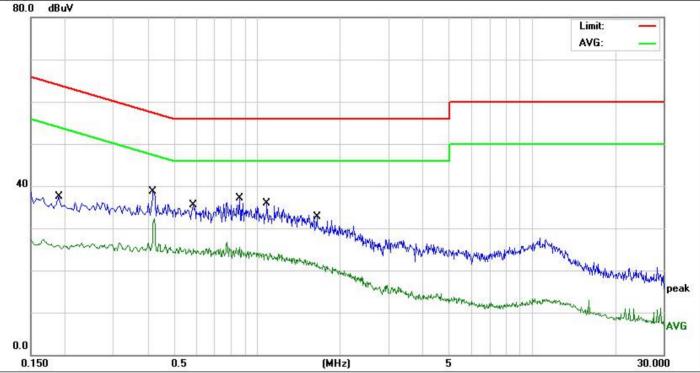
6.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Calibrated until
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-669	2021-05-18
10 db attenuator	JFW	50FP-010-H4	4360846-427-1	2021-05-18
RF Cable	N/A	N/A	2#	2021-05-18
EMI Test Receiver	ROHDE&SCHWAR Z	ESCI	101358	2021-05-18

6.4 Conducted Emission Limit

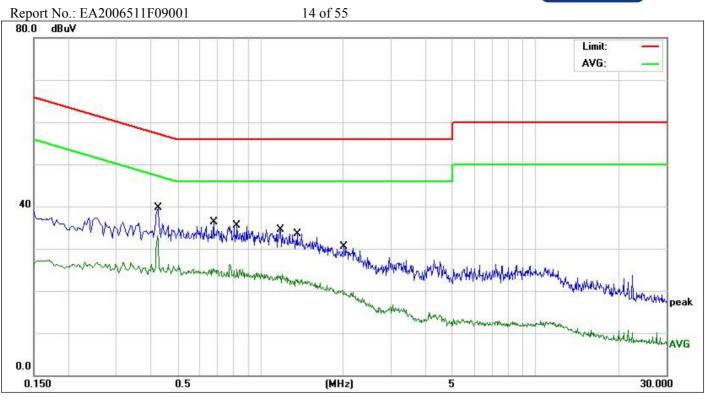
(7) Conducted Emission		
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:


1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

6.5 Measurement Result:


All the modulation modes were tested the data of the worst mode (GFSK TX2480) are recorded in the following pages and the others modulation methods do not exceed the limits. Please refer to following pages. 80.0 dBuV

Site:	843	Phase:L1	Temperature(C):26(C)
Limit:	FCC PART 15C Conduction(QP)		Humidity(%):60%
EUT:	Camping Light	Test Time:	2020-07-10
M/N.:	ML6 Connect WL	Power Rating:	AC 120V/60Hz
Mode:	BT TX2480	Test Engineer:	Sunshine
Note:		•	

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1 *	0.1500	53.02	9.68	62.70	65.99	-3.29	QP	
2	0.1500	39.53	9.68	49.21	55.99	-6.78	AVG	
3	0.2819	43.47	9.73	53.20	60.76	-7.56	QP	
4	0.2819	32.12	9.73	41.85	50.76	-8.91	AVG	
5	0.4860	38.42	9.75	48.17	56.24	-8.07	QP	
6	0.4860	25.27	9.75	35.02	46.24	-11.22	AVG	
7	0.6900	39.01	9.80	48.81	56.00	-7.19	QP	
8	0.6900	25.55	9.80	35.35	46.00	-10.65	AVG	
9	2.0500	39.43	9.81	49.24	56.00	-6.76	QP	
10	2.0500	27.69	9.81	37.50	46.00	-8.50	AVG	
11	12.8580	43.36	9.99	53.35	60.00	-6.65	QP	
12	12.8580	36.06	9.99	46.05	50.00	-3.95	AVG	

Site:	843	Phase:N	Temperature(C):26(C)
Limit:	FCC PART 15C Conduction(QP)		Humidity(%):60%
EUT:	Camping Light	Test Time:	2020-07-10
M/N.:	ML6 Connect WL	Power Rating:	AC 120V/60Hz
Mode:	BT TX2480	Test Engineer:	Sunshine
Note:		.	

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	0.4260	23.94	9.76	33.70	57.33	-23.63	QP	
2 *	0.4260	18.36	9.76	28.12	47.33	-19.21	AVG	
3	0.6780	19.71	9.79	29.50	56.00	-26.50	QP	
4	0.6780	14.67	9.79	24.46	46.00	-21.54	AVG	
5	0.8260	19.45	9.79	29.24	56.00	-26.76	QP	
6	0.8260	14.14	9.79	23.93	46.00	-22.07	AVG	
7	1.1860	18.08	9.77	27.85	56.00	-28.15	QP	
8	1.1860	12.84	9.77	22.61	46.00	-23.39	AVG	
9	1.3619	18.02	9.77	27.79	56.00	-28.21	QP	
10	1.3619	12.91	9.77	22.68	46.00	-23.32	AVG	
11	2.0140	13.77	9.81	23.58	56.00	-32.42	QP	
12	2.0140	8.63	9.81	18.44	46.00	-27.56	AVG	

*:Maximum data x:Over limit !:over margin

6.5 Conducted Measurement Photos:

16 of 55

7. Radiated Emission Test

7.1 Measurement Procedure

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 5. For measurement below 1GHz, if the emission level of the EUT measured by the peak detector is 3dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
 - 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/ Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Use the following spectrum analyzer settings:

When spectrum scanned from 30MHz to 1GHz setting resolution bandwidth 120KHz and video bandwidth 300KHz:

17 of 55

EMI Test Receiver	Setting
Attenuation	Auto
RB	120KHz
VB	300KHz
Detector	QP
Trace	Max hold

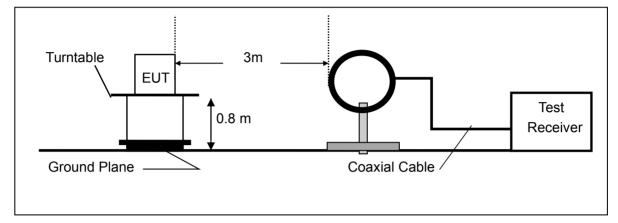
When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz:

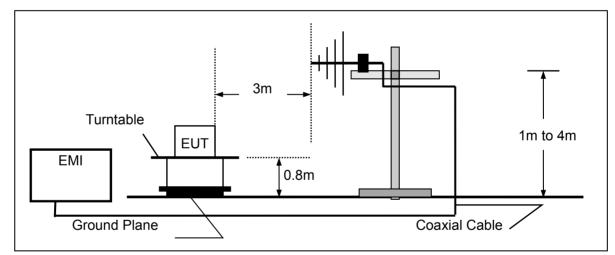
EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	Average
Trace	Max hold

For Average Measurement:

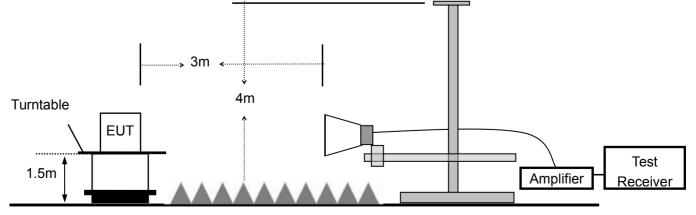

VBW=10Hz, when duty cycle is no less than 98 percent.

VBW \ge 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	Τ(μ s)	1/T(KHz)	Average Correction Factor	VBW Setting
2402-2480	100	-	-	0	10Hz



7.2 Test SET-UP (Block Diagram of Configuration)



(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1.	EMI Test Receiver	Rohde & Schwarz	ESPI	100502	2020-11-28
2.	Pre-Amplifier	HP	8447D	2727A06172	2021-05-18
3.	Bilog Antenna	Schwarzbeck	VULB9163	VULB9163-588	2021-05-18
4.	Loop Antenna	Schwarzbeck	FMZB 1516	1516-141	2020-11-28
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2020-11-28
6.	Low noise Amplifiers	A-INFO	LA1018N4009	J101313052400 1	2021-05-18
7.	Horn antenna	A-INFO	LB-10180-SF	J203109061212 3	2021-05-18
8.	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX10 0KHz-40GHz	J101313052400 1	2020-11-28
9.	DRG Horm Antenna	A.H.SYSTEMS	SAS-574	J203109061212 3	2020-11-28
10.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-2m	N/A	2020-11-28
11.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-0.3m	N/A	2020-11-28
12.	RF Cable	N/A	N/A	6#	2021-05-18
13.	RF Cable	N/A	N/A	1-1#	2021-05-18
14.	RF Cable	N/A	N/A	1-2#	2021-05-18
15.	RF Cable	N/A	N/A	7#	2021-05-18
16.	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2021-05-18
17.	Test Software	Farad	EZ-EMC Ver:ANCI-3A1	N/A	N/A

7.3 Measurement Equipment Used:

7.4 Radiated emission limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

:

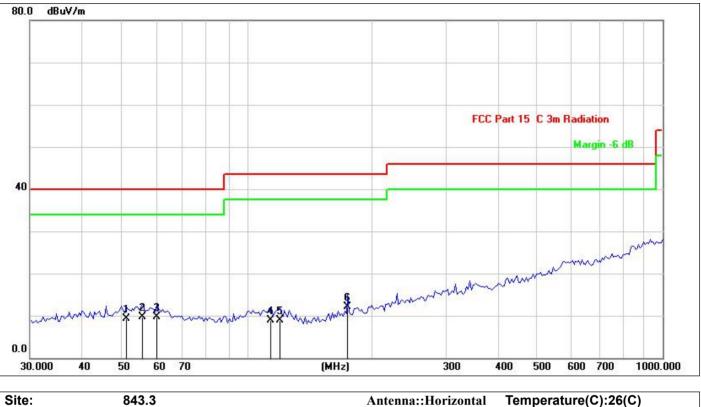
7.5 Measurement Result

Below 30MHz:

Operation Mode:	ТХ	Test Date :	2020-07-10
Frequency Range:	9KHz~30MHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

Freq.	Ant.Pol.	Emission	Limit 3m	Over
		Level		
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)

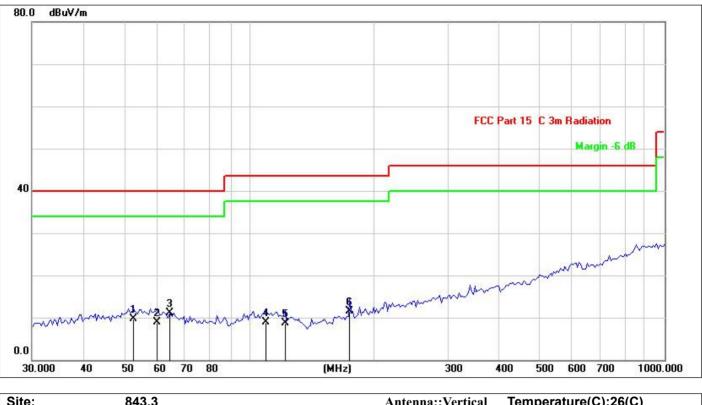
Note: The low frequency, which started from 9KHz-30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


Below 1000MHz:

Pass.

The data of the mode (GFSK 2480MHz) are recorded in the following pages.

22 of 55



Site:	843.3	Antenna::Horizontal	Temperature(C):26(C)
Limit:	FCC Part 15 C Conduction(QP)		Humidity(%):60%
EUT:	Camping Light	Test Time:	2020-07-10
M/N.:	ML6 Connect WL	Power Rating:	Battery 3.63V
Mode:	TX2402	Test Engineer:	Bast
Note:		-	

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	51.2106	25.00	-15.70	9.30	40.00	-30.70	QP	
2 *	55.9026	25.38	-15.68	9.70	40.00	-30.30	QP	
3	60.4919	25.47	-15.77	9.70	40.00	-30.30	QP	
4	113.7143	25.36	-16.46	8.90	43.50	-34.60	QP	
5	119.8556	25.80	-16.90	8.90	43.50	-34.60	QP	
6	174.7301	29.41	-17.31	12.10	43.50	-31.40	QP	

*:Maximum data x:Over limit !:over margin

Site:	843.3	Antenna::Vertical	Temperature(C):26(C)
Limit:	FCC Part 15 C Conduction(QP)		Humidity(%):60%
EUT:	Camping Light	Test Time:	2020-07-10
M/N.:	ML6 Connect WL	Power Rating:	Battery 3.63V
Mode:	TX2402	Test Engineer:	Bast
Note:		_	

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	51.2106	25.00	-15.70	9.30	40.00	-30.70	QP	
2 *	55.9026	25.38	-15.68	9.70	40.00	-30.30	QP	
3	60.4919	25.47	-15.77	9.70	40.00	-30.30	QP	
4	113.7143	25.36	-16.46	8.90	43.50	-34.60	QP	
5	119.8556	25.80	-16.90	8.90	43.50	-34.60	QP	
6	174.7301	29.41	-17.31	12.10	43.50	-31.40	QP	

*:Maximum data x:Over limit !:over margin

Report No.: EA2006511F09001 24 of 55

Above 1000MHz~10th Harmonics:

Operation Mode:	TX Mode (CH00: 2402MHz)	Test Date :	2020-07-10
Frequency Range:	1-25GHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

Freq.	Ant. Pol.	Rea Level(d	ding BuV/m)	Correct Factor	Emis Level(d			mit 3uV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4804	V	94.02	75.55	-32.3	62.3	43.25	74	54	-11.7	-10.75
7206	V	97.4	76.72	-37.2	60.2	39.52	74	54	-13.8	-14.48
9608	V	97.45	78.05	-39.8	57.65	38.25	74	54	-16.35	-15.75
12010	V	96.13	77.08	-40.5	55.63	36.58	74	54	-18.37	-17.42
14412	V	97.72	77.89	-41.7	56.02	36.19	74	54	-17.98	-17.81
16814	V	95.69	76.11	-40	55.69	36.11	74	54	-18.31	-17.89
4804	H	94.01	74.72	-31.6	62.41	43.12	74	54	-11.59	-10.88
7206	H	95.52	75.63	-35.5	60.02	40.13	74	54	-13.98	-13.87
9608	H	95.95	76.55	-38.3	57.65	38.25	74	54	-16.35	-15.75
12010	Н	95.13	76.02	-39	56.13	37.02	74	54	-17.87	-16.98
14412	H	98.02	79.14	-42	56.02	37.14	74	54	-17.98	-16.86
16814	H	94.62	75.71	-39.3	55.32	36.41	74	54	-18.68	-17.59

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

25 of 55

Operation Mode:	TX Mode (CH19: 2440MHz)	Test Date :	2020-07-10
Frequency Range:	1-25GHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

Freq.	Ant.	Rea	0	Correct	Emis			mit	Marg	in(dB)
	Pol.	Level(d	BuV/m)	Factor	Level(d	BuV/m)	3m(dE	3uV/m)		
(MHz)	H/V	ΡK	AV	dB	PK	AV	PK	AV	PK	AV
4880	V	96.31	76.53	-32.3	64.01	44.23	74	54	-9.99	-9.77
7320	V	97.56	79.45	-37.2	60.36	42.25	74	54	-13.64	-11.75
9760	V	97.97	79.21	-39.8	58.17	39.41	74	54	-15.83	-14.59
12200	V	96.82	78.09	-40.5	56.32	37.59	74	54	-17.68	-16.41
14640	V	97.22	78.26	-41	56.22	37.26	74	54	-17.78	-16.74
17080	V	96.81	77.15	-41.1	55.71	36.05	74	54	-18.29	-17.95
4880	Н	95.29	75.75	-31.6	63.69	44.15	74	54	-10.31	-9.85
7320	Н	95.81	76.61	-35.5	60.31	41.11	74	54	-13.69	-12.89
9760	Н	96.36	77.35	-38.3	58.06	39.05	74	54	-15.94	-14.95
12200	Н	95.25	76.58	-39	56.25	37.58	74	54	-17.75	-16.42
14640	Н	97.36	78.47	-42	55.36	36.47	74	54	-18.64	-17.53
17080	Н	97.28	78.08	-41.5	55.78	36.58	74	54	-18.22	-17.42

Other harmonics emissions are lower than 20dB below the allowable limit.

- **Note:** (1) All Readings are Peak Value and AV.
 - (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
 - (3) The average measurement was not performed when the peak measured data under the limit of average detection.
 - (4) Measuring frequencies from 1GHz to 25GHz.

26 of 55

Operation Mode:	TX Mode (CH39: 2480MHz)	Test Date :	2020-07-10
Frequency Range:	1-25GHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

Freq.	Ant.	Rea	0	Correct	Emis			nit	Marg	in(dB)
	Pol.	Level(d	BuV/m)	Factor	Level(d	BuV/m)	3m(dE	3uV/m)		
(MHz)	ΗΛ	PK	AV	dB	PK	AV	PK	AV	PK	AV
4960	V	95.82	76.46	-32.3	63.52	44.16	74	54	-10.48	-9.84
7440	V	97.34	78.22	-37.2	60.14	41.02	74	54	-13.86	-12.98
9920	V	98.12	79.38	-39.8	58.32	39.58	74	54	-15.68	-14.42
12400	V	96.75	78.02	-40.5	56.25	37.52	74	54	-17.75	-16.48
14880	V	96.14	77.47	-41	55.14	36.47	74	54	-18.86	-17.53
17360	V	96.33	77.57	-41.1	55.23	36.47	74	54	-18.77	-17.53
4960	Н	94.77	75.56	-31.6	63.17	43.96	74	54	-10.83	-10.04
7440	Н	95.82	76.78	-35.5	60.32	41.28	74	54	-13.68	-12.72
9920	Н	96.71	77.55	-38.3	58.41	39.25	74	54	-15.59	-14.75
12400	Н	95.36	76.62	-39	56.36	37.62	74	54	-17.64	-16.38
14880	Н	97.32	78.41	-42	55.32	36.41	74	54	-18.68	-17.59
17360	Н	96.79	77.75	-41.5	55.29	36.25	74	54	-18.71	-17.75

Other harmonics emissions are lower than 20dB below the allowable limit.

- Note: (1) All Readings are Peak Value and AV.
 - (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
 - (3) The average measurement was not performed when the peak measured data under the limit of average detection.
 - (4) Measuring frequencies from 1GHz to 25GHz.

7.6 Radiated Measurement Photos:

28 of 55

8. 6dB Bandwidth Measurement

8.1 Measurement Procedure

The EUT was operating in Bluetooth mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

8.2 Test SET-UP (Block Diagram of Configuration)

EUT Spectrum

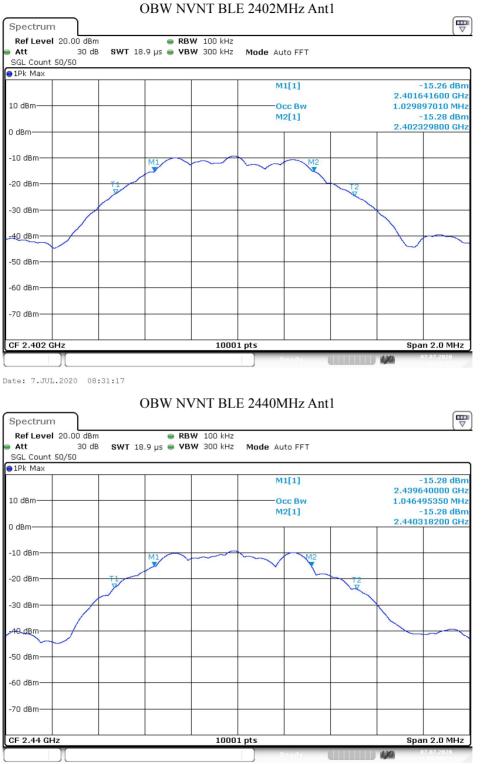
8.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2020-11-28
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2020-11-28
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2020-11-28

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

8.4 Limit

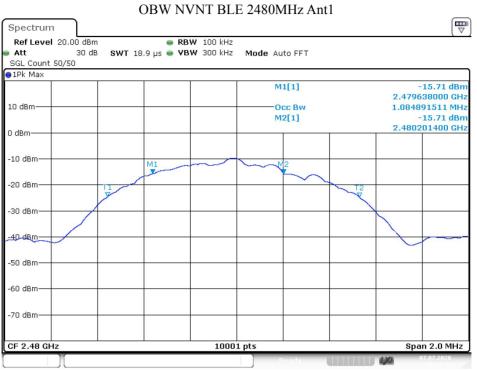
The minimum 6dB bandwidth shall be at least 500kHz.


8.5 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	2020-07-07
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

Channel number	Channel	Measurement level	Required Limit
	frequency (MHz)	(KHz)	(KHz)
00	2402	688	>500
19	2440	678	>500
39	2480	563	>500

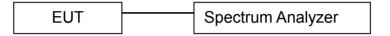


29 of 55 OBW NVNT BLE 2402MHz Ant1

Date: 7.JUL.2020 08:33:21

30 of 55

Date: 7.JUL.2020 08:42:43



Report No.: EA2006511F09001 31 of 55 9. MAXIMUM PEAK OUTPUT POWER TEST

9.1 Measurement Procedure

- a. The Transmitter output (antenna port) was connected to the spectrum Analyzer.
- b. Turn on the EUT and then record the peak power value.
- c. Repeat above procedures on all channels needed to be tested.

9.2 Test SET-UP (Block Diagram of Configuration)

9.3 Measurement Equipment Used:

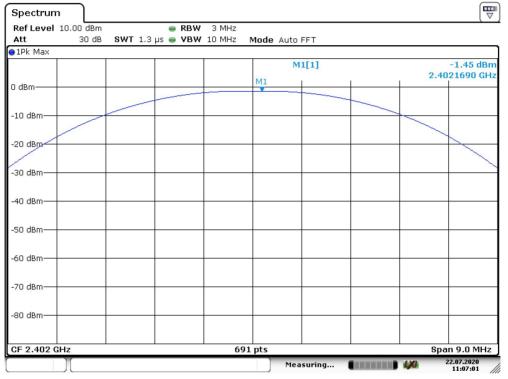
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2020-11-28
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2020-11-28
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2020-11-28

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

9.4 Peak Power output limit

The maximum peak power shall be less 1Watt.

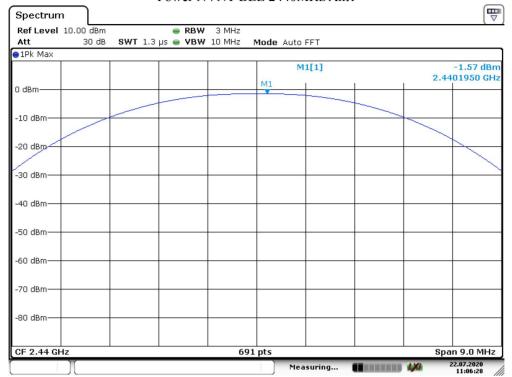
9.5 Measurement Results:


Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	2020-07-07
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

Report No.: EA200	6511F09001	32 of	55		22
Channel number	Channel Frequency (MHz)	Peak Power output(dBm)	Peak Power output(mW)	Peak Power Limit(W)	Pass/Fail
0	2402	-1.45	0.716	1W(30dBm)	PASS
19	2440	-1.57	0.697	1W(30dBm)	PASS
39	2480	-1.65	0.684	1W(30dBm)	PASS

Power NVNT BLE 2402MHz Ant1



.

Date: 22.JUL.2020 11:07:00

33 of 55

Power NVNT BLE 2440MHz Ant1

Date: 22.JUL.2020 11:06:27

Power NVNT BLE 2480MHz Ant1

Spectrum					
Ref Level 10.00 dBm	🖷 RBW	3 MHz			`
Att 30 dB	SWT 1.3 µs 👄 VBW	10 MHz Mod	e Auto FFT		
●1Pk Max					
			M1[1]		-1.65 dBm 2.4802470 GHz
0 dBm		M	L		2.4002470 0112
-10 dBm					
-20 dBm					
20 000					
-30 dBm					
-50 UBIN					
-40 dBm					
-40 ubiii					
-50 dBm					
-50 UBIII					
60 JD-1					
-60 dBm					
-70 dBm					
00.10					
-80 dBm					
CF 2.48 GHz	· · · · · ·	691 pts	1	- I	Span 9.0 MHz
			Measuring	•••••••••••••••••••••••••••••••••••••••	22.07.2020 11:07:18

Date: 22.JUL.2020 11:07:18

Report No.: EA2006511F0900134 of 55**10. Power Spectral Density Measurement**

10.1Measurement Procedure

The EUT was operating in Bluetooth mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

10.2 Test SET-UP (Block Diagram of Configuration)

EUT	Spectrum Analyzer
-----	-------------------

10.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2020-11-28
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2020-11-28
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2020-11-28

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

10.4 Measurement Procedure

10.4.1 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

10.4.2. Set to the maximum power setting and enable the EUT transmit continuously.

10.4.3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)

10.4.4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.

10.4.5. Measure and record the results in the test report.

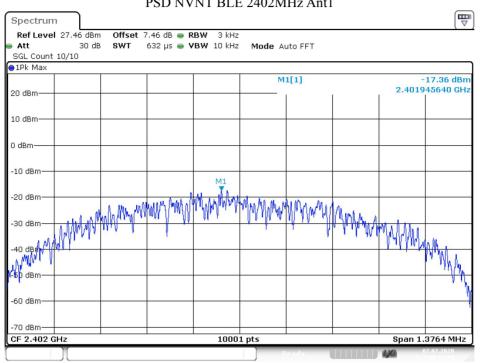
10.4.6. The Measured power density (dBm)/ 100KHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

10.5 Measurement Results:

The following table is the setting of spectrum analyzer.

Spectrum analyzer	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS bandwidth.
RB	3KHz
VB	10KHz
Detector	Peak
Trace	Max hold
Sweep Time	Automatic

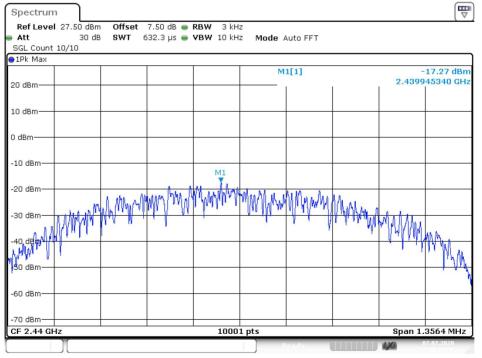
Refer to attached data chart.


Spectrum Detector:	PK	Test Date :	2020-07-07
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

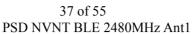
Channel	Channel	Measurement level	Required	Pass/Fail
number	frequency	(dBm)	Limit	
	(MHz)	PSD/3kHz	(dBm/3kHz)	
00	2402	-17.36	8	PASS
19	2440	-17.27	8	PASS
39	2480	-17.38	8	PASS

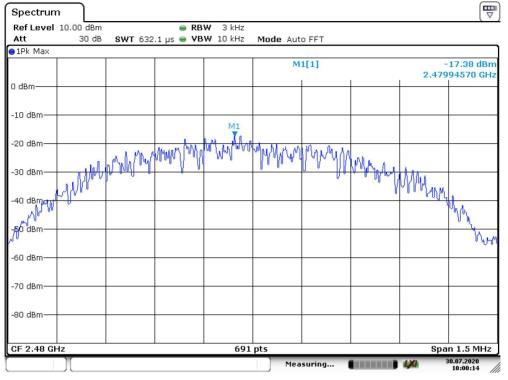
Note:

 Measured power density(dBm) has offset with cable loss.
 The measured power density(dBm)/100KHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.



36 of 55 PSD NVNT BLE 2402MHz Ant1


Date: 7.JUL.2020 08:32:50


PSD NVNT BLE 2440MHz Ant1

Date: 7.JUL.2020 08:33:47

Date: 7.JUL.2020 10:00:14

Report No.: EA2006511F09001 **11. Band EDGE test**

11.1 Measurement Procedure

For Conducted Test

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

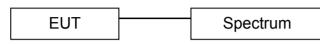
The EUT was placed on a styrofoam table which is 1.5m above ground plane.

The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

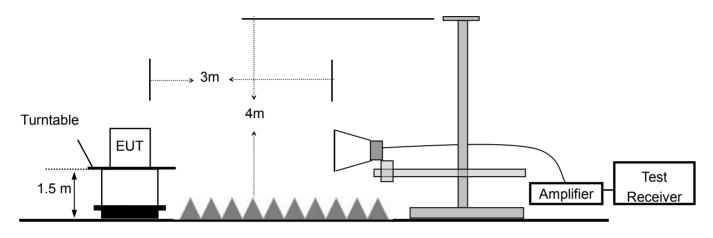
The measurements were performed at the lower end of the 2.4GHz band. Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold


For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold



Report No.: EA2006511F0900139 of 55**11.2 Test SET-UP (Block Diagram of Configuration)**

For Conducted Test

For Radiated emission Test

11.3 Measurement Equipment Used:

For Conducted Test

· .					
	EQUIPMENT	MFR	MODEL	SERIAL	CALIBRATED
	TYPE		NUMBER	NUMBER	UNTIL
	Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2020-11-28
	Coaxial Cable	Gigalink Microwave	ZT40	19022092	2020-11-28
	Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2020-11-28

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

For Radiated emission Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Signal Analyzer	Rohde & Schwarz	FSV40	US40240623	2020-11-28
2	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX100KHz-40G Hz	J1013130524 001	2020-03-12
3	DRG Horm Antenna	A.H.SYSTEMS	SAS-574	J2031090612 123	2020-03-12
4	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-2m	N/A	2020-03-12
5	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-0.3m	N/A	2020-03-12

Report No.: EA2006511F09001 40 of 55

11.4 Measurement Results:

Refer to attached data chart.

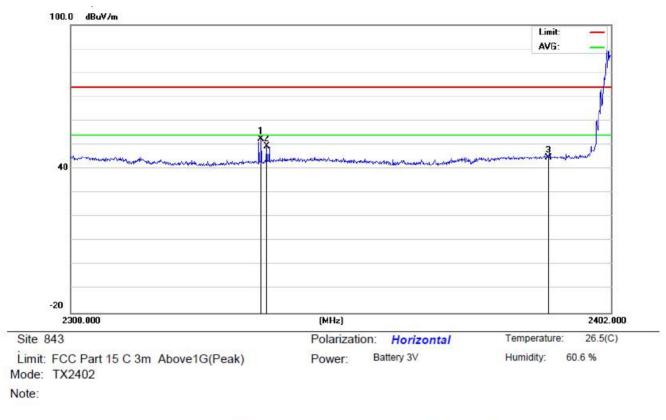
Spectrum Detector:	PK	Test Date :	2020-07-07
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

1. Conducted Test

Frequency	Peak Power Output(dBm)	Result of Band	Band edge
(MHz)		edge(dBc)	Limit(dBc)
2351.6	-2.26	41.59	>20dBc
2483.8	-2.3	41.78	>20dBc

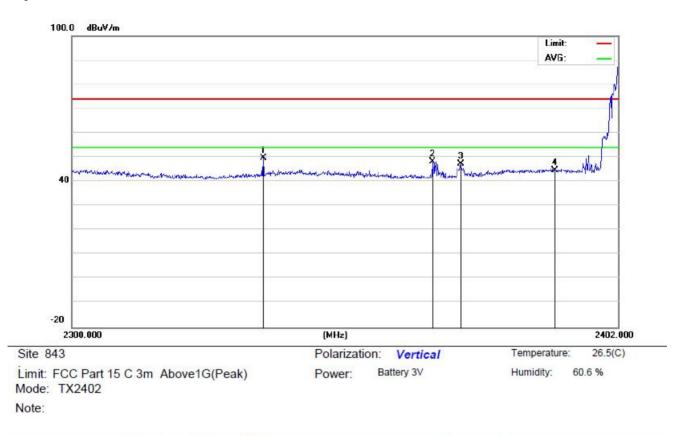
41 of 55

10031110	19001		41 01 33			
Spectrum						
Ref Level 2	27.46 dB	m Offset 7.46 dB	🔵 RBW 100 kHz			
Att	40 c	dB SWT 113.8 μs	🔵 VBW 300 kHz	Mode Auto FR	т	
SGL Count 1	100/100					
1Pk Max						
				M1[1]		-2.26 dBn
20 dBm —						2.40195000 GH
				M2[1]		-43.53 dBn
10 dBm —						2.4000000 GH
						M1
0 dBm						1
-10 dBm						
-10 UBIII						
-20 dBm						
C	01 -22.6	42 dBm				
-30 dBm						
			M4			
-40 dBm	232					M3 M3
and production of a	workthe	Mounthlannapara	muchathered and make	a Maland May word	prover for the weather the	town the have been been the
-50 dBm						
co. In						
-60 dBm						
-70 dBm						
Start 2.306	GHz		1001 pt	<u>د</u>		Stop 2.406 GHz
larker			1001 pt	3		0000 21100 0112
	Trc	X-value	Y-value	Function	. .	ction Result
Type Ref M1	1	2.40195 GHz	-2.26 dBm	Function	Fun	ICCION RESUL
M2	1	2.40195 GH2 2.4 GHz	-43.53 dBm			
M3	1	2.4 GHz 2.39 GHz	-44.48 dBm			
M4	1	2.35 GHz	-41.59 dBm			
	7			1		07 07 2020
	ار			Ready		10/10 10 10 10 10 10 10 10 10 10 10 10 10 1


Date: 7.JUL.2020 08:32:08

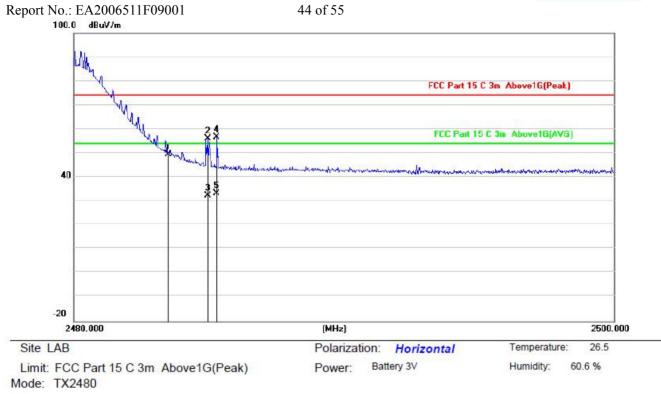
Spectrum	L						
Ref Level 2				RBW 100 kHz			
Att	40		113.8 µs 🧉	VBW 300 kHz	Mode Auto FF	т	
SGL Count :	100/100)					
1Pk Max							
					M1[1]		-2.30 dBm
20 dBm					110111		2.47995000 GHz
.0 dBm					M2[1]		-45.02 dBm
0 ubm					1	ĩ	2.48350000 GHz
den			_				
A							
10 dBm							
20 dBm)1 -22.	149 dBm					
30 dBm							
40 dBm							
of montanter	underta	MB MB	whether playthis	un hour litres our	mounderstration	1. Mark Monardunde	net Murry Multimeters
50 dBm	44		A. 1	and the second		V second second second	and the second sec
60 dBm —							
70 dBm –––––––––––––––––––––––––––––––––––	011-			1001 pt:	_		Stop 2.576 GHz
	GHZ			1001 pt:	,		atup 2.370 GHz
larker	1 - 1		1			_	
Type Ref M1		X-valu		Y-value -2.30 dBm	Function	Fund	ction Result
M1 M2	1		995 GHz 835 GHz	-2.30 dBm -45.02 dBm			
M2 M3	1	2,7	2.5 GHz	-46.86 dBm			
M4	1	2.4	838 GHz	-41.78 dBm			
			1		-		

Date: 7.JUL.2020 08:43:53



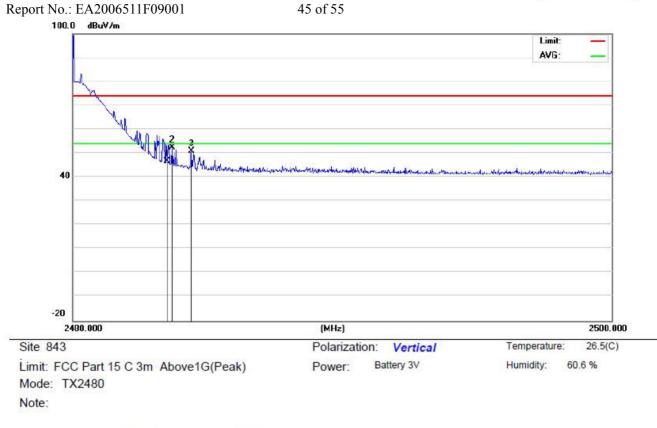
Report No.: EA2006511F09001 2. Radiated emission Test

No.	M	k. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MH	lz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	*	2335.5	02	57.65	- <mark>5.1</mark> 2	52.53	74.00	-21.47	peak			
2		2336.5	15	54.63	-5.12	49.51	74.00	-24.49	peak			
3		2390.0	00	49.34	-4.71	44.63	74.00	-29.37	peak			



No.	M	k. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Battery 3		
		MH	z	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	*	2335.2	99	55.01	-5.12	49.89	74.00	-24.11	peak			
2		2366.8	22	53.18	-4.89	48.29	74.00	-25.71	peak			
3		2372.1	69	52.06	-4.85	47.21	74.00	-26.79	peak			
4		2390.0	00	49.48	-4.71	44.77	74.00	-29.23	peak			

(Reference Only



Note:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
	2483.500	53.50	-4.00	49.50	74.00	-24.50	peak			
	2484.945	60.04	-4.00	56.04	74.00	-17.96	peak			
	2484.945	36.33	-4.00	32.33	54.00	-21.67	AVG			
*	2485.284	60.67	-3.99	56.68	74.00	- <mark>17</mark> .32	peak			
	2485.284	37.12	-3.99	33.13	54.00	-20.87	AVG			
		MHz 2483.500 2484.945 2484.945 2485.284	Mk. Freq. Level MHz dBuV 2483.500 53.50 2484.945 60.04 2484.945 36.33 * 2485.284 60.67	Mk. Freq. Level Factor MHz dBuV dB 2483.500 53.50 -4.00 2484.945 60.04 -4.00 2484.945 36.33 -4.00 * 2485.284 60.67 -3.99	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 2483.500 53.50 -4.00 49.50 2484.945 60.04 -4.00 56.04 2484.945 36.33 -4.00 32.33 * 2485.284 60.67 -3.99 56.68	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m 2483.500 53.50 -4.00 49.50 74.00 2484.945 60.04 -4.00 56.04 74.00 2484.945 36.33 -4.00 32.33 54.00 * 2485.284 60.67 -3.99 56.68 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB 2483.500 53.50 -4.00 49.50 74.00 -24.50 2484.945 60.04 -4.00 56.04 74.00 -17.96 2484.945 36.33 -4.00 32.33 54.00 -21.67 * 2485.284 60.67 -3.99 56.68 74.00 -17.32	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB Detector 2483.500 53.50 -4.00 49.50 74.00 -24.50 peak 2484.945 60.04 -4.00 56.04 74.00 -17.96 peak 2484.945 36.33 -4.00 32.33 54.00 -21.67 AVG * 2485.284 60.67 -3.99 56.68 74.00 -17.32 peak	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dB/m dB Detector cm 2483.500 53.50 -4.00 49.50 74.00 -24.50 peak 2484.945 60.04 -4.00 56.04 74.00 -17.96 peak 2484.945 36.33 -4.00 32.33 54.00 -21.67 AVG * 2485.284 60.67 -3.99 56.68 74.00 -17.32 peak	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dB/m dB Detector cm degree 2483.500 53.50 -4.00 49.50 74.00 -24.50 peak - 2484.945 60.04 -4.00 56.04 74.00 -17.96 peak - 2484.945 36.33 -4.00 32.33 54.00 -21.67 AVG - * 2485.284 60.67 -3.99 56.68 74.00 -17.32 peak -

Reference Only

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit .	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		2483.500	50.72	-4.00	46.72	74.00	-27.28	peak			
2	*	2483.668	56.33	-4.00	52.33	74.00	-21.67	peak			
3		2484.386	54.81	-4.00	50.81	74.00	-23.19	peak			

(Reference Only

Report No.: EA2006511F09001

12 Antenna Application

12.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

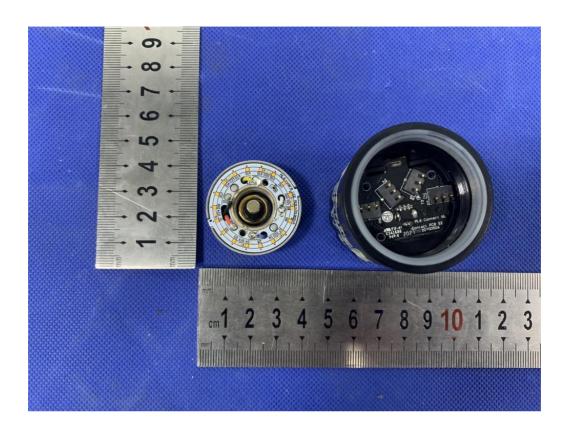
Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

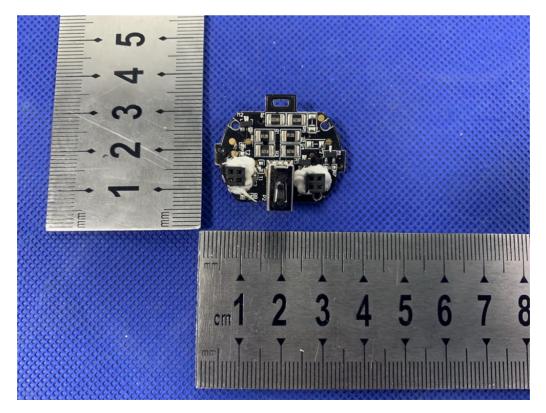
12.2 Result

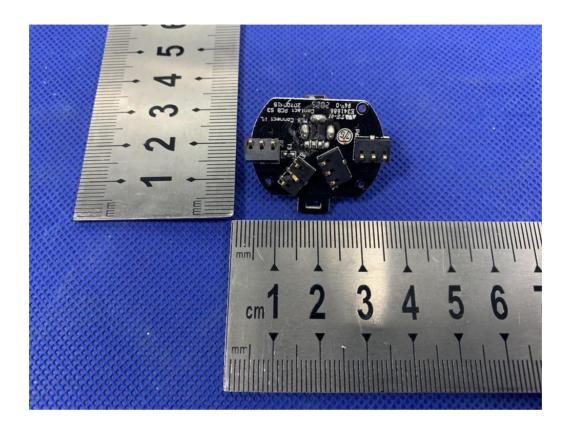
The EUT's antenna, permanent attached antenna, used a ceramic antenna and integrated on PCB, The antenna's gain is 2.7dBi and meets the requirement.

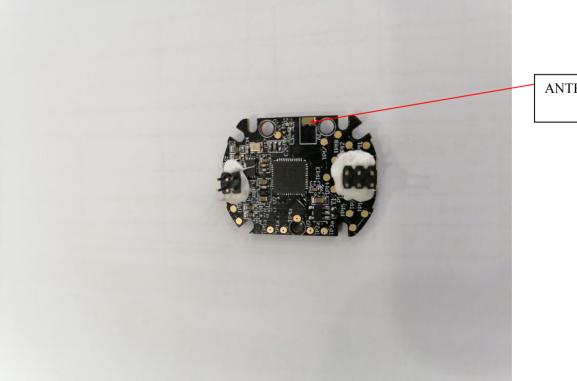
47 of 55

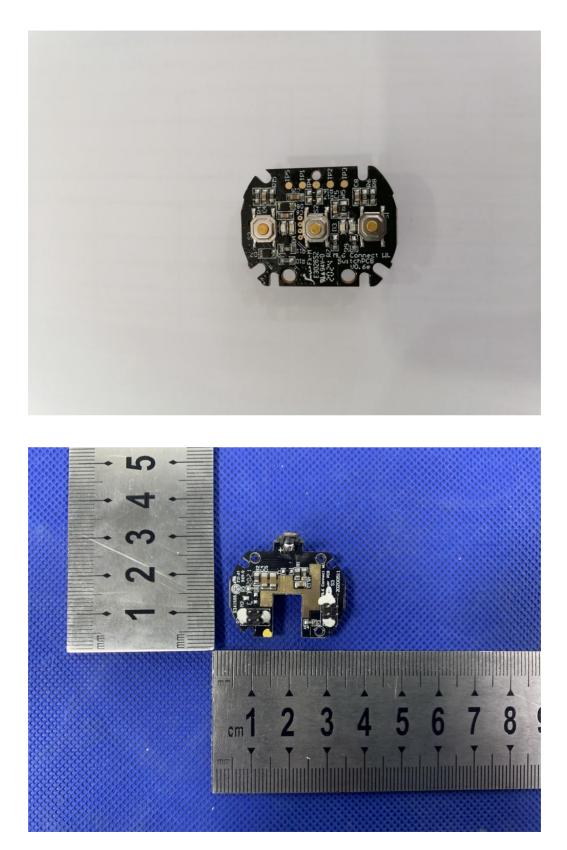
APPENDIX I (Photos of EUT)

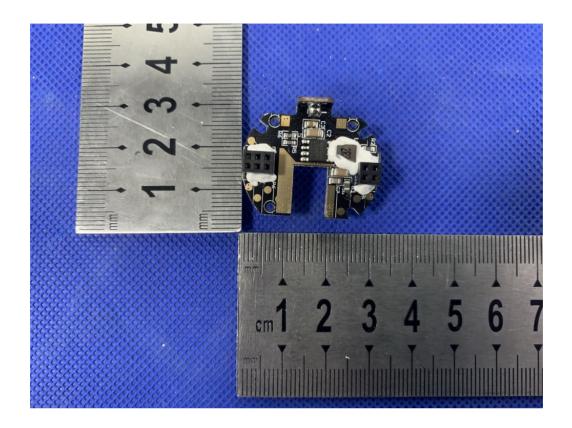












ANTENNA

-----The end of report------