nos H.B. Compliance Solutions

Maximum Permissible Exposure Statement

For the
Fiber Inc.
LPGAN Modem Model CN1

March 7, 2019
Prepared for:
Haber, Inc.
8400 Baltimore Ave., Suite 320,
College Park, MD 20704

Prepared By:

H.B. Compliance Solutions

5005 S. Ash Avenue, Suite \# A-10
Tempe, Arizona 85282
Reviewed By:

Hoosamuddin Bandukwala

Cert \# ATL-0062-E

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$S=P G / 4 \pi R^{2}$

Where,
$S=$ power density ($\mathrm{mW} / \mathrm{cm} 2$)
$P=$ output power at the antenna terminal (mW)
$\mathrm{G}=$ gain of transmit antenna (numeric)
$R=$ distance from transmitting antenna (cm)
Maximum peak output power at antenna input terminal $=\underline{30.23(d B m)}{ }^{*}$
Maximum peak output power at antenna input terminal $=1054.3(\mathrm{~mW})$
Antenna gain (typical) $=0(\mathrm{dBi})$
Maximum antenna gain = 1.0 (numeric)
Prediction distance $=\underline{30(\mathrm{~cm})}$
Prediction frequency $=399.9(\mathrm{MHz})$
MPE limit for uncontrolled exposure at prediction frequency $=0.267\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$
Power density at prediction frequency $=\underline{0.09322\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)}$
*Includes 1 dB of manufacturer output power tolerance.

To solve for the minimum mounting distance required;
$R=V(P G / 4 \pi S)$
$R=V(346 \times 1.4 / 4 \pi \times 0.09322)=\underline{30 \mathrm{~cm}}$ (Based on continuous transmission)

END OF TEST REPORT

