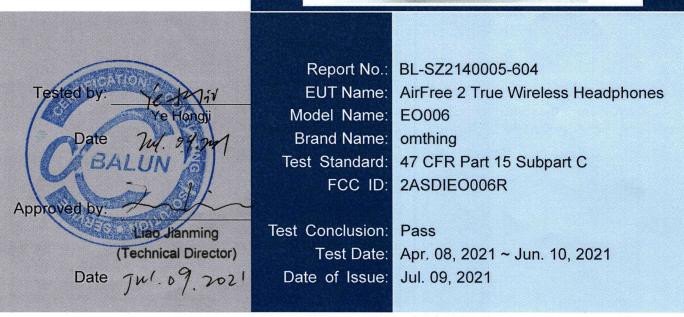
ISSUED BY Shenzhen BALUN Technology Co., Ltd.

RF

TEST REPORT


FOR

AirFree 2 True Wireless Headphones

ISSUED TO Tiinlab Corporation

No. 3333, Liuxian Avenue, Tower A, 35th Floor, Tanglang City, Nanshan District, Shenzhen, China

NOTE: This test report of test results only related to testing samples, which can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271 Email: qc@baluntek.com / 64 1 www.baluntek.com

Revision History

Version	Issue Date	Revisions Content
<u>Rev. 01</u>	<u>Jun. 30, 2021</u>	Initial Issue
Rev. 02	Jul. 09, 2021	Update Model Name and Brand Name

TABLE OF CONTENTS

1	ADMIN	ISTRATIVE DATA (GENERAL INFORMATION)	. 5
	1.1	Identification of the Testing Laboratory	. 5
	1.2	Identification of the Responsible Testing Location	. 5
	1.3	Laboratory Condition	. 5
	1.4	Announce	. 5
2	PRODU	ICT INFORMATION	. 6
	2.1	Applicant Information	. 6
	2.2	Manufacturer Information	. 6
	2.3	Factory Information	. 6
	2.4	General Description for Equipment under Test (EUT)	. 6
	2.5	Technical Information	.7
	2.6	Additional Instructions	. 8
3	SUMMA	ARY OF TEST RESULTS	. 9
	3.1	Test Standards	. 9
	3.2	Verdict	. 9
4	GENER	AL TEST CONFIGURATIONS	10
	4.1	Test Environments	10
	4.2	Test Equipment List	10
	4.3	Measurement Uncertainty	10
	4.4	Description of Test Setup	11
	4.4.1	For Antenna Port Test	11
	4.4.2	For AC Power Supply Port Test	11
	4.4.3	For Radiated Test (Below 30 MHz)	12
	4.4.4	For Radiated Test (30 MHz-1 GHz)	12
	4.4.5	For Radiated Test (Above 1 GHz)	13
	4.5	Measurement Results Explanation Example	14
	4.5.1	5.1 For conducted test items:	

	4.5.2	For radiated band edges and spurious emission test:	14
5	TEST I	TEMS	15
5	5.1	Antenna Requirements	15
	5.1.1	Relevant Standards	15
	5.1.2	Antenna Anti-Replacement Construction	15
	5.1.3	Antenna Gain	15
5	5.2	Output Power	16
	5.2.1	Test Limit	16
	5.2.2	Test Setup	16
	5.2.3	Test Procedure	16
	5.2.4	Test Result	17
5	5.3	Occupied Bandwidth	18
	5.3.1	Limit	18
	5.3.2	Test Setup	18
	5.3.3	Test Procedure	18
	5.3.4	Test Result	18
5	5.4	Conducted Spurious Emission	19
	5.4.1	Limit	19
	5.4.2	Test Setup	19
	5.4.3	Test Procedure	19
	5.4.4	Test Result	20
5	5.5	Band Edge (Authorized-band band-edge)	21
	5.5.1	Limit	21
	5.5.2	Test Setup	21
	5.5.3	Test Procedure	21
	5.5.4	Test Result	21
5	5.6	Conducted Emission	22
	5.6.1	Limit	22
	5.6.2	Test Setup	22
	5.6.3	Test Procedure	22
	5.6.4	Test Result	22
5	5.7	Radiated Spurious Emission	23
	5.7.1	Limit	23

5.7.2	Test Setup	23
5.7.3	Test Procedure	23
5.7.4	Test Result	26
5.8	Band Edge (Restricted-band band-edge)	27
5.8.1	Limit	27
5.8.2	Test Setup	27
5.8.3	Test Procedure	27
1.1.1	Test Result	27
5.9	Power Spectral density (PSD)	28
5.9.1	Limit	28
5.9.2	Test Setup	28
5.9.3	Test Procedure	28
5.9.4	Test Result	28
ANNEX A	TEST RESULT	29
A.1	Output Power, Duty Cycle	29
A.2	Occupied Bandwidth	32
A.3	Conducted Spurious Emissions	35
A.4	Band Edge (Authorized-band band-edge)	40
A.5	Conducted Emissions	44
A.6	Radiated Spurious Emission	46
A.7	Band Edge (Restricted-band band-edge)	60
A.8	Power Spectral Density (PSD)	62
ANNEX B	TEST SETUP PHOTOS	64
ANNEX C	EUT EXTERNAL PHOTOS	64
ANNEX D	EUT INTERNAL PHOTOS	64

1 ADMINISTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation	The laboratory is a testing organization accredited by FCC as a
Certificate	accredited testing laboratory. The designation number is CN1196.
	All measurement facilities used to collect the measurement data are
Description	located at Block B, FL 1, Baisha Science and Technology Park, Shahe
Description	Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R.
	China 518055

1.3 Laboratory Condition

Ambient Temperature	20°C to 25°C
Ambient Relative Humidity	45% to 55%
Ambient Pressure	100 kPa to 102 kPa

1.4 Announce

- (1) The test report reference to the report template version v6.9.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (7) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Tiinlab Corporation
Address	No. 3333, Liuxian Avenue, Tower A, 35th Floor, Tanglang City,
Address	Nanshan District, Shenzhen, China

2.2 Manufacturer Information

Manufacturer	Tiinlab Corporation
Address	No. 3333, Liuxian Avenue, Tower A, 35th Floor, Tanglang City,
Address	Nanshan District, Shenzhen, China

2.3 Factory Information

Factory	N/A
Address	N/A

2.4 General Description for Equipment under Test (EUT)

EUT Name	AirFree 2 True Wireless Headphones
Model Name Under Test	EO006
Series Model Name	N/A
Description of Model	N/A
name differentiation	N/A
Serial Number	N/A
Hardware Version	V001
Software Version	V001
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.5 Technical Information

Network and Wireless connectivity The requirement for the following	Bluetooth (BR+EDR+BLE), QI technical information of the EUT was tested in this report:
Modulation Technology	DTS
Modulation Type	GFSK
Product Type	⊠ Portable
	Fix Location
Transfer Rate	1 Mbps, 2 Mbps
Frequency Range	The frequency range used is 2400 MHz to 2483.5 MHz.
Number of Channel	40 (at intervals of 2 MHz)
Tested Channel	0 (2402 MHz), 19 (2440 MHz), 39 (2480 MHz)
Antenna Type	FPC Antenna
Antonno Osin	0.1 dBi (In test items related to antenna gain, the final results reflect
Antenna Gain	this figure. This value is provided by the applicant.)
Antenna Impedance	50Ω
Antenna System	
(MIMO Smart Antenna)	N/A

2.6 Additional Instructions

EUT Software Settings:

	Special software is used.
Mode	The software provided by client to enable the EUT under
	transmission condition continuously at specific channel frequencies
	individually.

During testing. Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power level setup in software				
Test Software Version	BlueTest3			
Support Units	Description	Manufacturer	Model	
(Software installation media)	Notebook	Lenovo	X220	
Mode	Channel	Frequency (MHz)	Soft Set	
	CH0	2402	Dower peremeter Settings	
GFSK	CH19	2440	Power parameter Settings is 4	
	CH39	2480	15 4	

Run Software

🛛 BlueTest3 - Test Command Mode				
Test Commands CW TX CONTINUOUS TX PACKET TX PACKET TX PACKET RX QHS RF TEST STOP FOWER TABLE GET FOWER TABLE SET ENABLE DUT MODE	Test Arguments Channel (0-78) Power (0-9) Type Pattern bits (1- 20) Pattern (hex)	0 4 LE2M PR9 32 00000001	Close Help Execute Reset	
Save to file Browse f	1	Display : 🖲 Standard	C BER	
Chip reset : success Disable Application succ ENABLE DUT MODE success Chip reset : success ENABLE DUT MODE success Channel frequency = 2402 CONTINUOUS TX successful Channel frequency = 2440 CONTINUOUS TX successful Channel frequency = 2480 CONTINUOUS TX successful Channel frequency = 2402 CONTINUOUS TX successful	essful ul (Device made c ul (Device made c MHz MHz MHz MHz	connectable)		

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15, Subpart C	Miscellaneous Wireless Communications Services
2	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

3.2 Verdict

No.	Description	FCC Part No.	Channel	Test Result	Verdict
1	Antenna Requirement	15.203	N/A		Pass ^{Note1}
2	Output Power	15.247(b)	Low/Middle/High	ANNEX A.1	Pass
3	Occupied Bandwidth	15.247(a)	Low/Middle/High	ANNEX A.2	Pass
4	Conducted Spurious Emission	15.247(d)	Low/Middle/High	ANNEX A.3	Pass
5	Band Edge(Authorized- band band-edge)	15.247(d)	Low/ High	ANNEX A.4	Pass
6	Conducted Emission	15.207	Low/Middle/High	ANNEX A.5	Pass
7	Radiated Spurious Emission	15.209 15.247(d)	Low/Middle/High	ANNEX A.6	Pass
8	Band Edge(Restricted- band band-edge)	15.209 15.247(d)	Low/Middle/High	ANNEX A.7	Pass
9	Power spectral density (PSD)	15.247(e)	Low/Middle/High	ANNEX A.8	Pass
10	Receiver Spurious Emissions			N/A	N/A ^{Note2}
Note ¹ : The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement					

FCC 15.203.

Note ²: Only radio communication receivers operating in stand-alone mode within the band 30-960 MHz, as well as scanner receivers, are subject to Industry Canada requirements, so this test is not applicable.

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	45% to 55%	
Atmospheric Pressure	100 kPa to 102 kPa	
Temperature	NT (Normal Temperature)	+22°C to +25°C
Working Voltage of the EUT	NV (Normal Voltage)	3.7 V

4.2 Test Equipment List

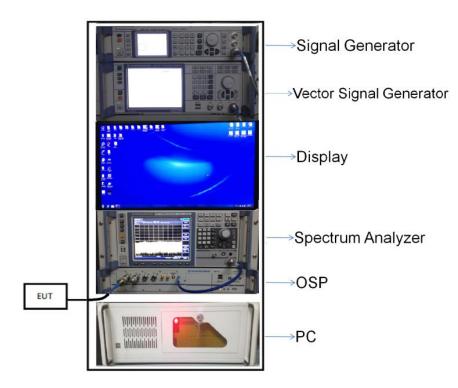
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-40	101544	2021.04.01	2022.03.31
Bluetooth Signaling Unit	ROHDE&SCHWARZ	CMW500	142028	2021.06.01	2022.05.31
EMI Receiver	KEYSIGHT	N9038A	MY53220118	2021.06.01	2022.05.31
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2021.06.01	2022.05.31
LISN	SCHWARZBECK	NSLK 8127	8127-687	2021.06.01	2022.05.31
Test Antenna- Loop(9 kHz-30 MHz)	SCHWARZBECK	FMZB 1519	1519-037	2019.10.29	2021.10.28
Test Antenna- Bi-Log(30 MHz-3 GHz)	SCHWARZBECK	VULB 9163	9163-624	2019.07.02	2021.07.01
Test Antenna- Horn(1-18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1917	2019.07.02	2021.07.01
Test Antenna- Horn (18-40 GHz)	A-INFO	LB- 180400KF	J211060273	2021.01.05	2023.01.04
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2017.02.21	2022.02.20
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60 *7.35m	N/A	2018.08.08	2021.08.07
Shielded Enclosure	ChangNing	CN-130701	130703		

4.3 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

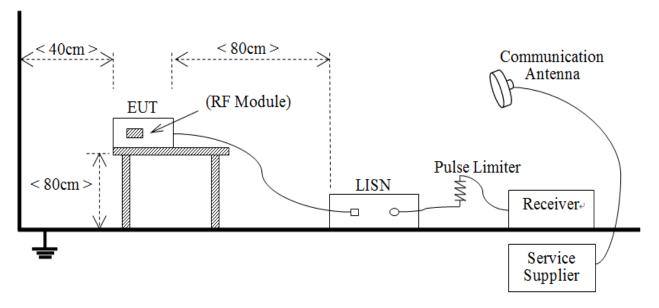
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Occupied Channel Bandwidth	±4%
RF output power, conducted	±1.21 dB
Power Spectral Density, conducted	±1.25 dB
Unwanted Emissions, conducted	±1.26 dB
All emissions, radiated	±3.86 dB
Temperature	±1°C
Humidity	±4%



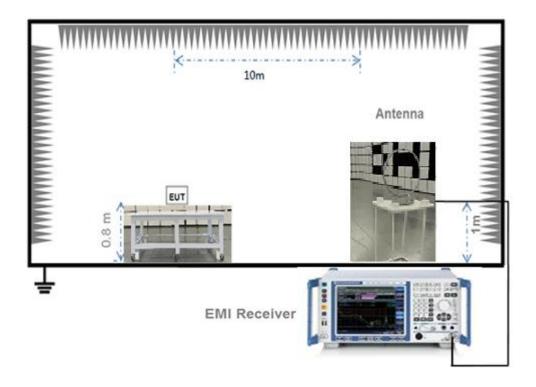
4.4 Description of Test Setup

4.4.1 For Antenna Port Test

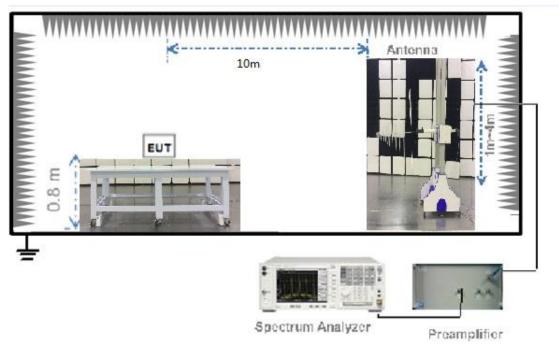

Conducted value (dBm) = Measurement value (dBm) + cable loss (dB)

For example: the measurement value is 10 dBm and the cable loss is 0.5dB, then the conducted value (dBm) = 10 dBm + 0.5 dB = 10.5 dBm

(Diagram 1)

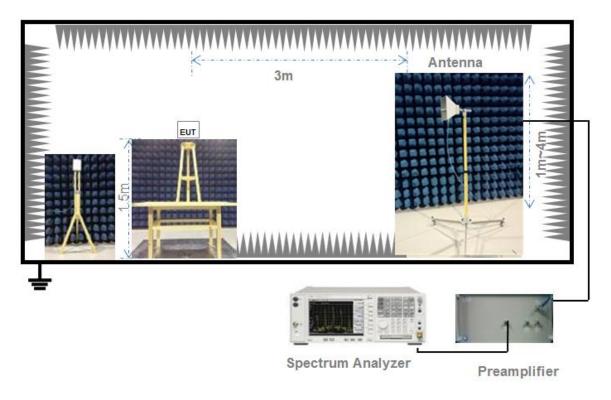


(Diagram 2)



4.4.3 For Radiated Test (Below 30 MHz)

(Diagram 3)


4.4.4 For Radiated Test (30 MHz-1 GHz)

4.4.5 For Radiated Test (Above 1 GHz)

(Diagram 5)

4.5 Measurement Results Explanation Example

4.5.1 For conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

4.5.2 For radiated band edges and spurious emission test:

E = EIRP - 20log D + 104.8

where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Relevant Standards

FCC §15.203 & 15.247(b); RSS-247, 5.4 (f)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the	An embedded-in antenna design is used.
product.	

Reference Documents	Item
Photo	Please refer to the EUT Photo documents.

5.1.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

5.2 Output Power

5.2.1 Test Limit

FCC § 15.247(b)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antennas and antennas and antennas and antennas elements.

RSS-247, 5.4 (d)

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4 W.

5.2.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

a) Maximum peak conducted output power

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

Set the RBW \geq DTS bandwidth.

Set VBW \geq 3 x RBW.

Set span ≥ 3 x RBW

Sweep time = auto couple.

Detector = peak.

Trace mode = max hold.

Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level.

b) Measurements of duty cycle

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal.

Set the center frequency of the instrument to the center frequency of the transmission.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.

Set VBW \geq RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

5.2.4 Test Result

Please refer to ANNEX A.1.

5.3 Occupied Bandwidth

5.3.1 Limit

FCC §15.247(a); RSS-247, 5.2 (a); RSS-GEN, 6.7

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW. The 6 dB bandwidth must be greater than 500 kHz.

5.3.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

Use the following spectrum analyzer settings:

Set RBW = 100 kHz.

Set the video bandwidth (VBW) \geq 3 RBW.

Detector = Peak.

Trace mode = max hold.

Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.4 Test Result

Please refer to ANNEX A.2.

5.4 Conducted Spurious Emission

5.4.1 Limit

FCC §15.247(d); RSS-247, 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.4.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

a) If the maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).

c) In either case, attenuation to levels below the 15.209 general radiated emissions limits is not required.

The following procedures shall be used to demonstrate compliance to these limits. Note that these procedures can be used in either an antenna-port conducted or radiated test set-up. Radiated tests must conform to the test site requirements and utilize maximization procedures defined herein.

Reference level measurement:

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Emission level measurement:

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

5.4.4 Test Result

Please refer to ANNEX A.3.

5.5 Band Edge (Authorized-band band-edge)

5.5.1 Limit

FCC §15.247(d); RSS-247, 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.5.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

The following procedures may be used to determine the peak or average field strength or power of an unwanted emission that is within 2 MHz of the authorized band edge. If a peak detector is utilized, use the procedure described in 13.2.1. Use the procedure described in 13.2.2 when using an average detector and the EUT can be configured to transmit continuously (i.e., duty cycle \geq 98%). Use the procedure described in 13.2.3 when using an average detector and the EUT can be configured to transmit continuously (i.e., duty cycle \geq 98%). Use the procedure described in 13.2.3 when using an average detector and the EUT cannot be configured to transmit continuously but the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent). Use the procedure described in 13.2.4 when using an average detector for those cases where the EUT cannot be configured to transmit continuously and the duty cycle is not constant (duty cycle variations equal or exceed 2 percent).

When using a peak detector to measure unwanted emissions at or near the band edge (within 2 MHz of the authorized band), the following integration procedure can be used.

Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

Set span to 2 MHz

RBW = 100 kHz.

VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweep to continue until the trace stabilizes (required measurement time may increase for low duty cycle applications)

Compute the power by integrating the spectrum over 1 MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency (femission) \pm 0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by femission \pm 0.5 MHz.

5.5.4 Test Result

Please refer to ANNEX A.4.

5.6 Conducted Emission

5.6.1 Limit

FCC §15.207; RSS-GEN, 8.8

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
0.50 - 30	60	50	

5.6.2 Test Setup

See section 4.4.2 for test setup description for the AC power supply port. The photo of test setup please refer to ANNEX B.

5.6.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.6.4 Test Result

Please refer to ANNEX A.5.

5.7 Radiated Spurious Emission

5.7.1 Limit

FCC §15.209&15.247(d); RSS-GEN, 8.9; RSS-247, 5.5

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. Field Strength (dB μ V/m) = 20*log[Field Strength (μ V/m)].
- 2. In the emission tables above, the tighter limit applies at the band edges.
- 3. For Above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- 4. For above 1000 MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).

5.7.2 Test Setup

See section 4.4.3 to 4.4.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.7.3 Test Procedure

Since the emission limits are specified in terms of radiated field strength levels, measurements performed to demonstrate compliance have traditionally relied on a radiated test configuration. Radiated measurements remain the principal method for demonstrating compliance to the specified limits; however antenna-port conducted measurements are also now acceptable to demonstrate compliance (see below for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 shall be followed.

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

General Procedure for conducted measurements in restricted bands:

a) Measure the conducted output power (in dBm) using the detector specified (see guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see guidance on determining the applicable antenna gain)

c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).

e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8

where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

f) Compare the resultant electric field strength level to the applicable limit.

g) Perform radiated spurious emission test.

Quasi-Peak measurement procedure

The specifications for measurements using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

Peak power measurement procedure:

Peak emission levels are measured by setting the instrument as follows:

a) RBW = as specified in Table 1.

b) VBW \geq 3 x RBW.

c) Detector = Peak.

d) Sweep time = auto.

e) Trace mode = max hold.

f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be longer for low duty cycle applications).

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Table 1—RBW as a function of frequency

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Trace averaging across on and off times of the EUT transmissions followed by duty cycle correction:

If continuous transmission of the EUT (i.e., duty cycle \ge 98 percent) cannot be achieved and the duty cycle is constant (i.e., duty cycle variations are less than \pm 2 percent), then the following procedure shall be used:

a) The EUT shall be configured to operate at the maximum achievable duty cycle.

b) Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.

c) RBW = 1 MHz (unless otherwise specified).

d) VBW \geq 3 x RBW.

e) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.

f) Averaging type = power (i.e., RMS).

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.

g) Sweep time = auto.

h) Perform a trace average of at least 100 traces.

i) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.

2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.

3) If a specific emission is demonstrated to be continuous (\geq 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

NOTE: Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

Determining the applicable transmit antenna gain:

A conducted power measurement will determine the maximum output power associated with a restricted band emission; however, in order to determine the associated EIRP level, the gain of the transmitting antenna (in dBi) must be added to the measured output power (in dBm).

Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

See KDB 662911 for guidance on calculating the additional array gain term when determining the effective antenna gain for a EUT with multiple outputs occupying the same or overlapping frequency ranges in the same band.

Radiated spurious emission test:

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in ANSI C63.10. All detected emissions shall comply with the applicable limits.

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

5.7.4 Test Result

Please refer to ANNEX A.6.

5.8 Band Edge (Restricted-band band-edge)

5.8.1 Limit

FCC §15.209&15.247(d); RSS-GEN, 8.10; RSS-247, 5.5

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

5.8.2 Test Setup

See section 4.4.3 to 4.4.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.8.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

For transmitters operating above 1 GHz repeat the measurement with an average detector.

1.1.1 Test Result

Please refer to ANNEX A.7.

5.9 Power Spectral density (PSD)

5.9.1 Limit

FCC §15.247(e); RSS-247, 5.2 (b)

The same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used.

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of Section 5.4(4), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

5.9.2 Test Setup

See section 4.4.1 (Diagram 1) for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.9.3 Test Procedure

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

Set the VBW \geq 3 RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

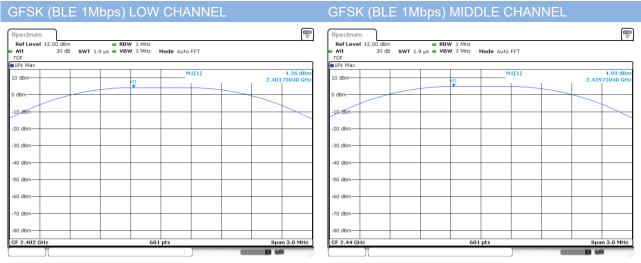
Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.9.4 Test Result

Please refer to ANNEX A.7.

ANNEX A TEST RESULT


A.1 Output Power, Duty Cycle

Peak Power Test Data

	Measured Output Peak Power			nit		
Channel	Channel GFSK (BLE 1Mbps)				Verdict	
	dBm	mW	dBm	mW		
Low	4.26	2.67			Pass	
Middle	4.93	3.11	30	1000	Pass	
High	5.34	3.42			Pass	

	Measured Output Peak Power			nit		
Channel	Channel GFSK (BLE 2Mbps)				Verdict	
	dBm	mW	dBm	mW		
Low	4.30	2.69			Pass	
Middle	4.99	3.16	30	1000	Pass	
High	5.37	3.44			Pass	

Test plots

GFSK (BLE 1Mbps) HIGH CHANNEL

Spectrum	ſ				
RefLevel 15.0 Att TDF		 RBW 1 MHz .9 μs VBW 3 MHz 			
1Pk Max					
10 dBm-		M1	M1[1]		5.34 dBm 2.47972550 GHz
0 dBm		¥			
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
-80 dBm			_		
CF 2.48 GHz	1		501 pts	1	Span 3.0 MHz
				Neasuring	1111 B 449

GFSK (BLE 2Mbps) LOW CHANNEL

Spectrum			E
RefLevel 15.00 d Att 30 TDF		Mode Auto FFT	
1Pk Max			
10 dBm		M1[1]	4.30 dBr 2.40240900 GH
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
-80 dBm			
CF 2.402 GHz	601	L pts	Span 6.0 MHz
Ĩ		Measuring	

GFSK (BLE 2Mbps) MIDDLE CHANNE

GFSK (BLE 2Mbps) HIGH CHANNEL

Ref Level 15.00 dBm Att 30 dB			
TDF	3 3 4 1 1.5 ps - 4 5 4 10 M	He Mode Addo FFT	
1Pk Max			
LO dBm		M1[1]	5.37 dBn 2.48048900 GH
dBm			
LO dBm			
20 dBm			
30 dBm			
i0 dBm			
i0 dBm			
i0 dBm			
70 dBm			
30 dBm F 2.48 GHz		601 pts	Span 6.0 MHz

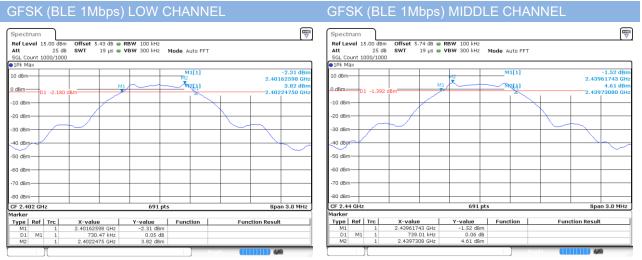
Duty Cycle Test Data

Band	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)
GFSK (BLE 1Mbps)	10	10	100.00%
GFSK (BLE 2Mbps)	10	10	100.00%

Test plots

GFSK (BLE	1Mbps)				GFSK (BLE 2Mbps)	
	Offset 5.74 dB ● R WT 10 ms ● V			()	Spectrum Ref Level 15.00 dBm Offset 5.74 dB RBW 1 MHz Att 25 dB SWT 10 ms VBW 3 MHz SGL Count 1/1 Image: SGL Count 1/1 Image: SGL Count 1/1 Image: SGL Count 1/1 @ 1Pk CTw Image: SGL Count 1/1 Image: SGL Count 1/1	
10 dBm					10 dBm	
0 dBm					0 dBm	
-10 dBm					-10 dBm	
-20 dBm					-20 dBm	
-30 dBm					-30 dBm	
-40 dBm					-40 dBm-	
-50 dBm					-50 dBm	
-60 dBm					-60 dBm-	
-70 dBm					-70 dBm	
-80 dBm					-80 dBm-	
CF 2.44 GHz		1000 pts		1.0 ms/	CF 2.44 GHz 1000 pts 1.0	lms/
			Ready 🚺		Ready ()	11

A.2 Occupied Bandwidth

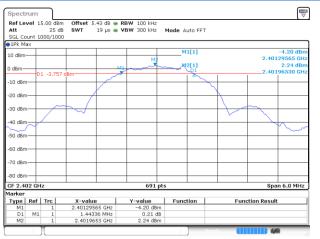

<u>Test Data</u>

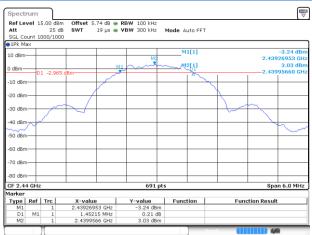
Test Mode	GFSK (BLE 1Mbps)					
Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth			
Channel	(kHz)	(kHz)	Limits (kHz)			
Low Channel	730.469	1054.993	≥500			
Middle Channel	739.014	1041.968	≥500			
High Channel	739.014	1046.310	≥500			

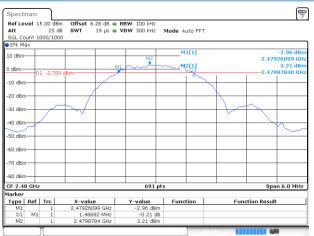
Test Mode	GFSK (BLE 2Mbps)					
Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth			
Channel	(kHz)	(kHz)	Limits (kHz)			
Low Channel	1443.359	2112.000	≥500			
Middle Channel	1452.148	2076.000	≥500			
High Channel	1486.816	2082.000	≥500			

Test plots

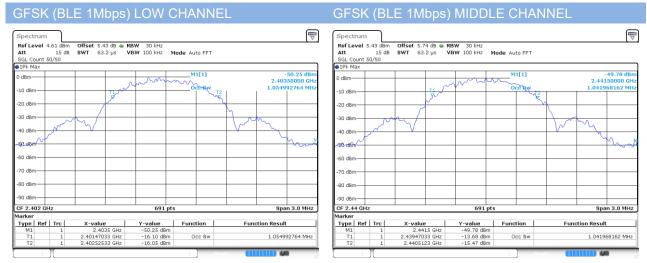
6 dB Bandwidth


GFSK (BLE 1Mbps) HIGH CHANNEL


Spectru	ım)						The second secon
Ref Leve	el 15.00	dBm	Offset 6.	26 dB 😑	RBW 100 kHz			
Att		25 dB	SWT	19 µs 👄	VBW 300 kHz	Mode Auto FFT		
SGL Cou	nt 1000	/1000						
1Pk Max								
10 dBm-						M1[1]		-1.11 dBn
10 aBm—					V2			2.47962183 GH
0 dBm				M				4.95 dBn
0 dBm—	-D1 -	1.052 0	18m			. 4		2.47973080 GH
-10 dBm-				1				
10 0000			/	r			X	
-20 dBm-			- /					
		~						
-30 dBm-		/	\sim					
40 dBm=	- <u>/</u>							
\sim								
-50 dBm-	-				-		-	
-60 dBm-	-							
-70 dBm-	-							
-80 dBm-								
-80 dBm-								
CF 2.48	GHz			-	691 pt	5		Span 3.0 MHz
1arker								
Type F	Ref Tr	c	X-value	.	Y-value	Function	Fund	tion Result
M1		1	2.479621		-1.11 dBm			
D1	M1	1		01 kHz	-0.09 dB			
M2		1	2.47973	08 GHz	4.95 dBm			


GFSK (BLE 2Mbps) LOW CHANNEL

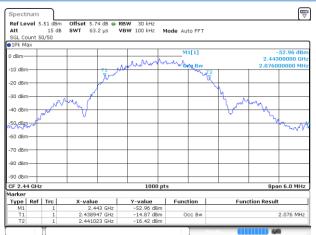
GFSK (BLE 2Mbps) MIDDLE CHANNEL



GFSK (BLE 2Mbps) HIGH CHANNEL

99% Bandwidth




GFSK (BLE 1Mbps) HIGH CHANNEL


GFSK (BLE 2Mbps) LOW CHANNEL

GFSK (BLE 2Mbps) MIDDLE CHANNEL

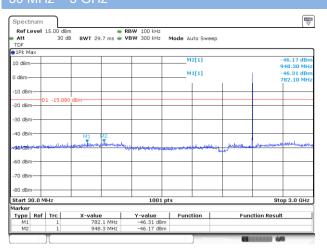
GFSK (BLE 2Mbps) HIGH CHANNEL

A.3 Conducted Spurious Emissions

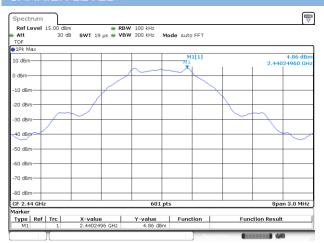
<u>Test Data</u>

GFSK (BLE 1Mbps)							
	Measured Max. Out of	Limit (d	dBm)				
Channel	Band Emission (dBm)		Calculated	Verdict			
		Carrier Level	20 dBc Limit				
Low	-33.73	4.12	-15.88	Pass			
Middle	-34.18	4.86	-15.14	Pass			
High	-34.07	5.14	-14.86	Pass			

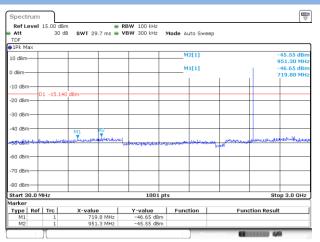
GFSK (BLE 2Mbps)						
Channel	Measured Max. Out of Band Emission (dBm)	Limit (dBm)				
		Carrier Level	Calculated	Verdict		
			20 dBc Limit			
Low	-34.58	2.80	-17.20	Pass		
Middle	-34.22	3.55	-16.45	Pass		
High	-33.60	4.05	-15.95	Pass		


Test Plots

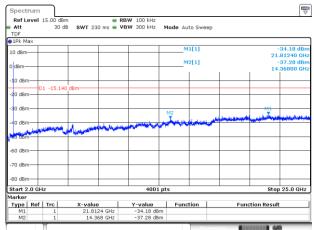
EVEL						
Spectrum						
Ref Level 15.00 dBm Att 30 dB TDF	● RB SWT 19 µs ● VB	W 100 kHz W 300 kHz Mi	ode Auto FFT			
1Pk Max			M1[1]			4.12 dBn
10 dBm			M1	1 1	2.4022	24960 GH
0 dBm		4	\sim			
10 dBm						
20 dBm						
					~	
30 dBm						
40 dBm						
50 dBm-						
60 dBm						
70 dBm						
80 dBm						
CF 2.402 GHz		601 pt	s		Span	13.0 MHz


GFSK (BLE 1Mbps) LOW CHANNEL, SPURIOUS

GFSK (BLE 1Mbps) LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

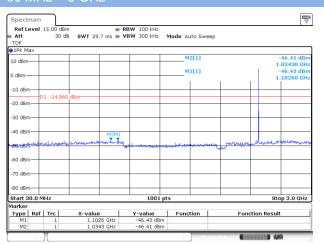


Spectrum Ref Level			RBW 100 kHz				
Att	15.00 de 30 i			Mode Auto Swe			
TDF	301	ub SWI 250 ms 🖷	YDW 300 KH2	HOUE AUTO SWE	ab		
1Pk Max							
				M1[1]		-33.73 dBr	
LO dBm						21.91590 GH	
dBm-				M2[1]		-36.24 dBr	
dBm						17.75970 GH	
0 dBm							
	1 -15.88	dam.					
20 dBm	1 -13.00	o ubiii					
30 dBm					M2	<u>M1</u>	
					Turner aller and	ALL AND DESCRIPTION OF THE PARTY OF THE PART	
40 dBm	المرور المصلوريا	A	and the second	- Coloring the state of the			
and the second of the second o	the second	the state of the s					
30 dBm							
60 dBm							
oo abiii							
70 dBm							
80 dBm			_				
Start 2.0 GH	z		4001 p	ts		Stop 25.0 GHz	
larker							
	Trc	X-value	Y-value	Function	Fu	nction Result	
M1	1	21.9159 GHz	-33.73 dBm				
M2	1	17.7597 GHz	-36.24 dBm				

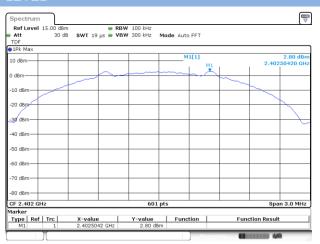

GFSK (BLE 1Mbps) MIDDLE CHANNEL, CARRIER LEVEL

GFSK (BLE 1Mbps) MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

GFSK (BLE 1Mbps) MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

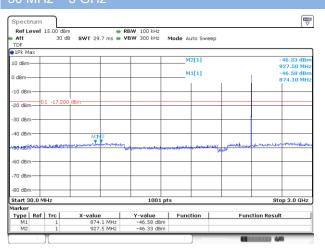


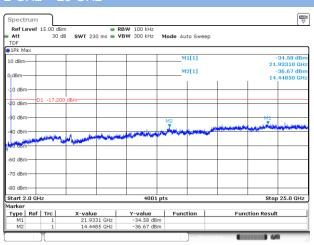
GFSK (BLE 1Mbps) HIGH CHANNEL, CARRIER


GFSK (BLE 1Mbps) HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

GFSK (BLE 1Mbps) HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

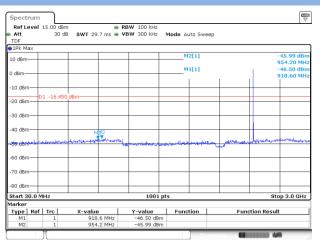
Att	15.00 dB			RBW 100 kHz				
TDF	30 c	IB SWT 23	10 ms 😑 🕯	VBW 300 kHz	Mode Auto Sv	veep		
1Pk Max								
10 dBm					M1[1]			-34.07 dBn
LO UBIII								L.62270 GH
dBm-					M2[1]			-34.52 dBr
					1	1	1	3.75420 GH
10 dBm-								
	D1 -14.86	0 dBm						-
20 dBm		+						
				1 1				
30 dBm—		+		++		M2	- <u>M1</u>	+
						And Street Street	به المستحد المصيد الما والدرا	المالمان والمعالية
40 dBm—	a talienadiki	A	والمراجع والمعادية	L. Marchan		and the state of the	بالماسية فليستنج فالمالية	and the states of the states o
	فللنو تغاملهم	w Augusta	بالقها الريامان	AL A	وي وي المنظمة المنظمة المنظمة المنظمة المناطقة المناطقة المناطقة المناطقة المنظمة المنظمة المنظمة المنظمة المن	and and the second second	Andrew Contraction of the second	the second second
	and a state	. Augusta		the second second	144 ⁴ 414744		hadde Haranda Andrewski	en automatication and a state of the state o
O GBm	and a state of the	Mananan	بالي الريز الأراد ال				Andrew State and the state of the state	and the second
eu dem	and the second secon	and in a second				and and the state of the state	1.11.111 (10.11.11) 	entration and a free
60 dBm	فللغو الماسين	er Azenenen					1.1011 10 100 100 100 100 100 100 100 10	
60 dBm	ىلىلەن «ئامۇرەر ئەر مەربىلەن	er Azennen					<u>), de 1996 good y</u> de â ^{lem} ent	
60 dBm	ant in the second second	with sensioned						
60 dBm 60 dBm 70 dBm 80 dBm		e Maraianan 	مینانی (باریز ۱۹۹۰ م ا		ots		Sta	p 25.0 GHz
60 dBm 60 dBm 70 dBm 80 dBm Start 2.0 G		Whenever 	میں اور	4001	bts		Sto	p 25.0 GHz
60 dBm 60 dBm 70 dBm 80 dBm 81 dBm 81 dBm	Hz	X-valu			the second secon		Sta	
40 dBm 60 dBm 70 dBm 80 dBm 80 dBm 80 dBm 81 arker 7ype Ref M1	Hz	X-value		4001	Function			


GFSK (BLE 2Mbps) LOW CHANNEL, CARRIER



GFSK (BLE 2Mbps) LOW CHANNEL, SPURIOUS

GFSK (BLE 2Mbps) LOW CHANNEL, SPURIOUS



GFSK (BLE 2Mbps) MIDDLE CHANNEL, CARRIER LEVEL

Ref Level 15.00 dBm	RBW	/ 100 kHz			
	19 µs 🖷 VBW	/ 300 kHz M	lode Auto FFT		
TDF	-				
1Pk Max					
10 dBm			M1[1]		3.55 dBr
10 0000				M1	2.44051410 GH
0 dBm					
	-				
-10 dBm	_				
		I I			
-20 dBpt	-				
		I I			
-30 dBm	-				
-40 dBm					
-50 dBm					
-60 dBm					
-60 0611					
-70 dBm					
-80 dBm					
CF 2.44 GHz		601 p	ts		Span 3.0 MHz
farker					
Type Ref Trc X-va		Y-value	Function	Fun	ction Result
M1 1 2.440	05141 GHz	3.55 dBm			

GFSK (BLE 2Mbps) MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

GFSK (BLE 2Mbps) MIDDLE CHANNEL. SPURIOUS 2 GHz ~ 25 GHz

Ref Level	15.00 dB	m 👄 F	BW 100 kHz			
Att	30 d	iB SWT 230 ms 🖷 🕅	BW 300 kHz M	ode Auto Swe	ер	
DF 1Pk Max						
10 dBm				M1[1]		-34.22 dBi
10 abiii						24.27860 GH
0ldBm				M2[1]		-34.64 dB 20.16830 GF
				1	1 1	20.10630 GH
-10 dBm-						
	01 -16.45	0 dBm			_	
-20 dBm						
-30 dBm						
-30 Ubiii						
-40 dBm-				Marine Land	والارادة والمحمد والمحمد والمحال	And the second se
	م.weiter	and an and the second s	We wanted and the second		• I I	
SU UBm		A CONTRACTOR OF CONTRACTOR OFO				
-60 dBm						
-70 dBm						
, o abiii						
-80 dBm-						
Start 2.0 G	Hz		4001 pt	5		Stop 25.0 GHz
Marker				Function	E	tion Result
Marker Type Ref	Trc 1	24.2786 GHz	-34.22 dBm	Function	Func	tion Result

GFSK (BLE 2Mbps) HIGH CHANNEL, CARRIER

GFSK (BLE 2Mbps) HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

	evel	15.00 dBr			RBW 100 kHz						
Att TDF		30 d	B SWT 29.7	ms 😑 🕻	/BW 300 kHz	Mode A	uto Swee	р			
1Pk M	ах										
LO dBm						M	2[1]			-	46.04 dBm
U UBIII											61.40 MH
dBm-						N	1[1]		1		46.71 dBn
abiii								1		9	09.70 MH
10 dBn	-							_			
		1 -15.95	1 dBm								
20 dBn		1 -10.90						-			
			1 1								
30 dBn	∩+-		+ +		+ +						
			1 1								
40 dBn	1		M2 ML								
50.48th		بالحاصل ويتروك	un hanna	montentin	ni www.	1.16.1	بعقدانيسي	. determine the	- edu	angel a	الاستعامية
ычевл	1	diama di seconda seconda seconda seconda de la condición de la condición de la condición de la condición de la			HAN O'CHARDON	Allowed and		up.			
60 dBr											
00 001	'										
70 dBn	\rightarrow						<u> </u>				
80 dBn	-							_			
Start 3	0.0 M	IHz			1001 pt	s				Sto	p 3.0 GHz
larker											
Туре	Ref		X-value		Y-value	Fund	tion	Fund	tion l	Result	
M1		1	909.7 761.4		-46.71 dBm -46.04 dBm						

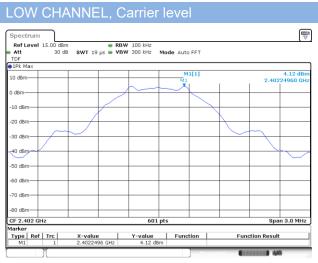
GFSK (BLE 2Mbps) HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

	vel 15.0				W 100 kHz					
TDF		30 dB	SWT 230	ms 🖷 VE	300 kHz	Mode Au	uto Swee	p		
10F 1Pk Ma	ж									
10 dBm-						N	11[1]			-33.60 dBn
10 0.0111										.03660 GH
0 dBm—						N	12[1]			37.43 dBr 35650 GH
							1		1	
-10 dBm	_						-			
-20 dBm·		15.950 dBr	n				-		-	
-20 ubiii										
-30 dBm	_								M1	
						M2			J T.	- us at our
-40 dBm·				at a star	A. Mining	MAN NO	in the second second	and the second second	CONTRACTOR IN	and the second second second
- a usti		mal	No. of Concession, Name	a straight and			1			
- no osm	-									
-60 dBm										
-70 dBm	+						+		+	
-80 dBm-	-						-			
00 00	0 GHz				4001	pts			Stop	25.0 GHz
Start 2.										
Start 2. Marker					Y-value	Fund	tion	Fun	ction Result	t
Start 2. Marker	Ref Tr	1	X-value 22.036	6.011	-33.60 dB					

A.4 Band Edge (Authorized-band band-edge)

Note: The lowest and highest channels are tested to verify the band edge emissions. Please refer to the following the plots for emissions values.

BLE 1Mbps

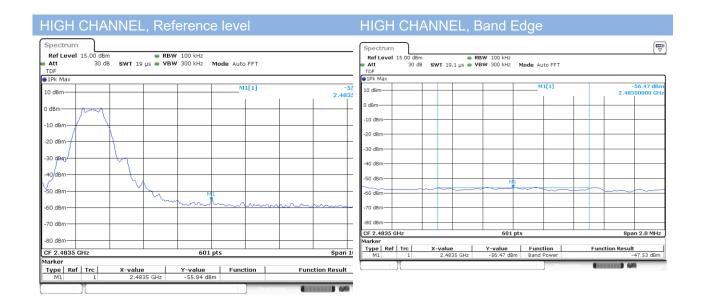

	Measured Max. Band	Limit	(dBm)	
Channel	Edge Emission (dBm)	Carrier Level	Calculated 20 dBc Limit	Verdict
Low Channel	-37.93	4.12	-15.88	Pass
High Channel	-47.53	5.14	-14.86	Pass

BLE 2Mbps

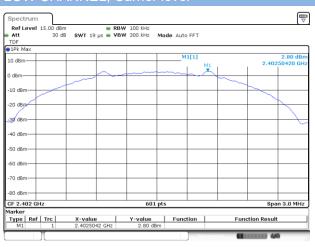
	Measured Max. Band	Limit	(dBm)	
Channel	Edge Emission (dBm)	Carrier Level	Calculated 20 dBc Limit	Verdict
Low Channel	-20.42	2.80	-17.20	Pass
High Channel	-42.08	4.05	-15.95	Pass

Test Plots

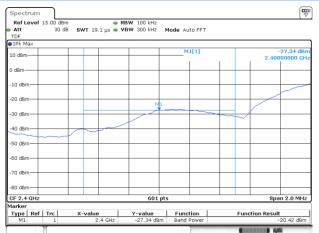
BLE 1Mbps

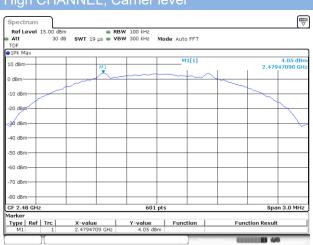


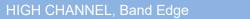
LOW CHANNEL, Reference level LOW CHANNEL, Band Edge Spectrum Spectrum Ref Level 15.00 dBm RBW 100 kHz Att 30 dB SWT 19 μs VBW 300 kHz Mode Auto FFT TDF Cran the Cran the Cran the Cran the Ref Level 15.00 dBm RBW 100 kHz Att 30 dB SWT 19.1 μs VBW 300 kHz Mode Auto FFT TDF VBW 300 kHz Mode Auto FFT PIPK Max ⊖1Pk Max M1[1] M1[1] 4 10 dBm-10 dBm-2.400 2.4000 0 dBm) dBrr -10 dBm--10 dBm -20 dBm--20 dBm -30 dBm -30 dBm -40 dBm--40 dBm -50 dBm -50 dBm -60 dBm--60 dBm--70 dBm--70 dBm -80 dBm--80 dBm CF 2.4 GHz Marker CF 2.4 GHz Marker 601 pts Span 1 601 pts Span Type Ref Trc Type Ref Trc M1 1 Function Result X-value Y-value Function 2.4 GHz -49.72 dBm X-value Y-value Function 2.4 GHz -49.34 dBm Band Power Function Result


High CHANNEL, Carrier level

Ref Level 15.00 dBr	n 🖷 RB	W 100 kHz				
Att 30 di	8 SWT 19 µs 🖷 VB	W 300 kHz M	ode Auto FFT			
TDF 1Pk Max						_
			M1[1]		5.14 0	Bn
10 dBm		M1			2.47973040	GH
) dBm		1	\sim			
10 dBm						
20 dBm					_	_
30 dBm						
40 dBm				+ +	\rightarrow	-
50 dBm						
60 dBm						
70 dBm		+		++		_
-80 dBm						
CF 2.48 GHz		601 pt	s		Span 3.0 M	Hz
larker Type Ref Trc	X-value	Y-value	Function	Eunct	ion Result	
M1 1	2.4797304 GHz	5.14 dBm	Function	Funct	ion kesult	_

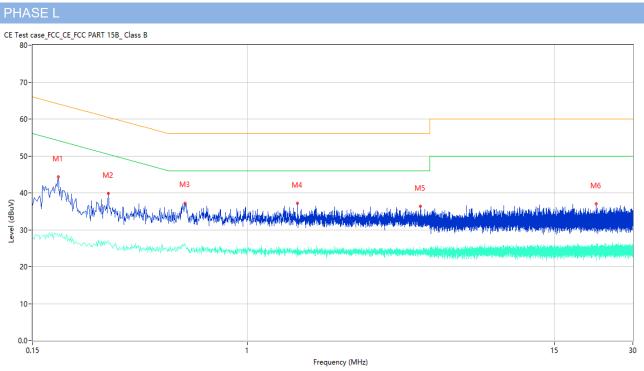



BLE 2Mbps


LOW CHANNEL, Band Edge

HIGH CHANNEL, Reference level

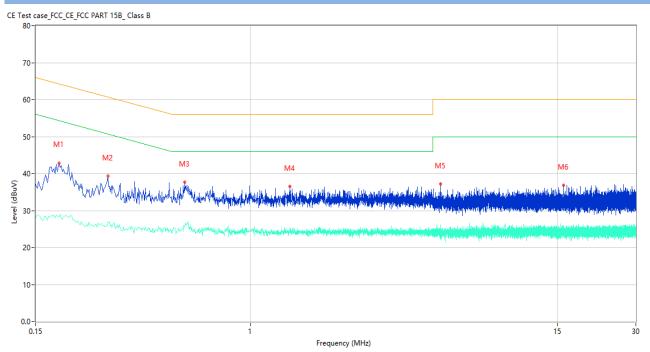
Spectrum					
Ref Level 15.00 dBm Att 30 dB TDF		BW 100 kHz BW 300 kHz r	Mode Auto FFT		
1Pk Max					
10 dBm			M1[1]		-53.15 dBr 2.48350000 GH
) dBm					
10 dBm					
20 dBm					
30 dBm					
40 dBm					
50 dBm					
50 dBm		+			
70 dBm					
80 dBm					
CF 2.4835 GHz larker		601 pt	s		Span 2.0 MHz
larker Type Ref Trc M1 1	X-value 2.4835 GHz	Y-value -53.15 dBm	Function Band Power	Fund	tion Result -42.08 dBm


A.5 Conducted Emissions

Note ¹: The EUT is working in the Normal link mode.

Note ²: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

Note ³: Results (dBuV) = Original reading level of Spectrum Analyzer (dBuV) + Factor (dB)

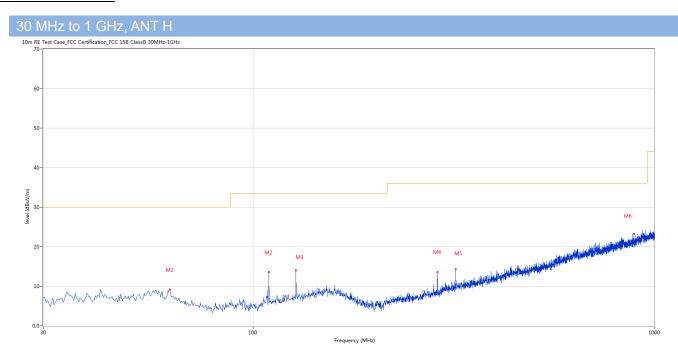

Test Data and Plots

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1	0.188	44.25	10.38	64.12	-19.87	Peak	L	Pass
1**	0.188	28.21	10.38	54.12	-25.91	AV	L	Pass
2	0.292	39.84	10.34	60.47	-20.63	Peak	L	Pass
2**	0.292	26.96	10.34	50.47	-23.51	AV	L	Pass
3	0.576	37.27	10.27	56.00	-18.73	Peak	L	Pass
3**	0.576	26.07	10.27	46.00	-19.93	AV	L	Pass
4	1.552	37.14	10.24	56.00	-18.86	Peak	L	Pass
4**	1.552	23.19	10.24	46.00	-22.81	AV	L	Pass
5	4.592	36.43	10.30	56.00	-19.57	Peak	L	Pass
5**	4.592	23.56	10.30	46.00	-22.44	AV	L	Pass
6	21.712	36.97	10.59	60.00	-23.03	Peak	L	Pass
6**	21.712	24.28	10.59	50.00	-25.72	AV	L	Pass

PHASE N

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1	0.184	42.86	10.39	64.30	-21.44	Peak	Ν	Pass
1**	0.184	28.24	10.39	54.30	-26.06	AV	Ν	Pass
2	0.284	39.34	10.34	60.70	-21.36	Peak	Ν	Pass
2**	0.284	26.96	10.34	50.70	-23.74	AV	Ν	Pass
3	0.558	37.69	10.28	56.00	-18.31	Peak	N	Pass
3**	0.558	26.03	10.28	46.00	-19.97	AV	Ν	Pass
4	1.412	36.57	10.25	56.00	-19.43	Peak	Ν	Pass
4**	1.412	24.04	10.25	46.00	-21.96	AV	N	Pass
5	5.362	37.22	10.31	60.00	-22.78	Peak	Ν	Pass
5**	5.362	24.43	10.31	50.00	-25.57	AV	N	Pass
6	15.834	36.91	10.43	60.00	-23.09	Peak	N	Pass
6**	15.834	24.88	10.43	50.00	-25.12	AV	N	Pass

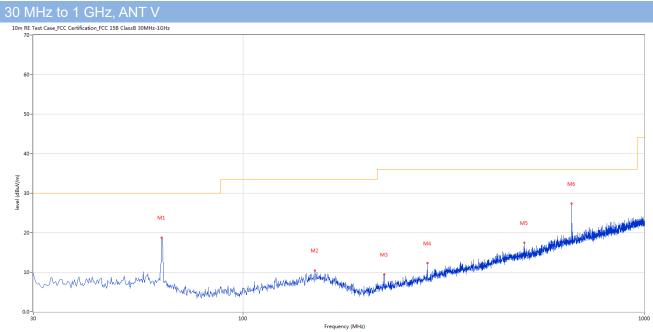
A.6 Radiated Spurious Emission


Note ¹: The symbol of "--" in the table which means not application.

Note ²: For the test data above 1 GHz, according the ANSI C63.4-2014, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

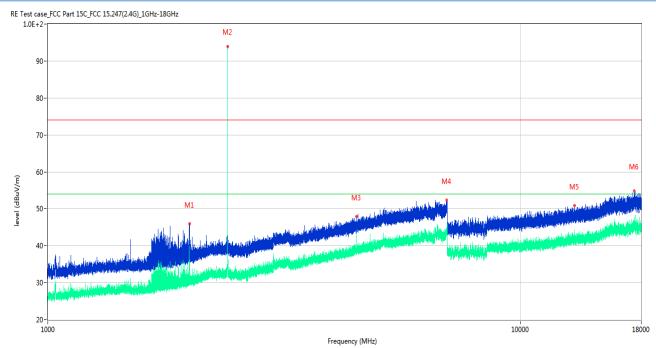
Note ³: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Note ⁴: The EUT is working in the Normal link mode below 1 GHz. All modes have been tested and BLE 1M-High channel mode is the worst.


Note ⁵: Results (dBuV/m) = Original reading level of Spectrum Analyzer (dBuV/m) + Factor (dB)

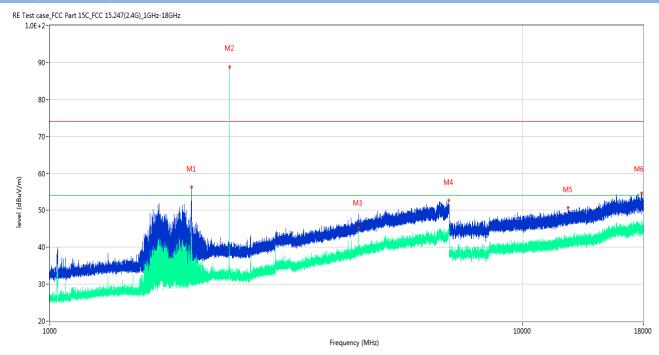
Test Data and Plots

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	62.002	9.11	-28.28	30.0	-20.89	Peak	78.00	100	Horizontal	Pass
2	109.520	13.58	-29.17	33.5	-19.92	Peak	130.00	200	Horizontal	Pass
3	127.946	14.04	-27.34	33.5	-19.46	Peak	0.00	200	Horizontal	Pass
4	287.956	13.62	-26.09	36.0	-22.38	Peak	312.00	200	Horizontal	Pass
5	319.958	14.33	-25.31	36.0	-21.67	Peak	98.00	100	Horizontal	Pass
6	889.690	23.27	-12.67	36.0	-12.73	Peak	161.00	200	Horizontal	Pass

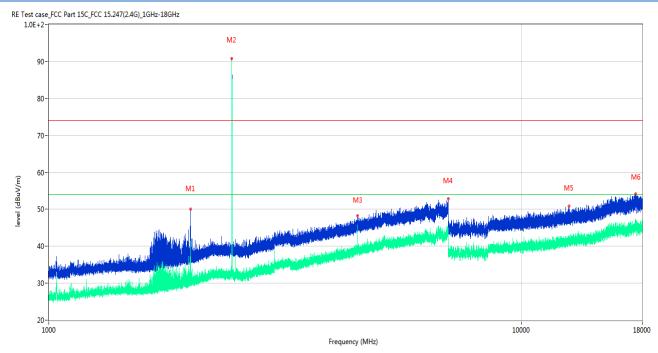

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	62.729	18.79	-28.40	30.0	-11.21	Peak	220.00	100	Vertical	Pass
2	150.977	10.43	-26.02	33.5	-23.07	Peak	246.00	200	Vertical	Pass
3	224.679	9.47	-28.31	36.0	-26.53	Peak	220.00	100	Vertical	Pass
4	287.956	12.28	-26.09	36.0	-23.72	Peak	210.00	100	Vertical	Pass
5	502.514	17.45	-20.54	36.0	-18.55	Peak	215.00	200	Vertical	Pass
6	659.373	27.32	-16.90	36.0	-8.68	Peak	220.00	100	Vertical	Pass

Note 1: The marked spikes near 2400 MHz with circle should be ignored because they are Fundamental signal.

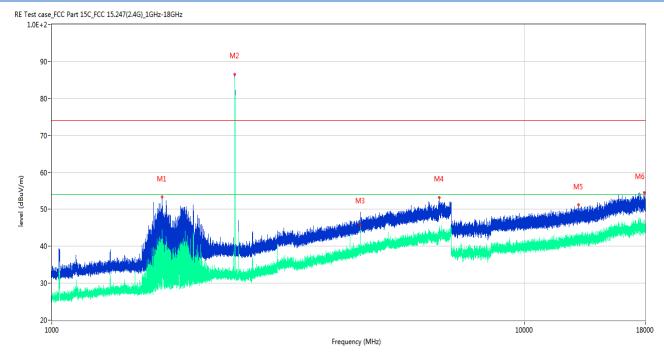
Note 2: The spurious from 18GHz-25GHz is noise only, do not show on the report.



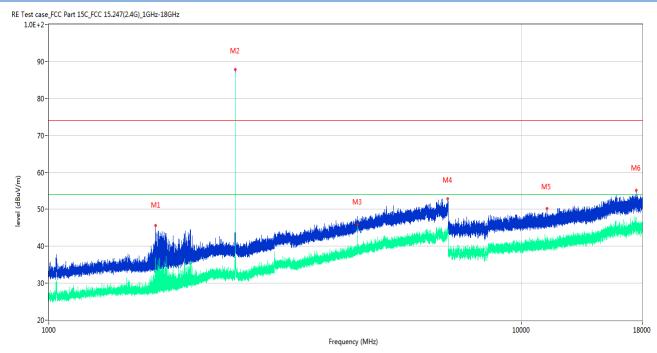
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1993.700	46.00	-15.62	74.0	-28.00	Peak	13.00	150	Horizontal	Pass
1**	1993.700	30.10	-15.62	54.0	-23.90	AV	13.00	150	Horizontal	Pass
2	2401.700	93.95	-12.26	74.0	19.95	Peak	13.00	150	Horizontal	N/A
2**	2401.700	91.64	-12.26	54.0	37.64	AV	13.00	150	Horizontal	N/A
3	4500.000	47.87	-4.46	74.0	-26.13	Peak	116.00	150	Horizontal	Pass
3**	4500.000	43.28	-4.46	54.0	-10.72	AV	116.00	150	Horizontal	Pass
4	6974.200	52.30	0.79	74.0	-21.70	Peak	0.00	150	Horizontal	Pass
4**	6974.200	43.54	0.79	54.0	-10.46	AV	0.00	150	Horizontal	Pass
5	13004.888	50.93	1.50	74.0	-23.07	Peak	243.00	150	Horizontal	Pass
5**	13004.888	42.22	1.50	54.0	-11.78	AV	243.00	150	Horizontal	Pass
6	17410.425	54.77	3.46	74.0	-19.23	Peak	323.00	150	Horizontal	Pass
6**	17410.425	44.99	3.46	54.0	-9.01	AV	323.00	150	Horizontal	Pass


GFSK (BLE 1Mbps) LOW CHANNEL 1 GHz to 18 GHz, ANT V

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1994.600	56.29	-15.59	74.0	-17.71	Peak	74.00	150	Vertical	Pass
1**	1994.600	38.05	-15.59	54.0	-15.95	AV	74.00	150	Vertical	Pass
2	2401.700	88.86	-12.26	74.0	14.86	Peak	8.00	150	Vertical	N/A
2**	2401.700	85.97	-12.26	54.0	31.97	AV	8.00	150	Vertical	N/A
3	4500.000	48.86	-4.46	74.0	-25.14	Peak	62.00	150	Vertical	Pass
3**	4500.000	45.36	-4.46	54.0	-8.64	AV	62.00	150	Vertical	Pass
4	6974.800	52.62	0.79	74.0	-21.38	Peak	334.00	150	Vertical	Pass
4**	6974.800	43.76	0.79	54.0	-10.24	AV	334.00	150	Vertical	Pass
5	12486.651	50.78	1.65	74.0	-23.22	Peak	47.00	150	Vertical	Pass
5**	12486.651	40.62	1.65	54.0	-13.38	AV	47.00	150	Vertical	Pass
6	17866.387	54.74	3.23	74.0	-19.26	Peak	119.00	150	Vertical	Pass
6**	17866.387	45.40	3.23	54.0	-8.60	AV	119.00	150	Vertical	Pass

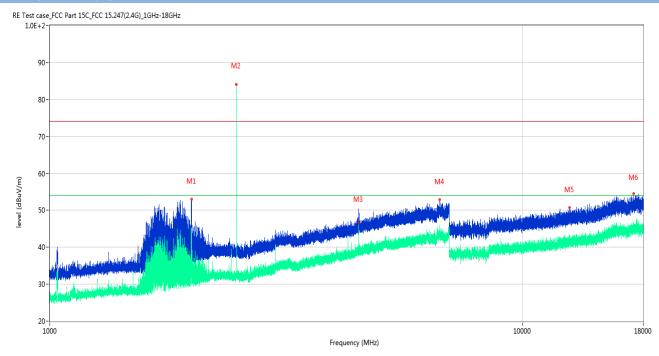

GFSK (BLE 1Mbps) MIDDLE CHANNEL 1 GHz to 18 GHz, ANT H

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1994.200	50.05	-15.60	74.0	-23.95	Peak	318.00	150	Horizontal	Pass
1**	1994.200	33.52	-15.60	54.0	-20.48	AV	318.00	150	Horizontal	Pass
2	2439.600	90.73	-12.64	74.0	16.73	Peak	43.00	150	Horizontal	N/A
2**	2439.600	88.00	-12.64	54.0	34.00	AV	43.00	150	Horizontal	N/A
3	4499.800	48.23	-4.45	74.0	-25.77	Peak	95.00	150	Horizontal	Pass
3**	4499.800	43.46	-4.45	54.0	-10.54	AV	95.00	150	Horizontal	Pass
4	6991.800	52.92	0.21	74.0	-21.08	Peak	164.00	150	Horizontal	Pass
4**	6991.800	43.71	0.21	54.0	-10.29	AV	164.00	150	Horizontal	Pass
5	12601.075	50.83	1.90	74.0	-23.17	Peak	14.00	150	Horizontal	Pass
5**	12601.075	41.18	1.90	54.0	-12.82	AV	14.00	150	Horizontal	Pass
6	17424.863	54.15	3.62	74.0	-19.85	Peak	274.00	150	Horizontal	Pass
6**	17424.863	46.27	3.62	54.0	-7.73	AV	274.00	150	Horizontal	Pass


GFSK (BLE 1Mbps) MIDDLE CHANNEL 1 GHz to 18 GHz, ANT V

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1711.000	53.34	-17.25	74.0	-20.66	Peak	55.00	150	Vertical	Pass
1**	1711.000	35.58	-17.25	54.0	-18.42	AV	55.00	150	Vertical	Pass
2	2439.700	86.45	-12.64	74.0	12.45	Peak	90.00	150	Vertical	N/A
2**	2439.700	84.54	-12.64	54.0	30.54	AV	90.00	150	Vertical	Fail
3	4500.000	49.14	-4.46	74.0	-24.86	Peak	167.00	150	Vertical	Pass
3**	4500.000	45.75	-4.46	54.0	-8.25	AV	167.00	150	Vertical	Pass
4	6607.600	53.12	0.15	74.0	-20.88	Peak	273.00	150	Vertical	Pass
4**	6607.600	44.55	0.15	54.0	-9.45	AV	273.00	150	Vertical	Pass
5	13005.938	51.22	1.50	74.0	-22.78	Peak	0.00	150	Vertical	Pass
5**	13005.938	42.30	1.50	54.0	-11.70	AV	0.00	150	Vertical	Pass
6	17912.850	54.57	3.47	74.0	-19.43	Peak	306.00	150	Vertical	Pass
6**	17912.850	44.75	3.47	54.0	-9.25	AV	306.00	150	Vertical	Pass

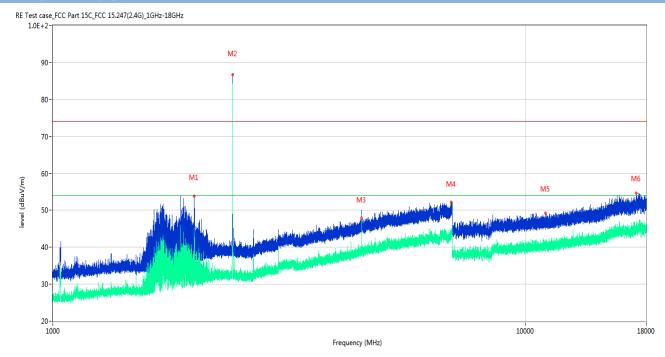
GFSK (BLE 1Mbps) HIGH CHANNEL 1 GHz to 18 GHz, ANT H



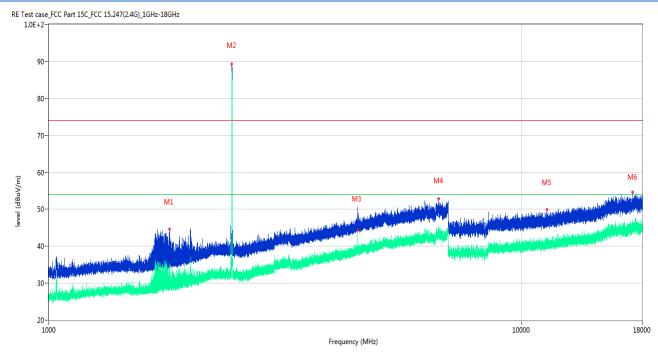
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1680.300	45.55	-17.54	74.0	-28.45	Peak	117.00	150	Horizontal	Pass
1**	1680.300	27.66	-17.54	54.0	-26.34	AV	117.00	150	Horizontal	Pass
2	2479.700	87.87	-12.43	74.0	13.87	Peak	29.00	150	Horizontal	N/A
2**	2479.700	86.48	-12.43	54.0	32.48	AV	29.00	150	Horizontal	N/A
3	4500.000	47.87	-4.46	74.0	-26.13	Peak	147.00	150	Horizontal	Pass
3**	4500.000	45.90	-4.46	54.0	-8.10	AV	147.00	150	Horizontal	Pass
4	6985.000	52.88	0.53	74.0	-21.12	Peak	147.00	150	Horizontal	Pass
4**	6985.000	43.69	0.53	54.0	-10.31	AV	147.00	150	Horizontal	Pass
5	11317.100	50.28	0.50	74.0	-23.72	Peak	208.00	150	Horizontal	Pass
5**	11317.100	41.02	0.50	54.0	-12.98	AV	208.00	150	Horizontal	Pass
6	17474.474	55.21	2.83	74.0	-18.79	Peak	140.00	150	Horizontal	Pass
6**	17474.474	45.52	2.83	54.0	-8.48	AV	140.00	150	Horizontal	Pass


GFSK (BLE 1Mbps) HIGH CHANNEL 1 GHz to 18 GHz, ANT V

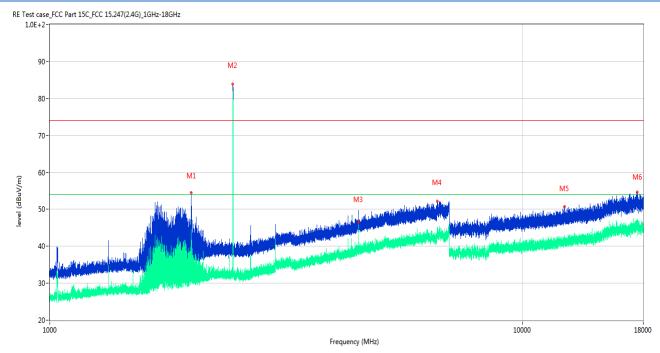
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1995.400	53.10	-15.55	74.0	-20.90	Peak	58.00	150	Vertical	Pass
1**	1995.400	37.06	-15.55	54.0	-16.94	AV	58.00	150	Vertical	Pass
2	2479.700	84.13	-12.43	74.0	10.13	Peak	209.00	150	Vertical	N/A
2**	2479.700	81.08	-12.43	54.0	27.08	AV	209.00	150	Vertical	N/A
3	4500.000	48.95	-4.46	74.0	-25.05	Peak	119.00	150	Vertical	Pass
3**	4500.000	46.59	-4.46	54.0	-7.41	AV	119.00	150	Vertical	Pass
4	6687.400	52.87	-0.23	74.0	-21.13	Peak	362.00	150	Vertical	Pass
4**	6687.400	43.88	-0.23	54.0	-10.12	AV	362.00	150	Vertical	Pass
5	12559.963	50.70	1.69	74.0	-23.30	Peak	334.00	150	Vertical	Pass
5**	12559.963	42.04	1.69	54.0	-11.96	AV	334.00	150	Vertical	Pass
6	17198.062	54.55	2.01	74.0	-19.45	Peak	285.00	150	Vertical	Pass
6**	17198.062	45.42	2.01	54.0	-8.58	AV	285.00	150	Vertical	Pass


GFSK (BLE 2Mbps) LOW CHANNEL 1 GHz to 18 GHz, ANT H

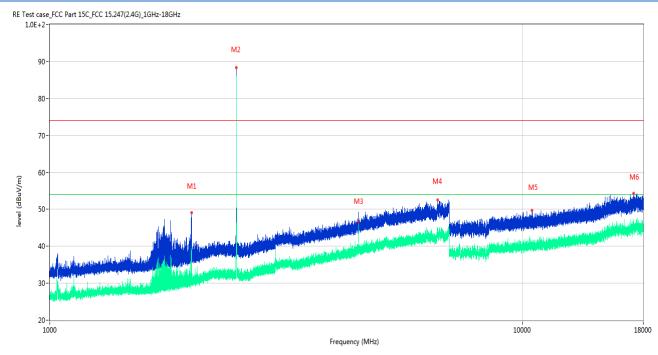
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1995.600	48.63	-15.55	74.0	-25.37	Peak	-2.00	150	Horizontal	Pass
1**	1995.600	29.37	-15.55	54.0	-24.63	AV	-2.00	150	Horizontal	Pass
2	2401.400	92.99	-12.27	74.0	18.99	Peak	28.00	150	Horizontal	N/A
2**	2401.400	88.87	-12.27	54.0	34.87	AV	28.00	150	Horizontal	N/A
3	4500.000	48.20	-4.46	74.0	-25.80	Peak	102.00	150	Horizontal	Pass
3**	4500.000	45.09	-4.46	54.0	-8.91	AV	102.00	150	Horizontal	Pass
4	6972.600	53.43	0.78	74.0	-20.57	Peak	310.00	150	Horizontal	Pass
4**	6972.600	44.05	0.78	54.0	-9.95	AV	310.00	150	Horizontal	Pass
5	12838.462	51.38	1.31	74.0	-22.62	Peak	211.00	150	Horizontal	Pass
5**	12838.462	41.54	1.31	54.0	-12.46	AV	211.00	150	Horizontal	Pass
6	17598.636	54.52	2.18	74.0	-19.48	Peak	361.00	150	Horizontal	Pass
6**	17598.636	45.36	2.18	54.0	-8.64	AV	361.00	150	Horizontal	Pass


GFSK (BLE 2Mbps) LOW CHANNEL 1 GHz to 18 GHz, ANT V

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1991.200	53.85	-15.51	74.0	-20.15	Peak	57.00	150	Vertical	Pass
1**	1991.200	37.75	-15.51	54.0	-16.25	AV	57.00	150	Vertical	Pass
2	2402.500	86.76	-12.27	74.0	12.76	Peak	10.00	150	Vertical	N/A
2**	2402.500	84.01	-12.27	54.0	30.01	AV	10.00	150	Vertical	N/A
3	4500.000	48.91	-4.46	74.0	-25.09	Peak	105.00	150	Vertical	Pass
3**	4500.000	47.95	-4.46	54.0	-6.05	AV	105.00	150	Vertical	Pass
4	6963.800	52.20	0.34	74.0	-21.80	Peak	145.00	150	Vertical	Pass
4**	6963.800	42.65	0.34	54.0	-11.35	AV	145.00	150	Vertical	Pass
5	11029.026	49.21	-0.63	74.0	-24.79	Peak	209.00	150	Vertical	Pass
5**	11029.026	39.74	-0.63	54.0	-14.26	AV	209.00	150	Vertical	Pass
6	17161.051	54.73	2.21	74.0	-19.27	Peak	260.00	150	Vertical	Pass
6**	17161.051	44.45	2.21	54.0	-9.55	AV	260.00	150	Vertical	Pass


GFSK (BLE 2Mbps) MIDDLE CHANNEL 1 GHz to 18 GHz, ANT H

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1799.500	44.62	-16.86	74.0	-29.38	Peak	126.00	150	Horizontal	Pass
1**	1799.500	29.71	-16.86	54.0	-24.29	AV	126.00	150	Horizontal	Pass
2	2439.400	89.37	-12.64	74.0	15.37	Peak	89.00	150	Horizontal	N/A
2**	2439.400	85.68	-12.64	54.0	31.68	AV	89.00	150	Horizontal	N/A
3	4500.000	50.60	-4.46	74.0	-23.40	Peak	111.00	150	Horizontal	Pass
3**	4500.000	44.46	-4.46	54.0	-9.54	AV	111.00	150	Horizontal	Pass
4	6679.400	52.78	-0.54	74.0	-21.22	Peak	72.00	150	Horizontal	Pass
4**	6679.400	44.35	-0.54	54.0	-9.65	AV	72.00	150	Horizontal	Pass
5	11320.263	49.96	0.55	74.0	-24.04	Peak	324.00	150	Horizontal	Pass
5**	11320.263	41.88	0.55	54.0	-12.12	AV	324.00	150	Horizontal	Pass
6	17190.187	54.70	2.33	74.0	-19.30	Peak	216.00	150	Horizontal	Pass
6**	17190.187	46.26	2.33	54.0	-7.74	AV	216.00	150	Horizontal	Pass


GFSK (BLE 2Mbps) MIDDLE CHANNEL 1 GHz to 18 GHz, ANT V

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1991.700	54.49	-15.52	74.0	-19.51	Peak	63.00	150	Vertical	Pass
1**	1991.700	39.48	-15.52	54.0	-14.52	AV	63.00	150	Vertical	Pass
2	2439.400	83.94	-12.64	74.0	9.94	Peak	63.00	150	Vertical	N/A
2**	2439.400	78.89	-12.64	54.0	24.89	AV	63.00	150	Vertical	N/A
3	4499.800	49.57	-4.45	74.0	-24.43	Peak	362.00	150	Vertical	Pass
3**	4499.800	46.51	-4.45	54.0	-7.49	AV	362.00	150	Vertical	Pass
4	6605.800	52.21	0.10	74.0	-21.79	Peak	91.00	150	Vertical	Pass
4**	6605.800	43.94	0.10	54.0	-10.06	AV	91.00	150	Vertical	Pass
5	12277.925	50.65	1.73	74.0	-23.35	Peak	11.00	150	Vertical	Pass
5**	12277.925	41.27	1.73	54.0	-12.73	AV	11.00	150	Vertical	Pass
6	17483.661	54.65	2.57	74.0	-19.35	Peak	361.00	150	Vertical	Pass
6**	17483.661	45.43	2.57	54.0	-8.57	AV	361.00	150	Vertical	Pass

GFSK (BLE 2Mbps) HIGH CHANNEL 1 GHz to 18 GHz, ANT H

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1995.300	49.13	-15.56	74.0	-24.87	Peak	325.00	150	Horizontal	Pass
1**	1995.300	38.88	-15.56	54.0	-15.12	AV	325.00	150	Horizontal	Pass
2	2480.500	88.26	-12.42	74.0	14.26	Peak	69.00	150	Horizontal	N/A
2**	2480.500	84.97	-12.42	54.0	30.97	AV	69.00	150	Horizontal	N/A
3	4500.000	48.04	-4.46	74.0	-25.96	Peak	77.00	150	Horizontal	Pass
3**	4500.000	46.62	-4.46	54.0	-7.38	AV	77.00	150	Horizontal	Pass
4	6609.200	52.47	0.14	74.0	-21.53	Peak	77.00	150	Horizontal	Pass
4**	6609.200	44.37	0.14	54.0	-9.63	AV	77.00	150	Horizontal	Pass
5	10481.625	49.67	-0.86	74.0	-24.33	Peak	173.00	150	Horizontal	Pass
5**	10481.625	40.35	-0.86	54.0	-13.65	AV	173.00	150	Horizontal	Pass
6	17193.599	54.37	2.23	74.0	-19.63	Peak	363.00	150	Horizontal	Pass
6**	17193.599	44.94	2.23	54.0	-9.06	AV	363.00	150	Horizontal	Pass

GFSK (BLE 2Mbps) HIGH CHANNEL 1 GHz to 18 GHz, ANT V

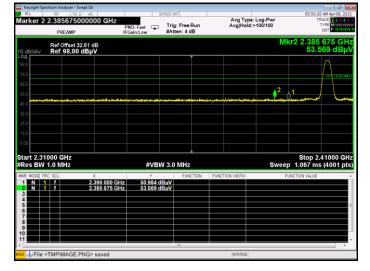
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1994.700	54.95	-15.58	74.0	-19.05	Peak	94.00	150	Vertical	Pass
1**	1994.700	33.56	-15.58	54.0	-20.44	AV	94.00	150	Vertical	Pass
2	2480.500	82.69	-12.42	74.0	8.69	Peak	23.00	150	Vertical	N/A
2**	2480.500	80.32	-12.42	54.0	26.32	AV	23.00	150	Vertical	N/A
3	4500.000	49.20	-4.46	74.0	-24.80	Peak	106.00	150	Vertical	Pass
3**	4500.000	47.22	-4.46	54.0	-6.78	AV	106.00	150	Vertical	Pass
4	6688.200	52.83	-0.25	74.0	-21.17	Peak	261.00	150	Vertical	Pass
4**	6688.200	43.75	-0.25	54.0	-10.25	AV	261.00	150	Vertical	Pass
5	11922.000	50.04	1.50	74.0	-23.96	Peak	127.00	150	Vertical	Pass
5**	11922.000	39.94	1.50	54.0	-14.06	AV	127.00	150	Vertical	Pass
6	17429.588	55.26	3.47	74.0	-18.74	Peak	218.00	150	Vertical	Pass
6**	17429.588	46.16	3.47	54.0	-7.84	AV	218.00	150	Vertical	Pass

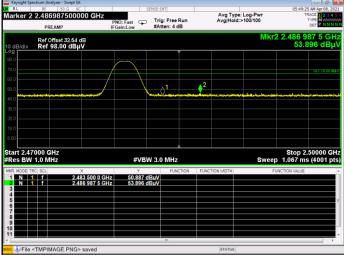
A.7 Band Edge (Restricted-band band-edge)

Note ¹: The lowest and highest channels are tested to verify the band edge emissions. Please refer to the following the plots for emissions values.

Note ²: The test data all are tested in the vertical and horizontal antenna which the trace is max hold. So these plots have shown the worst case.

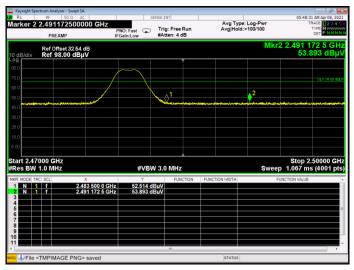
Note ³: According the ANSI C63.10-2013, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.


Test Mode	Test Channel	Frequency (MHz)	Level (dBuV/m)	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Remark	Verdict
GFSK	Low	53.569	32.61	74	20.431	53.569	PEAK	Pass
(BLE 1Mbps)	Low	N/A	N/A	54	N/A	N/A	AVERAGE	Pass
GFSK	HIGH	53.896	32.54	74	20.104	53.896	PEAK	Pass
(BLE 1Mbps)	пібп	N/A	N/A	54	N/A	N/A	AVERAGE	Pass
GFSK	Low	53.779	32.61	74	20.221	53.779	PEAK	Pass
(BLE 2Mbps)	Low	N/A	N/A	54	N/A	N/A	AVERAGE	Pass
GFSK		53.893	32.54	74	20.107	53.893	PEAK	Pass
(BLE 2Mbps)	HIGH	N/A	N/A	54	N/A	N/A	AVERAGE	Pass


Note ⁴: The Level (dBuV/m) has been corrected by factor.

BLE 1Mbps

LOW CHANNEL, PEAK



BLE 2Mbps

LOW CHANNEL, PEAK

er 2 2.388700			SENSE:INT		Avg Tv	pe: Log-Pwr		0 AM Apr 08, 2021 RACE 1 2 3 4 5
PREAMP	P	PNO: Fast 🖵		Free Run n: 4 dB	Avg Hol	id:>100/100		
Ref Offset 3 div Ref 98.00						Mk		700 GH: 79 dBµ\
								\sim
								0L174.00 (Eps
								()
11. h.t.			lil such b		and the state of the		1	Lune
han a chear d'anna dhanna dha	entiller "elf pereis byreja er frikar		And Basel Original	And the second	\$ \$ \$	******************		
2.31000 GHz BW 1.0 MHz		#VB	N 3.0 I	ИHz		Sweep	Stop 2. 1.067 ms	41000 GHz 6 (4001 pts
DE TRC SCL	x	Y		FUNCTION	FUNCTION WIDTH	FL	INCTION VALUE	
	2.390 000 GHz 2.388 700 GHz	52.226 c	IBµV IBµV					

HIGH CHANNEL, PEAK

A.8 Power Spectral Density (PSD)

<u>Test Data</u>

BLE 1Mbps

Channel	Spectral power density (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
Low Channel	-7.86	8	Pass
Middle Channel	-7.08	8	Pass
High Channel	-6.71	8	Pass

BLE 2Mbps

Channel	Spectral power density (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
Low Channel	-10.79	8	Pass
Middle Channel	-10.02	8	Pass
High Channel	-9.69	8	Pass

Test plots

BLE 1Mbps

GFSK (BLE) LOW CH	ANNEL		GFSK (BLE) MID	DLE CHANNEL	
 Att 20 dB SWT 632.1 μs VB TDF 	W 3 kHz W 10 kHz Mode Auto FFT		TDF	● RBW 3 kHz µs ● VBW 10 kHz Mode Auto FFT	œ
1Pk Max 0 dBm	M1[1]	-7.86 dBm 2.40200830 GHz	1Pk Max 0 dBm	M1[1]	-7.08 dBm 2.43995510 GHz
-10 dBm	and the for the work of the	Mon Man Maria		marin Marin Marin Marin Marina	www.whenkerana
-30 dBm			-30 dBm		
-40 dBm			-40 dBm		
-50 dBm			-50 dBm		
-70 dBm			-70 dBm-		
-80 dBm			-80 dBm		
CF 2.402 GHz	601 pts	Span 1.0 MHz	CF 2.44 GHz	601 pts	Span 1.0 MHz

GFSK (BLE) HIGH CHANNEL

Spectrum					
Att 20 dB TDF			e Auto FFT		
●1Pk Max					
			M1[1]		-6.71 dBn 95510 GH:
0 dBm		M1			
-10 dBm	atul mana and a survey and a survey of the s	hand day alphane	manna	when when when	hun
-30 dBm					
-40 dBm					
-50 dBm					
-70 dBm					
-80 dBm					
CF 2.48 GHz		601 pts		Spar	1.0 MHz
			Measuring		

BLE 2Mbps

TDF		052.1 ps 🖕 🖡	BW 10 kHz	Mode Auto FFT			Att 20 TDF
1Pk Max				M1[1]		-10.79 dBm 2.40192350 GHz	●1Pk Max
0 dBm			M1				0 dBm
-10 dBm	manna	multion	mm	har many m	montheadlew	melline	-10 dBm
-30 dBm						"uny	-30 dBm
-40 dBm							-40 dBm
-50 dBm							-50 dBm
-60 dBm							-60 dBm
-70 dBm							-70 dBm
-/o ubiii							

E) MIDDLE CHANNEL -10.02 dBr 003660 GH M1[1] 2.44 MI AMAL MA Nw melin allowhere mon www. 601 pts 2.0 MHz **A**

GFSK (BLE) HIGH CHANNEL

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ2140005-AR-2.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ2140005-AW-2.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SZ2140005-Al-2.PDF".

--END OF REPORT--