

# **Electromagnetic Compatibility Test Report**

*Prepared in accordance with*

**CFR 47 part15.225, RSS210**  
On  
**PRJ-0690**

Prepared for:

**Enercon Technologies  
2500 Northbrook Ln  
Gray, Maine 04039  
U.S.A.**

Prepared by:

**TUV Rheinland of North America, Inc.  
1279 Quarry Lane, Ste. A  
Pleasanton, CA 94566 U.S.A.**

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.



## Revisions

Note: Latest revision report will replace all previous reports.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

**ATTESTATION OF TEST RESULTS**

|                                                                                                      |                                                                                                                     |                                                                      |                                                                                                               |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| <b>Client:</b>                                                                                       | Enercon Technologies<br>2500 Northbrook Ln<br>Gray, Maine 04039 U.S.A.                                              |                                                                      | Ben Clarke<br>Tel. 207-657-7000<br>bclarke@enercontechnologies.com                                            |
| <b>Model Name:</b>                                                                                   | Vialmix                                                                                                             | <b>Serial Number:</b>                                                | 1830600023                                                                                                    |
| <b>Model Numbers:</b>                                                                                | PRJ-0690                                                                                                            | <b>Date(s) Tested:</b>                                               | December 12-19, 2018                                                                                          |
| <b>Test Location:</b>                                                                                | TUV Rheinland of North America<br>1279 Quarry Lane, Ste. A<br>Pleasanton, CA 94566 U.S.A.<br>Tel. (925) 249-9123    |                                                                      |                                                                                                               |
| <b>Test Specifications:</b>                                                                          | Emissions:                                                                                                          | CFR47 part15.225, RSS 210                                            |                                                                                                               |
|                                                                                                      | Immunity:                                                                                                           | N/A                                                                  |                                                                                                               |
| <b>Test Result:</b>                                                                                  | <b>The above product was found to be Compliant to the above test standard(s)</b>                                    |                                                                      |                                                                                                               |
| <i>Prepared by: Donn Foster</i>                                                                      |                                                                                                                     | <i>Reviewed by: Josie Sabado</i>                                     |                                                                                                               |
| <u>December 19, 2018</u><br><i>Date</i> <i>Name</i> <i>Signature</i>                                 |                                                                                                                     | <u>December 21, 2018</u><br><i>Date</i> <i>Name</i> <i>Signature</i> |                                                                                                               |
| <b>Other aspects:</b>                                                                                | None                                                                                                                |                                                                      |                                                                                                               |
| <b>PLEASANTON</b>                                                                                    |                                                                                                                     |                                                                      |                                                                                                               |
| <br><b>US1131</b> | <br><b>Testing Cert #3331.02</b> | <b>INDUSTRY CANADA</b><br><b>2932M-1</b>                             | <br><b>1097 (A-0268)</b> |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## Table of Contents

|                                                                                      |           |
|--------------------------------------------------------------------------------------|-----------|
| <b>1 GENERAL INFORMATION .....</b>                                                   | <b>6</b>  |
| 1.1 SCOPE .....                                                                      | 6         |
| 1.2 PURPOSE .....                                                                    | 6         |
| 1.3 SUMMARY OF TEST RESULTS .....                                                    | 7         |
| <b>2 LABORATORY INFORMATION .....</b>                                                | <b>8</b>  |
| 2.1 ACCREDITATIONS & ENDORSEMENTS .....                                              | 8         |
| 2.1.1 <i>US Federal Communications Commission</i> .....                              | 8         |
| 2.1.2 <i>A2LA</i> .....                                                              | 8         |
| 2.1.3 <i>Industry Canada</i> .....                                                   | 8         |
| 2.1.4 <i>Japan – VCCI</i> .....                                                      | 8         |
| 2.2 TEST FACILITIES AND EMC SOFTWARE .....                                           | 9         |
| 2.2.1 <i>Emission Test Facility</i> .....                                            | 9         |
| 2.2.2 <i>Immunity Test Facility</i> .....                                            | 9         |
| 2.2.3 <i>EMC Software - Fremont</i> .....                                            | 9         |
| 2.2.4 <i>EMC Software - Pleasanton</i> .....                                         | 10        |
| 2.3 MEASUREMENT UNCERTAINTY .....                                                    | 11        |
| 2.3.1 <i>Sample Calculation – radiated &amp; conducted emissions</i> .....           | 11        |
| 2.3.2 <i>Measurement Uncertainty Emissions</i> .....                                 | 12        |
| 2.3.3 <i>Measurement Uncertainty Immunity</i> .....                                  | 12        |
| 2.4 CALIBRATION TRACEABILITY .....                                                   | 12        |
| 2.5 MEASUREMENT EQUIPMENT USED .....                                                 | 13        |
| <b>3 PRODUCT INFORMATION .....</b>                                                   | <b>13</b> |
| 3.1 PRODUCT DESCRIPTION .....                                                        | 13        |
| 3.2 EQUIPMENT MODIFICATIONS .....                                                    | 13        |
| 3.3 TEST PLAN .....                                                                  | 13        |
| 3.1 RADIATED EMISSIONS .....                                                         | 15        |
| 3.1.1 <i>Overview of Test</i> .....                                                  | 15        |
| 3.1.2 <i>Test Procedure</i> .....                                                    | 15        |
| 3.1.3 <i>Deviations</i> .....                                                        | 15        |
| 3.1.4 <i>Final Test</i> .....                                                        | 15        |
| 3.1.5 <i>Plots</i> .....                                                             | 16        |
| 3.1.6 <i>Final Tabulated Data – 9 kHz-30 MHz, 110 Vac 60 Hz Horizontal</i> .....     | 21        |
| 3.1.1 <i>Final Tabulated Data – 9 kHz-30 MHz, 110 Vac 60 Hz Vertical</i> .....       | 21        |
| 3.1.2 <i>Final Tabulated Data – 30 - 1000 MHz, 110 Vac 60 Hz</i> .....               | 22        |
| 3.1.1 <i>Final Tabulated Data – 11.8-15.3 MHz, 110 Vac 60 Hz Parallel</i> .....      | 22        |
| 3.1.2 <i>Final Tabulated Data – 11.8-15.3 MHz, 110 Vac 60 Hz Perpendicular</i> ..... | 22        |
| 3.2 PHOTOS .....                                                                     | 23        |
| 3.2.1 <i>Photos</i> .....                                                            | 25        |
| 3.3 CONDUCTED EMISSIONS .....                                                        | 27        |
| 3.3.1 <i>Overview of Test</i> .....                                                  | 27        |
| 3.3.2 <i>Test Procedure</i> .....                                                    | 27        |
| 3.3.3 <i>Deviations</i> .....                                                        | 27        |
| 3.3.4 <i>Final Test</i> .....                                                        | 27        |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

|                                                               |           |
|---------------------------------------------------------------|-----------|
| 3.3.5 <i>Plots</i> .....                                      | 28        |
| 3.4 FINAL TABULATED DATA – 150 KHZ-30 MHZ, 110 VAC 60 Hz..... | 30        |
| 3.4.1 <i>Photos</i> .....                                     | 31        |
| 3.4.2 <i>Frequency Stability</i> .....                        | 33        |
| 3.4.1 <i>Overview of Test</i> .....                           | 33        |
| 3.4.2 <i>Photos</i> .....                                     | 35        |
| <b>APPENDIX A</b> .....                                       | <b>36</b> |
| <b>4 TEST PLAN</b> .....                                      | <b>36</b> |
| 4.1 GENERAL INFORMATION .....                                 | 36        |
| 4.2 EUT DESIGNATION.....                                      | 36        |
| 4.3 EQUIPMENT UNDER TEST (EUT) DESCRIPTION .....              | 37        |
| 4.4 PRODUCT ENVIRONMENT(S) .....                              | 37        |
| 4.5 APPLICABLE DOCUMENTS .....                                | 38        |
| 4.6 EUT SPECIFICATIONS .....                                  | 38        |
| 4.7 EUT ELECTRICAL POWER INFORMATION .....                    | 39        |
| 4.8 EUT CLOCK/OSCILLATOR FREQUENCIES .....                    | 39        |
| 4.8.1 <i>Radiated Emissions, Upper Frequency</i> .....        | 39        |
| 4.9 ELECTRICAL SUPPORT EQUIPMENT.....                         | 40        |
| 4.10 NON - ELECTRICAL SUPPORT EQUIPMENT .....                 | 40        |
| 4.11 EUT EQUIPMENT/CABLING INFORMATION .....                  | 40        |
| 4.12 EUT TEST PROGRAM.....                                    | 41        |
| 4.13 EUT MODES OF OPERATION .....                             | 41        |
| 4.14 MONITORING OF EUT DURING TESTING .....                   | 41        |
| 4.15 EUT CONFIGURATION .....                                  | 41        |
| 4.15.1 <i>Description</i> .....                               | 41        |
| 4.15.2 <i>Block Diagram</i> .....                             | 42        |
| 4.16 EMISSIONS .....                                          | 43        |
| 4.16.1 <i>Radiated Emissions</i> .....                        | 43        |
| 4.16.2 <i>Conducted Emissions</i> .....                       | 45        |
| <b>5 APPENDIX B</b> .....                                     | <b>46</b> |
| 5.1 MODIFICATIONS .....                                       | 46        |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## 1 General Information

### 1.1 Scope

This report is intended to document the status of conformance with the listed standards based on the results of testing performed on December 12-19, 2018 on the Vialmix, Model No.:PRJ-0690, manufactured by Enercon Technologies. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

### 1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

**1.3 Summary of Test Results**

|                      |                                                                        |
|----------------------|------------------------------------------------------------------------|
| <b>Applicant</b>     | Enercon Technologies<br>2500 Northbrook Ln<br>Gray, Maine 04039 U.S.A. |
| <b>Contact</b>       | Ben Clarke                                                             |
| <b>Tel.</b>          | 207-657-7000                                                           |
| <b>E-mail</b>        | bclarke@enercontechnologies.com                                        |
| <b>Description</b>   | Precision vial shaker for intravenous tracking serum                   |
| <b>Model Name</b>    | Vialmix                                                                |
| <b>Model Number</b>  | PRJ-06900                                                              |
| <b>Serial Number</b> | 1830600023                                                             |
| <b>Input Power</b>   | 120V 60 Hz                                                             |
| <b>Test Date(s)</b>  | December 12-19, 2018                                                   |

|                                                                       | <b>Description</b>                                                     | <b>Severity Level or Limit</b>          | <b>Criteria</b> | <b>Test Result</b> |
|-----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|-----------------|--------------------|
| CFR47 part 15.225,<br>RSS 210<br>Product Family Standard<br>Emissions | Radio Equipment<br>Operation within<br>the band 13.110-<br>14.010 MHz. | See called out basic<br>standards below | See<br>Below    | Complies           |
| CFR47 part 15.225,<br>RSS 210                                         | Radiated Emissions                                                     | CLASS B<br>9KHZ- 1GHZ                   | Limit           | Complies           |
| CFR47 part 15.225,<br>RSS 210                                         | Conducted<br>Emissions                                                 | Class B<br>150 kHz - 30 MHz             | Limit           | Complies           |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## 2 Laboratory Information

### 2.1 Accreditations & Endorsements

#### 2.1.1 US Federal Communications Commission



TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 5015 Brandin Ct. Fremont, CA, 94538 are recognized by the Commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Pleasanton Registration No. US1131, Fremont Registration No. US5251). The laboratory Scopes of Accreditation include Title 47 CFR Parts 15, 18 and 90. The accreditations are updated every three years.

#### 2.1.2 A2LA



TUV Rheinland of North America EMC test facilities are accredited by the American Association for Laboratory Accreditation (A2LA). The laboratories have been assessed and accredited by A2LA in accordance with ISO Standard 17025:2005 (Testing Certificate #3331.02). The Scope of Laboratory Accreditation includes emission and immunity testing. The accreditations are updated annually.

#### 2.1.3 Industry Canada



Industry Canada Industrie Canada The Pleasanton 5-meter Semi-Anechoic Chamber, Registration No. 2932M-1, has been accepted by Industry Canada to perform testing to 3 and 5 meters based on the test procedures described in ANSI C63.4-2014. The Fremont 10-meter Semi-Anechoic Chamber, Registration No. 2932D-1, has been accepted by Industry Canada to perform testing to 3 and 10 meters based on the test procedures described in ANSI C63.4-2014.

#### 2.1.4 Japan – VCCI



The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 5015 Brandin Ct. Fremont, CA, 94538, have been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0268

VCCI Registration No. for Santa Clara: A-0268

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## 2.2 Test Facilities and EMC Software

Test facilities are located at 1279 Quarry Lane, Ste. A, Pleasanton, California 94566, U.S.A. and 5015 Brandin Ct, Fremont, CA 94538.

### 2.2.1 Emission Test Facility

The Semi-Anechoic Chambers and AC Line Conducted measurement facilities used to collect radiated and conducted emissions data have been constructed in accordance with ANSI C63.7:1992. The Santa Clara 10 meter semi-anechoic chamber has been measured in accordance with and verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2009 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04), at test distances of 3 and 10 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate #3331.02). The Pleasanton 5 meter semi-anechoic chamber has been verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2009 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04) at a test distance of 3 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate #3331.02).

### 2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 3.7 m x 3.175 mm thick aluminum floor connected to PE ground. For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of  $10^9$  Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470 k $\Omega$  resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470 k $\Omega$  resistors. For each of the other tests, the HCP is removed.

RF Field Immunity testing is performed in a 10m semi-anechoic chamber with absorber added to floor.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.9 m x 3.7 m x 3.175 mm thick aluminum ground plane which is connected to one end of the anechoic chamber.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

### 2.2.3 EMC Software - Fremont

| Manufacturer | Name    | Version    | Test Type                      |
|--------------|---------|------------|--------------------------------|
| EMISoft      | Vasona  | 5.0        | Radiated & Conducted Emissions |
| ETS-Lindgren | TILE    | 4.2.A      | Radiated Emissions > 1 GHz     |
| ETS-Lindgren | TILE    | V.3.4.K.22 | Radiated & Conducted Immunity  |
| Haefely      | WinFEAT | 1.6.3      | Surge                          |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

| Manufacturer             | Name       | Version   | Test Type                          |
|--------------------------|------------|-----------|------------------------------------|
| Thermo Electron - Keytek | CEWare32   | 3.0       | EFT/Surge/Voltage Dips & Interrupt |
| Voltech                  | IEC61000-3 | 1.15.07RC | Harmonic & Flicker                 |

#### 2.2.4 EMC Software - Pleasanton

| Manufacturer             | Name        | Version            | Test Type                          |
|--------------------------|-------------|--------------------|------------------------------------|
| ETS-Lindgren             | TILE        | 3.4.K.14 @ 4.0.A.5 | Radiated & Conducted Emissions     |
| EMISoft                  | Vasona      | 5.0                | Radiated & Conducted Emissions     |
| Agilent                  | Agilent MXE | A.11.02            | Radiated & Conducted Emissions     |
| ETS-Lindgren             | TILE        | 3.4.K.14           | Radiated & Conducted Immunity      |
| Thermo Electron - Keytek | CEWare32    | 4.00               | EFT/Surge/Voltage Dips & Interrupt |
| Voltech                  | IEC61000-3  | 1.21.07RC2         | Harmonic & Flicker                 |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## 2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1<sup>st</sup> Edition, 1995.

*The Combined Standard Uncertainty* is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or co-variances of these other quantities weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

*The Expanded Uncertainty* defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

### 2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

$$\text{Field Strength (dB}\mu\text{V/m)} = \text{RAW} - \text{AMP} + \text{CBL} + \text{ACF}$$

Where: RAW = Measured level before correction (dB $\mu$ V)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu\text{V/m} = 10^{\frac{\text{dB}\mu\text{V/m}}{20}}$$

#### Sample radiated emissions calculation @ 30 MHz

**Measurement +Antenna Factor–Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)**

$$25 \text{ dBuV/m} + 17.5 \text{ dB} - 20 \text{ dB} + 1.0 \text{ dB} = 23.5 \text{ dBuV/m}$$

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 2.3.2 Measurement Uncertainty Emissions

| Per CISPR 16-4-2                               | $U_{lab}$ | $U_{cisp}$ |
|------------------------------------------------|-----------|------------|
| <b>Radiated Disturbance @ 10 meters</b>        |           |            |
| 30 – 1,000 MHz                                 | 2.25 dB   | 4.51 dB    |
| <b>Radiated Disturbance @ 3 meters</b>         |           |            |
| 30 – 1,000 MHz                                 | 2.26 dB   | 4.52 dB    |
| 1 – 6 GHz                                      | 2.12 dB   | 4.25 dB    |
| 6 – 18 GHz                                     | 2.47 dB   | 4.93 dB    |
| <b>Conducted Disturbance @ Mains Terminals</b> |           |            |
| 150 kHz – 30 MHz                               | 1.09 dB   | 2.18 dB    |
| <b>Disturbance Power</b>                       |           |            |

### Voltech PM6000A

|                                                                                                            |                  |
|------------------------------------------------------------------------------------------------------------|------------------|
| The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 5.0\%$ . | Per CISPR 16-4-2 |
|------------------------------------------------------------------------------------------------------------|------------------|

### 2.3.3 Measurement Uncertainty Immunity

|                                                                                                          |                    |
|----------------------------------------------------------------------------------------------------------|--------------------|
| The estimated expanded uncertainty for ESD immunity measurements is $\pm 8.2\%$ .                        | Per IEC 61000-4-2  |
| The estimated expanded uncertainty for radiated immunity measurements is $\pm 4.10$ dB.                  | Per IEC 61000-4-3  |
| The estimated expanded uncertainty for EFT fast transient immunity measurements is $\pm 5.84\%$ .        | Per IEC 61000-4-4  |
| The estimated expanded uncertainty for surge immunity measurements is $\pm 5.84\%$ .                     | Per IEC 61000-4-4  |
| The estimated expanded uncertainty for conducted immunity measurements with CDN is $\pm 3.66$ dB         | Per IEC 61000-4-6  |
| The estimated expanded uncertainty for power frequency magnetic field immunity is $\pm 11.6\%$ .         | Per IEC 61000-4-8  |
| The estimated expanded uncertainty for voltage variation and interruption measurements is $\pm 3.48\%$ . | Per IEC 61000-4-11 |

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

## 2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## 2.5 Measurement Equipment Used

| Equipment              | Manufacturer          | Model # | Serial/Inst # | Last Cal mm/dd/yy | Next Cal mm/dd/yy | Test  |
|------------------------|-----------------------|---------|---------------|-------------------|-------------------|-------|
| Bilog Antenna          | Sunol Sciences        | JB3     | A102606       | 11/20/2017        | 11/20/2019        | RE    |
| Amplifier              | Sonoma Instruments    | 310     | 165516        | 01/25/2018        | 01/25/2019        | RE    |
| Spectrum Analyzer      | Agilent               | PXA     | US513358291   | 01/22/2019        | 01/22/2019        | FS    |
| LISN                   | Compower              | n/a     | 12100         | 01/24/2018        | 01/24/2019        | CE    |
| AC programmable supply | California Instrument | 1001P   | L06329        | .....             | .....             | FS    |
| Temp chamber           | Espec                 | BTZ-133 | 0613436       | 05/31/2018        | 05/31/2019        | FS    |
| Spectrum Analyzer      | Rohde&Schwarz         | ESI     | 100169        | 01/22/2018        | 01/22/2019        | CE,RE |
| Active loop antenna    | Emco                  | 6502    | 00062531      | 06/08/2018        | 06/08/2019        | RE    |
|                        |                       |         |               |                   |                   |       |
|                        |                       |         |               |                   |                   |       |
|                        |                       |         |               |                   |                   |       |
|                        |                       |         |               |                   |                   |       |

Note: CE=Conducted Emissions, CI=Conducted Immunity, DP=Disturbance Power, EFT=Electrical Fast Transients, ESD=Electrostatic Discharge, FLI=Flicker, FS=Frequency Stability, HAR=Harmonics, MF=Magnetic Field Immunity, NCR=No Calibration Required, RE=Radiated Emissions, RI=Radiated Immunity, SI=Surge Immunity, VDSI=Voltage Dips and Short Interruptions

## 3 Product Information

### 3.1 Product Description

See Section 6.4.

### 3.2 Equipment Modifications

See Appendix B for details

### 3.3 Test Plan

The EUT product information, test configuration, mode of operation, test types, test procedures, test levels, pass/failure criteria, in this report were carried out per the product test plan located in Appendix A of this report.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.



Figure 1 - External Photo of EUT

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.1 Radiated Emissions

This test measures the electromagnetic levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other nearby electronic equipment.

#### 3.1.1 Overview of Test

|                                 |                                                                                |             |                           |                      |                   |                 |           |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------|-------------|---------------------------|----------------------|-------------------|-----------------|-----------|--|--|--|
| <b>Results</b>                  | Complies (as tested per this report)                                           |             |                           | <b>Test Date(s)</b>  | December 12, 2018 |                 |           |  |  |  |
| <b>Standard</b>                 | CFR 47 part 15.225, RSS 210                                                    |             |                           |                      |                   |                 |           |  |  |  |
| <b>Model Number</b>             | PRJ-0609                                                                       |             |                           | <b>Serial #</b>      | 1830600023        |                 |           |  |  |  |
| <b>Configuration</b>            | See test plan for details.                                                     |             |                           |                      |                   |                 |           |  |  |  |
| <b>Test Setup</b>               | Tested in the 5-meter chamber, placed on turntable: see test plan for details. |             |                           |                      |                   |                 |           |  |  |  |
| <b>EUT Powered By</b>           | 120 Vac, 60 Hz                                                                 |             |                           |                      |                   |                 |           |  |  |  |
| <b>Environmental Conditions</b> | December 12, 2018                                                              | <b>Temp</b> | 22° C                     | <b>Humidity</b>      | 44%               | <b>Pressure</b> | 1010 mbar |  |  |  |
|                                 |                                                                                |             |                           |                      |                   |                 |           |  |  |  |
| <b>Frequency Range</b>          | 9kHz - 1 GHz                                                                   |             |                           |                      |                   |                 |           |  |  |  |
| <b>Perf. Criteria</b>           | Class B                                                                        |             | <b>Perf. Verification</b> | Readings Under Limit |                   |                 |           |  |  |  |
| <b>Mod. to EUT</b>              | None                                                                           |             | <b>Test Performed By</b>  | Donn Foster          |                   |                 |           |  |  |  |

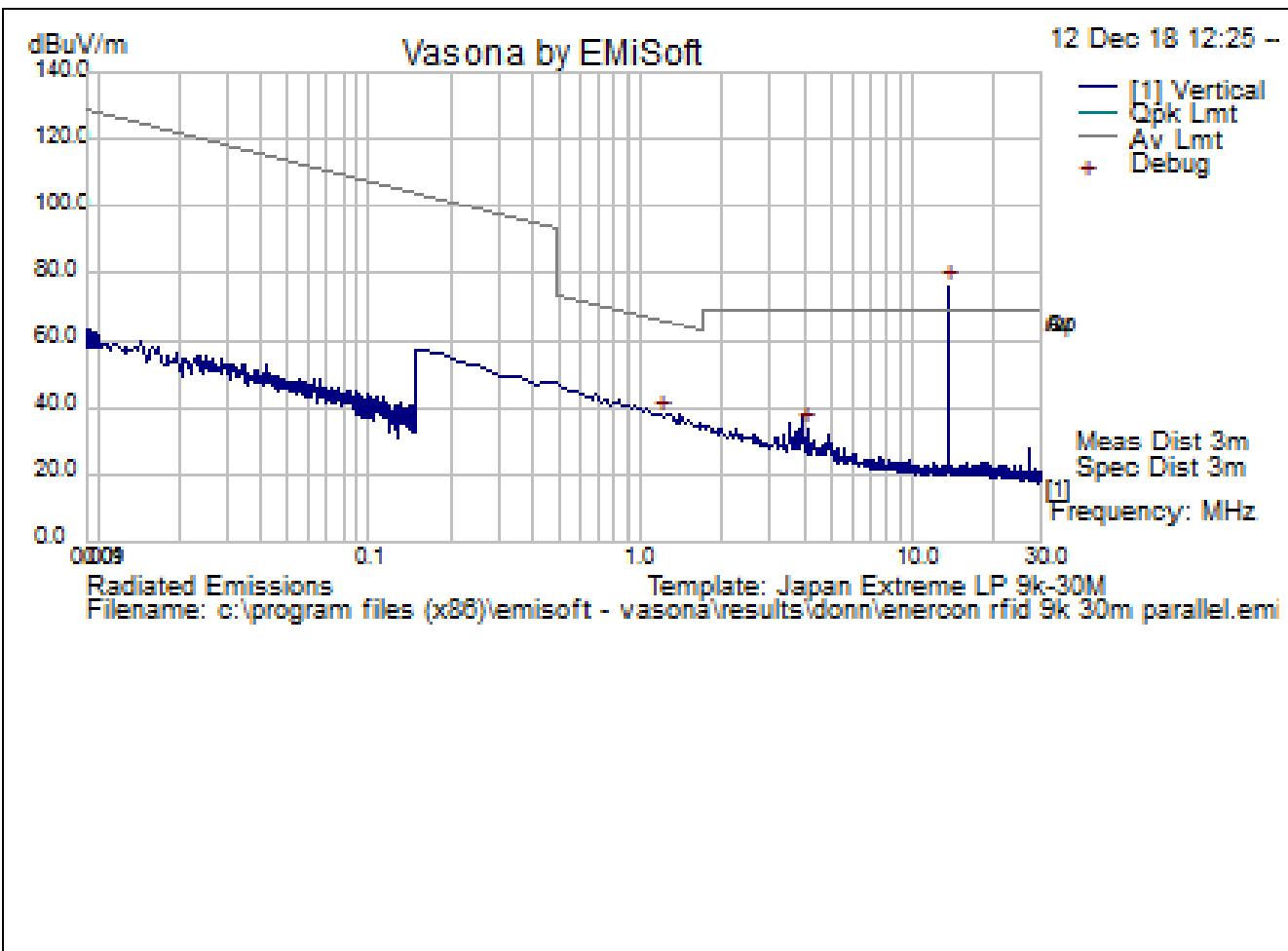
#### 3.1.2 Test Procedure

Radiated emissions tests were performed using the procedures of ANSI C63.10 including methods for signal maximizations and EUT configuration.

The frequency range from

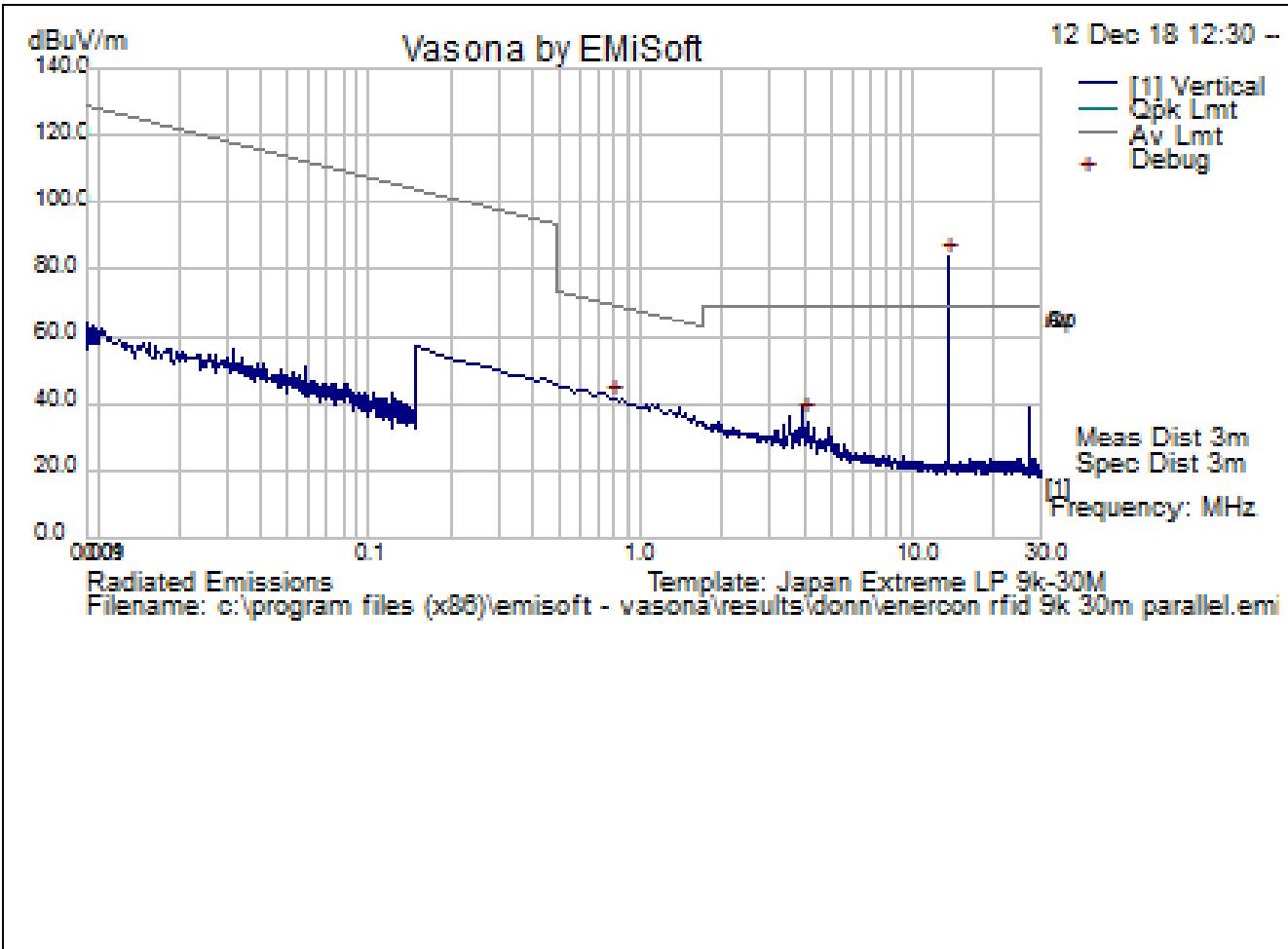
9 kHz - 1 GHz was investigated for radiated emissions.

#### 3.1.3 Deviations


There were no deviations from the test methodology listed in the test plan for the radiated emission test.

#### 3.1.4 Final Test

All final radiated emissions measurements were below the specification limits.

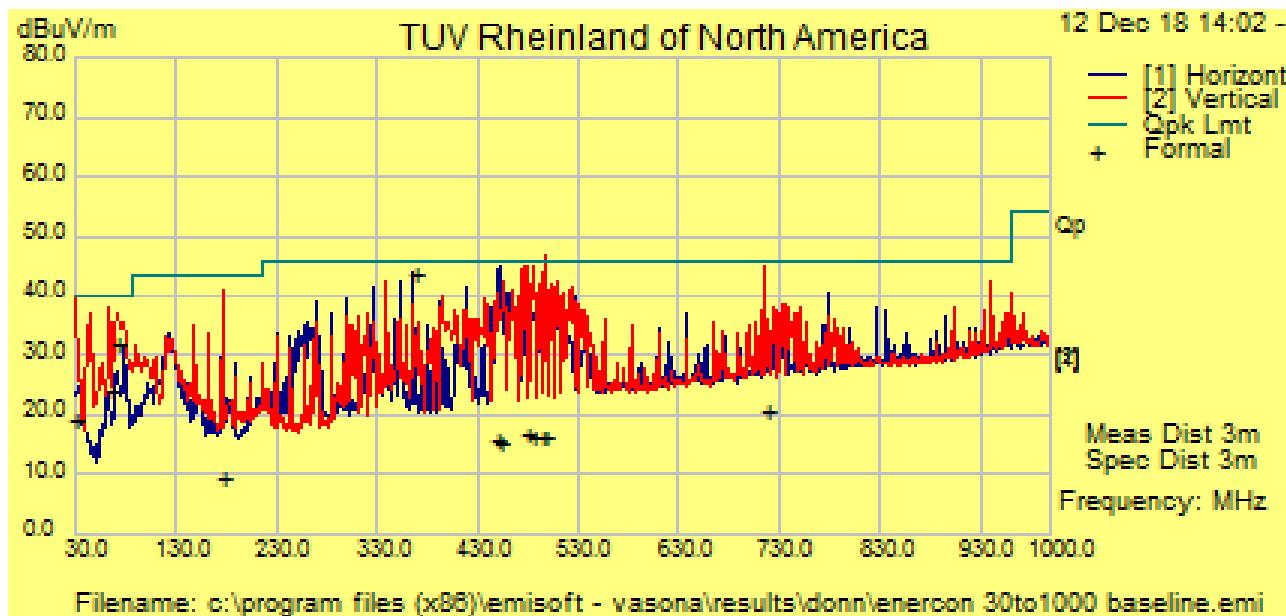

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.1.5 Plots

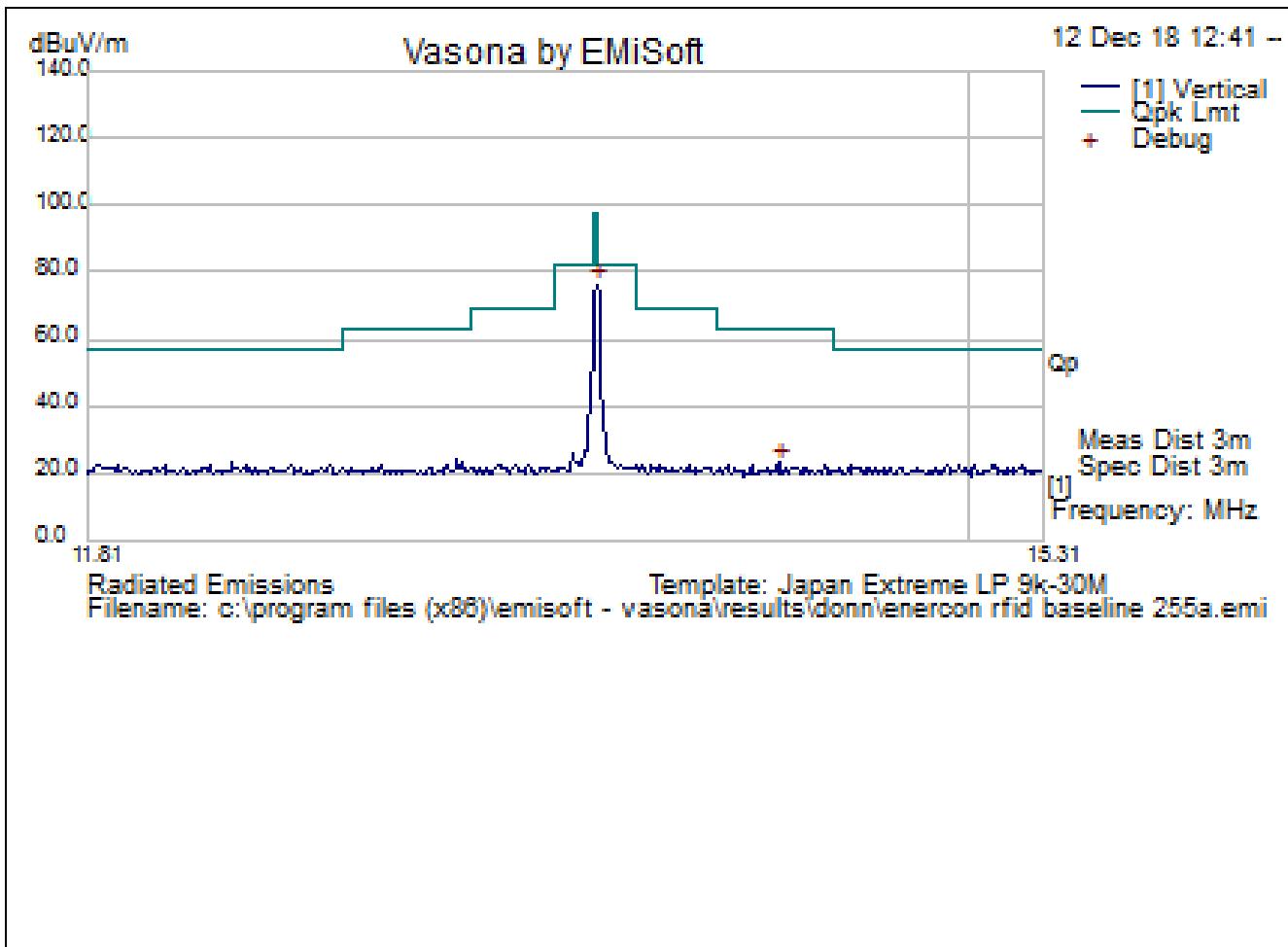
**NOTES:**
**Radiated Emissions Pre-Scan**  
 9k-30M Parallel


Note: The frequency seen over the limit is the intentional transmitter

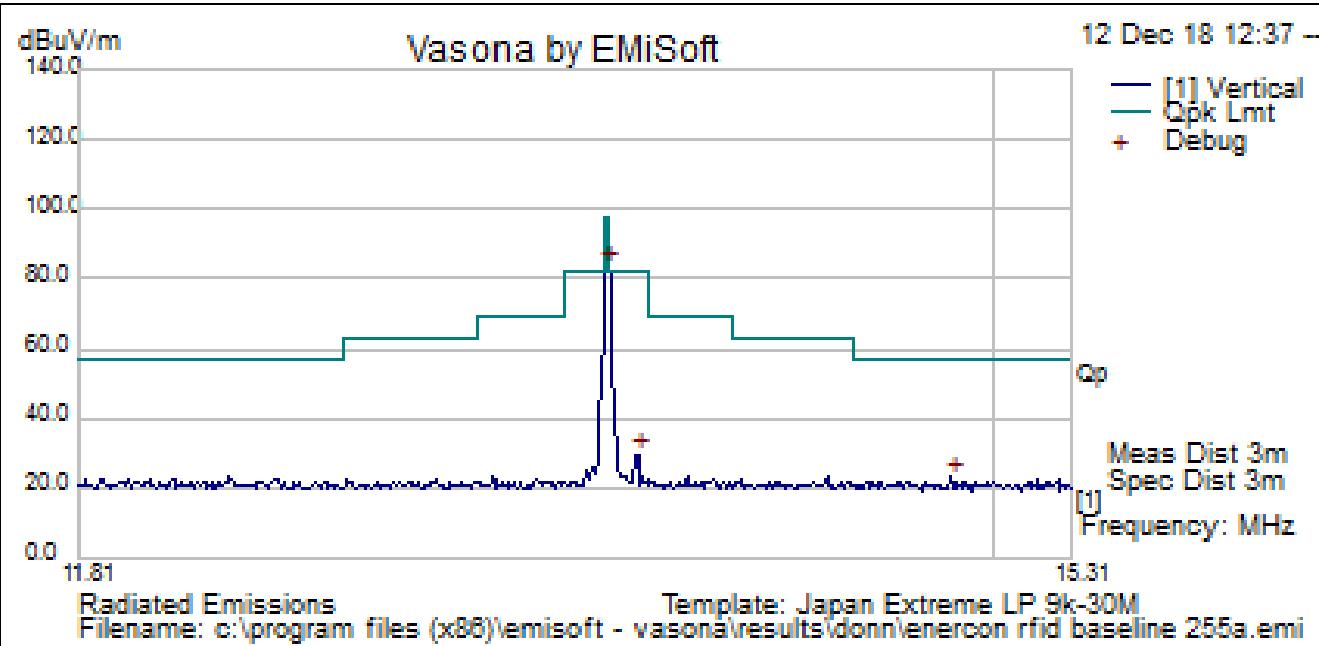
The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.


**NOTES:**
**Radiated Emissions Full Scan**  
 9k-30M Perpendicular


Note: The frequency seen over the limit is the intentional transmitter


The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

**NOTES:****Radiated Emissions Full Scan**


30-1000 MHz



The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

**NOTES:****Radiated Emissions Full Scan**  
Transmitter Mask Parallel

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

**NOTES:****Radiated Emissions Full Scan**  
**Transmitter Mask Perpendicular**

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.1.6 Final Tabulated Data – 9 kHz-30 MHz, 110 Vac 60 Hz Horizontal

| Freq     | Raw Reading | Cable Loss | AF   | Corrected | Detector Type | Pol H/V | Ant Height | Azi | Limit  | Margin |
|----------|-------------|------------|------|-----------|---------------|---------|------------|-----|--------|--------|
| MHz      | dBuV/m      | dB         | dB   | dBuV/m    |               |         | Cm         | Deg | dBuV/m | dB     |
| 13.57606 | 65.14       | 0.45       | 10.8 | 76.38     | Peak          | V       | 125        | 0   | 69.5   | 6.88   |
| 1.189    | 26.82       | 0.31       | 10.6 | 37.73     | Peak          | V       | 125        | 360 | 66.1   | -28.37 |
| 3.948    | 22.94       | 0.37       | 10.7 | 34.01     | Peak          | V       | 125        | 360 | 69.5   | -35.49 |
|          |             |            |      |           |               |         |            |     |        |        |
|          |             |            |      |           |               |         |            |     |        |        |
|          |             |            |      |           |               |         |            |     |        |        |
|          |             |            |      |           |               |         |            |     |        |        |

### 3.1.1 Final Tabulated Data – 9 kHz-30 MHz, 110 Vac 60 Hz Vertical

| Freq     | Raw Reading | Cable Loss | AF    | Corrected | Detector Type | Pol H/V | Ant Height | Azi | Limit  | Margin |
|----------|-------------|------------|-------|-----------|---------------|---------|------------|-----|--------|--------|
| MHz      | dBuV/m      | dB         | dB    | dBuV/m    |               |         | Cm         | Deg | dBuV/m | dB     |
| 13.57606 | 72.3        | 0.45       | 10.8  | 83.54     | Peak          | V       | 125        | 0   | 69.5   | 14.04  |
| 3.948    | 24.52       | 0.37       | 10.7  | 35.59     | Peak          | V       | 125        | 360 | 69.5   | -33.91 |
| 0.776    | 30.46       | 0.28       | 10.32 | 41.07     | Peak          | V       | 125        | 360 | 69.81  | -28.74 |
|          |             |            |       |           |               |         |            |     |        |        |
|          |             |            |       |           |               |         |            |     |        |        |
|          |             |            |       |           |               |         |            |     |        |        |
|          |             |            |       |           |               |         |            |     |        |        |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

**3.1.2 Final Tabulated Data – 30 - 1000 MHz, 110 Vac 60 Hz**

| Freq     | Raw Reading | Cable Loss | AF     | Corrected | Detector Type | Pol H/V | Ant Height | Azi | Limit  | Margin |
|----------|-------------|------------|--------|-----------|---------------|---------|------------|-----|--------|--------|
| MHz      | dBuV/m      | dB         | dB     | dBuV/m    |               |         | Cm         | Deg | dBuV/m | dB     |
| 366.1197 | 52.43       | 3.78       | -12.56 | 43.66     | Quasi         | H       | 103        | 82  | 46     | -2.34  |
| 71.87024 | 49.31       | 2.76       | -20.06 | 32.01     | Quasi         | V       | 160        | 296 | 40     | -7.99  |
| 63.94038 | 41.87       | 2.7        | -20.47 | 24.1      | Quasi         | V       | 191        | 94  | 40     | -15.9  |
| 30       | 23.01       | 2.49       | -6.28  | 19.22     | Quasi         | V       | 176        | 360 | 40     | -20.78 |
| 716.27   | 22.96       | 4.62       | -7.14  | 20.44     | Quasi         | V       | 183        | 164 | 46     | -25.56 |
| 478.1588 | 22.77       | 4.09       | -10.34 | 16.51     | Quasi         | V       | 341        | 279 | 46     | -29.49 |
| 366.1197 | 52.43       | 3.78       | -12.56 | 43.66     | Quasi         | H       | 103        | 82  | 46     | -2.34  |

**3.1.1 Final Tabulated Data – 11.8-15.3 MHz, 110 Vac 60 Hz Parallel**

| Freq     | Raw Reading | Cable Loss | AF   | Corrected | Detector Type | Pol H/V | Ant Height | Azi | Limit  | Margin |
|----------|-------------|------------|------|-----------|---------------|---------|------------|-----|--------|--------|
| MHz      | dBuV/m      | dB         | dB   | dBuV/m    |               |         | Cm         | Deg | dBuV/m | dB     |
| 13.56351 | 65.03       | 0.44       | 10.8 | 76.28     | Peak          | V       | 125        | 0   | 98     | -21.72 |
| 14.25088 | 12.03       | 0.45       | 10.8 | 23.28     | Peak          | V       | 125        | 0   | 63     | -39.72 |
|          |             |            |      |           |               |         |            |     |        |        |
|          |             |            |      |           |               |         |            |     |        |        |
|          |             |            |      |           |               |         |            |     |        |        |
|          |             |            |      |           |               |         |            |     |        |        |

**3.1.2 Final Tabulated Data – 11.8-15.3 MHz, 110 Vac 60 Hz Perpendicular**

| Freq     | Raw Reading | Cable Loss | AF   | Corrected | Detector Type | Pol H/V | Ant Height | Azi | Limit  | Margin |
|----------|-------------|------------|------|-----------|---------------|---------|------------|-----|--------|--------|
| MHz      | dBuV/m      | dB         | dB   | dBuV/m    |               |         | Cm         | Deg | dBuV/m | dB     |
| 13.56351 | 72.47       | 0.44       | 10.8 | 83.72     | Peak          | V       | 125        | 0   | 98     | -14.28 |
| 14.83305 | 11.79       | 0.45       | 10.8 | 23.04     | Peak          | V       | 125        | 0   | 57     | -33.96 |
| 13.66872 | 18.41       | 0.45       | 10.8 | 29.66     | Peak          | V       | 125        | 0   | 82     | -52.34 |
|          |             |            |      |           |               |         |            |     |        |        |
|          |             |            |      |           |               |         |            |     |        |        |
|          |             |            |      |           |               |         |            |     |        |        |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.2 Photos



Figure 3 Radiated Emissions Test Setup 9 kHz- 30 MHz - Front

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

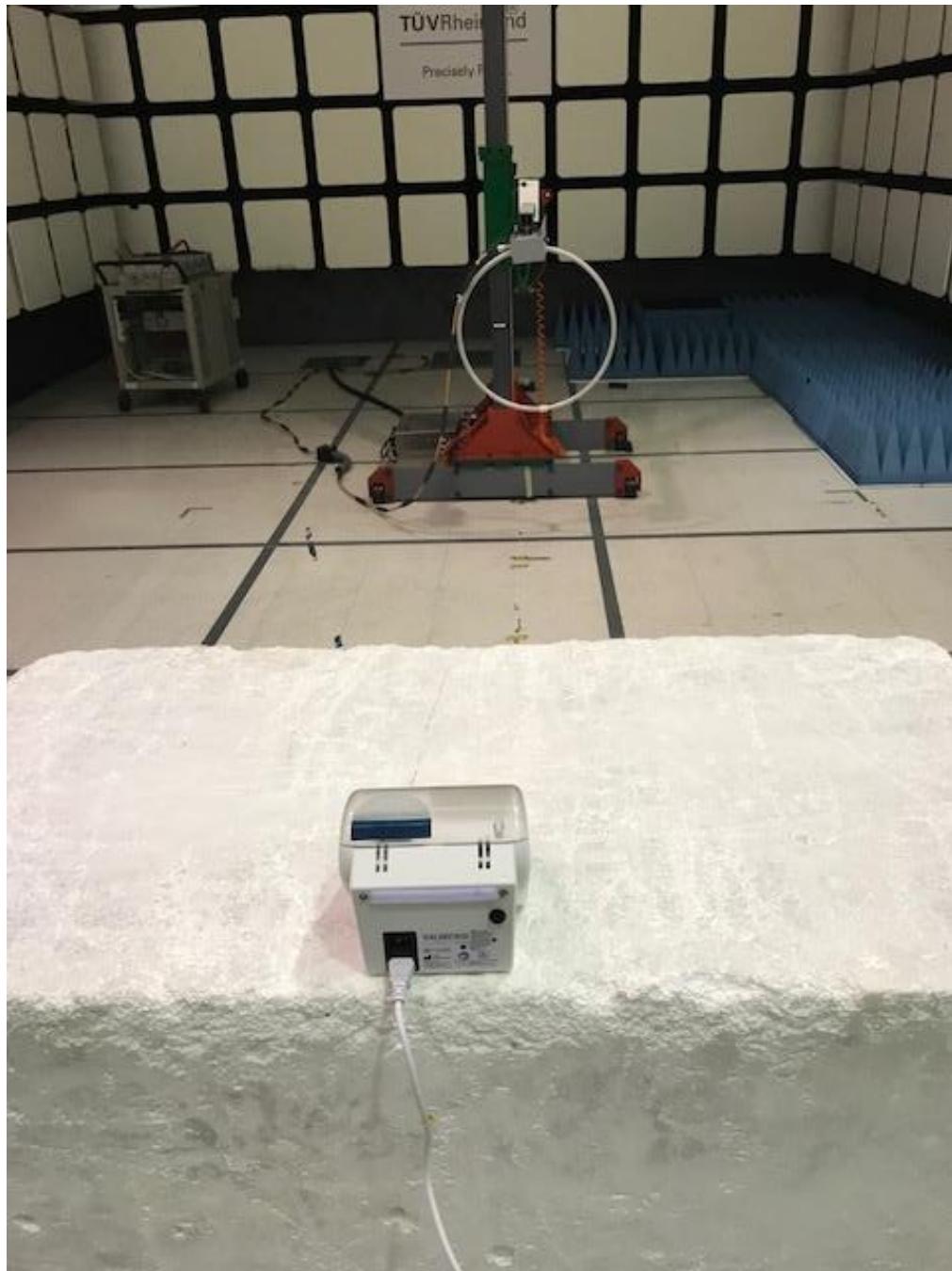



Figure 3 - Radiated Emissions Test Setup 9 kHz-30 MHz - Back

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.2.1 Photos



Figure 3 - Radiated Emissions Test Setup 30 - 1000 MHz - Front

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.



Figure 4 - Radiated Emissions Test Setup 30 - 1000 MHz - Back

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.3 Conducted Emissions

This test measures the electromagnetic levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other nearby electronic equipment.

#### 3.3.1 Overview of Test

|                                 |                                                                  |             |                           |                                       |     |                 |
|---------------------------------|------------------------------------------------------------------|-------------|---------------------------|---------------------------------------|-----|-----------------|
| <b>Results</b>                  | Complies (as tested per this report)                             |             | <b>Test Date(s)</b>       | December 19, 2018                     |     |                 |
| <b>Standard</b>                 | CFR 47 part 15.207, RSS 210                                      |             |                           |                                       |     |                 |
| <b>Model Number</b>             | PRJ-0690                                                         |             | <b>Serial #</b>           | 1830600023                            |     |                 |
| <b>Configuration</b>            | See test plan for details.                                       |             |                           |                                       |     |                 |
| <b>Test Setup</b>               | Tested in Lab 5, EUT placed on table: see test plan for details. |             |                           |                                       |     |                 |
| <b>EUT Powered By</b>           | , 120 Vac, 60 Hz                                                 |             |                           |                                       |     |                 |
| <b>Environmental Conditions</b> | December 19, 2018                                                | <b>Temp</b> | 22° C                     | <b>Humidity</b>                       | 39% | <b>Pressure</b> |
| <b>Frequency Range</b>          | 150 kHz - 30 MHz                                                 |             |                           |                                       |     |                 |
| <b>Perf. Criteria</b>           | Class B                                                          |             | <b>Perf. Verification</b> | Readings Under Limit for L1 & Neutral |     |                 |
| <b>Mod. to EUT</b>              | None                                                             |             | <b>Test Performed By</b>  | Donn Foster                           |     |                 |

#### 3.3.2 Test Procedure

Conducted emissions tests were performed using the procedures of ANSI C63.4:2009 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

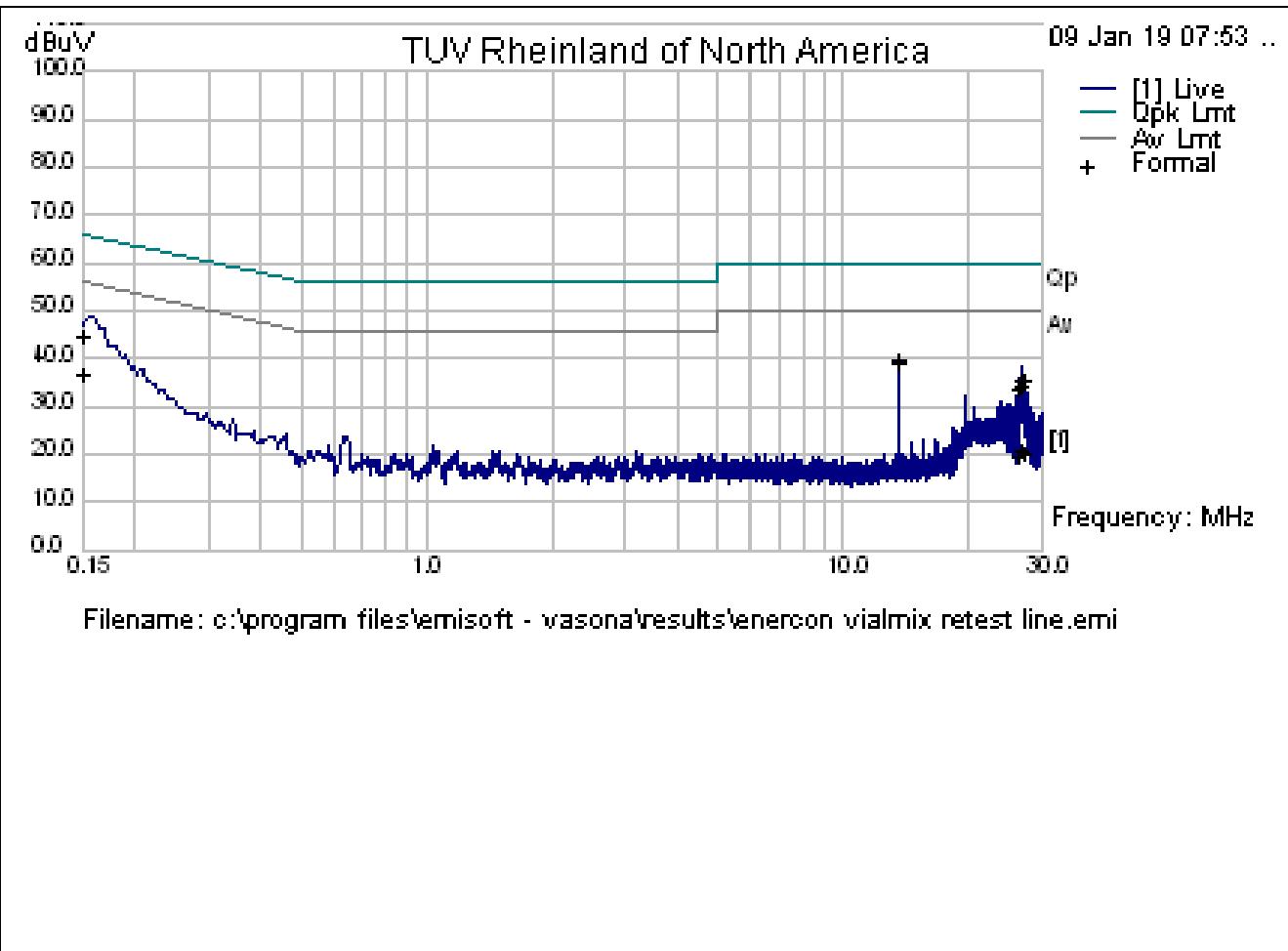
The frequency range from

150 kHz - 30 MHz was investigated for conducted emissions.

Conducted Emissions measurements were performed in the shielded room using procedures specified in the test plan and standard.

#### 3.3.3 Deviations

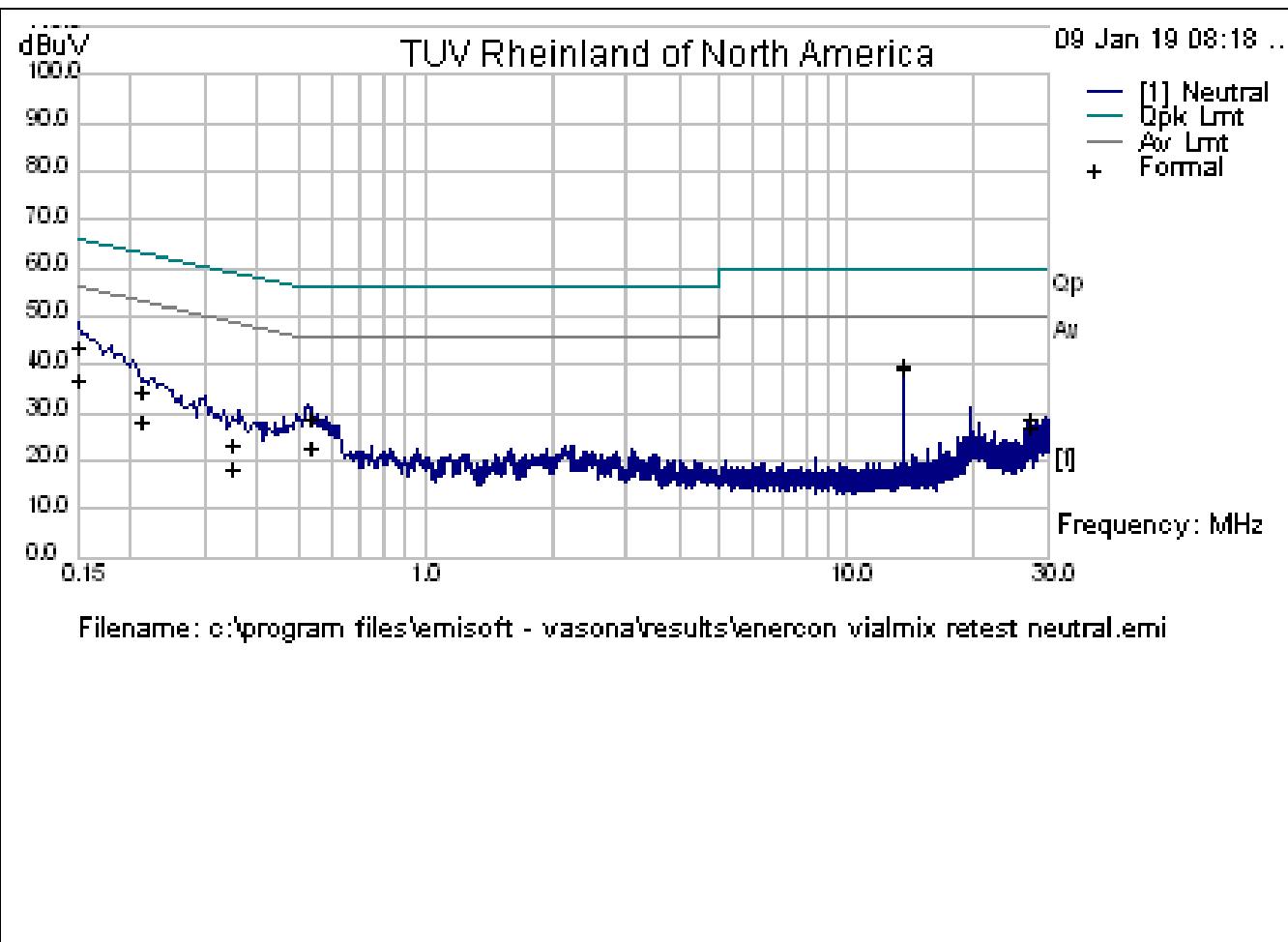
There were no deviations from the test methodology listed in the test plan for the conducted emission test.


#### 3.3.4 Final Test

All final conducted emissions measurements were below the specification limits.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.3.5 Plots


NOTES:

**Conducted Emissions @ 110 Vac/60 Hz  
Line**

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

**NOTES:**

**Conducted Emissions @ 110 Vac/60 Hz**  
**Neutral**



The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.4 Final Tabulated Data – 150 kHz-30 MHz, 110 Vac 60 Hz

Line

| Frequency<br>MHz | Raw<br>dBuV | Cable<br>Loss | Factors<br>dB | Level<br>dBuV | Measurement<br>Type | Line | Limit<br>dBuV | Margin<br>dB |
|------------------|-------------|---------------|---------------|---------------|---------------------|------|---------------|--------------|
| 0.15             | 34.8        | 9.82          | 0.06          | 44.68         | Quasi Peak          | Live | 66            | -21.32       |
| 13.5609          | 29.49       | 10.01         | 0             | 39.49         | Quasi Peak          | Live | 60            | -20.51       |
| 26.8766          | 24.08       | 10.11         | -0.06         | 34.13         | Quasi Peak          | Live | 60            | -25.87       |
| 26.70684         | 25.74       | 10.1          | -0.06         | 35.78         | Quasi Peak          | Live | 60            | -24.22       |
| 27.04845         | 25.78       | 10.11         | -0.06         | 35.83         | Quasi Peak          | Live | 60            | -24.17       |
| 26.36038         | 23.77       | 10.1          | -0.06         | 33.81         | Quasi Peak          | Live | 60            | -26.19       |
| 0.15             | 27.12       | 9.82          | 0.06          | 37            | Average             | Live | 56            | -19          |
| 13.5609          | 29.55       | 10.01         | 0             | 39.55         | Average             | Live | 50            | -10.45       |
| 26.8766          | 10.6        | 10.11         | -0.06         | 20.65         | Average             | Live | 50            | -29.35       |
| 26.70684         | 10.72       | 10.1          | -0.06         | 20.77         | Average             | Live | 50            | -29.23       |
| 27.04845         | 10.47       | 10.11         | -0.06         | 20.52         | Average             | Live | 50            | -29.48       |
| 26.36038         | 9.55        | 10.1          | -0.06         | 19.59         | Average             | Live | 50            | -30.41       |

Neutral

| Frequency<br>MHz | Raw<br>dBuV | Cable<br>Loss | Factors<br>dB | Level<br>dBuV | Measurement<br>Type | Line    | Limit<br>dBuV | Margin<br>dB |
|------------------|-------------|---------------|---------------|---------------|---------------------|---------|---------------|--------------|
| 0.150241         | 33.65       | 9.82          | 0.06          | 43.53         | Quasi Peak          | Neutral | 65.99         | -22.45       |
| 13.56054         | 29.53       | 10.01         | 0             | 39.54         | Quasi Peak          | Neutral | 60            | -20.46       |
| 0.531968         | 19.17       | 9.84          | 0.03          | 29.05         | Quasi Peak          | Neutral | 56            | -26.95       |
| 0.210673         | 24.57       | 9.83          | 0.04          | 34.44         | Quasi Peak          | Neutral | 63.18         | -28.74       |
| 0.346665         | 13.36       | 9.84          | 0.03          | 23.22         | Quasi Peak          | Neutral | 59.04         | -35.82       |
| 27.11994         | 18.83       | 10.11         | -0.06         | 28.88         | Quasi Peak          | Neutral | 60            | -31.12       |
| 0.150241         | 26.86       | 9.82          | 0.06          | 36.74         | Average             | Neutral | 55.99         | -19.25       |
| 13.56054         | 29.58       | 10.01         | 0             | 39.58         | Average             | Neutral | 50            | -10.42       |
| 0.531968         | 13.05       | 9.84          | 0.03          | 22.92         | Average             | Neutral | 46            | -23.08       |
| 0.210673         | 18.65       | 9.83          | 0.04          | 28.52         | Average             | Neutral | 53.18         | -24.65       |
| 0.346665         | 8.79        | 9.84          | 0.03          | 18.65         | Average             | Neutral | 49.04         | -30.39       |
| 0.207962         | 18.87       | 9.83          | 0.04          | 28.74         | Average             | Neutral | 53.29         | -24.55       |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.4.1 Photos



Figure 7 - Conducted Emissions Test Setup - Front

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

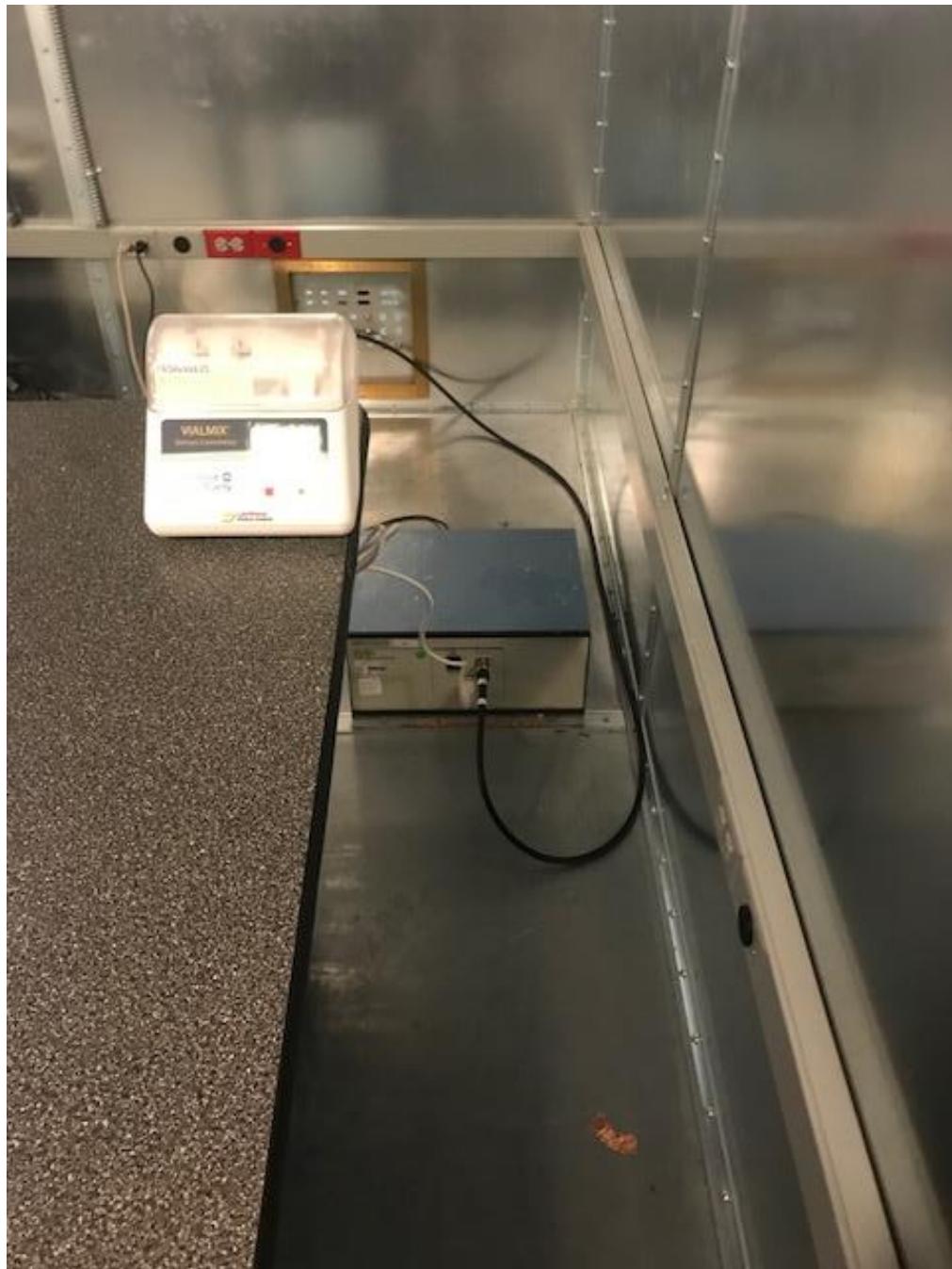



Figure 8 - Conducted Emissions Test Setup - Back

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.4.2 Frequency Stability

Testing was performed in accordance ANSI C63.10: 2013 subsections 6.8.1 and 6.8.2. The requirements of ANSI section 5.6 could not be met since the NFC reader runs only at 13.56 MHz.

#### 3.4.1 Overview of Test

|                                 |                                             |             |                           |                     |                   |                 |           |  |  |  |
|---------------------------------|---------------------------------------------|-------------|---------------------------|---------------------|-------------------|-----------------|-----------|--|--|--|
| <b>Results</b>                  | <b>Complies</b> (as tested per this report) |             |                           | <b>Test Date(s)</b> | December 19, 2018 |                 |           |  |  |  |
| <b>Standard</b>                 | CFR 47 part 15.225, RSS 210                 |             |                           |                     |                   |                 |           |  |  |  |
| <b>Model Number</b>             | PRJ-0609                                    |             |                           | <b>Serial #</b>     | 1830600023        |                 |           |  |  |  |
| <b>Configuration</b>            | See test plan for details.                  |             |                           |                     |                   |                 |           |  |  |  |
| <b>Test Setup</b>               | Tested in lab 7 temperature chamber         |             |                           |                     |                   |                 |           |  |  |  |
| <b>EUT Powered By</b>           | 120 Vac, 60 Hz                              |             |                           |                     |                   |                 |           |  |  |  |
| <b>Environmental Conditions</b> | December 19, 2018                           | <b>Temp</b> | 22° C                     | <b>Humidity</b>     | 44%               | <b>Pressure</b> | 1010 mbar |  |  |  |
|                                 |                                             |             |                           |                     |                   |                 |           |  |  |  |
| <b>Frequency Range</b>          | 13.56 MHz                                   |             |                           |                     |                   |                 |           |  |  |  |
| <b>Perf. Criteria</b>           | Less than .01% frequency error              |             | <b>Perf. Verification</b> | Meets limit         |                   |                 |           |  |  |  |
| <b>Mod. to EUT</b>              | None                                        |             | <b>Test Performed By</b>  | Donn Foster         |                   |                 |           |  |  |  |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## Measured frequency in Hz.

| Temp       | 0min     | 2min     | 5min     | 10min    |
|------------|----------|----------|----------|----------|
| 50         | 13560090 | 13560090 | 13560090 | 13560090 |
| 40         | 13560100 | 13560100 | 13560090 | 13560090 |
| 30         | 13560120 | 13560110 | 13560110 | 13560100 |
| 20(normal) | 13560100 | 13560100 | 13560100 | 13560100 |
| 10         | 13560100 | 13560100 | 13560100 | 13560110 |
| 0          | 13560110 | 13560110 | 13560110 | 13560110 |
| -10        | 13560110 | 13560120 | 13560120 | 13560120 |
| -20        | 13560120 | 13560120 | 13560120 | 13560120 |

## Percent of Frequency error

| Temp       | 0min % | 2min % | 5min % | 10min % |
|------------|--------|--------|--------|---------|
| 50         | 0.006  | 0.006  | 0.006  | 0.006   |
| 40         | 0.007  | 0.007  | 0.006  | 0.006   |
| 30         | 0.009  | 0.008  | 0.008  | 0.007   |
| 20(normal) | 0.007  | 0.007  | 0.007  | 0.007   |
| 10         | 0.007  | 0.007  | 0.007  | 0.008   |
| 0          | 0.008  | 0.008  | 0.008  | 0.008   |
| -10        | 0.008  | 0.009  | 0.009  | 0.009   |
| -20        | 0.009  | 0.009  | 0.009  | 0.009   |

## Percent of error over voltage extremes

| Voltage   | 102VAC   | 120VAC   | 138VAC   |
|-----------|----------|----------|----------|
| Frequency | 13560100 | 13560090 | 13560100 |
| % error   | 0.007    | 0.006    | 0.007    |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

### 3.4.2 Photos



Figure 11 – Frequency Stability test setup

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## Appendix A

### 4 Test Plan

This test report is intended to follow this test plan outlined here in unless otherwise stated in this here report. The following test plan will give details on product information, standards to be used, test set ups and refer to TUV test procedures. The test procedures will give the steps to be taken when performing the stated test. The product information below came via client, product manual, product itself and or the internet.

#### 4.1 General Information

|                       |                                 |
|-----------------------|---------------------------------|
| <b>Client</b>         | Enercon Technologies            |
| <b>Address</b>        | 2500 Northbrook Ln              |
|                       | Gray, Maine 04039 U.S.A.        |
| <b>Contact Person</b> | Ben Clarke                      |
| <b>Telephone</b>      | 207-657-7000                    |
| <b>e-mail</b>         | bclarke@enercontechnologies.com |

#### 4.2 EUT Designation

|                        |          |
|------------------------|----------|
| <b>Model Name</b>      | Vialmix  |
| <b>Model Number(s)</b> | PRJ-0690 |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

#### **4.3 Equipment Under Test (EUT) Description**

Vialmix® is the activation device designed specifically for Definity® Vial for (Perflutren Lipid Microsphere) Injectable Suspension, an intravenous ultrasound contrast agent. Definity® is supplied as a liquid-filled glass vial and requires shaking in order to create the lipid-encapsulated microbubbles. The shaking rate and duration are controlled by Vialmix® to ensure reproducible activation of Definity®.

#### **4.4 Product Environment(s)**

|                          |                                    |                                     |                                             |
|--------------------------|------------------------------------|-------------------------------------|---------------------------------------------|
| <input type="checkbox"/> | <b>Domestic/Residential</b>        | <input checked="" type="checkbox"/> | <b>Hospital</b>                             |
| <input type="checkbox"/> | <b>Light Industrial/Commercial</b> | <input checked="" type="checkbox"/> | <b>Small Clinic</b>                         |
| <input type="checkbox"/> | <b>Industrial</b>                  | <input type="checkbox"/>            | <b>Doctor's office</b>                      |
| <input type="checkbox"/> | <b>Telecommunications Center</b>   | <input type="checkbox"/>            | <b>Other than Telecommunications Center</b> |
| <input type="checkbox"/> | <b>Other</b>                       |                                     |                                             |

\*Check all that apply

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

#### 4.5 Applicable Documents

| Standards                                                           | Description                                                  |
|---------------------------------------------------------------------|--------------------------------------------------------------|
| CFR 47 part 15.225, RSS 210<br>Product Family Standard<br>Emissions | Radio Equipment Operation within the band 13.110-14.010 MHz. |
| CFR 47 part 15.225, RSS 210                                         | Radiated Emissions                                           |
| CFR 47 part 15.225, RSS 210                                         | Conducted Emissions                                          |

#### 4.6 EUT specifications

|                                               |                                                                                     |
|-----------------------------------------------|-------------------------------------------------------------------------------------|
| Dimensions                                    | 160mm x 195mm x 195mm                                                               |
| AC Input                                      | 110-240 50/60                                                                       |
| Environment                                   | Indoor                                                                              |
| Operating Temperature Range:                  | 15-30 °C recommended                                                                |
| Multiple Feeds:                               | <input type="checkbox"/> Yes and how many<br><input checked="" type="checkbox"/> No |
| Product Marketing Name (PMN)                  | Vialmix                                                                             |
| Hardware Version Identification Number (HVIN) | PRJ-0690                                                                            |
| Firmware Version Identification Number (FVIN) | n/a                                                                                 |
| NFC Radio                                     |                                                                                     |
| Operating Mode                                | RFID reader                                                                         |
| Transmitter Frequency Band                    | 13.56 MHz                                                                           |
| Operating Bandwidth                           | Up to 1.8 MHz                                                                       |
| Max. Radiated Voltage Output                  | .41 dbm                                                                             |
| Power Setting @ Operating Channel             | Max                                                                                 |
| Antenna Type                                  | Integrated Coil antenna                                                             |
| Modulation Type                               | ASK/OOK                                                                             |
| Data Rate                                     | 26.48 kHz                                                                           |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

#### 4.7 EUT Electrical Power Information

| Name         | # of Phases                                                                                          | Type                                                                                                                                         | Input Voltage |     | AC Voltage Frequency | Current Max. | Power |
|--------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|----------------------|--------------|-------|
|              |                                                                                                      |                                                                                                                                              | Min           | Max |                      |              |       |
|              | 1 <input checked="" type="checkbox"/><br>3 <input type="checkbox"/><br>None <input type="checkbox"/> | AC <input checked="" type="checkbox"/><br>DC <input type="checkbox"/><br>Host <input type="checkbox"/><br>Batteries <input type="checkbox"/> | 110           | 240 | 50 Hz to 60 Hz       | 2 A          | 220 W |
| <b>Notes</b> |                                                                                                      |                                                                                                                                              |               |     |                      |              |       |

#### 4.8 EUT Clock/Oscillator Frequencies

| Reference Designation   | Speed (MHz) | Type                                                                                |
|-------------------------|-------------|-------------------------------------------------------------------------------------|
| RFID transmit frequency | 13.56       | <input type="checkbox"/> Oscillator <input checked="" type="checkbox"/> Transmitter |
|                         |             | <input type="checkbox"/> Oscillator <input type="checkbox"/> Microprocessor         |
|                         |             | <input type="checkbox"/> Oscillator <input type="checkbox"/> Microprocessor         |

##### 4.8.1 Radiated Emissions, Upper Frequency

|                                     |                              |                                                                       |
|-------------------------------------|------------------------------|-----------------------------------------------------------------------|
| <input checked="" type="checkbox"/> | <b>Less than 108 MHz</b>     | <b>Scan to 1 GHz</b>                                                  |
| <input type="checkbox"/>            | <b>Less than 500 MHz</b>     | <b>Scan to 2 GHz</b>                                                  |
| <input type="checkbox"/>            | <b>Less than 1000 MHz</b>    | <b>Scan to 5 GHz</b>                                                  |
| <input type="checkbox"/>            | <b>Greater than 1000 MHz</b> | <b>Scan to 5<sup>th</sup> Harmonic or 40 GHz (whichever is lower)</b> |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

#### 4.9 Electrical Support Equipment

| Reference Designation | Manufacturer | Model | Serial Number | BSMI # |
|-----------------------|--------------|-------|---------------|--------|
|                       |              |       |               |        |
|                       |              |       |               |        |
|                       |              |       |               |        |
|                       |              |       |               |        |
|                       |              |       |               |        |

#### 4.10 Non - Electrical Support Equipment

| Reference Designation | Manufacturer | Model | Serial Number or Description (e.g., Type of Gas or Liquid) |
|-----------------------|--------------|-------|------------------------------------------------------------|
|                       |              |       |                                                            |
|                       |              |       |                                                            |

#### 4.11 EUT Equipment/Cabling Information

| EUT Port | Connected To | Cable Type      |                          |                          |                          |
|----------|--------------|-----------------|--------------------------|--------------------------|--------------------------|
|          |              | Length (Meters) | Shielded<br>Yes / No     | Bead<br>Yes / No         |                          |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
|          |              |                 | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

#### **4.12 EUT Test Program**

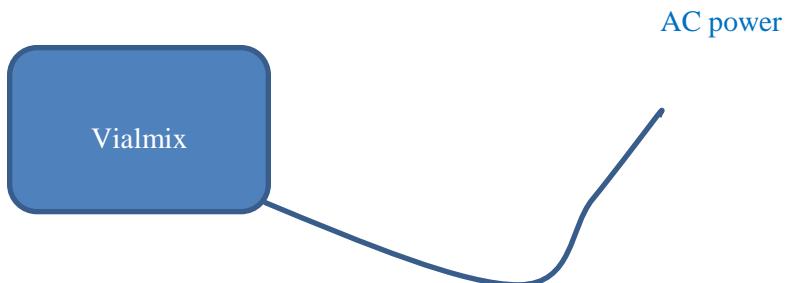
Firmware v\_1.0.1\_TUV\_RF\_RADIO

#### **4.13 EUT Modes of Operation**

The Vialmix is configured to continuously transmit the RFID signal. No other functions such as shaking are enabled.

#### **4.14 Monitoring of EUT during Testing**

The testing is for Emissions only no monitoring is required


#### **4.15 EUT Configuration**

##### **4.15.1 Description**

| Configuration | Description                 |
|---------------|-----------------------------|
| Mode 1        | Reader running continuously |
| <b>Notes</b>  |                             |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

#### 4.15.2 Block Diagram



The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## 4.16 Emissions

### 4.16.1 Radiated Emissions

#### 4.16.1.1 Preliminary Radiated Emissions Test Setup

| Standard        | CFR 47 part 15.225, RSS 210 |                               | Procedure | ANSI C63.10           |            |
|-----------------|-----------------------------|-------------------------------|-----------|-----------------------|------------|
| Limit           | Class B                     | <b>Emissions Verification</b> |           | Emissions Under Limit |            |
| Frequency Range | 9 kHz-1 GHz                 |                               |           |                       |            |
| Scan #1         | Final Scan<br>9 kHz-30 MHz  | <b>Antenna Distance</b>       | 3m        | <b>Detector</b>       | Quasi Peak |
| Scan #2         | Final Scan<br>30-1000 MHz   | <b>Antenna Distance</b>       | 3m        | <b>Detector</b>       | Quasi Peak |
| Scan #3         | Final Scan<br>13.56 MHz     | <b>Antenna Distance</b>       | 3m        | <b>Detector</b>       | Quasi Peak |
| Configuration   | See Section 4.15            |                               |           |                       |            |
| Notes           | None                        |                               |           |                       |            |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

**4.16.1.2 Final Radiated Emissions Test Setup**

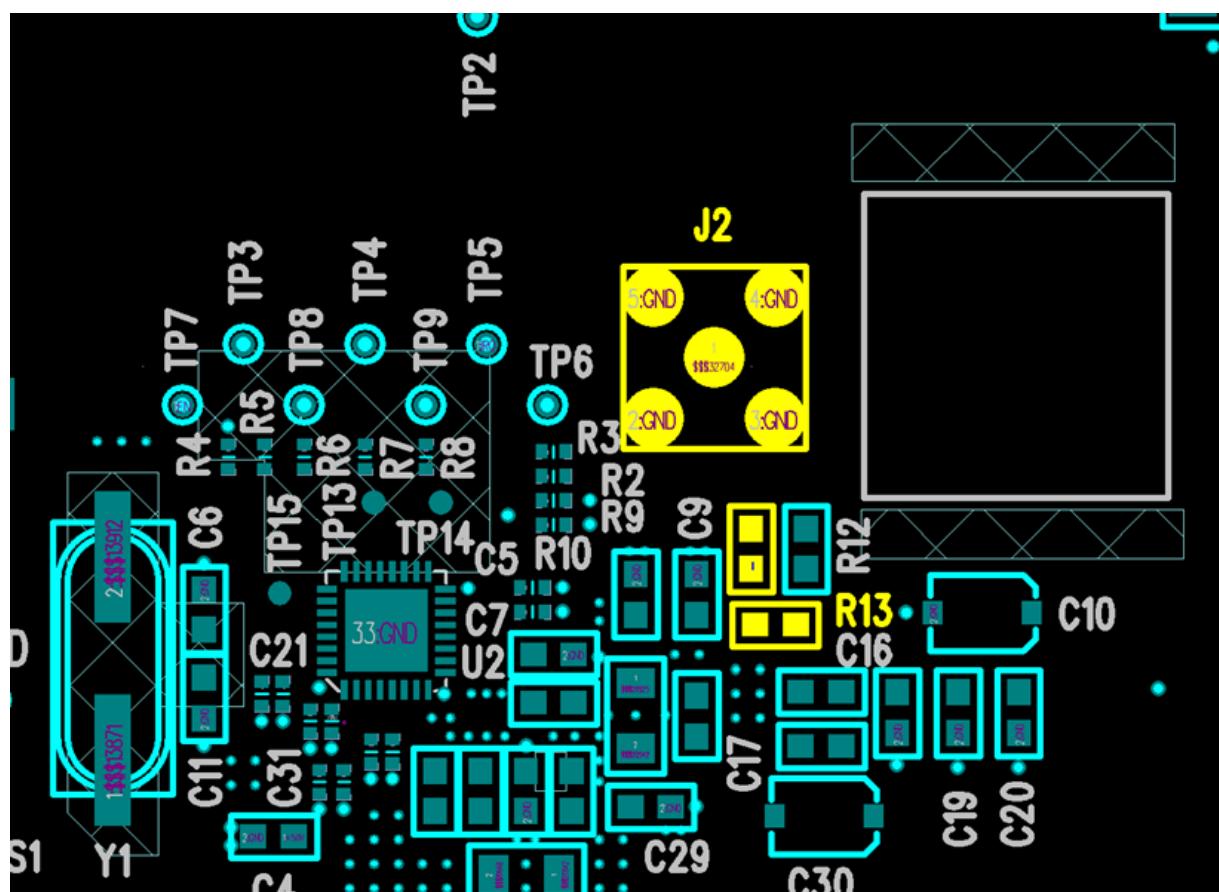
|                        |                             |                               |                  |                       |            |
|------------------------|-----------------------------|-------------------------------|------------------|-----------------------|------------|
| <b>Standard</b>        | CFR 47 part 15.225, RSS 210 |                               | <b>Procedure</b> | ANSI C63.10           |            |
| <b>Limit</b>           | Class B                     | <b>Emissions Verification</b> |                  | Emissions Under Limit |            |
| <b>Frequency Range</b> | 9 kHz-1000 MHz              |                               |                  |                       |            |
| <b>Scan #1</b>         | Final Scan<br>9 kHz-30 MHz  | <b>Antenna Distance</b>       | 3m               | <b>Detector</b>       | Quasi Peak |
| <b>Scan #2</b>         | Final Scan<br>30-1000 MHz   | <b>Antenna Distance</b>       | 3m               | <b>Detector</b>       | Quasi Peak |
| <b>Scan #3</b>         | Final Scan<br>13.56 MHz     | <b>Antenna Distance</b>       | 3m               | <b>Detector</b>       | Quasi Peak |
| <b>Configuration</b>   | See Section 4.15            |                               |                  |                       |            |
| <b>Notes</b>           | None                        |                               |                  |                       |            |

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

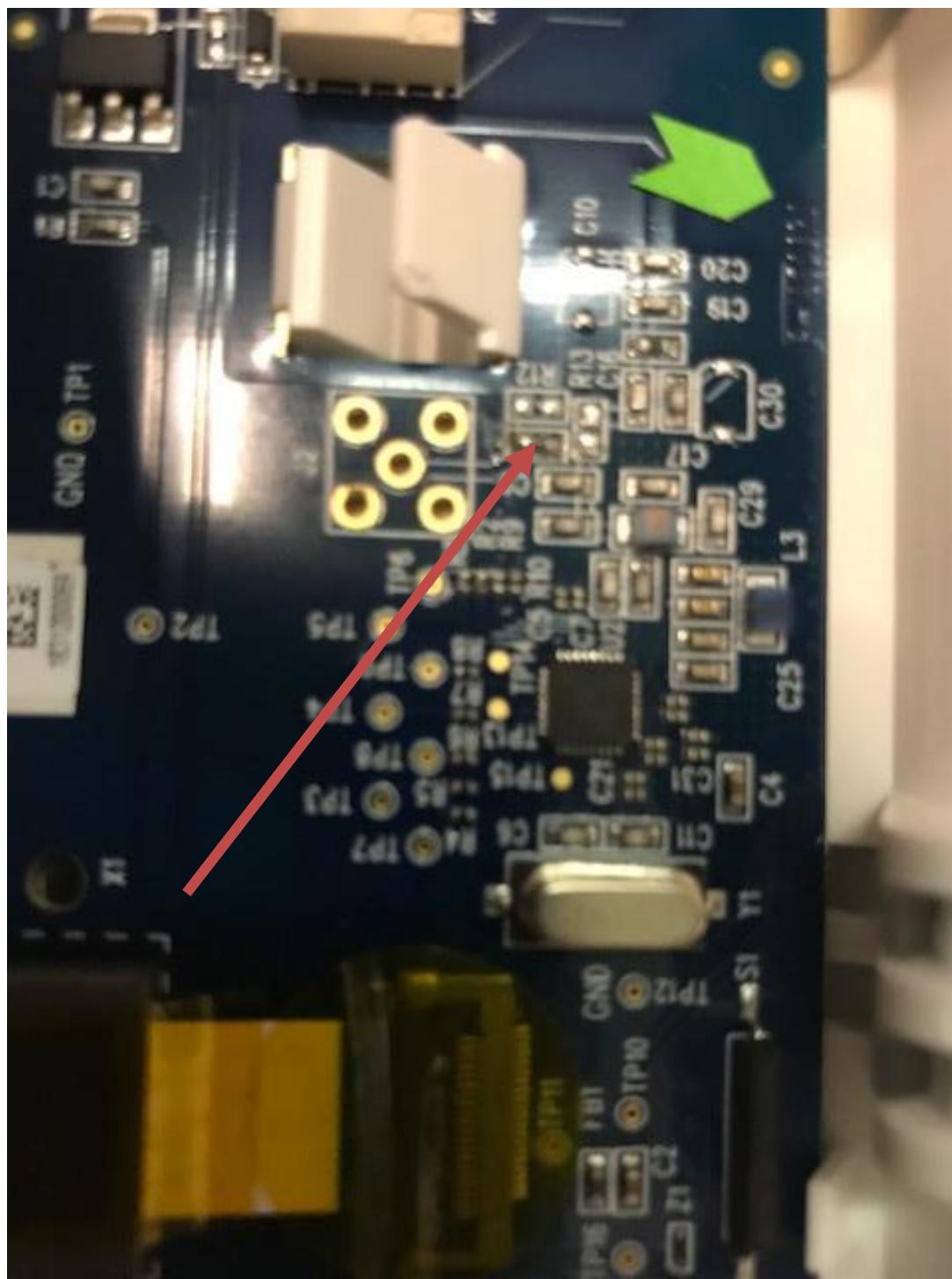
## 4.16.2 Conducted Emissions

### 4.16.2.1 Final Conducted Emissions Test Setup

| Standard               | CFR 47 part 15.207, RSS 210       | Procedure                     | ANSI C63.4            |
|------------------------|-----------------------------------|-------------------------------|-----------------------|
| <b>Limit(s)</b>        | Class B:<br>Quasi Peak<br>Average | <b>Emissions Verification</b> | Emissions Under Limit |
| <b>AC Mains Line</b>   | 1 AC Line                         | <b>LAN Cable(s)</b>           | None                  |
| <b>Frequency Range</b> | 150 kHz - 30 MHz                  | <b>Detectors</b>              | Quasi Peak Average    |
| <b>Scan #2</b>         | 120 Vac, 60 Hz                    | <b>EUT Powered By</b>         | See Section 6.8       |
| <b>Configuration</b>   | See Section 4.15                  |                               |                       |
| <b>Notes</b>           | None                              |                               |                       |


The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

## 5 Appendix B


### 5.1 Modifications

It was necessary to disconnect the NFC antenna in order to demonstrate compliance with the part B Conducted emissions requirements. The details are attached below

To get access to the antenna port, remove the zero ohm resistor on R13 (highlighted on bottom) and solder a zero ohm resistor on R11 (highlighted, between C9 and R12). This will give you access to the port via J2.



The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.



The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.