

FCC PART 90

TEST REPORT

For

Auctus Technologies Co., Ltd.

17F, Building 3, China Science and Technology Development Park, No. 009, Gaoxin Road, Nanshan District, Shenzhen, Guangdong, China

FCC ID: 2ASCZAD110D

Report Type: **Product Type:** Original Report Converged Communication Device Report Number: RSZ200303811-00A **Report Date:** 2020-03-20 Jimm/ Xiao Jimmy Xiao **Reviewed By:** RF Engineer **Prepared By:** Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "\(\Delta \)".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES.	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
TEST EQUIPMENT LIST	7
\$2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	8
APPLICABLE STANDARD	8
RESULT	8
FCC §2.1046 & §90.205 - RF OUTPUT POWER	9
APPLICABLE STANDARD	
TEST PROCEDURE	9
TEST DATA	9
FCC §2.1049 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	11
APPLICABLE STANDARD	11
TEST PROCEDURE	
TEST DATA	11
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	14
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC \2.1053 & \90.210 - RADIATED SPURIOUS EMISSIONS	16
APPLICABLE STANDARD	16
TEST PROCEDURE	
TEST DATA	16
FCC §2.1055 & §90.213 - FREQUENCY STABILITY	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC \$90.214 - TRANSIENT FREQUENCY BEHAVIOR	
APPLICABLE STANDARD	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Converged Communication Device
Tested Model	AD110D
Frequency Range	430-470MHz
Rated Transmit Power	10W
Channel separation	12.5kHz
Modulation Technique	4FSK
Antenna Specification	SMA External Antenna
Voltage Range	DC 13.5V From adapter
Date of Test	2020-03-05 to 2020-03-19
Sample serial number	RSZ200303811 –RF-S1 (Assigned by BACL, Shenzhen)
Received date	2020-03-03
Sample/EUT Status	Good condition
Adapter information	Model:RCL-X135800C Input: AC 100-240V, 50/60Hz, 2A Output: DC 13.5V,8A

Report No.: RSZ200303811-00A

Objective

This test report is prepared on behalf of *Auctus Technologies Co.*, *Ltd.* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submissions.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 90 Page 3 of 22

Parameter		Uncertainty
Occupied Channel Bandwidth		±5%
RF Output Power with Power meter		±0.73dB
RF conducted test with spectrum		±1.6dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1 ℃
Humidity		±6%
Supply	voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867,the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 90 Page 4 of 22

SYSTEM TEST CONFIGURATION

Description of Test Configuration

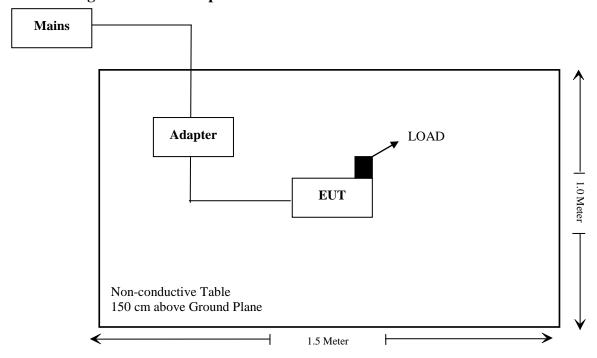
The system was configured for testing in a test mode which has been done in the factory.

EUT Exercise Software

No exercise software was used.

Special Accessories

No special accessory was used.


Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	cturer Description Model		Serial Number	
N/A	Load	N/A	N/A	

Block Diagram of Test Setup

FCC Part 90 Page 5 of 22

FCC Rules	Description of Test	Results
§15.247 (i), §2.1091	Maximum Permissible Exposure(MPE)	Compliance
§2.1046; §90.205	RF Output Power	Compliance
§2.1047; §90.207	Modulation Characteristic	Not Applicable
§2.1049; §90.210	Occupied Bandwidth & Emission Mask	Compliance
\$2.1051; \$ 90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053; §90.210	Spurious Radiated Emissions	Compliance
\$2.1055; \$ 90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Not Applicable: The EUT only support the digital function.

FCC Part 90 Page 6 of 22

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Radiated Emission Test						
R&S	EMI Test Receiver	ESR3	102455	2019/7/9	2020/7/8		
Sonoma instrument	Pre-amplifier	310 N	186238	2019/4/20	2020/4/20		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017/12/22	2020/12/21		
COM-POWER	Dipole Antenna	AD-100	721027	NCR	NCR		
unknown	Cable	Chamber Cable 1	0001	2019/11/29	2020/11/28		
unknown	Cable	Chamber Cable 4	EC-007	2019/11/29	2020/11/28		
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2019/7/22	2020/07/21		
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017/12/22	2020/12/21		
A.H.System	Horn Antenna	SAS-200/571	135	2018/9/1	2021/8/31		
Insulted Wire Inc.	RF Cable	SPS-2503-3150	02222010	2019/11/29	2020/11/28		
unknown	RF Cable	W1101-EQ1 OUT	0002	2019/11/29	2020/11/28		
Agilent	Signal Generator	N5183A	MY51040755	2019/12/4	2020/12/4		
		RF Conducted T	est				
Unknown	RF Cable	Unknown	DLO J5/W6102	2019/11/29	2020/11/28		
Unknown	RF Cable	Unknown	8082176/W6111	2019/11/29	2020/11/28		
Rohde & Schwarz	SPECTRUM ANALYZER	FSU26	200120	2019/3/2	2020/7/21		
Weinschel	Power divider	1515	MY628	2019/11/29	2020/11/28		
HP Agilent	RF Communication test set	8920B	3325U00859	2020/1/15	2021/1/15		
Unknown	30dB Attenuator	50FH-030-100 RF	1.7000672E11	2019/11/29	2020/11/28		
ESPEC	Temperature & Humidity Chamber	EL-10KA	9107726	2019-12-21	2020-12-21		
Long Wei	DC Power Supply	TPR-6420D	398363	NCR	NCR		
Fluke	Digital Multimeter	287	19000011	2019-04-12	2020-04-12		
Unknown	High Pass filter	NHP-600+	0003	2020-01-12	2021-01-12		

FCC Part 90 Page 7 of 22

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

\$2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for Occupational/Controlled Exposure

Report No.: RSZ200303811-00A

	Limits for occupational/Controlled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)		
0.3-1.34	614	1.63	*(100)	6		
1.34-30	1842/f	4.89/f	*(900/f ²)	6		
30-300	61.4	0.163	1.0	6		
300-1500	/	/	f/300	6		
1500-100,000	/	/	5.0	6		

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency (MHz)	Antenna Gain		Tune up conducted power	Evaluation Distance	Power Density	MPE Limit
,	(dBi)	(numeric)	(W)	(cm)	(mW/cm ²)	(mW/cm ²)
430-470	3.0	2.0	10.5	40	1.04	1.43

The tune up conducted power was declared by the applicant.

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 40cm from nearby persons.

Result: Compliance

FCC Part 90 Page 8 of 22

^{* =} Plane-wave equivalent power density

FCC §2.1046 & §90.205 - RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Report No.: RSZ200303811-00A

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	59 %
ATM Pressure:	101.0 kPa

The testing was performed by Gavin Guo on 2020-03-07.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC Part 90 Page 9 of 22

Mode	Frequency Spacing (kHz)	Frequency (MHz)	Output (dBm)	Output Power (W)
		430.0125	40.10	10.23
Digital	12.5	450.0125	39.60	9.12
		469.9875	39.25	8.41

Note: The rated power is 10W, so the limit is 8-12W

FCC Part 90 Page 10 of 22

FCC \$2.1049 & \$90.210 - OCCUPIED BANDWIDTH & EMISSION MASK

Report No.: RSZ200303811-00A

Applicable Standard

FCC §2.1049 and §90.210

Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least: At least $50 + 10 \log (P) dB$ or 70 dB, whichever is the lesser attenuation.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

Test Data

Environmental Conditions

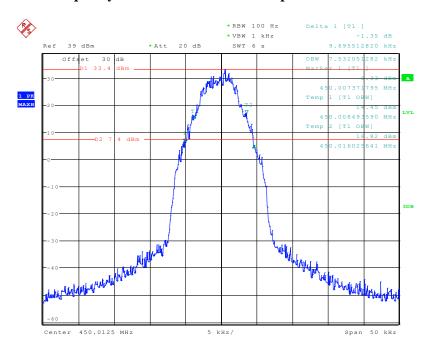
Temperature:	24 ℃
Relative Humidity:	59 %
ATM Pressure:	101.0 kPa

The testing was performed by Gavin Guo on 2020-03-19.

FCC Part 90 Page 11 of 22

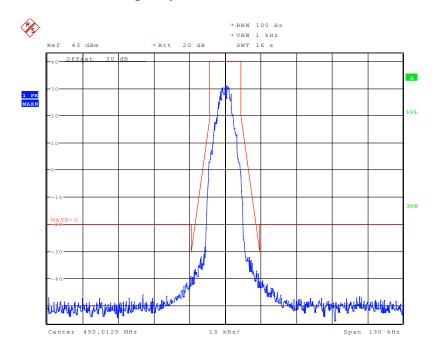
Modulation	Channel Separation (kHz)	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)
Digital	12.5	450.0125	7.532	9.696

For Digital Mode (Channel Spacing: 12.5 kHz)


Emission Designator 7K60F1D and 7K60F1E

The 99% energy rule (title 47CFR 2.1049) was used for digital mode. It basically states that 99% of the modulation energy falls within X kHz, in this case, 7.60 kHz. The emission mask was obtained from 47CFR 90.210(d).
F1D and F1E portion of the designator indicates digital information.

Therefore, the entire designator for 12.5 kHz channel spacing digital mode is 7K60F1D and 7K60F1E.


FCC Part 90 Page 12 of 22

Frequency 450.0125 MHz: 99% Occupied & 26 dB Bandwidth,

Date: 19.MAR.2020 15:21:55

Frequency 450.0125 MHz: Emission Mask D

Date: 19.MAR.2020 15:27:20

FCC Part 90 Page 13 of 22

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: RSZ200303811-00A

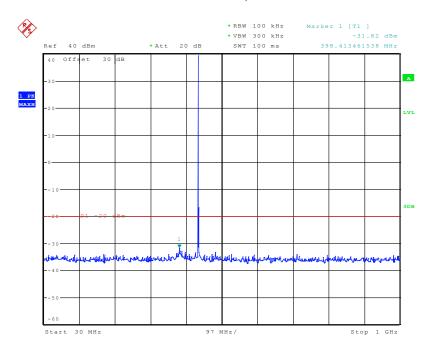
- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100kHz for below 1GHz, and 1MHz for above 1GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

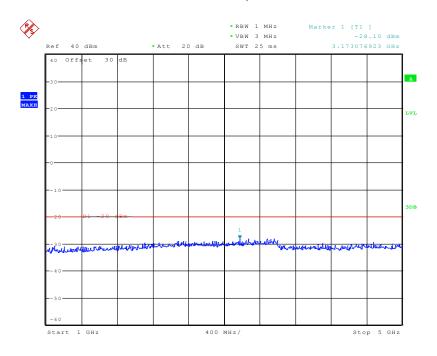
Test Data

Environmental Conditions


Temperature:	24 °C	
Relative Humidity:	59 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Gavin Guo on 2020-03-07.

Test Mode: Transmitting


FCC Part 90 Page 14 of 22

30MHz – 1 GHz, 450.0125 MHz

Date: 7.MAR.2020 11:18:41

1 GHz - 5 GHz, 450.0125 MHz

Date: 7.MAR.2020 11:19:26

FCC Part 90 Page 15 of 22

FCC \2.1053 & \90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

Report No.: RSZ200303811-00A

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in $dB = 50+10 \text{ Log}_{10}$ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	24 ℃		
Relative Humidity:	59 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Zero Yan on 2020-03-09 and Leo Huang on 2020-03-05.

Test Mode: Transmitting

FCC Part 90 Page 16 of 22

_ Receiver		Turn	Rx Antenna		Substituted		Absolute			
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
Digital Modulation 450.125 MHZ -12.5 kHz										
900.025	64.34	100	1.8	Н	-32.9	1.24	0.0	-34.14	-20	14.14
900.025	64.24	13	1.0	V	-32.5	1.24	0.0	-33.74	-20	13.74
1350.38	57.96	122	1.5	Н	-50.2	1.60	7.90	-43.90	-20	23.90
1350.38	60.28	4	1.4	V	-48.2	1.60	7.90	-41.90	-20	21.90
1800.50	66.67	87	1.5	Н	-38.4	1.30	9.30	-30.40	-20	10.40
1800.50	72.93	60	1.3	V	-31.7	1.30	9.30	-23.70	-20	3.70
2250.63	49.91	70	2.2	Н	-55.4	1.30	10.00	-46.70	-20	26.70
2250.63	51.99	111	1.7	V	-53.2	1.30	10.00	-44.50	-20	24.50

Note:

 $Absolute\ Level = Substituted\ Level\ -\ Cable\ loss\ +\ Antenna\ Gain$

Margin = Limit- Absolute Level

FCC Part 90 Page 17 of 22

FCC \2.1055 & \90.213 - FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external AC/DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The power cable and RF output cable exited the chamber through an opening made for the purpose.

Report No.: RSZ200303811-00A

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	24 °C	
Relative Humidity:	59 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Gavin Guo on 2020-03-07.

Test Mode: Transmitting

FCC Part 90 Page 18 of 22

Digital Modulation, Reference Frequency: 450.0125 MHz, Limit: ±1.5 ppm					
Test En	vironment	Frequency Measure with Time Elapsed			
Temperature (°C)	Voltage Supplied (V _{AC})	Measured Frequency (MHz)	Frequency Error (ppm)		
	Frequency Stability	y versus Input Temper	ature		
50	120	450.012259615	-0.534		
40	120	450.01225987	-0.534		
30	120	450.01226016	-0.533		
20	120	450.01226036	-0.533		
10	120	450.01226043	-0.532		
0	120	450.01226043	-0.532		
-10	120	450.01226068	-0.532		
-20	120	450.01226096	-0.531		
-30	120	450.01226110	-0.531		
Frequency Stability versus Input Voltage					
20	102	450.01226098	-0.531		
20	138	450.01226098	-0.531		

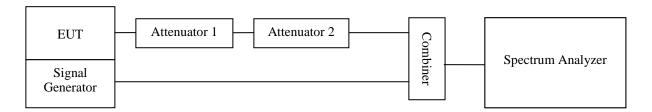
FCC Part 90 Page 19 of 22

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

Test method: ANSI/TIA-603-D 2010, section 2.2.19.3


Test Procedure

a) Connect the EUT and test equipment as shown on the following block diagram.

b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.

Report No.: RSZ200303811-00A

- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to ± 100 dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P₀.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P_0 . This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .
- k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

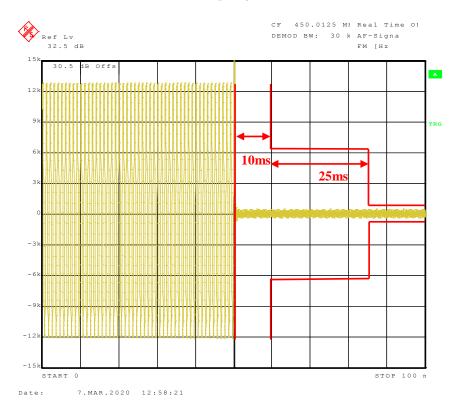
FCC Part 90 Page 20 of 22

Test Data

Environmental Conditions

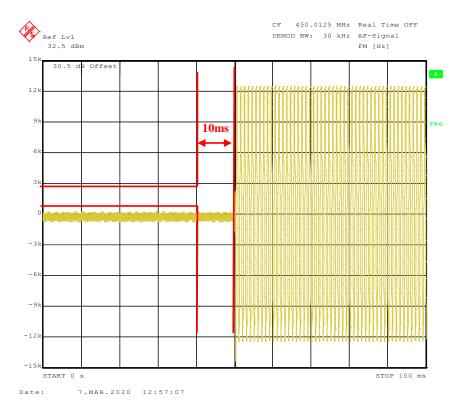
Temperature:	24 ℃		
Relative Humidity:	59 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Gavin Guo on 2020-03-07.


Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
	10 (t1)	<+/-12.5 kHz	
12.5	25(t2)	<+/-6.25 kHz	Pass
	10 (t3)	<+/-12.5 kHz	

Report No.: RSZ200303811-00A

Please refer to the following plots.


Channel: 450.0125 MHz, 12.5 kHz

Turn on

FCC Part 90 Page 21 of 22

Turn off

***** END OF REPORT *****

FCC Part 90 Page 22 of 22