

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC175686

1 of 26 Page:

FCC Radio Test Report FCC ID: 2ASCK-BSCS5

Original Grant

Report No. TB-FCC175686

Dongguan Green Power One Co.,Ltd **Applicant**

Equipment Under Test (EUT)

EUT Name BSCS5

Model No. BSCS5

Series Model No. **GW09**

N/A **Brand Name**

Sample ID 20200831-11 1-01

2020-09-15 **Receipt Date**

Test Date 2020-09-15 to 2020-09-24

Issue Date 2020-09-25

Standards FCC Part 15, Subpart C(15.209)

ANSI C63.10: 2013 **Test Method**

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

Galen **Test/Witness Engineer**

: LVAN SU : fuglis. **Engineer Supervisor**

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

TOBY

Report No.: TB-FCC175686 Page: 2 of 26

Contents

CON	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	
2.	TEST SUMMARY	9
3.	TEST SOFTWARE	9
4.	TEST EQUIPMENT	10
5.	CONDUCTED EMISSION TEST	11
	5.1 Test Standard and Limit	11
	5.2 Test Setup	11
	5.3 Test Procedure	12
	5.4 Deviation From Test Standard	12
	5.5 EUT Operating Mode	12
	5.6 Test Data	12
6.	RADIATED EMISSION TEST	13
	6.1 Test Standard and Limit	13
	6.2 Test Setup	14
	6.3 Test Procedure	15
	6.4 Deviation From Test Standard	15
	6.5 EUT Operating Condition	15
	6.6 Test Data	15
7.	BANDWIDTH MEASUREMENT	16
	7.1 Test Standard and Limit	16
	7.2 Test Setup	16
	7.3 Test Procedure	16
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Condition	16
	7.6 Test Data	16
8.	ANTENNA REQUIREMENT	17
	8.1 Standard Requirement	17
	8.2 Deviation From Test Standard	17
	8.3 Antenna Connected Construction	17
	8.4 Result	17

Report No.: TB-FCC175686 Page: 3 of 26

ATTACHMENT A CONDUCTED EMISSION TEST DATA	18
ATTACHMENT B RADIATED EMISSION TEST DATA	20
ATTACHMENT C BANDWIDTH MEASUREMENT DATA	20

Report No.: TB-FCC175686 Page: 4 of 26

Revision History

Report No.	Version	Description	Issued Date
TB-FCC175686	Rev.01	Initial issue of report	2020-09-25
<u>Europa</u>	3 000		4000
	TOP	A COURT OF THE	TODA IS
W BOW	THE REAL	WORLD TO THE PARTY OF THE PARTY	10 TO 3
THE STATE OF	W DB	TO TO THE REAL PROPERTY.	
	Dis a		
Mons	3 000	OBY MOBY	MODE
TO THE	MODE A		
	600		THE PARTY OF THE P

Page: 5 of 26

1. General Information about EUT

1.1 Client Information

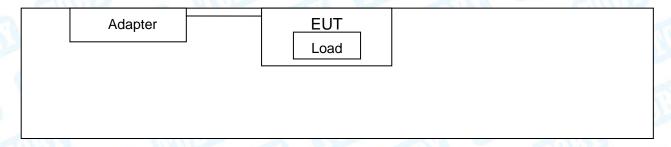
Applicant		Dongguan Green Power One Co.,Ltd
Address	i	No.26, Hongyun Street, Qingxi Town, Dongguan City, Guangdong province, China
Manufacturer	2	Dongguan Green Power One Co.,Ltd
Address	:	No.26, Hongyun Street, Qingxi Town, Dongguan City, Guangdong province, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	BSCS5	7000	
Models No.		BSCS5, GW09		
Model Difference		All these models are identical in the same PCB, layout and electrical circuit, the only difference is model name for commercial.		
		Operation Frequency:	110KHz-205KHz	
Product Description		Modulation Type:	ASK	
Description		Antenna:	Coil Antenna	
Power Supply		Input: DC 5V, 2A or DC 9V, 2A Wireless Output: 12.5W Max		
Software Version	:	GJX202003		
Hardware Version : GJX802V3		6000		
Connecting I/O Port(S)	:	Please refer to the User's Manual		

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.


(2) Channel List:

Low Frequency(KHz)	Middle Frequency(KHz)	High Frequency(KHz)
113	159	205
Note: Operation Frequency=113+1*k,	k∈ (0,1,2,3,92)	

Page: 6 of 26

1.3 Block Diagram Showing the Configuration of System Tested Charging + TX Mode

1.4 Description of Support Units

			BY MAN ELECTRIC			
Equipment Information						
Name	Model	S/N	Manufacturer	Used "√"		
Load	5V/9V	W37	CHIPSVISION	√		
Load	5V/9V		CHIPSVISION	1		
Adapter	HW-050200C01		HUAWEI	√		
Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note		
1	No	No	1m	More		
Remark: the USB C	able, adapter and Load pro	vided by TOBY test lab.		The same		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Pretest Mode			
Final Test Mode	Description		
Mode 1	TX Mode(Low CH)		
Mode 2	TX Mode(Middle CH)		
Mode 3	TX Mode(High CH)		
Mode 4	Keeping TX Mode		
Fo	or Conducted Test		
Final Test Mode	Description		
Mode 4	Keeping TX Mode		

Page: 7 of 26

For	Radiated Test
Final Test Mode	Description
Mode 4	Keeping TX Mode
For	Bandwidth Test
Final Test Mode	Description
Mode 2	TX Mode

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	N/A
Frequency	122-132KHz

Page: 8 of 26

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Report No.: TB-FCC175686 Page: 9 of 26

2. Test Summary

FCC Part 15 Subpart C(15.209)				
Standard Section	Test Item	Judgment	Remark	
15.203	Antenna Requirement	PASS	N/A	
15.207(a)	Conducted Emission	PASS	N/A	
15.209(a)(f)	Radiated emissions	PASS	N/A	
15.215	Bandwidth	PASS	N/A	

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

Report No.: TB-FCC175686 Page: 10 of 26

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021
Pre-amplifier	HP	8449B	3008A00849	Mar.01, 2020	Feb. 28, 2021
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01, 2020	Feb. 28, 2021
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 06, 2020	Jul. 05, 2021
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021
1	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021
DE Davis Os	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021

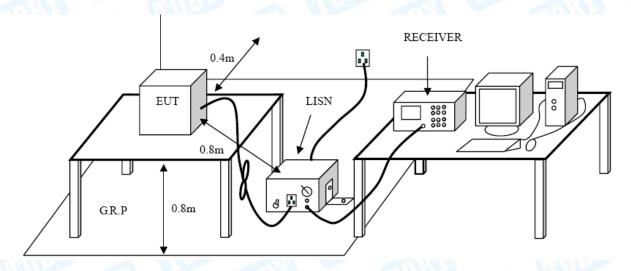
Page: 11 of 26

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Екомиолом	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 12 of 26

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 13 of 26

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209(a)(f)

6.1.2 Test Limit

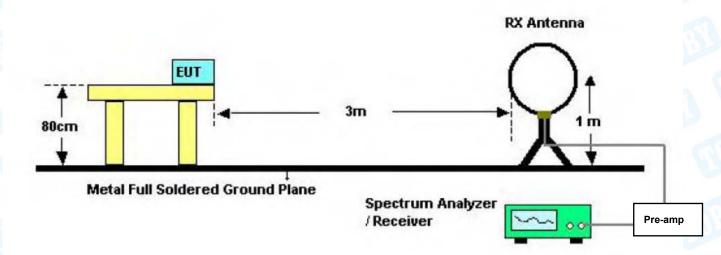
Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

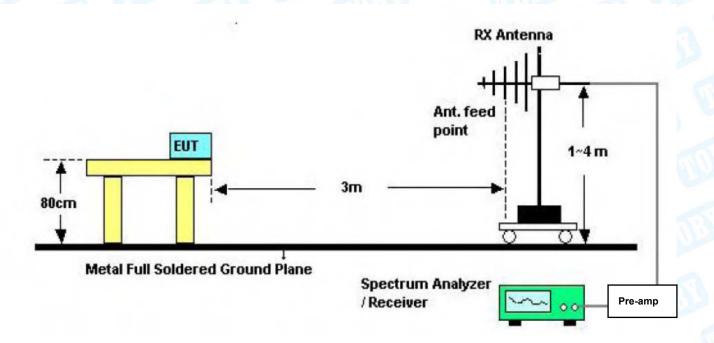
Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)



Page: 14 of 26

6.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 15 of 26

6.3 Test Procedure

(1) Measurements at frequency 9KHz~30MHz and Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The table was rotated 360 degrees to determine the position of the highest radiation.

- (2) 9KHz~30MHz the test antenna 1m away from the ground, Both 0° and 90° antenna are set to make measurement.
 - Below 1GHz the test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW= 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW= 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple

(8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

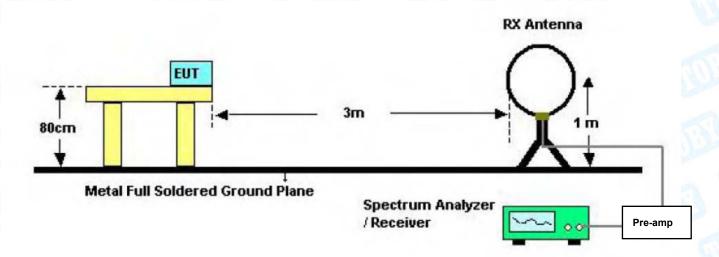
6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Please refer to the Attachment B.

Page: 16 of 26


7. Bandwidth Measurement

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.215

7.2 Test Setup

7.3 Test Procedure

- 1. The transmitter shall be operated at its maximum carrier power measured under normal test conditions;
- 2. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- 3. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Please refer to the Attachment C.

Page: 17 of 26

8. Antenna Requirement

8.1 Standard Requirement

8.1.1 Standard FCC Part 15.203

8.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

8.2 Deviation From Test Standard

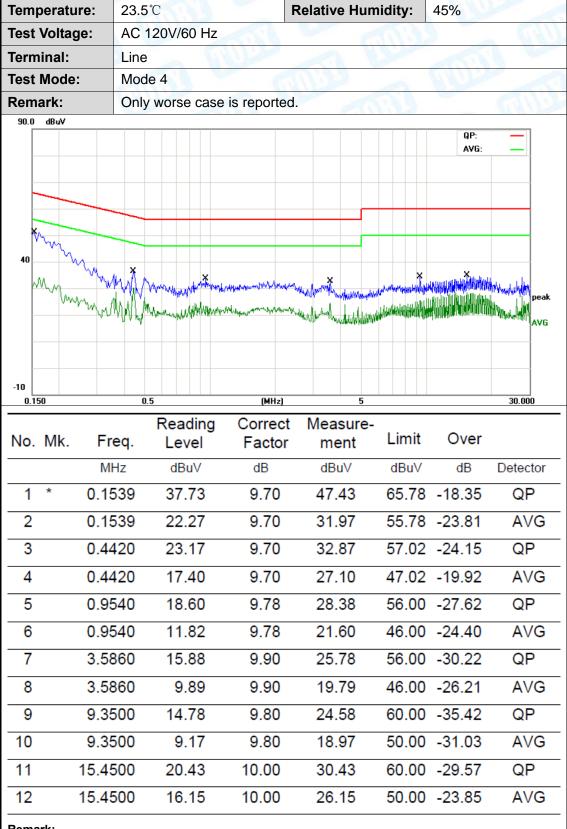
No deviation

8.3 Antenna Connected Construction

The antenna is Coil Antenna, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

8.4 Result

The EUT antenna is a Coil Antenna. It complies with the standard requirement.


Antenna Type			
	⊠Permanent attached antenna		
	Unique connector antenna		
an Bu	☐Professional installation antenna		

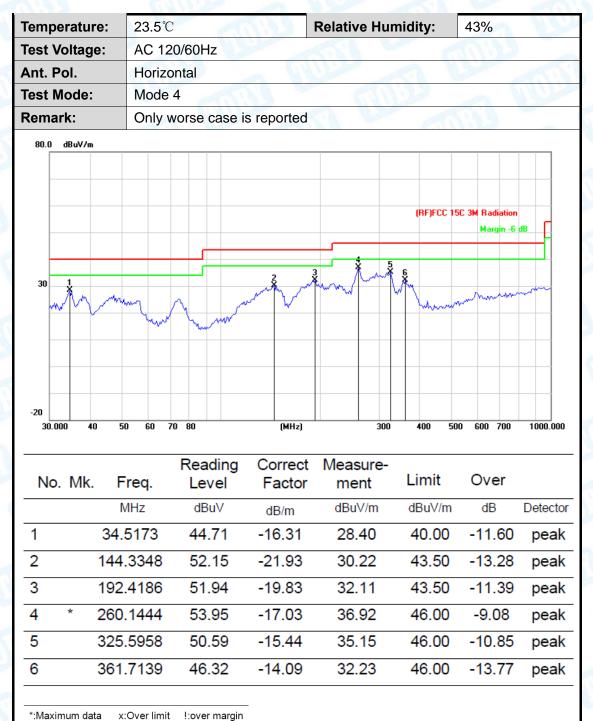
Page: 18 of 26

Attachment A-- Conducted Emission Test Data

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

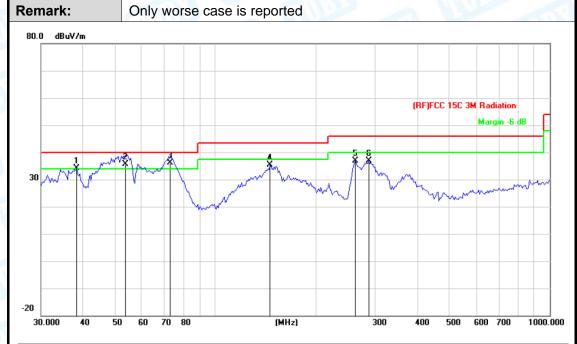
emperat	ure:	23.5℃	1	A Miles	Relative Hu	umidity:	45%	190
est Volta	age:	AC 120	V/60 H	Z	MILLER		1111	
erminal:		Neutral			6			EN.
est Mod	e:	Mode 4	1	Millian .	A V			1
Remark:		Only wo	orse ca	se is reported	100	1	HALL	1
90.0 dBuV								
							QP: AVG:	
*								
40 V~√\X	h.,							
η.	My X	ı.h. k	4,0464	XX	X			
,WW	MAN V V	KIN YAPAMA	typydylyf yll	wholes were their many	halled part of the last of the			pe:
	, 10 M		-y-privally by the hilling	and the same of the same	Marine Commenter of the Comment		LANGARANIA MATAMATAKAN MATAMATAKAN MATAMATAKAN MATAMATAKAN MATAMATAKAN MATAMATAKAN MATAMATAKAN MATAMATAKAN MAT	AV
-10 0.150		0.5		(MHz)	5			30.000
			ading		Measure-			30.000
	. Fre	Re	eading evel			Limit	Over	30.000
0.150	. Fre	Re q. L	_	Correct	Measure-	Limit dBuV	Over	
0.150		Re q. L	evel	Correct Factor	Measure- ment	dBuV		
0.150 No. Mk	MH	Re q. L z 00	evel dBuV	Correct Factor	Measure- ment	dBuV	dB	Detecto
0.150 No. Mk	мн: 0.150	Re	evel dBuV 8.92	Correct Factor dB 9.70	Measure- ment dBuV 48.62	dBuV 65.99 55.99	dB -17.37	Detecto
0.150 No. Mk	0.150 0.150	Re L 2 00 3 00 2 00 2	evel dBuV 8.92 2.25	Correct Factor dB 9.70	Measure- ment dBuV 48.62 31.95	dBuV 65.99 55.99 63.20	dB -17.37 -24.04	Detecto QP AVG
0.150 No. Mk	0.150 0.150 0.210	Re L 2 00 3 00 2 00 1	evel dBuV 8.92 2.25 9.66	Correct Factor dB 9.70 9.70	Measure- ment dBuV 48.62 31.95 39.36	dBuV 65.99 55.99 63.20 53.20	dB -17.37 -24.04 -23.84	Detecto QP AVG
0.150 No. Mk	0.150 0.150 0.210 0.210	Re L 2 00 3 00 2 00 1 20 2	evel dBuV 8.92 2.25 9.66 6.14	Correct Factor dB 9.70 9.70 9.70	Measure- ment dBuV 48.62 31.95 39.36 25.84	dBuV 65.99 55.99 63.20 53.20 59.65	dB -17.37 -24.04 -23.84 -27.36	Detecto QP AVG QP AVG
0.150 No. Mk 1 * 2 3 4 5 6	0.150 0.150 0.210 0.210 0.322 0.322	Re L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	evel dBuV 8.92 2.25 9.66 6.14 0.88 3.90	Correct Factor dB 9.70 9.70 9.70 9.70 9.70 9.70 9.70	Measure- ment dBuV 48.62 31.95 39.36 25.84 30.58 23.60	dBuV 65.99 55.99 63.20 53.20 59.65 49.65	dB -17.37 -24.04 -23.84 -27.36 -29.07 -26.05	Detector QP AVC QP AVC
0.150 No. Mk 1 * 2 3 4 5 6 7	0.150 0.150 0.210 0.210 0.322 0.322 1.142	Re Q. L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	evel dBuV 8.92 2.25 9.66 6.14 0.88 3.90 7.60	Correct Factor dB 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70	Measure- ment dBuV 48.62 31.95 39.36 25.84 30.58 23.60 27.39	dBuV 65.99 55.99 63.20 53.20 59.65 49.65 56.00	dB -17.37 -24.04 -23.84 -27.36 -29.07 -26.05 -28.61	Detector QP AVC QP AVC
0.150 No. Mk 1 * 2 3 4 5 6 7 8	0.150 0.150 0.210 0.210 0.322 0.322 1.142	Re Q. L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	evel dBuV 8.92 2.25 9.66 6.14 0.88 3.90 7.60 2.50	Correct Factor dB 9.70 9.70 9.70 9.70 9.70 9.70 9.79 9.79	Measure- ment dBuV 48.62 31.95 39.36 25.84 30.58 23.60 27.39 22.29	dBuV 65.99 55.99 63.20 53.20 59.65 49.65 56.00 46.00	dB -17.37 -24.04 -23.84 -27.36 -29.07 -26.05 -28.61 -23.71	Detecto QP AVG QP AVG QP AVG
0.150 No. Mk 1 * 2 3 4 5 6 7 8 9	0.150 0.150 0.210 0.210 0.322 0.322 1.142 3.446	Re Q. L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	evel dBuV 8.92 2.25 9.66 6.14 0.88 3.90 7.60 2.50 9.78	Correct Factor dB 9.70 9.70 9.70 9.70 9.70 9.70 9.79 9.79 9.90	Measure- ment dBuV 48.62 31.95 39.36 25.84 30.58 23.60 27.39 22.29 29.68	dBuV 65.99 55.99 63.20 53.20 59.65 49.65 56.00 46.00	dB -17.37 -24.04 -23.84 -27.36 -29.07 -26.05 -28.61 -23.71 -26.32	Detecto QP AVG QP AVG QP AVG
0.150 No. Mk 1 * 2 3 4 5 6 7 8 9 10	0.150 0.150 0.210 0.210 0.322 0.322 1.142 1.142 3.446 3.446	Re Q. L 2 00 3 00 2 00 1 20 1 20 1 60 1	evel dBuV 8.92 2.25 9.66 6.14 0.88 3.90 7.60 2.50 9.78 3.18	Correct Factor dB 9.70 9.70 9.70 9.70 9.70 9.70 9.79 9.79 9.90 9.90	Measure- ment dBuV 48.62 31.95 39.36 25.84 30.58 23.60 27.39 22.29 29.68 23.08	dBuV 65.99 55.99 63.20 53.20 59.65 49.65 56.00 46.00	dB -17.37 -24.04 -23.84 -27.36 -29.07 -26.05 -28.61 -23.71 -26.32 -22.92	QP AVG QP AVG QP AVG
0.150 No. Mk 1 * 2 3 4 5 6 7 8 9	0.150 0.150 0.210 0.210 0.322 0.322 1.142 3.446	Re Q. L 2 00 3 00 2 00 1 20 1 20 1 30 1 30 1	evel dBuV 8.92 2.25 9.66 6.14 0.88 3.90 7.60 2.50 9.78	Correct Factor dB 9.70 9.70 9.70 9.70 9.70 9.70 9.79 9.79 9.90	Measure- ment dBuV 48.62 31.95 39.36 25.84 30.58 23.60 27.39 22.29 29.68	dBuV 65.99 55.99 63.20 53.20 59.65 49.65 56.00 46.00 46.00	dB -17.37 -24.04 -23.84 -27.36 -29.07 -26.05 -28.61 -23.71 -26.32	Detecto QP AVG QP AVG QP AVG


- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 20 of 26

Attachment B-- Radiated Emission Test Data

30MHz~1GHz


Remark

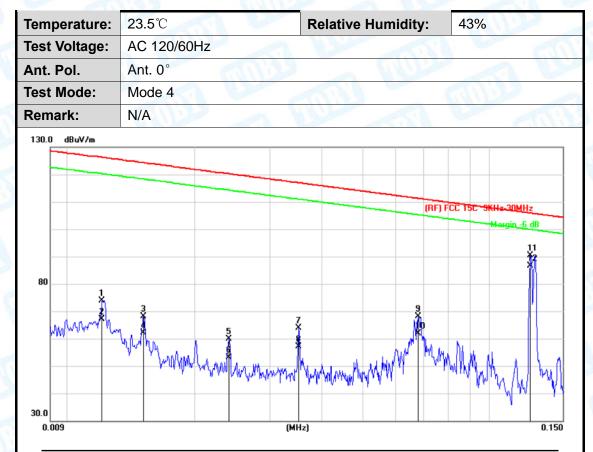
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TB-FCC175686 Page: 21 of 26

	Temperature:	23.5℃	Relative Humidity:	43%
	Test Voltage:	AC 120/60Hz	William .	
١	Ant. Pol.	Vertical		
	Test Mode:	Mode 4		(80)

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		ļ	38.3462	52.33	-18.23	34.10	40.00	-5.90	peak
2	-	İ	53.6932	59.07	-23.47	35.60	40.00	-4.40	QP
3	3	*	73.1025	59.34	-23.11	36.23	40.00	-3.77	QP
4			145.3506	57.31	-21.83	35.48	43.50	-8.02	peak
5	5		261.9753	53.84	-17.00	36.84	46.00	-9.16	peak
6)		286.9823	53.35	-16.54	36.81	46.00	-9.19	peak

^{*:}Maximum data x:Over limit !:over margin


Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

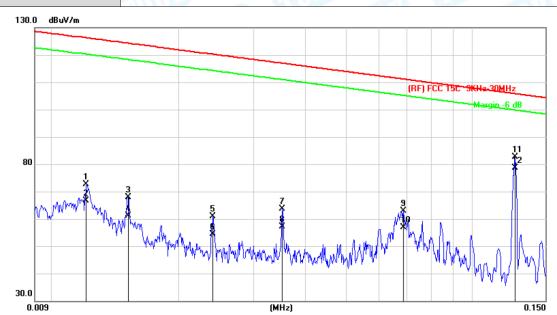
Page: 22 of 26

9KMz-30MHz

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	0.0120	82.59	-8.64	73.95	126.30	-52.35	peak
	0.0120	75.89	-8.64	67.25	126.30	-59.05	AVG
	0.0150	76.86	-8.68	68.18	124.36	-56.18	peak
	0.0150	70.82	-8.68	62.14	124.36	-62.22	AVG
	0.0240	68.66	-8.80	59.86	120.26	-60.40	peak
	0.0240	62.05	-8.80	53.25	120.26	-67.01	AVG
	0.0352	72.96	-8.97	63.99	116.93	-52.94	peak
	0.0352	66.10	-8.97	57.13	116.93	-59.80	AVG
	0.0678	77.20	-9.03	68.17	111.22	-43.05	peak
	0.0678	70.88	-9.03	61.85	111.22	-49.37	AVG
*	0.1255	94.68	-4.39	90.29	105.86	-15.57	peak
	0.1255	90.93	-4.39	86.54	105.86	-19.32	AVG
	Mk.	MHz 0.0120 0.0120 0.0150 0.0150 0.0240 0.0240 0.0352 0.0352 0.0678 0.0678	Mk. Freq. Level MHz dBuV 0.0120 82.59 0.0120 75.89 0.0150 76.86 0.0150 70.82 0.0240 68.66 0.0240 62.05 0.0352 72.96 0.0352 72.96 0.0678 77.20 0.0678 70.88 * 0.1255 94.68	Mk. Freq. Level Factor MHz dBuV dB/m 0.0120 82.59 -8.64 0.0120 75.89 -8.64 0.0150 76.86 -8.68 0.0150 70.82 -8.68 0.0240 68.66 -8.80 0.0240 62.05 -8.80 0.0352 72.96 -8.97 0.0352 66.10 -8.97 0.0678 77.20 -9.03 0.0678 70.88 -9.03 * 0.1255 94.68 -4.39	Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m 0.0120 82.59 -8.64 73.95 0.0120 75.89 -8.64 67.25 0.0150 76.86 -8.68 68.18 0.0150 70.82 -8.68 62.14 0.0240 68.66 -8.80 59.86 0.0240 62.05 -8.80 53.25 0.0352 72.96 -8.97 63.99 0.0352 66.10 -8.97 57.13 0.0678 77.20 -9.03 68.17 0.0678 70.88 -9.03 61.85 * 0.1255 94.68 -4.39 90.29	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m dBuV/m 0.0120 82.59 -8.64 73.95 126.30 0.0120 75.89 -8.64 67.25 126.30 0.0150 76.86 -8.68 68.18 124.36 0.0150 70.82 -8.68 62.14 124.36 0.0240 68.66 -8.80 59.86 120.26 0.0240 62.05 -8.80 53.25 120.26 0.0352 72.96 -8.97 63.99 116.93 0.0352 66.10 -8.97 57.13 116.93 0.0678 77.20 -9.03 68.17 111.22 * 0.1255 94.68 -4.39 90.29 105.86	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB 0.0120 82.59 -8.64 73.95 126.30 -52.35 0.0120 75.89 -8.64 67.25 126.30 -59.05 0.0150 76.86 -8.68 68.18 124.36 -56.18 0.0150 70.82 -8.68 62.14 124.36 -62.22 0.0240 68.66 -8.80 59.86 120.26 -60.40 0.0352 72.96 -8.97 63.99 116.93 -52.94 0.0352 66.10 -8.97 57.13 116.93 -59.80 0.0678 77.20 -9.03 68.17 111.22 -43.05 0.0678 70.88 -9.03 61.85 111.22 -49.37 * 0.1255 94.68 -4.39 90.29 105.86 -15.57

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak/AVG(dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak/AVG (dB μ V/m)-Limit QPK/AVG(dB μ V/m)

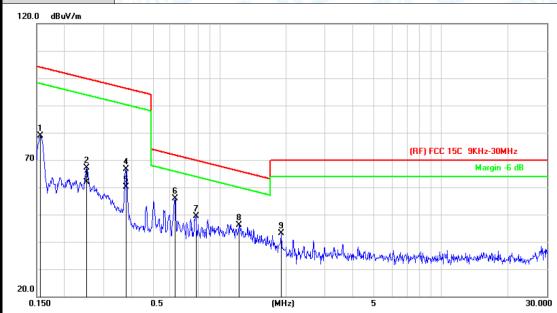

	22.5		A C 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Temperatui			F	Relative Hum	iidity:	43%	13
Test Voltag		120/60Hz		O. B. C.		1	
Ant. Pol.	Ant.				111.50		RA
Test Mode:		e 4					
Remark:	N/A	1.12					
70	1 11 kg 2151 10		www.himal.			C 15C 9KHz-30M Margin	-6 dB
			The second control of				
20.0 0.150	1	n.5 Reading	(MHz)	Measure- ment	Limit	Over	30.000
0.150		0.5	(MHz) Correct Factor	5			
0.150 No. Mk.	Freq.	Reading Level	(MHz)	Measure- ment	Limit dBuV/m	Over	30.000
0.150 No. Mk.	Freq. MHz 0.1547	Reading Level dBuV 97.26	Correct Factor dB/m -6.02	Measure- ment dBuV/m 91.24	Limit dBuV/m 104.04	Over dB -12.80	Detector peak
0.150 No. Mk.	Freq. MHz 0.1547 0.2521	Reading Level dBuV 97.26 80.52	Correct Factor dB/m -6.02	Measure- ment dBuV/m 91.24 71.85	Limit dBuV/m 104.04 99.79	Over dB -12.80 -27.94	Detector peak
0.150 No. Mk.	Freq. MHz 0.1547 0.2521 0.2521	Reading Level dBuV 97.26 80.52 73.95	Correct Factor dB/m -6.02 -8.67	Measure- ment dBuV/m 91.24 71.85 65.28	Limit dBuV/m 104.04 99.79 99.79	Over dB -12.80 -27.94 -34.51	Detector peak peak AVG
0.150 No. Mk. 1 2 3	Freq. MHz 0.1547 0.2521 0.2521 0.3116	Reading Level dBuV 97.26 80.52 73.95 80.97	Correct Factor dB/m -6.02 -8.67 -9.35	Measure- ment dBuV/m 91.24 71.85 65.28 71.62	Limit dBuV/m 104.04 99.79 99.79 97.94	Over dB -12.80 -27.94 -34.51 -26.32	Detector peak peak AVG
0.150 No. Mk. 1 2 3 4	Freq. MHz 0.1547 0.2521 0.2521 0.3116 0.3116	Reading Level dBuV 97.26 80.52 73.95 80.97 75.92	Correct Factor dB/m -6.02 -8.67 -9.35	Measure-ment dBuV/m 91.24 71.85 65.28 71.62 66.57	Limit dBuV/m 104.04 99.79 99.79 97.94	Over dB -12.80 -27.94 -34.51 -26.32 -31.37	Detector peak AVG
0.150 No. Mk. 1 2 3 4 5	Freq. MHz 0.1547 0.2521 0.2521 0.3116 0.3116 0.3791	Reading Level dBuV 97.26 80.52 73.95 80.97 75.92 83.52	Correct Factor dB/m -6.02 -8.67 -9.35 -9.35	Measure-ment dBuV/m 91.24 71.85 65.28 71.62 66.57 73.82	Limit dBuV/m 104.04 99.79 99.79 97.94 97.94 96.23	Over dB -12.80 -27.94 -34.51 -26.32 -31.37 -22.41	Detector peak AVG peak AVG
0.150 No. Mk. 1 2 3 4 5 6 7	Freq. MHz 0.1547 0.2521 0.2521 0.3116 0.3116 0.3791 0.3791	Reading Level dBuV 97.26 80.52 73.95 80.97 75.92 83.52 76.95	Correct Factor dB/m -6.02 -8.67 -9.35 -9.35 -9.70	Measure-ment dBuV/m 91.24 71.85 65.28 71.62 66.57 73.82 67.25	Limit dBuV/m 104.04 99.79 99.79 97.94 97.94 96.23 96.23	Over dB -12.80 -27.94 -34.51 -26.32 -31.37 -22.41 -28.98	Detector peak AVG peak AVG
0.150 No. Mk. 1 2 3 4 5 6 7	Freq. MHz 0.1547 0.2521 0.2521 0.3116 0.3116 0.3791 0.3791 0.4686	Reading Level dBuV 97.26 80.52 73.95 80.97 75.92 83.52 76.95 76.18	Correct Factor dB/m -6.02 -8.67 -9.35 -9.35 -9.70 -9.70 -10.16	Measure-ment dBuV/m 91.24 71.85 65.28 71.62 66.57 73.82 67.25 66.02	Limit dBuV/m 104.04 99.79 99.79 97.94 97.94 96.23 96.23 94.39	Over dB -12.80 -27.94 -34.51 -26.32 -31.37 -22.41 -28.98 -28.37	Detector peak AVC peak AVC peak AVC peak
0.150 No. Mk. 1 2 3 4 5 6 7	Freq. MHz 0.1547 0.2521 0.2521 0.3116 0.3116 0.3791 0.3791	Reading Level dBuV 97.26 80.52 73.95 80.97 75.92 83.52 76.95	Correct Factor dB/m -6.02 -8.67 -9.35 -9.35 -9.70	Measure-ment dBuV/m 91.24 71.85 65.28 71.62 66.57 73.82 67.25	Limit dBuV/m 104.04 99.79 99.79 97.94 97.94 96.23 96.23	Over dB -12.80 -27.94 -34.51 -26.32 -31.37 -22.41 -28.98	Detector peak AVC peak AVC peak AVC peak
0.150 No. Mk. 1 2 3 4 5 6 7	Freq. MHz 0.1547 0.2521 0.2521 0.3116 0.3116 0.3791 0.3791 0.4686	Reading Level dBuV 97.26 80.52 73.95 80.97 75.92 83.52 76.95 76.18	Correct Factor dB/m -6.02 -8.67 -9.35 -9.35 -9.70 -9.70 -10.16	Measure-ment dBuV/m 91.24 71.85 65.28 71.62 66.57 73.82 67.25 66.02	Limit dBuV/m 104.04 99.79 99.79 97.94 97.94 96.23 96.23 94.39	Over dB -12.80 -27.94 -34.51 -26.32 -31.37 -22.41 -28.98 -28.37	Detector peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak/AVG(dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak/AVG (dB μ V/m)-Limit QPK/AVG(dB μ V/m)

Page: 24 of 26

Temperature:	23.5℃	Relative Humidity:	43%
Test Voltage:	AC 120/60Hz	THE PARTY OF THE P	The same of
Ant. Pol.	Ant. 90°		
Test Mode:	Mode 4		180
Remark:	N/A	The same	

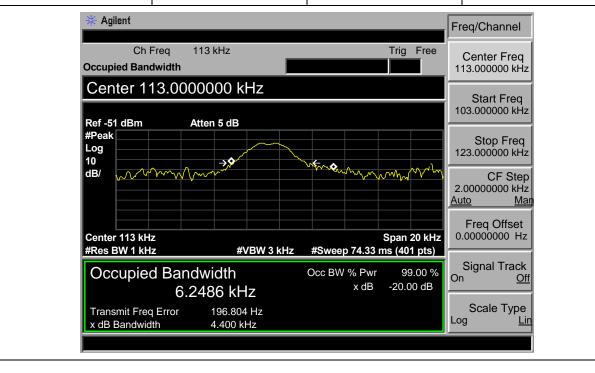
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		0.0120	81.33	-8.64	72.69	126.30	-53.61	peak
2		0.0120	75.22	-8.64	66.58	126.30	-59.72	AVG
3		0.0150	76.61	-8.68	67.93	124.36	-56.43	peak
4		0.0150	69.93	-8.68	61.25	124.36	-63.11	peak
5		0.0240	69.56	-8.80	60.76	120.26	-59.50	peak
6		0.0240	63.12	-8.80	54.32	120.26	-65.94	AVG
7		0.0352	72.52	-8.97	63.55	116.93	-53.38	peak
8		0.0352	66.22	-8.97	57.25	116.93	-59.68	AVG
9	*	0.0686	71.83	-9.02	62.81	111.12	-48.31	peak
10		0.0686	65.87	-9.02	56.85	111.12	-54.27	AVG
11		0.0761	68.09	-9.00	59.09	110.22	-51.13	peak
12		0.0761	62.29	-9.00	53.29	110.22	-56.93	AVG


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak/AVG(dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak/AVG (dB μ V/m)-Limit QPK/AVG(dB μ V/m)

Page: 25 of 26

Temperature:	23.5℃	Relative Humidity:	43%
Test Voltage:	AC 120/60Hz	THE PARTY OF	The same of the sa
Ant. Pol.	Ant. 90°	WU P	
Test Mode:	Mode 4		
Remark:	N/A	MILL OF THE PARTY	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		0.1556	84.99	-6.06	78.93	103.99	-25.06	peak
2		0.2521	75.76	-8.67	67.09	99.79	-32.70	peak
3		0.2521	70.52	-8.67	61.85	99.79	-37.94	AVG
4		0.3791	76.30	-9.70	66.60	96.23	-29.63	peak
5		0.3791	69.94	-9.70	60.24	96.23	-35.99	AVG
6	*	0.6305	66.38	-10.57	55.81	71.78	-15.97	peak
7		0.7835	60.22	-10.86	49.36	69.86	-20.50	peak
8		1.2226	57.36	-11.13	46.23	65.93	-19.70	peak
9		1.8979	54.35	-11.26	43.09	70.00	-26.91	peak


- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak/AVG(dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak/AVG (dB μ V/m)-Limit QPK/AVG(dB μ V/m)

Page: 26 of 26

Attachment C-- Bandwidth Measurement Data

----END OF REPORT-----