

TEST REPORT

FCC ID: 2ASCB-SMFSDDS2

Product: Free Standing Digital Display Shelf

Model No.: SMFSDDS2

Additional Model No.: SMFSDDS1, SMFSDDS3, ADMR02-1, ADMR02-2,

ADMR02-3

Trade Mark: N/A

Report No.: TCT200410E016

Issued Date: Apr. 28, 2020

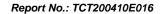
Issued for:

D2G Group LLC

81 Commerce Drive, Fall River, Massachusetts 02720, United States

Issued By:

Shenzhen Tongce Testing Lab.


1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,
Shenzhen, Guangdong, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

4	Took Contification	2
1.	Test Certification	3
2.	Test Result Summary	4
3.	EUT Description	5
4.	General Information	
	4.1. Test environment and mode	7
	4.2. Description of Support Units	8
5.	Facilities and Accreditations	9
	5.1. Facilities	9
	5.2. Location	9
	5.3. Measurement Uncertainty	9
6.	Test Results and Measurement Data	
	6.1. Antenna requirement	10
	6.2. Conducted Emission	11
	6.3. Maximum Conducted (Average) Output Power	15
	6.4. Emission Bandwidth	16
	6.5. Power Spectral Density	17
	6.6. Conducted Band Edge and Spurious Emission Measurement	
	6.7. Radiated Spurious Emission Measurement	20
Α	ppendix A: Test Result of Conducted Test	
Α	ppendix B: Photographs of Test Setup	
Α	ppendix C: Photographs of EUT	

1. Test Certification

Product:	Free Standing Digital Display Shelf
Model No.:	SMFSDDS2
Additional Model No.:	SMFSDDS1, SMFSDDS3, ADMR02-1, ADMR02-2, ADMR02-3
Trade Mark:	N/A
Applicant:	D2G Group LLC
Address:	81 Commerce Drive, Fall River, Massachusetts 02720, United States
Manufacturer:	GUANGZHOU YOUGUANG OPTOELECTRONICS CO., LTD.
Address:	No. 75, Pacific Ind. Zone, Xingtang Town, Zengcheng, Guangzhou, 511340 China
Date of Test:	Apr. 13, 2020 – Apr. 27, 2020
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

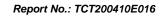
Apr. 27, 2020

Rleo

Tomsin

Reviewed By:

Date:


Date:

Apr. 28, 2020

Approved By:

Date:

Apr. 28, 2020

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product:	Free Standing Digital Display Shelf		
Model No.:	SMFSDDS2		
Additional Model No.:	SMFSDDS1, SMFSDDS3, ADMR02-1, ADMR02-2, ADMR02-3		
Trade Mark:	N/A		
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))		
Channel Separation:	5MHz		
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)		
Modulation Technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)		
Modulation Technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)		
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps		
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps		
Data speed (IEEE 802.11n):	Up to 150Mbps		
Antenna Type:	Glue stick Antenna		
Antenna Gain:	5dBi		
Power Supply:	AC 120V/60Hz		
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.		

Operation Frequency each of channel For 802.11b/g/n(HT20)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		(C)

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

4. General Information

4.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	25.0 °C	25.0 °C			
Humidity:	55 % RH	55 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Mode:					
Engineering mode:	de: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery				

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

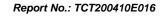
Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting
	with modulation

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 98.46% with maximum power setting for all modulations.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	/	/	/	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 8 of 71

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab.

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab.

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

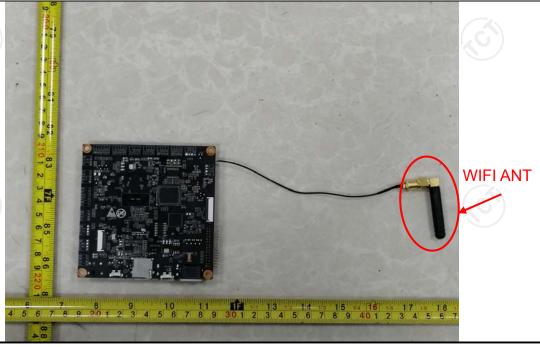
No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

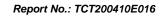

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is glue stick antenna which permanently attached, and the best case gain of the antenna is 5dBi.


Page 10 of 71

6.2. Conducted Emission

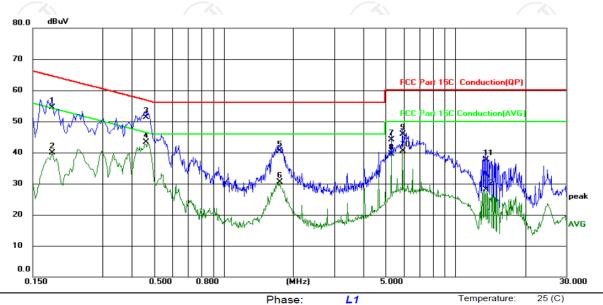
6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto
	Frequency range	Limit (d	dBuV)
	(MHz)	Quasi-peak	Average
l impita.	0.15-0.5	66 to 56*	56 to 46*
Limits:	0.5-5	56	46
	5-30	60	50
	Reference	- Plana	
Test Setup:	Remark E.U.T AC power EMI Receiver Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m		
Test Mode:	Charging + transmitting	g with modulation	
Test Procedure:	 The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 		
Test Result:	PASS		

6.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)								
	Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Ī	Test Receiver	R&S	ESPI	101402	Jul. 29, 2020				
Ī	LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2020				
	Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 08, 2020				
	EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Page 12 of 71

6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

_											
nit: FC	CC Part 15	C Conduct	ion(QP)		Powe	er: AC	120V/60Hz		Humidity:	55 %RH	
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment			
	0.1819	44.29	10.22	54.51	64.40	-9.89	QP				
	0.1819	29.75	10.22	39.97	54.40	-14.43	AVG				
	0.4620	41.04	10.22	51.26	56.66	-5.40	QP				
*	0.4620	33.00	10.22	43.22	46.66	-3.44	AVG				
	1.7420	30.04	10.43	40.47	56.00	-15.53	QP				
	1.7420	20.03	10.43	30.46	46.00	-15.54	AVG				
	5.2940	33.54	10.48	44.02	60.00	-15.98	QP				
	5.2940	29.02	10.48	39.50	50.00	-10.50	AVG				_
	5.9180	35.36	10.49	45.85	60.00	-14.15	QP				
	5.9180	30.11	10.49	40.60	50.00	-9.40	AVG				
	13.5300	26.98	10.69	37.67	60.00	-22.33	QP				
	13.5300	17.39	10.69	28.08	50.00	-21.92	AVG				
		Mk. Freq. MHz 0.1819 0.4620 * 0.4620 1.7420 1.7420 5.2940 5.9180 5.9180 13.5300	Mk. Freq. Reading Level MHz dBuV 0.1819 44.29 0.1819 29.75 0.4620 41.04 * 0.4620 33.00 1.7420 30.04 1.7420 20.03 5.2940 33.54 5.2940 29.02 5.9180 35.36 5.9180 30.11 13.5300 26.98	Mk. Freq. Level Factor MHz dBuV dB 0.1819 44.29 10.22 0.1819 29.75 10.22 0.4620 41.04 10.22 * 0.4620 33.00 10.22 1.7420 30.04 10.43 1.7420 20.03 10.43 5.2940 33.54 10.48 5.2940 29.02 10.48 5.9180 35.36 10.49 5.9180 30.11 10.49 13.5300 26.98 10.69	Mk. Freq. Reading Level Correct Factor Measurement MHz dBuV dB dBuV 0.1819 44.29 10.22 54.51 0.1819 29.75 10.22 39.97 0.4620 41.04 10.22 51.26 * 0.4620 33.00 10.22 43.22 1.7420 30.04 10.43 40.47 1.7420 20.03 10.43 30.46 5.2940 33.54 10.48 44.02 5.2940 29.02 10.48 39.50 5.9180 35.36 10.49 45.85 5.9180 30.11 10.49 40.60 13.5300 26.98 10.69 37.67	Mk. Freq. Reading Level Correct Factor Measurement Limit MHz dBuV dB dBuV dBuV 0.1819 44.29 10.22 54.51 64.40 0.1819 29.75 10.22 39.97 54.40 0.4620 41.04 10.22 51.26 56.66 * 0.4620 33.00 10.22 43.22 46.66 1.7420 30.04 10.43 40.47 56.00 1.7420 20.03 10.43 30.46 46.00 5.2940 33.54 10.48 44.02 60.00 5.2940 29.02 10.48 39.50 50.00 5.9180 35.36 10.49 45.85 60.00 5.9180 30.11 10.49 40.60 50.00 13.5300 26.98 10.69 37.67 60.00	Mk. Freq. Reading Level Correct Factor Measurement Limit Over MHz dBuV dB dBuV dBuV dB 0.1819 44.29 10.22 54.51 64.40 -9.89 0.1819 29.75 10.22 39.97 54.40 -14.43 0.4620 41.04 10.22 51.26 56.66 -5.40 * 0.4620 33.00 10.22 43.22 46.66 -3.44 1.7420 30.04 10.43 40.47 56.00 -15.53 1.7420 20.03 10.43 30.46 46.00 -15.54 5.2940 33.54 10.48 44.02 60.00 -15.98 5.2940 29.02 10.48 39.50 50.00 -10.50 5.9180 35.36 10.49 45.85 60.00 -14.15 5.9180 30.11 10.49 40.60 50.00 -9.40 13.5300 26.98 10.69 3	Mk. Freq. Reading Level Correct Factor Measurement Measurement Limit Over 0.1819 44.29 10.22 54.51 64.40 -9.89 QP 0.1819 29.75 10.22 39.97 54.40 -14.43 AVG 0.4620 41.04 10.22 51.26 56.66 -5.40 QP * 0.4620 33.00 10.22 43.22 46.66 -3.44 AVG 1.7420 30.04 10.43 40.47 56.00 -15.53 QP 1.7420 20.03 10.43 30.46 46.00 -15.54 AVG 5.2940 33.54 10.48 44.02 60.00 -15.98 QP 5.2940 29.02 10.48 39.50 50.00 -10.50 AVG 5.9180 35.36 10.49 45.85 60.00 -14.15 QP 5.9180 30.11 10.49 40.60 50.00 -9.40 AVG 1	Mk. Freq. Reading Level Correct Factor Measure-Factor Measure-Factor Measure-MHz Limit Over Over 0.1819 44.29 10.22 54.51 64.40 -9.89 QP 0.1819 29.75 10.22 39.97 54.40 -14.43 AVG 0.4620 41.04 10.22 51.26 56.66 -5.40 QP * 0.4620 33.00 10.22 43.22 46.66 -3.44 AVG 1.7420 30.04 10.43 40.47 56.00 -15.53 QP 1.7420 20.03 10.43 30.46 46.00 -15.54 AVG 5.2940 33.54 10.48 44.02 60.00 -15.98 QP 5.9180 35.36 10.49 45.85 60.00 -14.15 QP 5.9180 30.11 10.49 40.60 50.00 -9.40 AVG 13.5300 26.98 10.69 37.67 60.00 -22.33 QP	Mk. Freq. Reading Level Correct Factor Measurement Limit Over MHz dBuV dB dBuV dBuV dB Detector Comment 0.1819 44.29 10.22 54.51 64.40 -9.89 QP 0.1819 29.75 10.22 39.97 54.40 -14.43 AVG 0.4620 41.04 10.22 51.26 56.66 -5.40 QP * 0.4620 33.00 10.22 43.22 46.66 -3.44 AVG 1.7420 30.04 10.43 40.47 56.00 -15.53 QP 1.7420 20.03 10.43 30.46 46.00 -15.54 AVG 5.2940 33.54 10.48 44.02 60.00 -15.98 QP 5.9180 35.36 10.49 45.85 60.00 -14.15 QP 5.9180 30.11 10.49 40.60 50.00 -9.40 AVG	Mk. Freq. Level Reading Level Correct Factor Measurement Measurement Limit Over 0.1819 44.29 10.22 54.51 64.40 -9.89 QP 0.1819 29.75 10.22 39.97 54.40 -14.43 AVG 0.4620 41.04 10.22 51.26 56.66 -5.40 QP * 0.4620 33.00 10.22 43.22 46.66 -3.44 AVG 1.7420 30.04 10.43 40.47 56.00 -15.53 QP 1.7420 20.03 10.43 30.46 46.00 -15.54 AVG 5.2940 33.54 10.48 44.02 60.00 -15.98 QP 5.9180 35.36 10.49 45.85 60.00 -10.50 AVG 5.9180 30.11 10.49 40.60 50.00 -9.40 AVG 13.5300 26.98 10.69 37.67 60.00 -22.33 QP

Note:

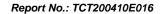
Site

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

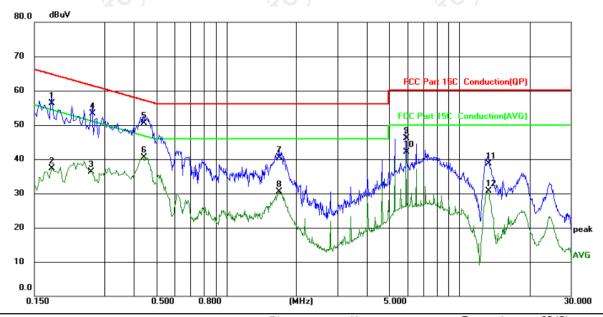
Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)


 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak


AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site	Phase:	N	Temperature:	25 (C)
Limit: ECC Part 15C, Conduction(QP)	Power:	AC120V/60Hz	Humidity: 59	5 %RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1780	46.14	10.22	56.36	64.58	-8.22	QP	
2		0.1780	27.13	10.22	37.35	54.58	-17.23	AVG	
3		0.2620	26.07	10.23	36.30	51.37	-15.07	AVG	
4		0.2660	43.04	10.23	53.27	61.24	-7.97	QP	
5	*	0.4420	40.38	10.22	50.60	57.02	-6.42	QP	
6		0.4420	30.32	10.22	40.54	47.02	-6.48	AVG	
7		1.6820	29.99	10.42	40.41	56.00	-15.59	QP	
8		1.6820	20.03	10.42	30.45	46.00	-15.55	AVG	
9		5.9100	35.70	10.49	46.19	60.00	-13.81	QP	
10		5.9100	31.52	10.49	42.01	50.00	-7.99	AVG	
11		13.3259	28.05	10.67	38.72	60.00	-21.28	QP	
12		13.3259	20.06	10.67	30.73	50.00	-19.27	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

6.3. Maximum Conducted (Average) Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.
Test Result:	PASS

6.3.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020			
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020			
Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 15 of 71

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments

RF Test Room								
Equipment Manufacturer Model Serial Number Calibration								
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020				
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020				
Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 16 of 71

6.5. Power Spectral Density

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)						
Test Method:	KDB 558074						
Limit:	The average power spectral density shall not be g than 8dBm in any 3kHz band at any time intercontinuous transmission.						
Test Setup:	EUT.						
	Spectrum Analyzer						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 Transmitting mode with modulation The RF output of EUT was connected to the spectru analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the spato at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimulof 100 traces. Use the peak marker function to determine the maximum power level. 						
Test Result:	PASS						

6.5.2. Test Instruments

RF Test Room								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020				
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020				
Antenna Connector	TCT	RFC-01	N/A	Sep. 11, 2020				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 17 of 71

6.6. Conducted Band Edge and Spurious Emission Measurement

6.6.1. Test Specification

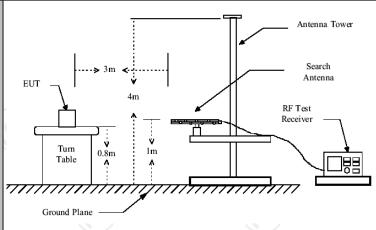
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

6.6.2. Test Instruments

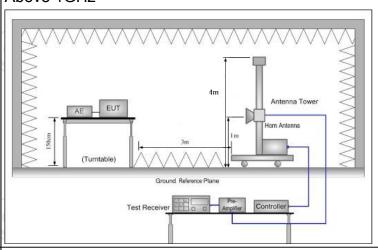
RF Test Room								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020				
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020				
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2020				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

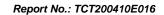
Page 19 of 71



6.7. Radiated Spurious Emission Measurement


6.7.1. Test Specification

Test Requirement:	FCC Part15	C Section	n 15.209					
Test Method:	ANSI C63.10	0: 2013	(C)		((C)		
Frequency Range:	9 kHz to 25	GHz						
Measurement Distance:	3 m							
Antenna Polarization:	Horizontal &	Horizontal & Vertical						
Operation mode:	Transmitting	Transmitting mode with modulation						
	Frequency	Detector	RBW	VBW		Remark		
	9kHz- 150kHz	Quasi-pea	ık 200Hz	1kHz	Quas	i-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-pea	ık 9kHz	30kHz	Quas	i-peak Value		
	30MHz-1GHz	Quasi-pea	ık 120KHz	300KHz	Quas	i-peak Value		
	Above 1CHz	Peak	1MHz	3MHz	Pe	eak Value		
	Above 1GHz	Peak	1MHz	10Hz	Ave	erage Value		
	Frequer	ncy	Field Stre	~ ~ /	l	asurement nce (meters)		
	0.009-0.4	490	2400/F(I		300			
	0.490-1.		24000/F(KHz)		30			
	1.705-3		30		30			
	30-88		100		(3		
	88-210		150		3			
1.2	216-96		200			3		
Limit:	Above 9					3		
						'		
	Frequency	I	eld Strength rovolts/meter)	Measure Distan (mete	ice	Detector		
	AL 4011		500	3		Average		
	Above 1GH:	Z	5000	3		Peak		
Test setup:	For radiated 50 80 30 30 30 30 30 30 30 30 3	Turn table	ls below 30	Pre -	Comput			



Above 1GHz

Test Procedure:

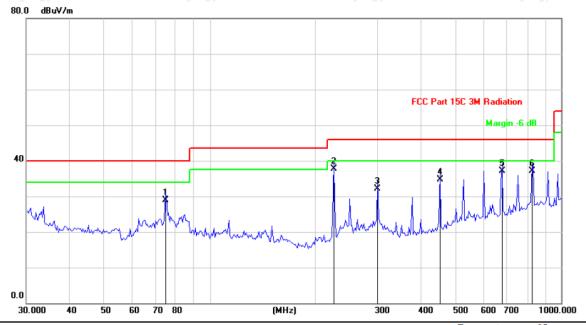
1. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for

	receiving the mavingum signal. The final
	receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss +
	Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level
	of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
	5. Use the following spectrum analyzer settings:(1) Span shall wide enough to fully capture the emission being measured;
	(2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
	(3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement.
	For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is
	the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
	power control level for the tested mode of operation.
Test results:	PASS

6.7.2. Test Instruments

	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 29, 2020
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2020
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 08, 2020
Pre-amplifier	HP	8447D	2727A05017	Sep. 08, 2020
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 11, 2020
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 06, 2020
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 06, 2020
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 06, 2020
Antenna Mast	Keleto	RE-AM	N/A	N/A
Coax cable (9KHz-40GHz)	ТСТ	RE-high-02	N/A	Sep. 08, 2020
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 08, 2020
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Page 23 of 71

6.7.3. Test Data

Please refer to following diagram for individual Below 1GHz

Horizontal:



Site Polarization: Horizontal Temperature: 25
Limit: FCC Part 15C 3M Radiation Power: AC 120V/60Hz Humidity: 55 %

	No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
ر			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	1		74.7934	45.33	-16.47	28.86	40.00	-11.14	QP
_	2	*	225.4267	50.90	-13.11	37.79	46.00	-8.21	QP
_	3		300.6988	42.65	-10.45	32.20	46.00	-13.80	QP
_	4		452.0013	41.94	-7.17	34.77	46.00	-11.23	QP
3	5		679.4346	40.50	-3.39	37.11	46.00	-8.89	QP
	6		827.1793	38.61	-1.53	37.08	46.00	-8.92	QP

Vertical:

Site Polarization: Vertical Temperature: 25
Limit: FCC Part 15C 3M Radiation Power: AC 120V/60Hz Humidity: 55 %

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
_	1	*	225.4267	54.15	-13.11	41.04	46.00	-4.96	QP
5	2		300.6988	37.56	-10.45	27.11	46.00	-18.89	QP
	3		376.5227	36.55	-8.52	28.03	46.00	-17.97	QP
_	4		502.2472	40.30	-6.04	34.26	46.00	-11.74	QP
	5		602.9287	41.70	-4.01	37.69	46.00	-8.31	QP
_	6		679.4346	39.21	-3.39	35.82	46.00	-10.18	QP

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

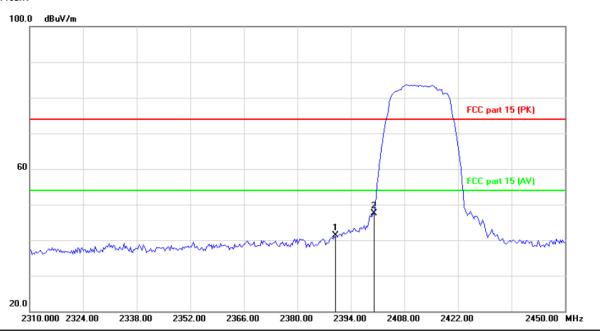
- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Middle channel and 802.11b) was submitted only.
- 3. Freq. = Emission frequency in MHz

Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

 $Limit (dB\mu V/m) = Limit stated in standard$

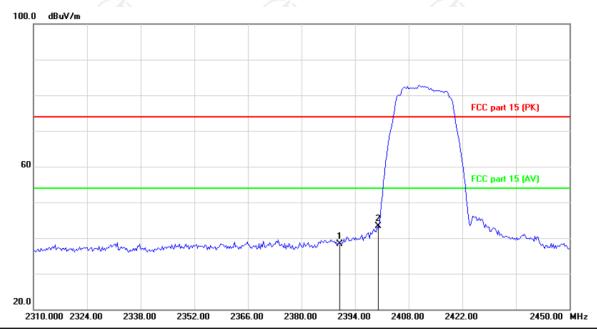
 $Margin (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$


^{*} is meaning the worst frequency has been tested in the test frequency range

Test Result of Radiated Spurious at Band edges

Lowest channel 2412:

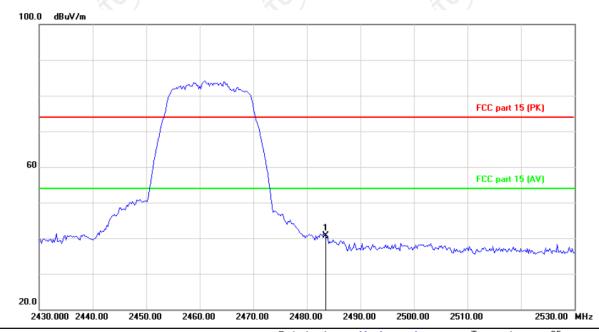
Horizontal:


Site Polarization: Horizontal Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %

•	No.	lo. Mk.		Reading Correct Measure- Mk. Freq. Level Factor ment		Limit	Over			
Ī				MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
) -	1		23	390.000	54.54	-13.15	41.39	74.00	-32.61	peak
	2	*	24	100.000	60.72	-13.12	47.60	74.00	-26.40	peak

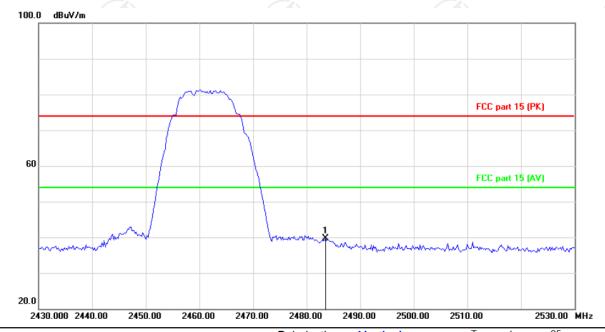
Vertical:

Site Polarization: Vertical Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %


•	No.	MI	k. Freq.	Reading Correct Measure Freq. Level Factor ment			Limit	Over	
-			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	1		2390.000	51.53	-13.15	38.38	74.00	-35.62	peak
)	2	*	2400.000	56.46	-13.12	43.34	74.00	-30.66	peak

Highest channel 2462:

Horizontal:


Site Polarization: Horizontal Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %

No.	MI	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	2483.500	53.44	-12.74	40.70	74.00	-33.30	peak

Vertical:

Site Polarization: Vertical Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %

•			c. Freq.			Measure- ment	Limit	Over	
•			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
-	1	*	2483.500	52.37	-12.74	39.63	74.00	-34.37	peak

Note:

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (802.11b) was submitted only.

Above 1GHz

			L	ow channe	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	H	49.04	(1)	0.75	49.79		74	54	-4.21
7236	OH	38.35	TYO.	9.87	48.22	(O-7	74	54	-5.78
	H					<u></u>			
4824	V	47.61		0.75	48.36		74	54	-5.64
7236	V	36.98		9.87	46.85		74	54	-7.15
(C)	V	(, G)		(, (()		$(-\epsilon)$		(, (

			M	iddle chanr	nel: 2437MF	łz					
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBμV)	Correction Factor (dB/m)	Dook A\/		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4874	Н	48.47	KO	0.97	49.44	1	74	54	-4.56		
7311	Н	39.05		9.83	48.88		74	54	-5.12		
	Н										
4874	V	49.16		0.97	50.13		74	54	-3.87		
7311	V	38.72		9.83	48.55		74	54	-5.45		
	V				/						

	High channel: 2462 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBμV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	Н	47.58		1.18	48.76		74	54	-5.24
7386	Н	38.26		10.07	48.33		74	54	-5.67
	Н								
- 1									
4924	V	46.97		1.18	48.15		74	54	-5.85
7386	V	37.32		10.07	47.39		74	54	-6.61
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. All the restriction bands are compliance with the limit of 15.209.

	Low channel: 2412 MHz								
Frequenc (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	48.56		0.75	49.31		74	54	-4.69
7236	Н	39.14		9.87	49.01		74	54	-4.99
	ΚH		7						
	(C_{i}, C_{i})		(20)			² (C,)		(20)	
4824	V	47.63		0.75	48.38		74	54	-5.62
7236	V	38.01		9.87	47.88		74	54	-6.12
	V								

	Middle channel: 2437MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBμV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	H	48.85		0.97	49.82		74	54	-4.18
7311	I	37.92		9.83	47.75		74	54	-6.25
	C H		140			(O- 1		下の	
4874	V	47.48		0.97	48.45		74	54	-5.55
7311	V	38.36		9.83	48.19		74	54	-5.81
	V			((

			Н	ligh channe	l: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	49.07	(c)	1.18	50.25		74	54	-3.75
7386	Н	39.16	-	10.07	49.23		74	54	-4.77
	Н								
4924	V	46.75		1.18	47.93		74	54	-6.07
7386	V	37.28		10.07	47.35		74	54	-6.65
Y)	V	<u> </u>		(2)		<u> </u>		

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. All the restriction bands are compliance with the limit of 15.209.

Modulation Type: 802.11n (HT20)

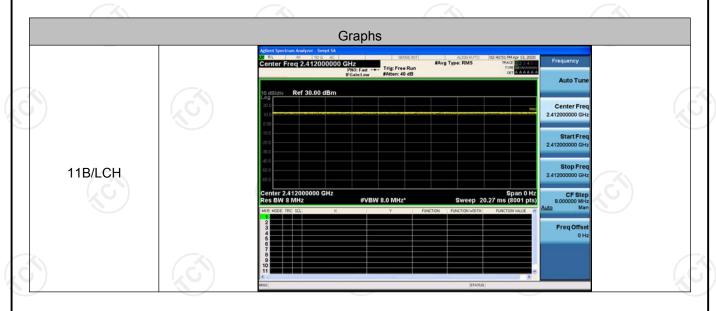
1	The desired to the second seco									
4		Low channel: 2412 MHz								
	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
	4824	Н	47.86		0.75	48.61		74	54	-5.39
	7236	Н	38.04		9.87	47.91		74	54	-6.09
		H							7- (1)	
	()	((0)		(20)			(O)		[2C]	
	4824	V	49.23		0.75	49.98		74	54	-4.02
	7236	V	38.69		9.87	48.56		74	54	-5.44
		V								

	Middle channel: 2437MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBμV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	H	48.42		0.97	49.39		74	54	-4.61
7311	I	39.15		9.83	48.98	<u></u>	74	54	-5.02
	C H		140			(O-7		下の	
4874	V	47.75		0.97	48.72		74	54	-5.28
7311	V	37.93		9.83	47.76		74	54	-6.24
	V			(~				(

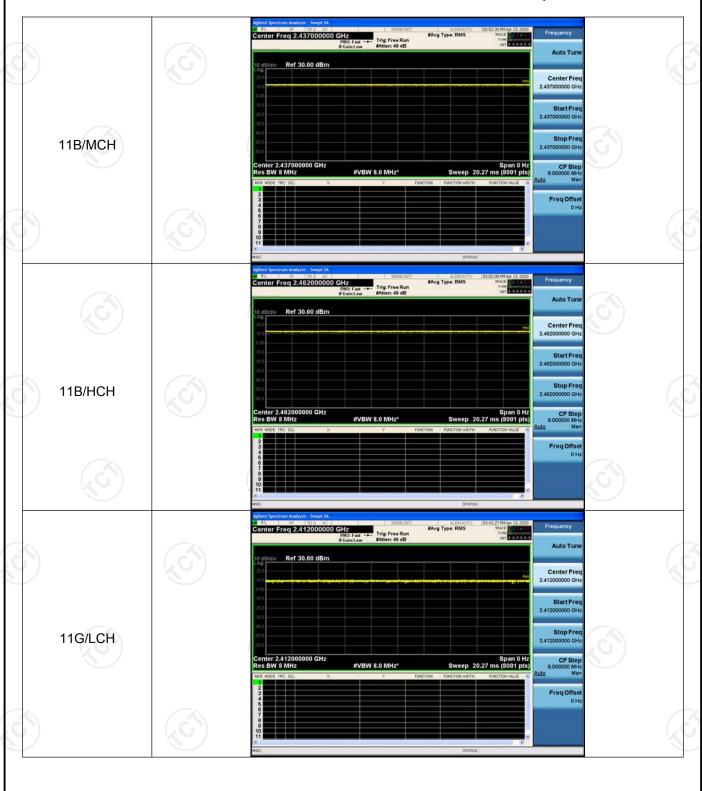
			Н	ligh channe	l: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	Н	48.57		1.18	49.75		74	54	-4.25
7386	Н	38.34		10.07	48.41		74	54	-5.59
	Н								
4924	V	46.95		1.18	48.13		74	54	-5.87
7386	V	37.77		10.07	47.84		74	54	-6.16
Y)	V	<u> </u>		//	P)		X -2		📉

Note:

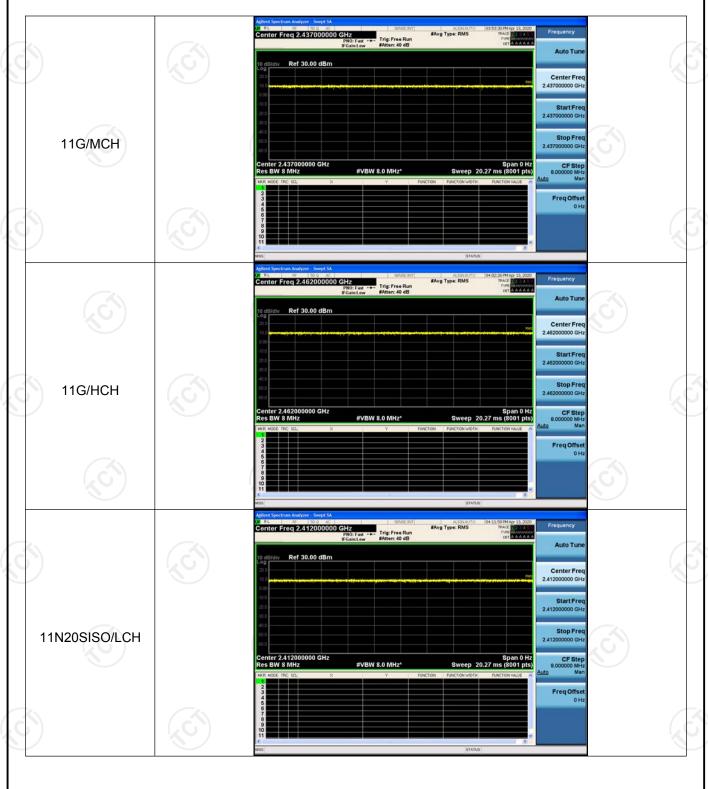
- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. All the restriction bands are compliance with the limit of 15.209.

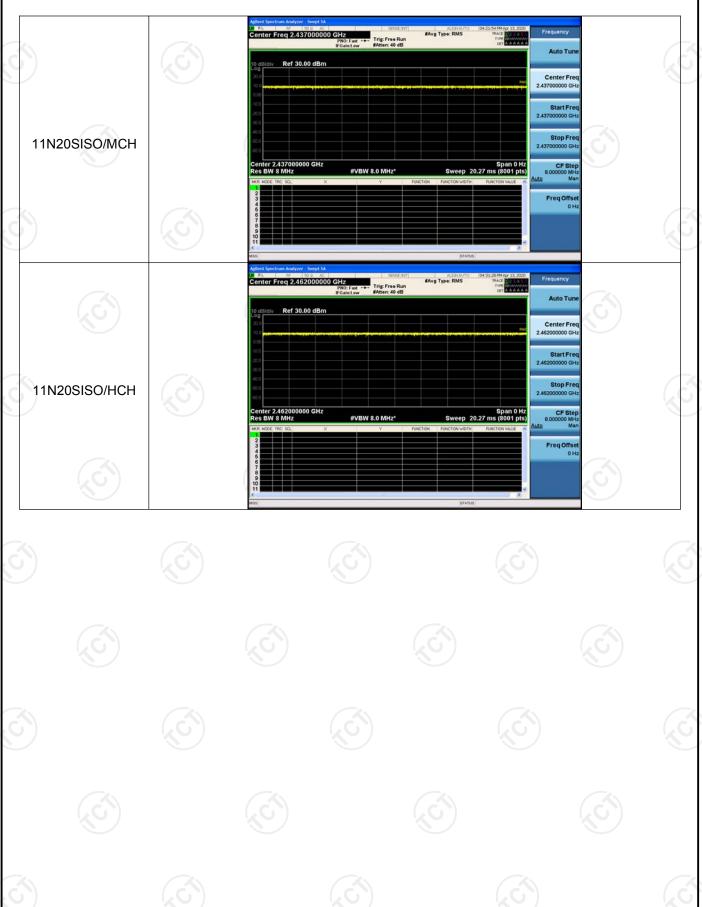


Appendix A: Test Result of Conducted Test Duty Cycle


Result Table

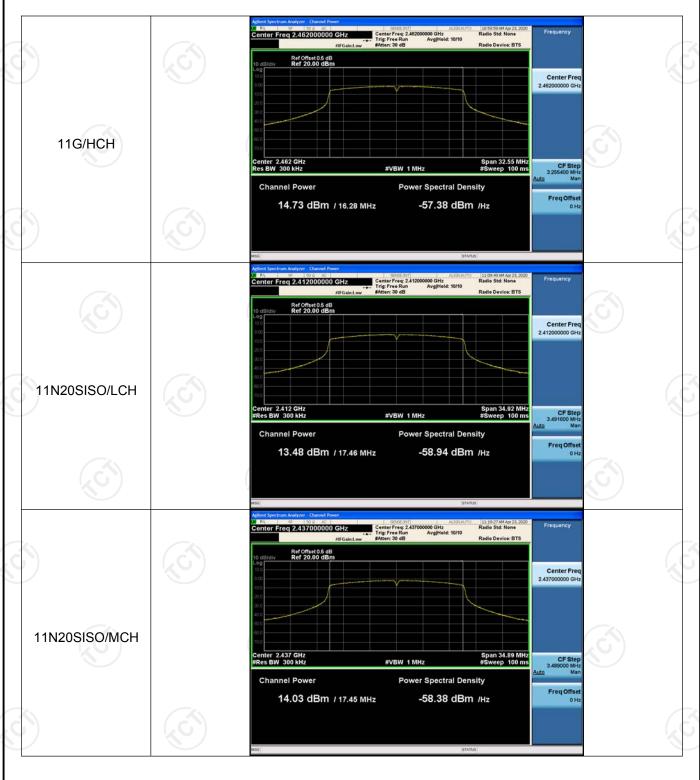
Mode	Channel	Meas.Level [%]
11B	LCH	100
11B	MCH	100
11B	нсн	100
11G	LCH	100
11G	MCH	100
11G	нсн	100
11N20SISO	LCH	100
11N20SISO	MCH	100
11N20SISO	нсн	100

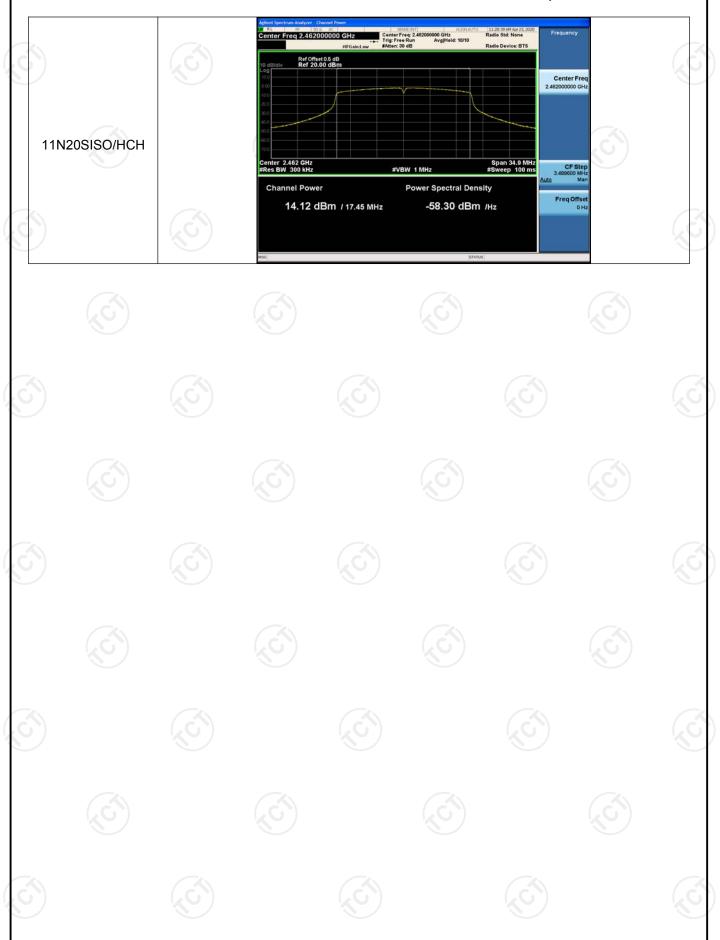

Test Graph

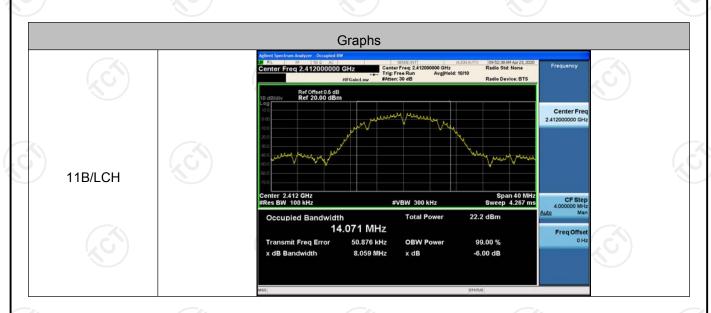


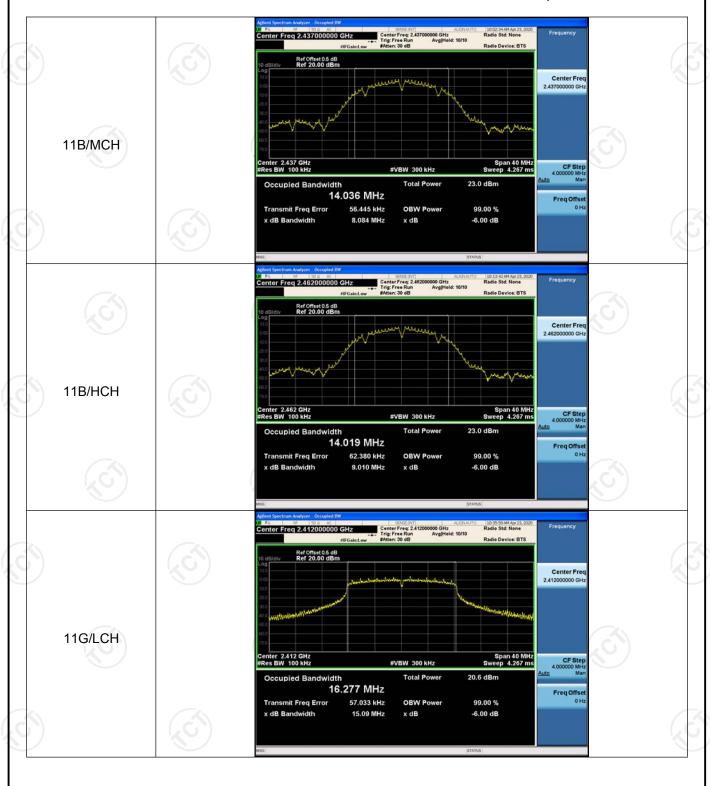
Conducted Average Output Power

Result Table

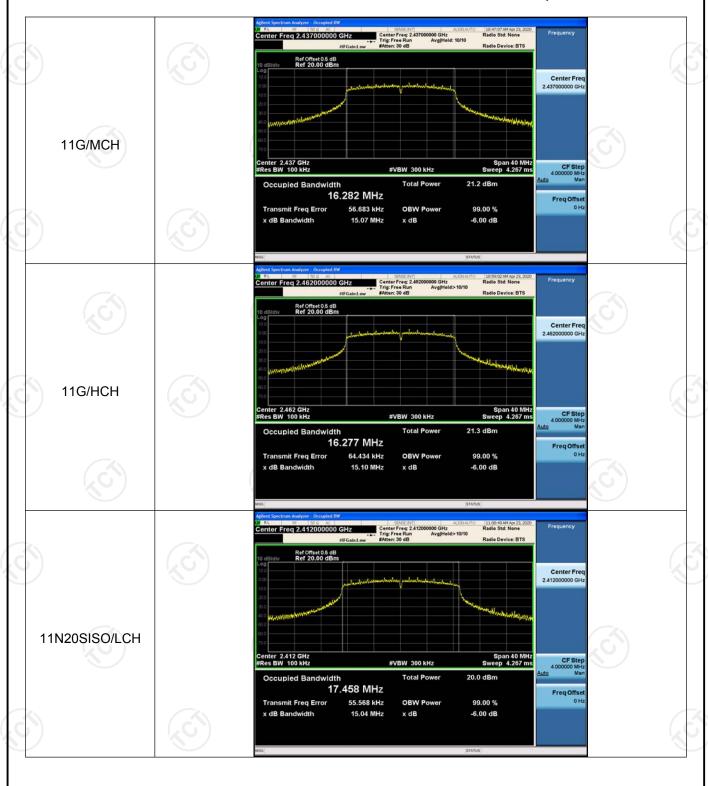

Mode	Channel	Meas.Level [dBm]	Verdict
11B LCH		15.18	PASS
11B	МСН	16.12	PASS
11B	HCH	16.06	PASS
11G	LCH	14.03	PASS
11G	MCH	14.71	PASS
11G	НСН	14.73	PASS
11N20SISO	LCH	13.48	PASS
11N20SISO	MCH	14.03	PASS
11N20SISO	НСН	14.12	PASS

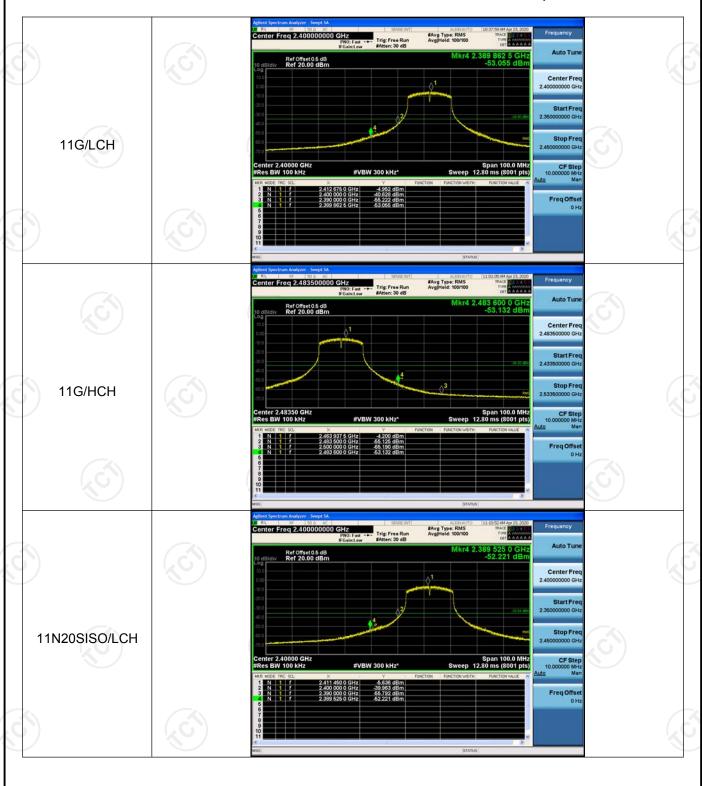




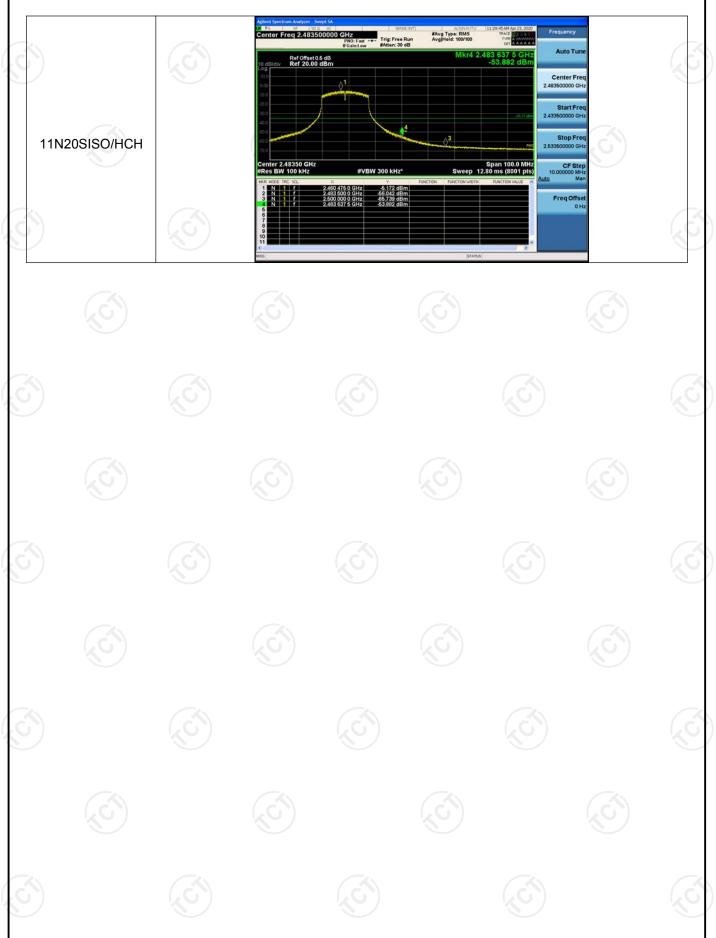

6dB Occupied Bandwidth

Result Table

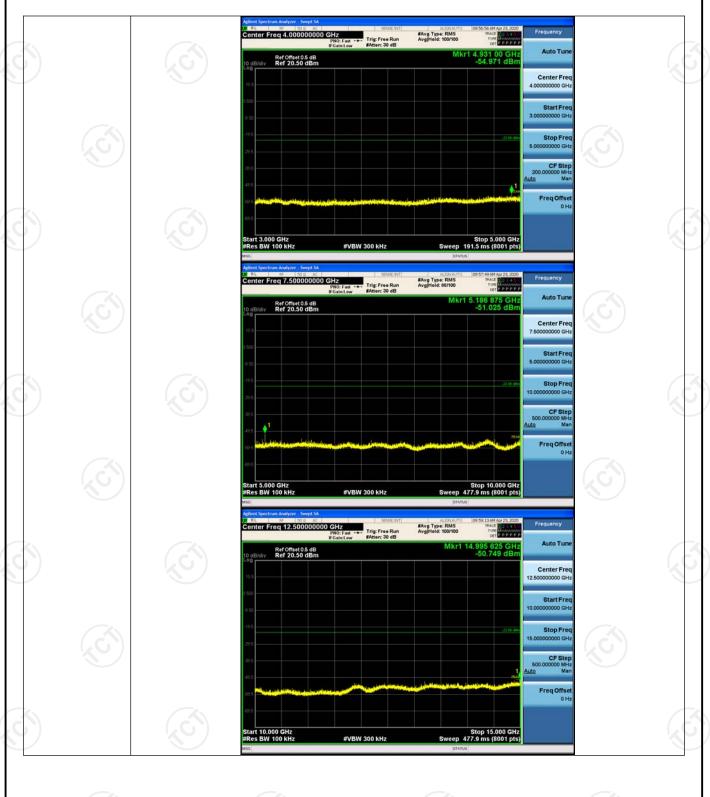

Mode	Channel	6dB Bandwidth [MHz]	Verdict
11B	LCH	8.059	PASS
11B	MCH	8.084	PASS
11B	HCH	9.010	PASS
11G	LCH	15.09	PASS
11G	MCH	15.07	PASS
11G	HCH	15.10	PASS
11N20SISO	LCH	15.04	PASS
11N20SISO	MCH	15.14	PASS
11N20SISO	HCH	15.05	PASS


Band-edge for RF Conducted Emissions

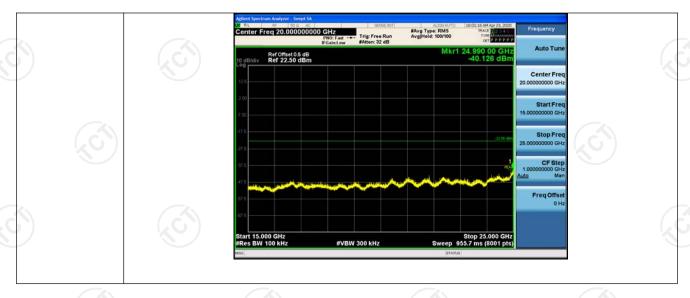
Result Table


Mode	Channel	Carrier Power [dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	-1.163	-57.917	-31.16	PASS
11B	НСН	-0.555	-60.981	-30.56	PASS
11G	LCH	-4.952	-53.055	-34.95	PASS
11G	нсн	-4.200	-53.132	-34.20	PASS
11N20SISO	LCH	-5.636	-52.221	-35.64	PASS
11N20SISO	НСН	-5.172	-53.882	-35.17	PASS




RF Conducted Spurious Emissions

Result Table


Mode	Channel	Pref [dBm]	Puw [dBm]	Verdict
11B	LCH	7.145	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	7.872	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	7.564	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	3.868	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	4.690	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	4.642	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	3.134	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	3.091	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	4.242	<limit< td=""><td>PASS</td></limit<>	PASS

