Maximum Permissible Exposure FCC ID: 2ASCB-DGSNCKNT32

Applicable Standard
According to $\S 1.1307(\mathrm{~b})$, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.
For BT:
Remark: 1) The maximum output power for antenna is $2.84 \mathrm{dBm}(1.92 \mathrm{~mW})$ at $2402 \mathrm{MHz}, 5 \mathrm{dBi}$ antenna gain(with 3.16 numeric antenna gain.)
2) For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20 cm , even if the calculation indicate that the MPE distance would be lesser.

Calculation

$$
\begin{aligned}
& \text { Given } \quad E=\frac{\sqrt{30 \times P \times G}}{d} \& S=\frac{E^{2}}{3770} \\
& \text { Where } \quad E=\text { Field Strength in Volts / meter } \\
& P=\text { Power in Watts } \\
& G=\text { Numeric antenna gain } \\
& d=\text { Distance in meters } \\
& S=\text { Power Density in milliwatts / square centimeter }
\end{aligned}
$$

Maximum Permissible Exposure
output power $=1.92 \mathrm{~mW}$
Numeric Antenna gain= 3.16
Substituting the MPE safe distance using $\mathrm{d}=20 \mathrm{~cm}$ into above equation.
Yields:
$S=0.000199 * P * G$
Where $P=$ Power in $m W$
$G=$ Numeric antenna gain
$S=$ Power density in $\mathrm{mW} / \mathrm{cm}^{2}$
$\underline{\text { Power density }=0.001207 \mathrm{~mW} / \mathrm{cm}^{2}}$
(For mobile or fixed location transmitters, the maximum power density is $1.0 \mathrm{~mW} / \mathrm{cm}^{2}$ even if the calculation indicates that the power density would be larger.)

For WIFI:
Remark: 1) The maximum output power for antenna is $16.16 \mathrm{dBm}(41.30 \mathrm{~mW})$ at $2462 \mathrm{MHz}, 5 \mathrm{dBi}$ antenna gain(with 3.16 numeric antenna gain.)
2) For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20 cm , even if the calculation indicate that the MPE distance would be lesser.

Calculation

```
Given \(E=\frac{\sqrt{30 \times P \times G}}{d}\) \& \(S=\frac{E^{2}}{3770}\)
    Where \(E=\) Field Strength in Volts / meter
        \(P=\) Power in Watts
        \(G=\) Numeric antenna gain
        \(d=\) Distance in meters
        \(S=\) Power Density in milliwatts / square centimeter
```

Maximum Permissible Exposure
output power $=41.30 \mathrm{~mW}$
Numeric Antenna gain= 3.16
Substituting the MPE safe distance using $\mathrm{d}=20 \mathrm{~cm}$ into above equation.
Yields:
$S=0.000199 * P^{*} G$
Where $P=$ Power in $m W$
$G=$ Numeric antenna gain
$S=$ Power density in $\mathrm{mW} / \mathrm{cm}^{2}$
$\underline{\text { Power density }=}=0.025971 \mathrm{~mW} / \mathrm{cm}^{2}$
(For mobile or fixed location transmitters, the maximum power density is $1.0 \mathrm{~mW} / \mathrm{cm}^{2}$ even if the calculation indicates that the power density would be larger.)

