

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST REPORT

Report Reference No...... CTA24070400201

FCC ID 2ASC7TAB702

Compiled by

(position+printed name+signature)..: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)..: Project Engineer Xudong Zhang

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... July 17, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Address...... Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Baoʻan District, Shenzhen, China

Applicant's name...... OBDSPACE TECHNOLOGY CO,.LTD

Room D03, Building A, No.973, MinZhi Avenue LongHua district,

Shenzhen City, China

Test specification....::

IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2.1093;

Jangtua xxxxx

ANSI/IEEE C95.1:2005; Reference FCC KDB 447498;

KDB 865664; KDB 248227; KDB 616217

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: AUTO DIAGNOSE TABLET

Trade Mark ANCEL

Manufacturer...... Shenzhen IDUTEX Tech Co., Ltd

Model/Type reference...... ANCEL V5 HD

ANCEL V3, ANCEL V3 PRO, ANCEL V3 ELITE, ANCEL V3HD,

ANCEL V310, ANCEL V320, ANCEL V330, ANCEL V340, ANCEL

CTATES

ANCEL V5BT, ANCEL V5 ELITE, ANCEL V5 PRO

Rating DC 3.8V From Battery and DC 5.0V From external circuit

Result.....: PASS

Report No.: CTA24070400201 Page 2 of 69

TEST REPORT

Equipment under Test : AUTO DIAGNOSE TABLET

Model /Type : ANCEL V5 HD

Listed Models : ANCEL V3, ANCEL V3 PRO, ANCEL V3 ELITE, ANCEL V3HD, ANCEL

V310, ANCEL V320, ANCEL V330, ANCEL V340, ANCEL V350, ANCEL V360, ANCEL V370, ANCEL V380, ANCEL V390, ANCEL

V5BT, ANCEL V5 ELITE, ANCEL V5 PRO

Applicant : OBDSPACE TECHNOLOGY CO, LTD

Address : Room D03, Building A, No.973, MinZhi Avenue LongHua district,

Shenzhen City, China

Manufacturer : Shenzhen IDUTEX Tech Co., Ltd

Address : Room 401, Building B11, Yintian Industrial Zone, Yantian, Xixiang,

Baoan, Shenzhen, China

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: CTA24070400201

Page 3 of 69

*** * * Revision History * ***

REV.	ISSUED DATE	DESCRIPTION
Rev.1.0	July 17, 2024	Initial Test Report Release
	(CIP)	TATESIN
		CKCTATE

CTATESTING

Contents

	2.1 Gene	ral Remarks	7
	2.2 Desci	ription of Equipment Under Test (EUT)	7
	2.3 Device	e Category and SAR Limits	8
	2.4 Applie	ed Standard	8
	2.5 Test F	Facility	8
	2.6 Envir	onment of Test Site	9
	2.7 Test (Configuration	9
3		Absorption Rate (SAR)	
		luction	
	3.2 SAR	Definition	10
4	SAR Mea	surement System	11
		ld Probe	
	4.2 Data	Acquisition Electronics (DAE)	12
	4.3 Robo	t	13
	4.4 Meas	urement Server	13
	4.5 Phan	tom	14
	4.6 Device	e Holder	14
	4.7 Data	Storage and Evaluation	15
5		pment List	
6	Tissue Si	nulating Liquids	18
7	System V	erification Procedures	20
8		ing Position	
		-Supported Device Configurations	
9	Measurer	nent Procedures	23
	9.1 Spatia	al Peak SAR Evaluation	23
	9.2 Powe	r Reference Measurement	23
	9.3 Area	Scan Procedures	24
	9.4 Zoom	Scan Procedures	24
	9.5 Volun	ne Scan Procedures	25
	9.6 Powe	r Drift Monitoring	25
10	TEST CO	NDITIONS AND RESULTS	26
		ucted Power Results	
	10.2 Trans	mit Antennas	28
	10.3 SAR	Test Exclusion and Estimated SAR	29
	10.4 SAR	Test Results	31
		Measurement Variability	
		taneous Transmission Analysis	
11		nent Uncertainty	
	pendix A.	EUT Photos and Test Setup Photos	27
1		Plots of SAR System Check	

Report No.: CTA24070400201	Page 5 of 69
	41
sppendix D. DASY System Calibration Certificate	44
	TESTIN
	CTA
	CTA TESTING
TESTIN	
CTA TESTING	
CTA TESTING	
CTATA	
CTA	
CTA TESTING	
	CTA TESTING
NG CTATESTING	
	TESTING CTATESTING
	TATES
	Car Civ
TOTA TESTING	CTA TESTING
CIL	STING
	TATES

Report No.: CTA24070400201 Page 6 of 69

Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had CTATES been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

ATEST		Highest Reported 1g-SAR(W/Kg)	Simultaneous
	Frequency Band	Body (0mm)	Reported SAR (W/Kg)
	WLAN2.4G	0.855	
	WLAN5.2G	0.758	0.841
	WLAN5.8G	0.738	
	SAR Test Limit (W/Kg)	1.60	CIN
	Test Result	PASS	
	CTATESTING	CTATESTING	

Report No.: CTA24070400201 Page 7 of 69

General Information

2.1 General Remarks

2.1 General Remarks				
Date of receipt of test sample		July 04, 2024		
	(C)			TATES
Testing commenced on		July 15, 2024	Ga	
			C.	
Testing concluded on	:	July 16, 2024		

2.2 Description of Equipment Under Test (EUT)

Product Name:	AUTO DIAGNOSE TABLET	
Model/Type reference:	ANCEL V5 HD	
Power supply:	DC 3.8V From battery and DC 5.0V From external circuit	-ING
Testing cample ID:	CTA240704002-1# (Engineer sample)	1111
Testing sample ID:	CTA240704002-2# (Normal sample)	
Hardware version:	V1.0	
Software version:	V1.0	
	SRD:	
Ty Fraguenay	BT:2402~2480MHz	
Tx Frequency:	2.4G WIFI: 2412~2462MHz	
	5G WIFI: 5180~5240MHz, 5745~5825MHz	
	BT: GFSK, Π/4DQPSK, 8DPSK	
Type of Modulation:	2.4G WIFI: BPSK, QPSK,16QAM,64QAM	
	5G WIFI: BPSK, QPSK,16QAM,64QAM, 256QAM	ATA
Category of device:	Portable device	CALL S
₹1/4 ~ .		

Remark:

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description. CTATESTIN'

Report No.: CTA24070400201 Page 8 of 69

2.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- · IEEE Std 1528:2013
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- · KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 616217 D04 SAR for laptop and tablets v01r02

2.5 Test Facility

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Page 9 of 69 Report No.: CTA24070400201

2.6 **Environment of Test Site**

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Report No.: CTA24070400201 Page 10 of 69

Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation CTA TESTING description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

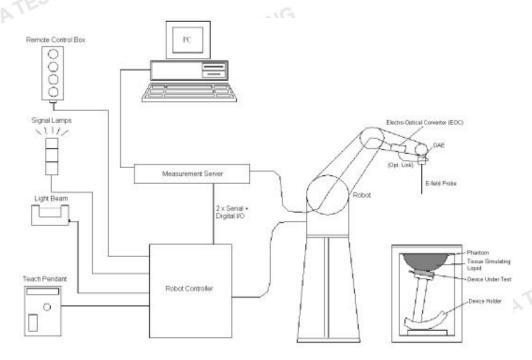
SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δtisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. CTATESTIN'

Page 11 of 69 Report No.: CTA24070400201

SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- CTA TESTING Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special CTATES calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. CTATESTING

Report No.: CTA24070400201

> E-Field Probe Specification

<EX3DV4 Probe>

(Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
	Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	0.0
	Directivity	± 0.3 dB in HSL (rotation around probe axis)	
		± 0.5 dB in tissue material (rotation normal to	
TES.		probe axis)	
CTAIL	Dynamic Range	10 μW/g to 100 W/kg; Linearity: ± 0.2 dB (noise:	
		typically< 1 μW/g)	
	Dimensions	Overall length: 330 mm (Tip: 20 mm)	
		Tip diameter: 2.5 mm (Body: 12 mm)	Photo of EX3DV4
		Typical distance from probe tip to dipole	TESTIN
		centers: 1 mm	CTA

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

Report No.: CTA24070400201 Page 13 of 69

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- > High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

Page 14 of 69 Report No.: CTA24070400201

4.5 **Phantom**

<SAM Twin Phantom>

4.5 Phantom		
<sam phantom="" twin=""></sam>	TESTIL	
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	G THE TO
Dimensions	Length: 1000 mm; Width: 500 mm;	- TATE
	Height: adjustable feet	
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
	TATESTING	
	a TE	Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness
Filling Volume
Dimensions

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ± 20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Report No.: CTA24070400201 Page 15 of 69

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

> **Probe parameters:** - Sensitivity Normi, aio, ai1, ai2

> > - Conversion factor ConvFi

- Diode compression point dcpi CTATESTING

Device parameters: - Frequency f

> - Crest factor cf

- Conductivity Media parameters:

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i, (i= x, y, z)

Norm = sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

aij= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei= electric field strength of channel iin V/m

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude): CTA TESTING

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

Etot= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

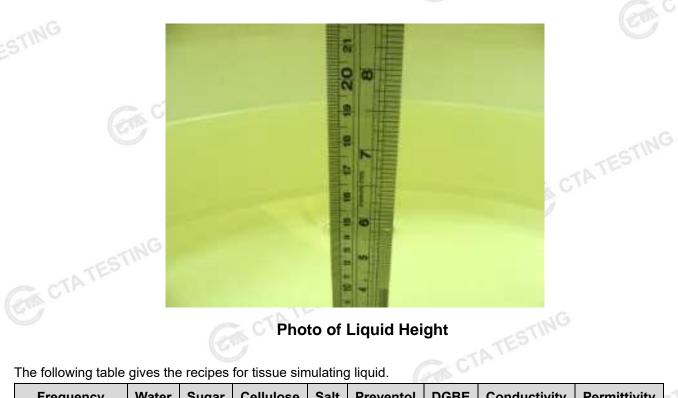
CTATES Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.: CTA24070400201 Page 17 of 69

5 Test Equipment List

Manufacturer	Name of Favinment	Type/Model	Carial Number	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	2450MHz System Validation Kit	D2450V2	745	Aug. 28,2023	Aug. 27,2026	
SPEAG	5GHz System Validation Kit	D5GHzV2	1301	Feb.16, 2023	Feb.15, 2026	
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	1201.0002K50- 104209-JC	Nov.05, 2023	Nov.04, 2024	
SPEAG	Data Acquisition Electronics	DAE3	428	Aug.30,2023	Aug.29,2024	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7624	Sep. 06,2023	Sep. 05,2024	
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.25, 2023	Oct.24, 2024	
SPEAG	DAK	DAK-3.5	1226	NCR	NCR	
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR	
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR	
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR	
Agilent	Power Meter	N1914A	MY50001102	Oct.25, 2023	Oct.24, 2024	
Agilent	Power Sensor	N8481H	MY51240001	Oct.25, 2023	Oct.24, 2024	
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.25, 2023	Oct.24, 2024	
Agilent	Signal Generation	N5182A	MY48180656	Oct.25, 2023	Oct.24, 2024	
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Oct.25, 2023	Oct.24, 2024	

Note:


- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Report No.: CTA24070400201 Page 18 of 69

Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(εr)
835				For H	ead			
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800,1900,2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
				For B	ody			
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	65.5	0	0	0	G 0	31.5	2.16	52.5
			CTATE				ATESTING	

The following table shows the measuring results for simulating liquid.

Measured	d Target Tissu			Measure	ed Tissue		Lieurial			
Frequency (MHz)	εr	σ	εr	Dev. (%)	σ	Dev. (%)	Liquid Temp.	Test Data		
2450	39.2	1.80	40.556	3.46%	1.831	1.71%	22.7	07/15/2024		
5250	35.9	4.71	36.388	1.36%	4.607	-2.18%	22.8	07/16/2024		
5750	5750 35.4	35.4 5.2	5.22	37.039	4.63%	5.305	1.62%	22.4	07/16/2024	

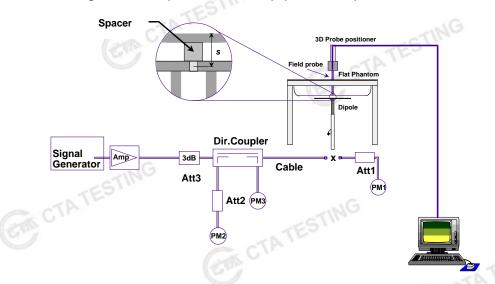
CTATESTING

CTATESTING

CTATESTING

Report No.: CTA24070400201 Page 20 of 69

7 System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

ESTING

Report No.: CTA24070400201 Page 21 of 69

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows that the control of 10%. specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR 1g (W/kg)	Measured SAR1g (W/kg)	Normalized SAR (W/kg)	Deviation (%)
07/15/2024	2450	250	52.7	13.51	54.04	2.54%
07/16/2024	5250	100	77.7	7.79	77.90	0.26%
07/16/2024	5750	100	78.0	7.52	75.20	-3.64%

Report No.: CTA24070400201 Page 22 of 69

8 EUT Testing Position

8.1 Body-Supported Device Configurations

According to KDB 616217 section 4.3, SAR should be separately assessed with each surface and separation distance positioned against the flat phantom that correspond to the intended use as specified by the manufacturer. The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front (top) surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except for tablets that are designed to require continuous operations with the hand(s) next to the antenna(s).

- To position the device parallel to the phantom surface with either keypad up or down.
- To adjust the device parallel to the flat phantom.
- To adjust the distance between the device surface and the flat phantom to 0 mm.
- ➤ When each surface is measurement, the SAR Test Exclusion Threshold in KDB 447498 should be applied.

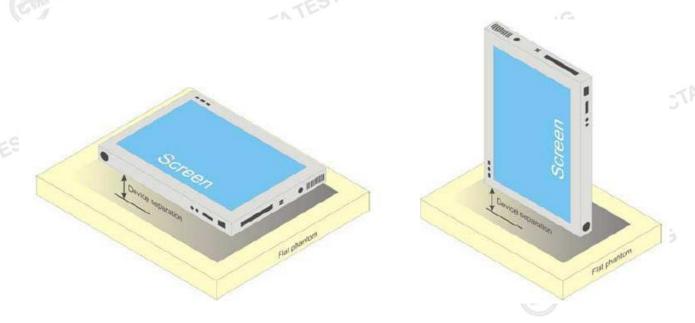


Fig.81 Illustration for Body Position

ESTING

Report No.: CTA24070400201 Page 23 of 69

Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average CTATES SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a proviously and

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface CTATES determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: CTA24070400201

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \hat{\delta} \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orienta above, the measurement re corresponding x or y dimen at least one measurement p	tion, is smaller than the solution must be \leq the nsion of the test device with

9.4 Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz	
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 5 - 6 \text{ GHz:} \ge 5 - 6 G$		
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoem}(n-1) \text{ mm}$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: CTA24070400201 Page 25 of 69

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

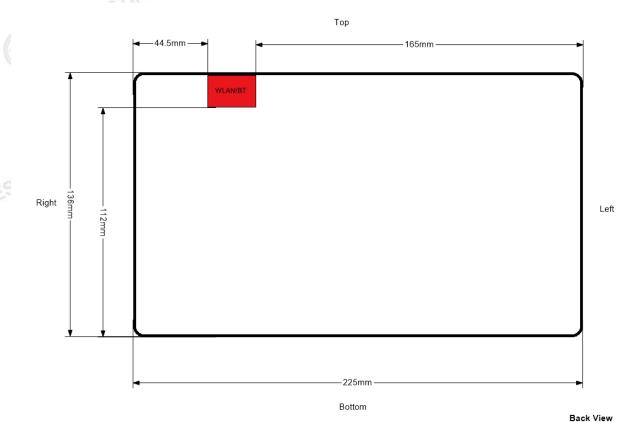
10 TEST CONDITIONS AND RESULTS

WLAN 2.4GHz Cor	nducted Power>	CTA		CTING
	01	Frequency	Conducted Average	Tune-up limit
Mode	Channel	(MHz)	Output Power(dBm)	(dBm)
	1	2412	14.65	15.0
802.11b	6	2437	14.40	15.0
	11	2462	14.28	15.0
	1	2412	14.40	15.0
802.11g	6	2437	13.86	15.0
802.11g	11	2462	13.79	15.0
	J£5\'	2412	14.36	15.0
802.11n(HT20)	6	2437	13.82	15.0
	11	2462	13.75	15.0
	3	2422	14.00	15.0
802.11n(HT40)	6	2437	13.77	15.0
	9	2452	13.99	15.0

<WLAN 5.2GHz Conducted Power>

Туре	Channel	Frequency	Conducted Average	Tune-up limit
,		(MHz)	Output Power(dBm)	(dBm)
	36	5180	10.34	11.0
802.11a	40	5200	10.09	11.0
	48	5240	9.55	11.0
	36	5180	10.22	11.0
802.11n(HT20)	40	5200	10.04	11.0
	48	5240	9.47	11.0
000 11 _m /UT10\	38	5190	10.04	11.0
802.11n(HT40)	46	5230	9.64	11.0
	36	5180	10.31	11.0
802.11ac(HT20)	40	5200	10.05	11.0
	48	5240	9.54	11.0
802.11ac(HT40)	38	5190	10.08	11.0
002. Hac(H140)	46	5230	9.62	11.0
802.11ac(HT80)	42	5210	10.34	11.0

<WLAN 5.8GHz Conducted Power>


Туре	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)
	149	5745	11.80	12.0
802.11a	157	5785	10.99	11.0
	165	5825	10.24	11.0
	149	5745	11.59	12.0
802.11n(HT20)	157	5785	10.68	11.0
. ,	165	5825	10.06	11.0
000 44 (LIT40)	151	5755	11.18	12.0
802.11n(HT40)	159	5795	10.50	11.0
	149	5745	11.66	12.0
802.11ac(HT20)	157	5785	10.70	11.0
` '	165	5825	9.95	11.0
000 44/LIT40\	151	5755	11.22	12.0
802.11ac(HT40)	159	5795	10.38	11.0
802.11ac(HT80)	155	5775	11.80	12.0
		/	CON CTAT	

<Bluetooth Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Tune-up limit (dBm)
0	0	2402	-0.77	1.0
GFSK	39	2441	0.03	1.0
	78	2480	0.04	1.0
	0	2402	1.68	3.0
π/4DQPSK	39	2441	2.47	3.0
	78	2480	2.47	3.0 3.0 3.0
	0	2402	1.86	3.0
8DPSK	39	2441	2.63	3.0
	78	2480	2.64	3.0
	0	2402	-1.49	0.0
BLE 1M	19	2440	-0.56	0.0
BLE 1M	39	2480	-0.46	0.0
	0	2402	-1.44	0.0
BLE 1M	19	2440	-0.52	0.0
	39	2480	-0.43	0.0
			-0.43	

Report No.: CTA24070400201 10.2 Transmit Antennas

STING

Report No.: CTA24070400201 Page 29 of 69

10.3 SAR Test Exclusion and Estimated SAR

SAR Test Exclusion Considerations

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.

Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:

- a) [Threshold at 50mm)+(test separation distance-50mm)*(f(MHz)/150)]mW, at 100MHz to 1500MHz
- b) [Threshold at 50mm)+(test separation distance-50mm)*10]mW at > 1500MHz and ≤ 6GHz

Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

The below table, exemption limits for routine evaluation based on frequency and separation distance was according to SAR-based Exemption – §1.1307(b)(3)(i)(B).

		Stan	dalone S	AR Test E	xclusion an	nd Estimated S	SAR			CTA
Wireless Interface	Frequency (MHz)	Configuration -		Power tune-up mW	Distance (mm)	Calculatio n Result	SAR Exclusion Threshold	Standalone SAR Exclusion	Estimated SAR (W/Kg)	
	Cons	Back	15.0	31.623	5	10.0	3	No	N/A	l
	C	Left edge	15.0	31.623	165	31.623	1246	Yes	0.400	ò
2.4GHz 2450 WLAN	Right edge	15.0	31.623	44.5	1.100	3	Yes	0.148	ĺ	
	Top edge	15.0	31.623	5	10	3	No	N/A	1	
ļ	1	Bottom edge	15.0	31.623	112	31.623	716	Yes	0.400	İ
		Back	11.0	12.589	5	6.0	3	No	N/A	İ
5.0.011-	TIN	Left edge	11.0	12.589	165	12.589	1215	Yes	0.400	1
5.2 GHz	5250	Right edge	11.0	12.589	44.5	0.700	3	Yes	0.086	ĺ
WLAN	[Top edge	11.0	12.589	5	6	3	No	N/A	l
	l	Bottom edge	11.0	12.589	112	12.589	685	Yes	0.400	1
5 0 CU-7		Back	12.0	15.849	5	7.7	3	No	N/A	ĺ
5.8 GHz WLAN	5785	Left edge	12.0	15.849	165	15.849	1212	Yes	0.400	l
VVLAIN	1	Right edge	12.0	15.849	44.5	0.900	3	Yes	0.114	~B

Page 30 of 69 Report No.: CTA24070400201

= CIRTES	Bottom edge	12.0	15.849	112	15.849	682	Yes	0.400	
= CTP	Dools							00	
	Back	3.0	1.995	5	0.6	3	Yes	0.083	
570	Left edge	3.0	1.995	165	1.995	1246	Yes	0.400	
Bluetooth 245	50 Right edge	3.0	1.995	44.5	0.100	3	Yes	0.009	
	Top edge	3.0	1.995	5	0.6	3	Yes	0.083	
	Bottom edge	3.0	1.995	112	1.995	716	Yes	0.400	TE

Remark:

- Maximum average power including tune-up tolerance;
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- en t when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW".

Report No.: CTA24070400201 Page 31 of 69

10.4 SAR Test Results

General Note:

1 Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

- a) Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- b) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/ (duty cycle)"
- For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tuneup scaling factor
- Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3 Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

Report No.: CTA24070400201

<Body SAR>

SAR Values [WIFI 2.4G]

Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)		
	Measured / Reported SAR numbers-Body distance 0mm											
#1	DSSS	Back	01	2412	14.65	15.00	1.084	-0.07	0.747	0.810		
	DSSS	Top edge	01	2412	14.65	15.00	1.084	0.03	0.735	0.797		
- 1	DSSS	Back	01	2437	14.40	15.00	1.148	0.05	0.739	0.848		
2110	DSSS	Back	11	2462	14.28	15.00	1.180	-0.06	0.724	0.855		

Remark: The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was less than 1.2W/Kg, So ODFM SAR test is not required.

			SAR	Values [W	/IFI 5.2G]				
Mode	Test Position	Ch.	Freq.	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
	Meas	ured / I	Reported	SAR numl	bers-Body	distance 0	mm		
802.11a	Back	36	5180	10.34	11.00	1.164	-0.11	0.651	0.758
802.11a	Top edge	36	5180	10.34	11.00	1.164	-0.05	0.648	0.754
TA	•		ı	Varia	3		1		
	802.11a	Mode Position Meas 802.11a Back	Mode Position Ch. Measured / I 802.11a Back 36	Mode Test Position Ch. Freq. (MHz) Measured / Reported 802.11a Back 36 5180	Mode Test Position Ch. Ch. Ch. Ch. (MHz) Average Power (dBm) Measured / Reported SAR numl 802.11a Back 36 5180 10.34	Mode Test Position Ch. Freq. (MHz) Power (dBm) Limit (dBm) Measured / Reported SAR numbers-Body 802.11a Back 36 5180 10.34 11.00	Mode Test Position Ch. Freq. (MHz) Power Limit (dBm) Scaling Factor Measured / Reported SAR numbers-Body distance 0 802.11a Back 36 5180 10.34 11.00 1.164	Mode Test Position Ch. Freq. (MHz) Average Power (dBm) Ch. (dBm) Scaling Factor Drift (dBm) Measured / Reported SAR numbers-Body distance 0mm 802.11a Back 36 5180 10.34 11.00 1.164 -0.11	Mode Test Position Ch. Freq. (MHz) Average Power (dBm) Tune-Up Limit (dBm) Scaling Factor (dBm) Power Point (dBm) Measured Point (dBm) Scaling Factor (dBm) Power Point (dBm) Measured (dBm) Weight Measured (dBm) Measur

SAR Values [WIFI 5.8G]

Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
		Meas	ured / F	Reported	SAR numl	pers-Body	distance 0	mm			·TA'
#3	802.11a	Back	149	5745	11.80	12.00	1.047	-0.07	0.705	0.738	
Llis	802.11a	Top edge	149	5745	11.80	12.00	1.047	-0.03	0.701	0.734	

10.5 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated CTA CTA measurements is > 1.20.

SAR Measurement Variability

Band	Mode	Test Position	Ch.	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			TEST		CTAT		

Report No.: CTA24070400201 Page 34 of 69

10.6 Simultaneous Transmission Analysis

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

Application Simultaneous Transmission information:

No.	Simultaneous Transmission Configurations	Body
1	5GHz WLAN + Bluetooth	Yes

Note: BT and wifi share the same antenna, it cannot transmit simultaneously on 2.4GHz band at the same time.

Evaluation of Simultaneous SAR

				CTATE			
Evaluation of Simulta	aneous SAR		(ETP)		1		
	1 2		2+3				
	5GHz	Bluetooth	Summed				
Exposure Position	WLAN	Bluetootti		SPLSR			
	SAR _{1g}	SAR _{1g}	1g SAR (W/kg)				
	(W/kg)	(W/kg)	(VV/Kg)				
Back	0.758	0.083	0.841	N/A			
Left edge	0.400	0.400	0.800	N/A			
Right edge	0.114	0.009	0.123	N/A	CTATE		
Top edge	0.754	0.083	0.837	N/A			
Bottom edge	0.400	0.400	0.800	N/A			

MAX. ΣSAR_{1g} =0.841W/kg<1.6 W/kg, so the Simultaneous transmission SAR with volume scan are not required. CTA TESTING

11 Measurement Uncertainty

Hen	Repeat Probe calibration Axial isotropy nispherical isotropy Boundary effect Linearity Detection limits adout electronics	7 4.7 9.4 1.0 4.7 1.0	N R R R R R	1 2 - \[\sqrt{3} - \] \[\sqrt{3} - \] \[\sqrt{3} - \] \[\sqrt{3} - \] \[\sqrt{3} - \] \[\sqrt{3} - \] \[\sqrt{3}	1 0.7 0.7 1 1	1 0.7 0.7 1	3.5 1.9 3.9 0.6 2.7	3.5 1.9 3.9 0.6 2.7	9 ∞ ∞ ∞	CTA
Hen	Axial isotropy nispherical isotropy Boundary effect Linearity Detection limits adout electronics	4.7 9.4 1.0 4.7	N R R R R R	2 √3 √3 √3 √3	0.7 0.7 1	0.7 0.7 1	1.9 3.9 0.6	1.9 3.9 0.6	∞ ∞	
Hen	Axial isotropy nispherical isotropy Boundary effect Linearity Detection limits adout electronics	4.7 9.4 1.0 4.7	R R R R	- √3 - √3 - √3 - √3 -	0.7 0.7 1	0.7 0.7 1	1.9 3.9 0.6	1.9 3.9 0.6	∞ ∞	
Hen	Boundary effect Linearity Detection limits adout electronics	9.4 1.0 4.7 1.0	R R R	- √3 - √3 - √3 -	0.7	0.7	3.9	3.9	∞ ∞	
Re	Boundary effect Linearity Detection limits eadout electronics	1.0 4.7 1.0	R R R		1 1E	1 371111	0.6	0.6	∞	G
Re	Linearity Detection limits eadout electronics	4.7 1.0	R R	√3 - √3 -	A1E	STING	2			ı.G.
Re	Detection limits	1.0	R	K D1	D. 1.	2 1	2.7	2.7	∞	G
Re	eadout electronics		10		1			_		
		0.3				1	0.6	0.6	∞	
	Daamamaa tima		N	1	1	1	0.3	0.3	∞	
	Response time	0.8	R	_ √3	1	1	0.5	0.5	∞	
)	ntegration time	2.6	R	_ √3	1	1	1.5	1.5	∞	
CTAT	Ambient noise	3.0	R	_ √3	1	1	1.7	1.7	∞	
2 Ar	nbient reflections	3.0	R	_ √3	1	1	1.7	1.7	∞	
3 Prok	pe positioner mech. restrictions	0.4	R		1	1	0.2	0.2	∞	
		2.9	R	<u>-</u> √3	1		1.7	1.7	∞	CTA
5 Ma	x.SAR evaluation	1.0	R	_ √3	1	1	0.6	0.6	∞	1
·	GTATE!	STING			-5	STING	3			•
1	Prob Pro re:	Probe positioner mech. restrictions Probe positioning with respect to phantom shell Max SAR evaluation	Probe positioner mech. restrictions Probe positioning with respect to phantom shell 0.4 2.9	Probe positioner mech. restrictions Probe positioning with respect to phantom shell Max.SAR evaluation 1.0 R	Probe positioner mech. restrictions Probe positioning with respect to phantom shell Max.SAR evaluation $ 3.0 R \sqrt{3} \\ \hline 0.4 R -\frac{1}{\sqrt{3}} \\ \hline 0.8 R -\frac{1}{\sqrt{3}} \\ \hline 0.9 R -\frac{1}{\sqrt{3}$	Probe positioner mech. restrictions Probe positioning with respect to phantom shell Max.SAR evaluation $3.0 R \sqrt{3} 1$ $0.4 R -\frac{1}{\sqrt{3}} 1$ $-\frac{1}{\sqrt{3}} 1$	Probe positioner mech. restrictions Probe positioning with respect to phantom shell Max.SAR evaluation 3.0 R $\sqrt{3}$ 1 1 R $-\frac{1}{\sqrt{3}}$ 1 1 Max.SAR evaluation 3.0 R $\sqrt{3}$ 1 1 R $-\frac{1}{\sqrt{3}}$ 1 1 R $-\frac{1}{\sqrt{3}}$ 1 1	Probe positioner mech. restrictions Probe positioning with respect to phantom shell Max SAR evaluation 1.7 R $\sqrt{3}$ R $\sqrt{3}$ R $\sqrt{3}$ 1 1 0.2 R $\sqrt{3}$ 1 1 1.7 1.7 1.7 1.7 0.2	Probe positioner mech. restrictions 0.4 R $-\frac{1}{\sqrt{3}}$ 1 1 0.2 0.2 Probe positioning with respect to phantom shell 0.4 R $-\frac{1}{\sqrt{3}}$ 1 1 1 1.7 1.7 1.7 0.5 R $-\frac{1}{\sqrt{3}}$ 1 1 0.6 0.6	Probe positioner mech. restrictions Probe positioning with respect to phantom shell Max.SAR evaluation Solution R $\sqrt{3}$ 1 1 1 0.2 0.2 ∞ R $\sqrt{3}$ 1 1 1 0.2 0.2 ∞

Report No.: CTA24070400201 Page 36 of 69

Device positioning Device holder Drift of output power	3.8 5.1 5.0	N N R	1 1 - √3	1 1 1	1	3.8 5.1	3.8 5.1	99 5
Drift of output power		TES)	_				5.1	5
	5.0	R	\\ \frac{1}{2}	1				
	CALL		٧J	'	1	2.9	2.9	∞
		Phantom a	and se	t-up		-ATE	2	
Phantom uncertainty	4.0	R	_ √3	1	1	2.3	2.3	∞
Liquid conductivity (target)	5.0	R	_ √3	0.64	0.43	1.8	1.2	∞
Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	8
Liquid Permittivity (target)	5.0	R	<u>-</u> √3	0.6	0.49	1.7	1.5	∞
Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	8
Combined standard		RSS	U_c	$= \sqrt{\sum_{i=1}^{n} C}$	U_i^2	11.4%	11.3%	236
anded uncertainty(P=95%)	U =		III.	,k=2	2	22.8%	22.6%	TES.
	Liquid conductivity (meas) Liquid Permittivity (target) Liquid Permittivity (meas) Combined standard	Liquid conductivity (meas) 2.5 Liquid Permittivity (target) 5.0 Liquid Permittivity (meas) 2.5 Combined standard	Liquid conductivity (meas) 2.5 N Liquid Permittivity (target) 5.0 R Liquid Permittivity (meas) 2.5 N Combined standard RSS $U = kU$	Liquid conductivity (meas) 2.5 N 1 Liquid Permittivity (target) 5.0 R $\frac{-}{\sqrt{3}}$ Liquid Permittivity (meas) 2.5 N 1 Combined standard RSS U_c	Liquid conductivity (meas) 2.5 N 1 0.64 Liquid Permittivity (target) 5.0 R $\frac{-}{\sqrt{3}}$ 0.6 Liquid Permittivity (meas) 2.5 N 1 0.6 Combined standard RSS $U_c = \sqrt{\sum_{i=1}^{n} C_i}$	Liquid conductivity (meas) 2.5 N 1 0.64 0.43 Liquid Permittivity (target) 5.0 R $\frac{-}{\sqrt{3}}$ 0.6 0.49 Liquid Permittivity (meas) 2.5 N 1 0.6 0.49 Combined standard RSS $U_c = \sqrt{\sum_{i=1}^{n} C_i^2 U_i^2}$	Liquid conductivity (meas) 2.5 N 1 0.64 0.43 1.6 Liquid Permittivity (target) 5.0 R $\frac{-}{\sqrt{3}}$ 0.6 0.49 1.7 Liquid Permittivity (meas) 2.5 N 1 0.6 0.49 1.5 Combined standard RSS $U_c = \sqrt{\sum_{i=1}^{n} C_i^2 U_i^2}$ 11.4%	Liquid conductivity (meas) 2.5 N 1 0.64 0.43 1.6 1.2 Liquid Permittivity (target) 5.0 R $\frac{-}{\sqrt{3}}$ 0.6 0.49 1.7 1.5 Liquid Permittivity (meas) 2.5 N 1 0.6 0.49 1.5 1.2 Combined standard RSS $U_c = \sqrt{\sum_{i=1}^{n} C_i^2 U_i^2}$ 11.4% 11.3% $U_c = \sqrt{\sum_{i=1}^{n} C_i^2 U_i^2}$ 11.4% 11.3% $U_c = \sqrt{\sum_{i=1}^{n} C_i^2 U_i^2}$ 11.4% 11.3%

(G

Page 37 of 69 Report No.: CTA24070400201

Appendix A. EUT Photos and Test Setup Photos

CTATES

CTATES"

Back side(0mm)

Top edge(0mm)

CTATESTING

CTATESTING

Report No.: CTA24070400201 Page 38 of 69

Date: 07/15/2024

Appendix B. Plots of SAR System Check

2450MHz System Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 745

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.831 \text{ S/m}$; $\epsilon r = 40.556$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(7.85, 7.85, 7.85); Calibrated: Sep. 06, 2023

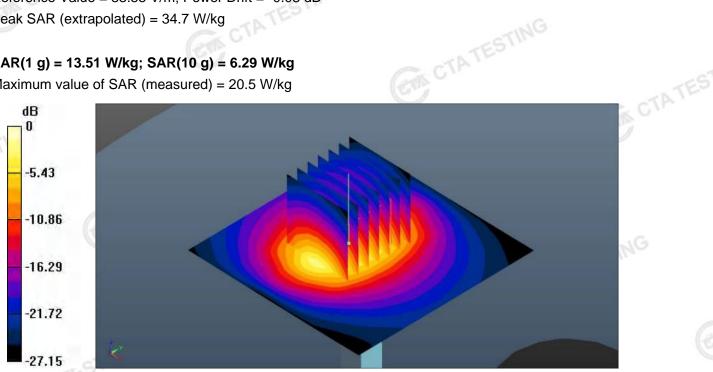
• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.1 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.55 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 34.7 W/kg

SAR(1 g) = 13.51 W/kg; SAR(10 g) = 6.29 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

0 dB = 20.5 W/kg

CTA TESTING System Performance Check 2450MHz 250mW

Report No.: CTA24070400201 Page 39 of 69 5250MHz System Check Date: 07/16/2024

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1301

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 4.607 \text{ S/m}$; $\epsilon r = 36.388$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

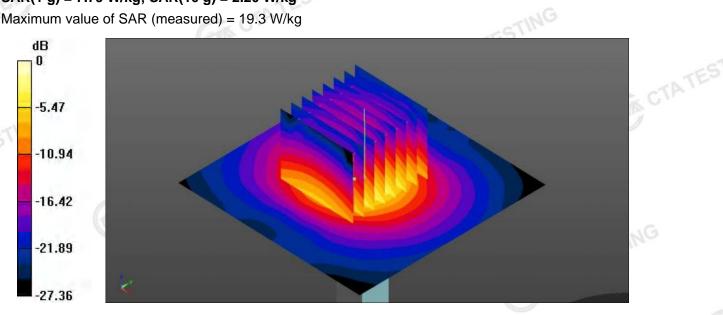
Probe: EX3DV4 - SN7624; ConvF(5.55, 5.55, 5.55); Calibrated: Sep. 06, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 22.5 W/kg

Zoom Scan (7x7x13): Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 26.01 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 47.6 W/kg

SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.20 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

odi 0 dB = 19.3 W/kg

System Performance Check 5250MHz 100mW CTA TESTI

Report No.: CTA24070400201 Page 40 of 69 5750MHz System Check Date: 07/16/2024

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1301

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.305 \text{ S/m}$; $\epsilon r = 37.039$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(4.98, 4.98, 4.98); Calibrated: Sep. 06, 2023

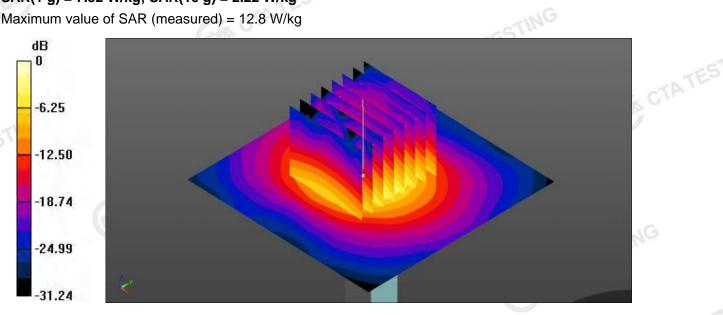
Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 13.3 W/kg


Zoom Scan (7x7x13): Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 19.01 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

J dl 0 dB = 12.8 W/kg

System Performance Check 5750MHz 100mW CTA TESTI

Report No.: CTA24070400201 Page 41 of 69

Appendix C. Plots of SAR Test Data

Date: 07/15/2024

WIFI2.4G_DSSS_Back_0mm_Ch01

Communication System: UID 0, Generic WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.850 \text{ S/m}$; $\epsilon r = 38.169$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(7.85, 7.85, 7.85); Calibrated: Sep. 06, 2023

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: 08/30/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front /Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.68 W/kg

Front /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm CTA TESTING

Reference Value = 3.125 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 2.14 W/kg

SAR(1 g) = 0.747 W/kg; SAR(10 g) = 0.384 W/kg

Maximum value of SAR (measured) = 1.48 W/kg

0 dB = 1.48 W/kg

Page 42 of 69 Report No.: CTA24070400201

#2

Date: 07/16/2024

WLAN 5.2GHz_802.11a_Back_0mm_CH36

Communication System: UID 0, Generic WLAN (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5180 MHz; $\sigma = 4.674 \text{ S/m}$; $\epsilon r = 36.455$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(5.55, 5.55, 5.55); Calibrated: Sep. 06, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (81x81x1): Measurement grid: dx=1.000mm, dy=1.000mm

Maximum value of SAR (interpolated) = 1.41 W/Kg

Zoom Scan (7x7x12): Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.758 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 0.651 W/kg; SAR(10 g) = 0.288 W/kg

Maximum value of SAR (measured) = 1.39 W/kg

Page 43 of 69 Report No.: CTA24070400201

#3

Date: 07/16/2024

WLAN 5.8GHz_802.11a_Back_0mm_CH149

Communication System: UID 0, Generic WLAN (0); Frequency: 5745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5745 MHz; $\sigma = 5.357$ S/m; $\epsilon r = 34.654$; $\rho = 1000$ kg/m3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(4.98, 4.98, 4.98); Calibrated: Sep. 06, 2023

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (81x81x1): Measurement grid: dx=1.000mm, dy=1.000mm

Maximum value of SAR (interpolated) = 1.50 W/Kg

Zoom Scan (8x8x16): Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.412 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 2.15 W/kg

SAR(1 g) = 0.705 W/kg; SAR(10 g) = 0.316 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

Report No.: CTA24070400201 Page 44 of 69

Appendix D. DASY System Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

ac.cn http://www.caict.ac.cn

J23Z60222

Certificate No:

CALIBRATION CERTIFICATE

Object EX3DV4 - SN: 7624

Calibration Procedure(s)

Client

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

September 06, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.) Scheduled (Calibration
Power Meter NRP2	101919	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101547	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101548	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Reference 10dBAttenuator	18N50W-10d8	3 19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20d	3 19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 3846	31-May-23(SPEAG, No.EX-3846_May23)	May-24
DAE4	SN 549	24-Jan-23(SPEAG, No.DAE4-549_Jan23)	Jan-24
DAE4	SN 1744	30-Aug-22(SPEAG, No.DAE4-1744_Aug22)	Aug-23
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-23(CTTL, No.J23X05434)	Jun-24
Network Analyzer E5071C	MY46110673	10-Jan-23(CTTL, No.J23X00104)	Jan-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-3.5	SN 1040	18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan2	

Name Function Signature

Calibrated by: Yu Zongying SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: September 12, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60222

Page 1 of 9

Page 45 of 69 Report No.: CTA24070400201

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx, y, z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization 0 θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Connector Angle. The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:J23Z60222

Page 2 of 9

Report No.: CTA24070400201 Page 46 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624

Basic Calibration Parameters

Sensor X	Sensor Y	Sensor Z	Unc (k=2)
0.57	0.59	0.58	±10.0%
112.6	113.4		110.076
		0.57 0.59	0.57 0.59 0.58

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	200.3	±4.7%	
	Y	0.0	0.0	1.0		212.4		
		Z	0.0	0.0	1.0		202.8	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

Certificate No:J23Z60222

Page 3 of 9

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Report No.: CTA24070400201 Page 47 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.58	10.58	10.58	0.20	1.06	±12.7%
835	41.5	0.90	10.19	10.19	10.19	0.19	1.20	±12.7%
1750	40.1	1.37	8.66	8.66	8.66	0.21	1.13	±12.7%
1900	40.0	1.40	8.35	8.35	8.35	0.33	0.91	±12.7%
2100	39.8	1.49	8.27	8.27	8.27	0.23	1.08	±12.7%
2300	39.5	1.67	8.13	8.13	8.13	0.58	0.67	±12.7%
2450	39.2	1.80	7.85	7.85	7.85	0.63	0.66	±12.7%
2600	39.0	1.96	7.66	7.66	7.66	0.65	0.66	±12.7%
3500	37.9	2.91	7.20	7.20	7.20	0.34	1.00	±13.9%
3700	37.7	3.12	7.00	7.00	7.00	0.36	1.07	±13.9%
3900	37.5	3.32	6.85	6.85	6.85	0.30	1.50	±13.9%
4100	37.2	3.53	6.78	6.78	6.78	0.30	1.35	±13.9%
4200	37.1	3.63	6.68	6.68	6.68	0.30	1.45	±13.9%
4400	36.9	3.84	6.61	6.61	6.61	0.30	1.45	±13.9%
4600	36.7	4.04	6.47	6.47	6.47	0.40	1.30	±13.9%
4800	36.4	4.25	6.37	6.37	6.37	0.40	1.40	±13.9%
4950	36.3	4.40	6.08	6.08	6.08	0.40	1.40	±13.9%
5250	35.9	4.71	5.55	5.55	5.55	0.40	1.50	
5600	35.5	5.07	4.96	4.96	4.96	0.40		±13.9%
5750	35.4	5.22	4.98	4.98	4.98	0.35	1.70	±13.9%

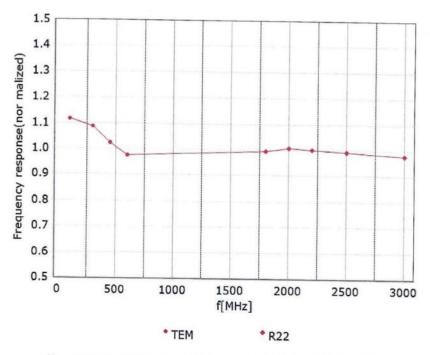
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:J23Z60222

Page 4 of 9

F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

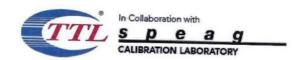
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Report No.: CTA24070400201 Page 48 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

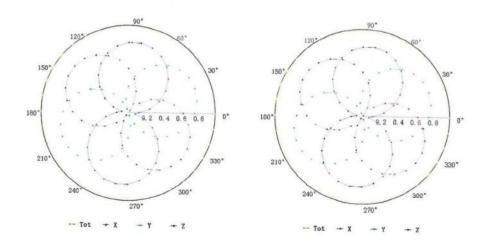
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

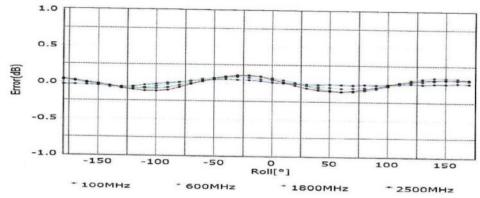
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)


Certificate No:J23Z60222

Page 5 of 9

Report No.: CTA24070400201 Page 49 of 69




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Receiving Pattern (Φ), θ=0°

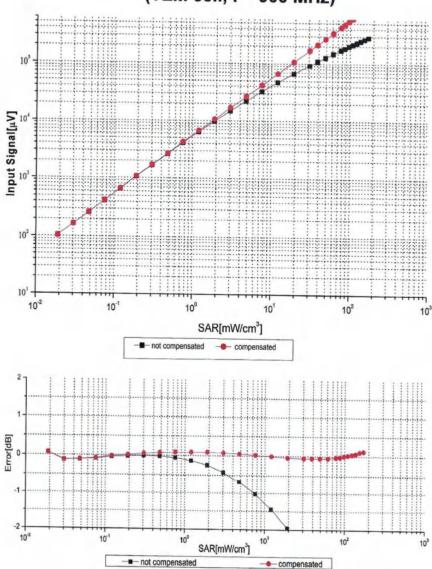
f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:J23Z60222

Page 6 of 9


Report No.: CTA24070400201 Page 50 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

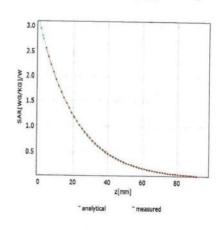
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

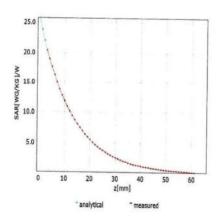
Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No:J23Z60222

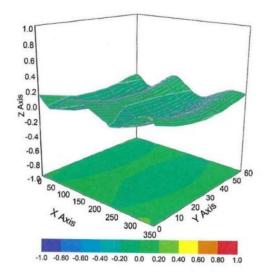
Page 7 of 9

Report No.: CTA24070400201 Page 51 of 69




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:J23Z60222

Page 8 of 9

Report No.: CTA24070400201 Page 52 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	151.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:J23Z60222

Page 9 of 9

Report No.: CTA24070400201 Page 53 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Client : CTA

Certificate No: J23Z60391

CALIBRATION CERTIFICATE

Object

DAE3 - SN: 428

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

August 30, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by, Certificate No.)

Scheduled Calibration

Process Calibrator 753 1971018

12-Jun-23 (CTTL, No.J23X05436)

Jun-24

Calibrated by:

Name

Function

unction

Signature

Reviewed by:

Yu Zongying

SAR Test Engineer

1

Approved by:

Lin Hao

SAR Test Engineer

Qi Dianyuan

SAR Project Leader

25

Issued: September 06, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60391

Page 1 of 3

CTA TESTING

CTA TESTING

GTING

CTATES

Page 54 of 69 Report No.: CTA24070400201

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: J23Z60391

Page 2 of 3

Report No.: CTA24070400201 Page 55 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caict.ac.cn

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = $6.1 \mu V$, full range = -100...+300 m Low Range: 1LSB = $6.1 \nu V$, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV

Calibration Factors	х	Υ	Z
High Range	404.468 ± 0.15% (k=2)	404.804 ± 0.15% (k=2)	404.579 ± 0.15% (k=2)
Low Range	3.95934 ± 0.7% (k=2)	3.95437 ± 0.7% (k=2)	3.91875 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	258.5° ± 1°

Certificate No: J23Z60391

Page 3 of 3

Page 56 of 69 Report No.: CTA24070400201

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

CTA Client

Certificate No: J23Z60389

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 745

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: August 28, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Power sensor NRP8S	104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by:

Issued: September 1, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Qi Dianyuan

Certificate No: J23Z60389

Page 1 of 6

SAR Project Leader

Report No.: CTA24070400201 Page 57 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- . SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J23Z60389

Page 2 of 6

Report No.: CTA24070400201 Page 58 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: cttl@chinattl.com http://www.caict.ac.en

Measurement Conditions

DASY evetem configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 18.7 % (k=2)

Certificate No: J23Z60389

Page 3 of 6

Report No.: CTA24070400201 Page 59 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: cttl@chinattl.com http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2Ω+ 5.40jΩ	
Return Loss	- 23.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.077 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: J23Z60389

Page 4 of 6

Report No.: CTA24070400201 Page 60 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Date: 2023-08-28

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 745

Communication System: UID 0, CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.835$ S/m; $\varepsilon_r = 39.03$; $\rho = 1000$ kg/m³

Phantom section: Right Section

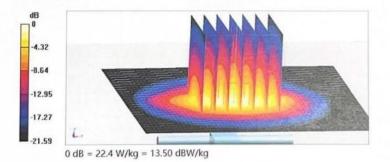
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68) @ 2450 MHz; Calibrated: 2023-03-31
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = -0.05 dB

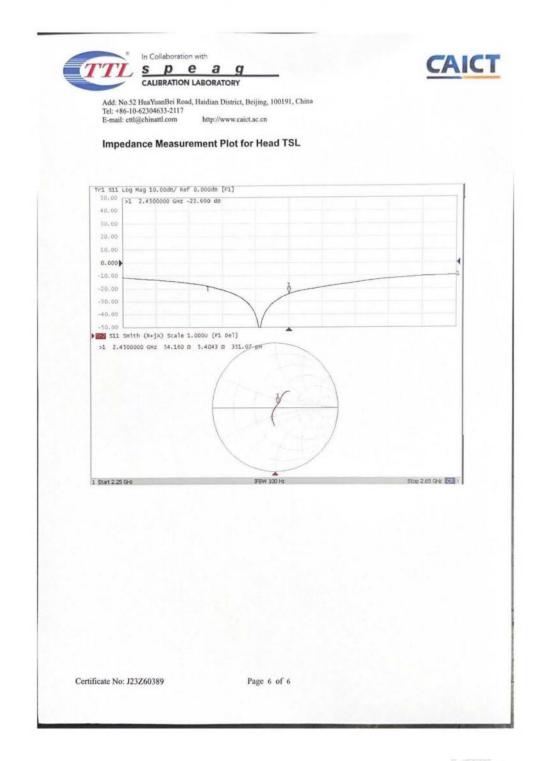

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.16 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 48.5%

Maximum value of SAR (measured) = 22.4 W/kg



Certificate No: J23Z60389

Page 5 of 6

Report No.: CTA24070400201 Page 61 of 69

CTA TESTING

CITY CITY

STING

Page 62 of 69 Report No.: CTA24070400201

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caic.ac.cn ATC Client

Certificate No: Z23-60087

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1301

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: February 16, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	10-May-22 (CTTL, No.J22X03103)	May-23
Power sensor NRP6A	101369	10-May-22 (CTTL, No.J22X03103)	May-23
Reference Probe EX3DV4	SN 7464	19-Jan-23 (CTTL-SPEAG,No.Z22-60565)	Jan-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49070393	17-May-23 (CTTL, No.J22X03157)	May-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	N. L.
Reviewed by:	Lin Hao	SAR Test Engineer	林杨
Approved by:	Qi Dianyuan	SAR Project Leader	-0 D

Issued: February 24, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z23-60087

Page 1 of 8

Report No.: CTA24070400201 Page 63 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z23-60087

Page 2 of 8

Report No.: CTA24070400201 Page 64 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caiet.ac.en http://www.caie.ac.en

Measurement Conditions

DASY system configuration, as far as not given on page 1

ASY system configuration, as far as	not given on page 1.	
DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.7 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.0 W/kg ± 24.2 % (k=2)

Certificate No: Z23-60087

Page 3 of 8

Page 65 of 69 Report No.: CTA24070400201

CTATES

CTATES

STING

STING

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caic.ac.cn

E-mail: emf@caict.ac.cn

Head TSL parameters at 5600MHz

The following parameters and calculations were applied. Permittivity Conductivity Temperature 5.07 mho/m Nominal Head TSL parameters 22.0 °C 35.5 4.95 mho/m ± 6 % 35.6 ± 6 % (22.0 ± 0.2) °C Measured Head TSL parameters <1.0 °C

SAR result with Head TSL at 5600MHz

Head TSL temperature change during test

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 24.2 % (k=2)

Certificate No: Z23-60087

Page 4 of 8

Report No.: CTA24070400201 Page 66 of 69

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250MHz

Impedance, transformed to feed point	48.1Ω- 1.23jΩ	
Return Loss	- 32.6dB	

Antenna Parameters with Head TSL at 5600MHz

Impedance, transformed to feed point	52.4Ω+ 2.45jΩ	
Return Loss	- 29.5dB	

Antenna Parameters with Head TSL at 5750MHz

Impedance, transformed to feed point	51.4Ω+ 2.84jΩ
Return Loss	- 30.1dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.099 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Walladalada by	0. 2.10

Certificate No: Z23-60087

Page 5 of 8

Report No.: CTA24070400201 Page 67 of 69

Date: 2023-02-16

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1301

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; σ = 4.582 S/m; ϵ_r = 36.22; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 4.952 S/m; ϵ_r = 35.61; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.112 S/m; ϵ_r = 35.39; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN7464; ConvF(5.42, 5.42, 5.42) @ 5250 MHz;
 ConvF(4.85, 4.85, 4.85) @ 5600 MHz; ConvF(4.92, 4.92, 4.92) @ 5750 MHz;
 Calibrated: 2023-01-19

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1556; Calibrated: 2023-01-11

 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.45 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.2 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65%

Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.07 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 36.1 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 62%

Maximum value of SAR (measured) = 19.8 W/kg

Certificate No: Z23-60087

Page 6 of 8

Report No.: CTA24070400201 Page 68 of 69

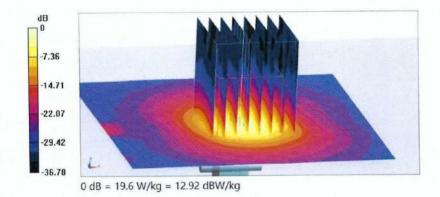
ESTING

ESTING

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@eaiet.ae.en http://www.caie.ae.en

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

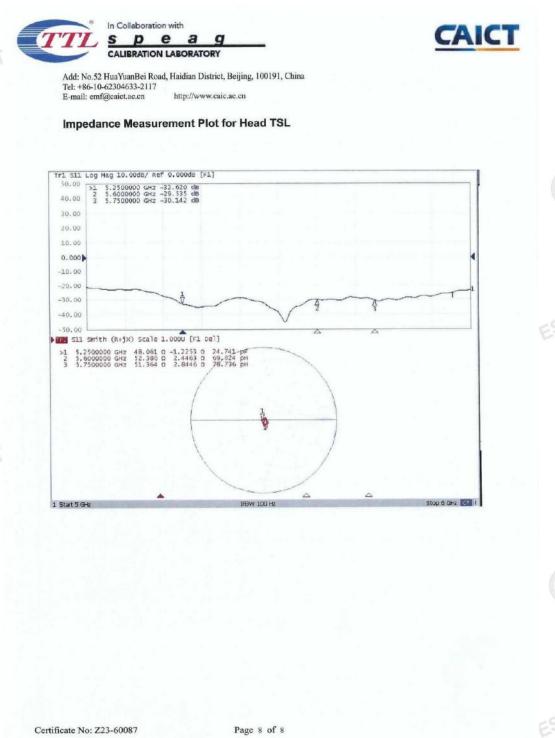

Reference Value = 59.52 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 36.6 W/kg

SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.19 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 60.7% Maximum value of SAR (measured) = 19.6 W/kg



Certificate No: Z23-60087

Page 7 of 8

Report No.: CTA24070400201 Page 69 of 69

*****END OF REPORT****

CTATE!