

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358

Web: www.mrt-cert.com

Report No.: 1908RSU054-U1 Report Version: V01 Issue Date: 02-27-2020

MEASUREMENT REPORT

FCC PART 15.247 / IC RSS-247

FCC ID: 2ASC3WA0867B

IC: 24992-WA0867B

Applicant: Positec Technology (China) Co., Ltd.

Application Type: Certification

Product: Node

Model No.: WA0867.B

Brand Name: WORX

FCC Classification: Digital Transmission System (DTS)

FCC Rule Part(s): Part 15 Subpart C (Section 15.247)

ISED Rule(s): RSS-247 Issue 2, RSS-GEN Issue 5

Test Procedure(s): ANSI C63.10-2013

Test Date: December 16 ~ 26, 2019

Reviewed By: Com Como

Kevin Guo

Approved By: Robin Wu

Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

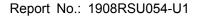
The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 2ASC3WA0867B IC: 24992-WA0867B Page Number: 1 of 40

Revision History

Report No.	Version	Description	Issue Date	Note
1908RSU054-U1	Rev. 01	Initial Report	02-27-2020	Valid

FCC ID: 2ASC3WA0867B IC: 24992-WA0867B Page Number: 2 of 40

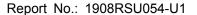

CONTENTS

De	scription	on	Page
1.	INTR	RODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PRO	DUCT INFORMATION	7
	2.1.	Feature of Equipment under Test	7
	2.2.	Product Specification Subjective to this Report	7
	2.3.	Test Mode	7
	2.4.	Test Software	7
	2.5.	Duty Cycle	8
	2.6.	EMI Suppression Device(s)/Modifications	8
	2.7.	Labeling Requirements	9
3.	DES	CRIPTION of TEST	10
	3.1.	Evaluation Procedure	10
	3.2.	AC Line Conducted Emissions	10
	3.3.	Radiated Emissions	11
4.	ANT	ENNA REQUIREMENTS	12
5.	TES	T EQUIPMENT CALIBRATION DATE	13
6.	MEA	SUREMENT UNCERTAINTY	15
7.	TES	T RESULT	16
	7.1.	Summary	16
	7.2.	99%Bandwidth Measurement	17
	7.2.1.	. Test Limit	17
	7.2.2.	. Test Procedure used	17
	7.2.3.	. Test Setting	17
	7.2.4	. Test Setup	17
	7.2.5.	. Test Result	18
	7.3.	6dB Bandwidth Measurement	19
	7.3.1.	. Test Limit	19
	7.3.2.	. Test Procedure used	19
	7.3.3.	. Test Setting	19
	7.3.4.	•	
	7.3.5.	. Test Result	20
	7.4.	Output Power Measurement	21

	7.4.1.	Test Limit	21
	7.4.2.	Test Procedure Used	21
	7.4.3.	Test Setting	21
	7.4.4.	Test Setup	21
	7.4.5.	Test Result	22
	7.5.	Power Spectral Density Measurement	23
	7.5.1.	Test Limit	23
	7.5.2.	Test Procedure Used	23
	7.5.3.	Test Setting	23
	7.5.4.	Test Setup	24
	7.5.5.	Test Result	25
	7.6.	Conducted Band Edge and Out-of-Band Emissions	26
	7.6.1.	Test Limit	26
	7.6.2.	Test Procedure Used	26
	7.6.3.	Test Settitng	26
	7.6.4.	Test Setup	27
	7.6.5.	Test Result	28
	7.7.	Radiated Spurious Emission Measurement	29
	7.7.1.	Test Limit	29
	7.7.2.	Test Procedure Used	29
	7.7.3.	Test Setting	29
	7.7.4.	Test Setup	31
	7.7.5.	Test Result	32
	7.8.	AC Conducted Emissions Measurement	35
	7.8.1.	Test Limit	35
	7.8.2.	Test Setup	35
	7.8.3.	Test Result	36
8.	CONC	CLUSION	38
App	endix /	A - Test Setup Photograph	39
Apr	endix l	B - EUT Photograph	40

General Information

Applicant:	Positec Technology (China) Co., Ltd.		
Applicant Address	18, Dongwang Road, Suzhou Industrial park, Jiangsu 215123, P.R.		
Applicant Address:	China		
Manufacturer:	Positec Technology (China) Co., Ltd.		
Manufacturer Address:	18, Dongwang Road, Suzhou Industrial park, Jiangsu 215123, P.R.		
	China		
Test Site:	MRT Technology (Suzhou) Co., Ltd		
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development		
	Zone, Suzhou, China		
Test Device Serial No.:	N/A ☐ Production ☐ Pre-Production ☐ Engineering		


Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Designation No. CN1166) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

FCC ID: 2ASC3WA0867B Page Number: 5 of 40

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	Node
Model No.:	WA0867.B
Brand Name:	WORX
Operating Frequency:	911MHz
Working Voltage:	DC 5V by Robotic mowers

2.2. Product Specification Subjective to this Report

Operating Frequency:	911MHz
Type of Modulation:	ASK
Channel Number:	1
Antenna Type:	Matel Antenna
Antenna Gain:	-0.5dBi

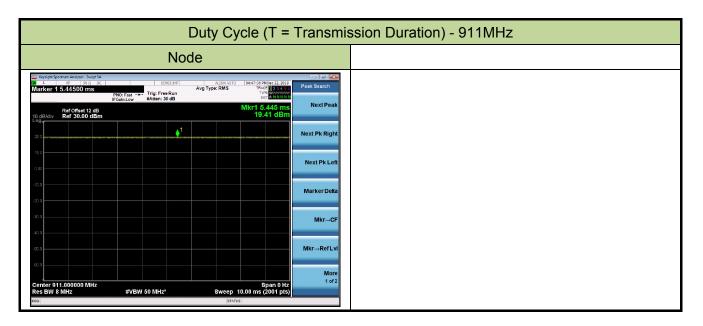
2.3. Test Mode

Test Mode
Mode 1: Transmit at 911MHz (Node)

2.4. Test Software

The test utility software used during testing was engineering directive order by manufacturer.

FCC ID: 2ASC3WA0867B Page Number: 7 of 40



2.5. Duty Cycle

2.4G Transmitter, the maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = RMS. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle		
Node	100%		

2.6. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

IC: 24992-WA0867B

FCC ID: 2ASC3WA0867B Page Number: 8 of 40

2.7. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

RSP-100 Issue 12 Section 5

In addition to complying with the applicable RSSs and RSP-100, each unit of a product model (i.e. of a radio apparatus) shall meet the labelling requirements set out in this section prior to being marketed in Canada or imported into Canada.

If the dimensions of the product are extremely small or it is not practical to place the label or marking on the product, and if electronic labelling cannot be implemented, the label shall be placed in a prominent location in the user manual supplied with the product, as agreed upon with ISED prior to the certification application. The user manual may be in an electronic format; if it is not supplied to the user, the user manual must be readily available.

FCC ID: 2ASC3WA0867B Page Number: 9 of 40

Report No.: 1908RSU054-U1

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance was used in the measurement of the device.

Deviation from measurement procedure......None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

FCC ID: 2ASC3WA0867B Page Number: 10 of 40

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

FCC ID: 2ASC3WA0867B Page Number: 11 of 40

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the device is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The device unit complies with the requirement of §15.203.

FCC ID: 2ASC3WA0867B Page Number: 12 of 40

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2020/04/15
Two-Line V-Network	R&S	ENV 216	MRTSUE06002	1 year	2020/06/13
Two-Line V-Network	R&S	ENV 216	MRTSUE06003	1 year	2020/06/13
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2020/08/08
Shielding Room	MIX-BEP	Chamber-SR2	MRTSUE06215	N/A	N/A

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2020/08/01
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2020/09/03
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/13
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2020/03/31
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2020/10/13
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2020/12/17
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2020/08/08
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06212	1 year	2020/04/30

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2020/08/01
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/13
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2020/10/27
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2020/12/17
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2020/12/13
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2020/04/30

FCC ID: 2ASC3WA0867B Page Number: 13 of 40

Report No.: 1908RSU054-U1

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2020/04/15
EXA Signal Analyzer	Keysight	N9010B	MRTSUE06452	1 year	2020/07/11
Signal Analyzer	R&S	FSV40	MRTSUE06218	1 year	2020/04/15
Power Meter	Agilent	U2021XA	MRTSUE06030	1 year	2020/11/17
USB wideband power sensor	Keysight	U2021XA	MRTSUE06446	1 year	2020/06/30
USB wideband power sensor	Keysight	U2021XA	MRTSUE06447	1 year	2020/06/30
Bluetooth Test Set	Anritsu	MT8852B-042	MRTSUE06389	1 year	2020/06/13
Audio Analyzer	Agilent	U8903B	MRTSUE06143	1 year	2020/06/13
Modulation Analyzer	HP	8901A	MRTSUE06098	1 year	2020/10/10
Wideband Radio Communication Tester	R&S	CMW 500	MRTSUE06243	1 year	2020/11/07
DC Power Supply	GWINSTEK	DPS-3303C	MRTSUE06064	N/A	N/A
Temperature & Humidity Chamber	BAOYT	BYH-150CL	MRTSUE06051	1 year	2020/11/07
Thermohygrometer	testo	608-H1	MRTSUE06401	1 year	2020/08/08

Software	Version	Function
EMI Software	V3	EMI Test Software

FCC ID: 2ASC3WA0867B Page Number: 14 of 40

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement - SR2

The maximum measurement uncertainty is evaluated as:

9kHz~150kHz: 3.84dB 150kHz~30MHz: 3.46dB

Radiated Emission Measurement - AC1

The maximum measurement uncertainty is evaluated as:

Horizontal: 30MHz~300MHz: 4.07dB

300MHz~1GHz: 3.63dB

1GHz~18GHz: 4.16dB

Vertical: 30MHz~300MHz: 4.18dB

300MHz~1GHz: 3.60dB 1GHz~18GHz: 4.76dB

Radiated Emission Measurement - AC2

The maximum measurement uncertainty is evaluated as:

Horizontal: 30MHz~300MHz: 3.75dB

300MHz~1GHz: 3.53dB

1GHz~18GHz: 4.28dB

Vertical: 30MHz~300MHz: 3.86dB

300MHz~1GHz: 3.53dB 1GHz~18GHz: 4.33dB

FCC ID: 2ASC3WA0867B IC: 24992-WA0867B

7. TEST RESULT

7.1. Summary

FCC Section(s)	IC Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference	
N/A	RSS-Gen [6.7]	99% Bandwidth	N/A		Pass	Section 7.2	
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	≥ 500kHz		Pass	Section 7.3	
15.247(b)(3)	RSS-247 [5.4(d)]	Output Power	≤ 1Watt & EIRP ≤ 4Watt	Conducted	Pass	Section 7.4	
15.247(e)	RSS-247 [5.2]	Power Spectral Density	≤ 8dBm/3kHz		Pass	Pass	Section 7.5
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≤ 30dBc (Average)		Pass	Section 7.6	
15.205 15.209	RSS-247 [5.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.7	
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8	

Notes:

- 1) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

FCC ID: 2ASC3WA0867B Page Number: 16 of 40

7.2. 99%Bandwidth Measurement

7.2.1.Test Limit

N/A

7.2.2.Test Procedure used

ANSI C63.10-2013 Section 6.9.3

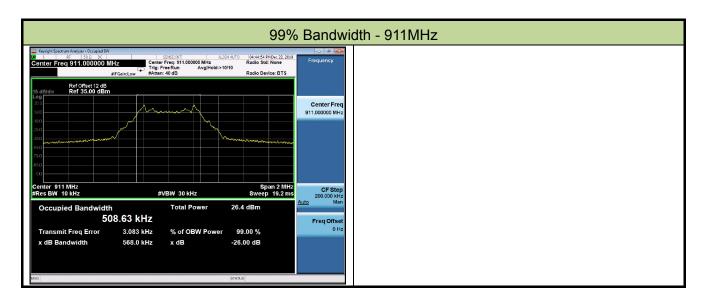
7.2.3.Test Setting

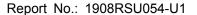
- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Span = 1.5 times to 5.0 times the OBW.
- 3. RBW = 1 % to 5 % of the OBW.
- 4. VBW \geq 3 × RBW.
- 5. Detector = Peak.
- 6. Trace mode = max hold.
- 7. Use the 99 % power bandwidth function of the instrument.

7.2.4.Test Setup

Spectrum Analyzer attenuator EUT

FCC ID: 2ASC3WA0867B Page Number: 17 of 40





7.2.5.Test Result

Product	Node	Temperature	25°C
Test Engineer	Ternence Wang	Relative Humidity	52%
Test Site	TR3	Test Date	2019/12/22

Test Mode	Frequency (MHz)	99% Bandwidth (MHz)	Result
Node	911	0.51	Pass

7.3. 6dB Bandwidth Measurement

7.3.1.Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

7.3.2.Test Procedure used

ANSI C63.10-2013 - Section 11.8

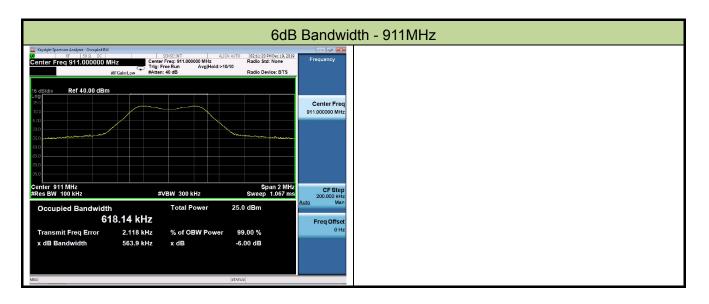
7.3.3.Test Setting

- The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set RBW = 100 kHz
- 3. VBW ≥ 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace was allowed to stabilize

7.3.4.Test Setup

Spectrum Analyzer attenuator EUT

FCC ID: 2ASC3WA0867B Page Number: 19 of 40



7.3.5.Test Result

Product	Node	Temperature	25°C
Test Engineer	Ternence Wang	Relative Humidity	52%
Test Site	TR3	Test Date	2019/12/19

Test Mode	Frequency	6dB Bandwidth	Limit	Result
	(MHz)	(MHz)	(MHz)	
Node	911	0.56	≥ 0.5	Pass

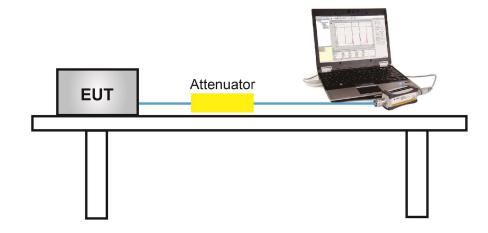
7.4. Output Power Measurement

7.4.1.Test Limit

The maximum out power shall be less 1 Watt (30dBm) and the E.I.R.P shall not exceed 4 Watt (36.02dBm).

The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.4.2.Test Procedure Used


ANSI C63.10 - Section 11.9.2.3.2

7.4.3.Test Setting

Average Power Measurement

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

7.4.4.Test Setup

FCC ID: 2ASC3WA0867B Page Number: 21 of 40

7.4.5.Test Result

Product	Node	Temperature	23°C
Test Engineer	Ternence Wang	Relative Humidity	51%
Test Site	TR3	Test Date	2019/12/19

Test Mode	Freq.	Average Power	Limit	E.I.R.P	E.I.R.P Limit	Result
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	
Node	911	7.52	≤ 30.00	7.02	≤ 36.02	Pass

Note: E.I.R.P (dBm) = Average Power (dBm) + Antenna Gain (dBi), Antenna Gain = -0.5 dBi.

FCC ID: 2ASC3WA0867B Page Number: 22 of 40

7.5. Power Spectral Density Measurement

7.5.1.Test Limit

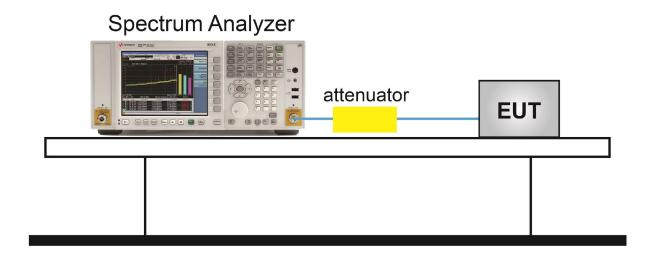
The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power spectral density.

7.5.2.Test Procedure Used

ANSI C63.10 Section 11.10.5

7.5.3.Test Setting


- 1. Measure the duty cycle (x) of the transmitter output signal.
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. RBW = 10 kHz.
- 5. VBW = 30 kHz.
- Detector = RMS.
- 7. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- 8. Sweep time = auto couple.
- 9. Don't use sweep triggering. Allow sweep to "free run".
- 10. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.

FCC ID: 2ASC3WA0867B Page Number: 23 of 40

7.5.4.Test Setup

7.5.5.Test Result

Product	Node	Temperature	23°C
Test Engineer	Ternence Wang	Relative Humidity	52%
Test Site	TR3	Test Date	2019/12/19

Test Mode	Freq.	AVGPSD	Duty	Final	Limit	Result
	(MHz)	(dBm /	Cycle	AVGPSD	(dBm / 3kHz)	
		10kHz)	(%)	(dBm / 3kHz)		
ASK	911	11.89	100	6.66	≤ 8.00	Pass

Note: Final AVGPSD (dBm / 3kHz) = AVGPSD (dBm / 10kHz) + 10*Log(3/10).

7.6. Conducted Band Edge and Out-of-Band Emissions

7.6.1.Test Limit

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100 kHz bandwidth per the PSD procedure.

7.6.2.Test Procedure Used

ANSI C63.10 Section 11.11

7.6.3.Test Settitng

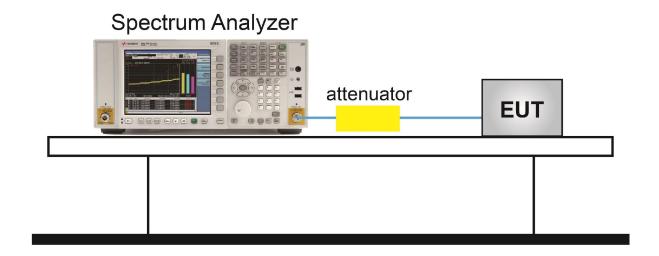
Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to ≥ 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW ≥ 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize

Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 1.3MHz
- 3. VBW = 4MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

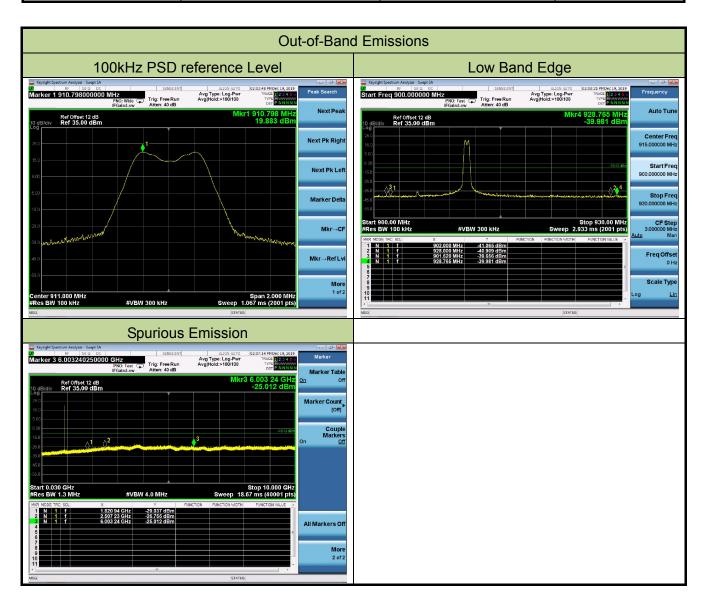
FCC ID: 2ASC3WA0867B IC: 24992-WA0867B



Test Notes

- 1. RBW was set to 1.3Mhzrather than 100 kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100 kHz bandwidth. However, since the traces in the following plots are measured with a 1.3MHzRBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1.3Mhzbandwidth.
- For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present

7.6.4.Test Setup



7.6.5.Test Result

Product	Node	Temperature	23°C
Test Engineer	Ternence Wang	Relative Humidity	52%
Test Site	TR3	Test Date	2019/12/19

Test Mode	Frequency (MHz)	Limit	Result
ASK	911	30dBc	Pass

FCC ID: 2ASC3WA0867B IC: 24992-WA0867B

7.7. Radiated Spurious Emission Measurement

7.7.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209							
Frequency	Measured Distance						
[MHz]	[V/m]	[Meters]					
0.009 - 0.490	2400/F (kHz)	300					
0.490 - 1.705	24000/F (kHz)	30					
1.705 - 30	30	30					
30 - 88	100	3					
88 - 216	150	3					
216 - 960	200	3					
Above 960	500	3					

7.7.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.4 (Standard test method below 30MHz)

ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.7.3.Test Setting

Table 1 - RBW as a function of frequency

Frequency	RBW		
9 ~ 150 kHz	200 ~ 300 Hz		
0.15 ~ 30 MHz	9 ~ 10 kHz		
30 ~ 1000 MHz	100 ~ 120 kHz		
> 1000 MHz	1 MHz		

FCC ID: 2ASC3WA0867B Page Number: 29 of 40

Quasi-Peak Measurements below 1GHz

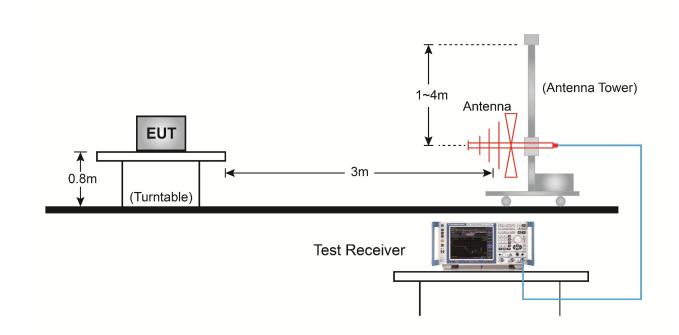
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as specified in Table 1
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

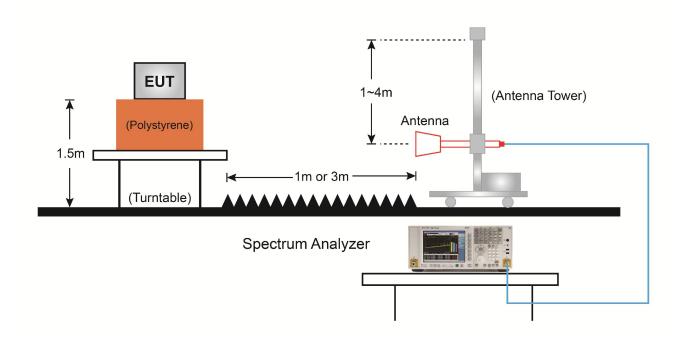
Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle ≥ 98%, set VBW = 10Hz If the EUT duty cycle is < 98%, set VBW ≥ 1/T. T is the minimum transmission duration
- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize


FCC ID: 2ASC3WA0867B Page Number: 30 of 40



7.7.4.Test Setup

Below 1GHz Test Setup:

Above 1GHz Test Setup:

7.7.5.Test Result

Product	Node	Temperature	26°C		
Test Engineer	Kyrie Xie	Relative Humidity	56%		
Test Site	AC1	Test Date	2019/12/19		
Test Mode:	Node	Frequency:	911MHz		
Remark:	 Average measurement was not performed if peak level lower than average limit (54dBµV/m). Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report. 				

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	2462.0	44.9	-1.0	43.9	82.8	-38.9	Peak	Horizontal
	2734.0	45.5	-0.1	45.4	74.0	-28.6	Peak	Horizontal
	3643.5	40.5	2.3	42.8	74.0	-31.2	Peak	Horizontal
*	5921.5	37.7	7.8	45.5	82.8	-37.3	Peak	Horizontal
*	2462.0	44.2	-1.0	43.2	82.8	-39.6	Peak	Vertical
	2734.0	46.1	-0.1	46.0	74.0	-28.0	Peak	Vertical
	3643.5	42.2	2.3	44.5	74.0	-29.5	Peak	Vertical
*	5462.5	39.0	7.0	46.0	82.8	-36.8	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 30dBc of the fundamental emission level (112.8dBµV/m) or FCC 15.209 which is higher.

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)


FCC ID: 2ASC3WA0867B IC: 24992-WA0867B

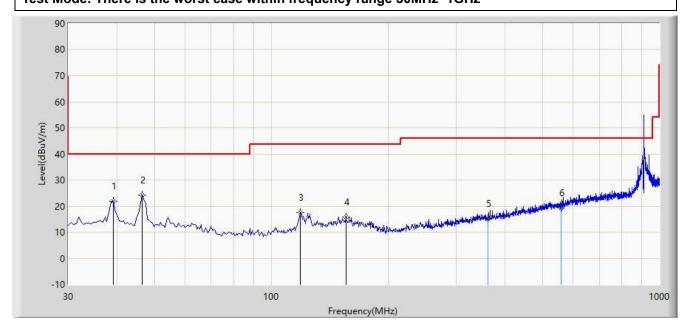
The worst case of Radiated Emission below 1GHz:

Test Mode: There is the worst case within frequency range 30MHz~1GHz					
EUT: Node Power: AC 120V/60Hz					
Probe: VULB 9168 _20-2000MHz	Polarity: Horizontal				
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kyrie Xie				
Site: AC1	Time: 2019/12/20 - 22:02				

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	50.370	12.537	-1.568	-27.463	40.000	14.105	QP
2			87.230	9.880	-0.334	-30.120	40.000	10.215	QP
3			121.665	13.649	0.350	-29.851	43.500	13.299	QP
4			149.795	14.468	-0.736	-29.032	43.500	15.203	QP
5			245.340	12.879	-0.027	-33.121	46.000	12.905	QP
6			379.200	16.713	0.598	-29.287	46.000	16.115	QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)


Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report.

Note 3: We don't mark the fundamental frequency (911MHz) in the data plot as above.

FCC ID: 2ASC3WA0867B Page Number: 33 of 40

Test Mode: There is the worst case within frequency range 30MHz~1GHz					
EUT: Node Power: AC 120V/60Hz					
Probe: VULB 9168 _20-2000MHz	Polarity: Vertical				
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kyrie Xie				
Site: AC1	Time: 2019/12/20 - 22:03				

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			39.215	21.814	7.321	-18.186	40.000	14.493	QP
2			46.490	24.223	10.022	-15.777	40.000	14.200	QP
3			118.755	17.553	4.494	-25.947	43.500	13.059	QP
4			155.615	15.934	0.684	-27.566	43.500	15.250	QP
5			361.255	15.287	-0.453	-30.713	46.000	15.740	QP
6		*	557.680	19.290	-0.408	-26.710	46.000	19.697	QP

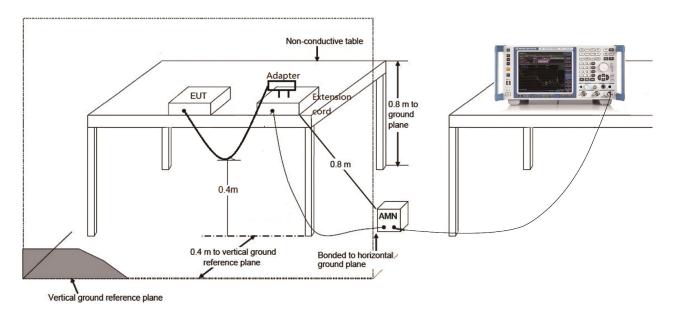
Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

Note 3: We don't mark the fundamental frequency (911MHz) in the data plot as above.

7.8. AC Conducted Emissions Measurement

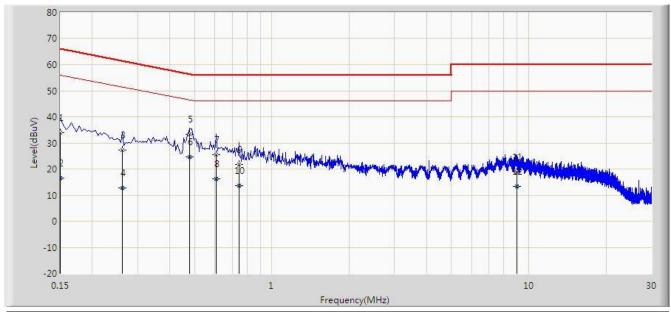

7.8.1.Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits							
Frequency (MHz)	QP (dBμV)	Average (dBµV)					
0.15 - 0.50	66 - 56	56 - 46					
0.50 - 5.0	56	46					
5.0 - 30	60	50					

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

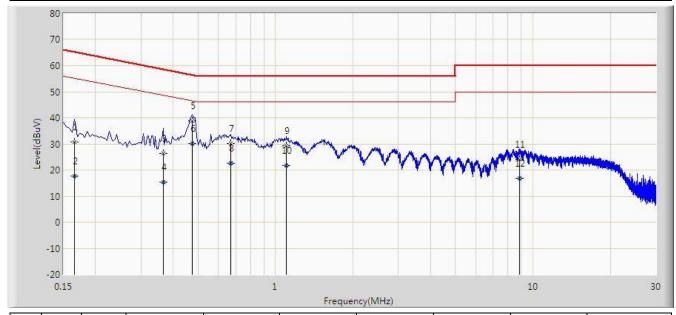
7.8.2.Test Setup


FCC ID: 2ASC3WA0867B Page Number: 35 of 40

7.8.3.Test Result

Site: SR2	Time: 2019/12/19 - 15:39				
Limit: FCC_Part15.207_CE_AC Power	Engineer: Liz Yuan				
Probe: ENV216_101683_Filter On	Polarity: Line				
EUT: Node	Power: AC 120V/60Hz				
Test Mode: Transmit at 911MHz by Node					

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1		*	0.150	33.923	22.755	-32.077	66.000	11.168	QP
2			0.150	16.650	5.482	-39.350	56.000	11.168	AV
3			0.262	27.215	17.241	-34.153	61.368	9.974	QP
4			0.262	12.814	2.841	-38.553	51.368	9.974	AV
5			0.478	33.370	23.221	-23.004	56.374	10.149	QP
6			0.478	24.591	14.442	-21.783	46.374	10.149	AV
7			0.606	25.651	15.539	-30.349	56.000	10.112	QP
8			0.606	16.132	6.020	-29.868	46.000	10.112	AV
9			0.746	21.598	11.559	-34.402	56.000	10.039	QP
10			0.746	13.496	3.457	-32.504	46.000	10.039	AV
11			8.994	18.862	8.709	-41.138	60.000	10.153	QP
12			8.994	13.457	3.304	-36.543	50.000	10.153	AV


Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

Site: SR2	Time: 2019/12/19 - 15:45				
Limit: FCC_Part15.207_CE_AC Power	Engineer: Liz Yuan				
Probe: ENV216_101683_Filter On	Polarity: Neutral				
EUT: Node	Power: AC 120V/60Hz				
Test Mode: Transmit at 911MHz by Node					

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1		*	0.166	30.620	20.549	-34.538	65.158	10.071	QP
2			0.166	17.564	7.493	-37.595	55.158	10.071	AV
3			0.366	26.417	16.330	-32.174	58.591	10.087	QP
4			0.366	15.316	5.229	-33.275	48.591	10.087	AV
5			0.474	38.790	28.623	-17.653	56.444	10.167	QP
6			0.474	30.013	19.846	-16.430	46.444	10.167	AV
7			0.670	30.184	20.092	-25.816	56.000	10.092	QP
8			0.670	22.602	12.510	-23.398	46.000	10.092	AV
9			1.102	29.199	19.294	-26.801	56.000	9.905	QP
10			1.102	21.634	11.730	-24.366	46.000	9.905	AV
11			8.894	24.073	13.902	-35.927	60.000	10.171	QP
12			8.894	16.667	6.496	-33.333	50.000	10.171	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

Report No.: 1908RSU054-U1

8. CONCLUSION

The data collected relate only the item(s) tested and show that the device is compliance with Part 15C of the FCC Rules and ISED Rules.

_____ The End _____

Appendix A - Test Setup Photograph

Refer to "1908RSU054-UT" file.

FCC ID: 2ASC3WA0867B Page Number: 39 of 40

Appendix B - EUT Photograph

Refer to "1908RSU054-UE" file.

FCC ID: 2ASC3WA0867B Page Number: 40 of 40