AW-CM358

IEEE 802.11a/b/g/n/ac WLAN with Bluetooth 5.2 Combo LGA Module

Datasheet

Rev. C

DF

(For Standard)

 1

 FORM NO.: FR2-015_A
 Responsible Department : WBU
 Expiry Date: Forever

 The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

Features WLAN

- 1 antennas to support 1(Transmit) × 1(Receive) technology and Bluetooth
- High speed wireless connection up to 433.3Mbps transmit/receive PHY rate using 80MHz bandwidth
- Backward compatibility with legacy 802.11 ac/n/a/g/b technology.
- 20MHz bandwidth/ channel, 40MHz bandwidth/ channel, upper/ lower 20MHz packets in 40MHz channel, 20MHz duplicate legacy packets in 40MHz channel mode operation.
- ◆ 80MHz bandwidth/ channel, 4 positions of 20MHz packets in 80MHz channel, upper/ lower 40MHz packets in 80MHz channel, 20MHz quadruplicate legacy packets in 80MHz channel mode operation.
- Dynamic frequency selection (without radar detection)

Bluetooth

- Baseband and radio BDR and EDR packet types – 1Mbps (GFSK), 2Mbps (π/4-DQPSK), and 3Mbps (8DPSK).
- Bluetooth 5.2 support.
- Enhanced Data Rate (EDR) compliant for both 2Mbps and 3Mbps supported.
- High speed UART and PCM for Bluetooth.
- Fully functional Bluetooth baseband-AFH, forward error correction, header error control, access code correlation, CRC, encryption bit stream generation, and whitening.

- Enhanced radar detection for long and short pulse radar.
- Enhanced AGC scheme for DFS channel.
- 20/40/80Mhz coexistence with middle-packet detection (GI detection) for enhanced CCA.
- 1 spatial stream STBC reception.
- LDPC transmission and reception for both 802.11n and 802.11ac.
- ◆ 256 QAM (MCS 8, 9) modulation, optional support for 802.11ac MCS 9 in 20MHz using LDPC.
- Short guard interval.
- Temporal Ley Integrity Protocol (TKIP)/ Wired Equivalent Privacy (WEP)/ Advanced Encryption Standard (AES)/ Counter-Mode/ CBC-MAC Protocol (CCMP).
- Cipher-Based Message Authentication Code (CMAC)/ WLAN Authentication and Privacy Infrastructure (WAPI).
- External Crystal frequency
- Adaptive Frequency Hopping (AFH) using Packet Error Rate (PER).
- SCO/ eSCO links with hardware accelerated audio signal processing and hardware supported PPEC algorithm for speech quality improvement.
- Standard Bluetooth power saving mechanisms.
- Automatic ACL packet type selection.
- Full master and slave piconet support.
- Scatternet support.
- Enhanced Power Control (EPC).

Expiry Date: Forever

FORM NO.: FR2-015 A Responsible Department : WBU The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

- Channel Quality Driven Data Rate (CQDDR).
- Encryption (AES) support.
- Supports link layer topology to be master and slave (connects up to 16 links).
- LE Privacy 1.2
- LE Secure Connection.

- LE Data Length Extension.
- 2 Mbps LE
- Direction Finding Connectionless Angle of Departure (AoD).
- Direction Finding Connection oriented Angle of Arrival (AoA)

Revision History

Document NO: R2-2358-DST-01

Version	Revision Date	DCN NO.	Description	Initials	Approved
Α	2020/11/13	DCN019305	Initial Version	JM.Pang	Chihhao Liao
В	2021/04/17	DCN021503	• Datasheet format update	JM.Pang	Chihhao Liao
С	2021/08/05	DCN022882	• Update to BT5.2	JM.Pang	Chihhao Liao

Table of Contents

Features	····· 2
Revision History	••••• 4
Table of Contents	5
1. Introduction	6
1.1 Product Overview	6
1.2 Specifications Table	8
1.2.1 General	7
1.2.2 WLAN	7
1.2.3 Bluetooth	9
1.2.4 Operating Conditions	10
2. Pin Definition	11
2.1 Pin Map	11
2.2 Pin Table	12
3. Electrical Characteristics	14
3.1 Absolute Maximum Ratings	14
3.2 Recommended Operating Conditions	14
3.3 Digital IO Pin DC Characteristics	14
3.4 Power up Timing Sequence	15
3.4.1 SDIO Host Interface Specification	16
3.4.2 UART Interface	
3.4.3 Frequency Reference	
3.5 Power Consumption [*]	
3.5.1 WLAN	
3.5.2 Bluetooth	
4. Mechanical Information	
4.1 Mechanical Drawing	
5. Packaging Information	29

1. Introduction

1.1 Product Overview

Positec Technology (China) Co.,Ltd introduces the pioneer of the IEEE 802.11 a/b/g/n/ac WIFI with Bluetooth 5.2 combo SDIO and UART LGA Module --- **AW-CM358**. The AW-CM358 IEEE 802.11 a/b/g/n/ac WIFI with Bluetooth 5.2 combo module is a highly integrated wireless local area network (WLAN) solution to let users enjoy the digital content through the latest wireless technology without using the extra cables and cords. It combines with Bluetooth 4.2 and provides a complete 2.4GHz Bluetooth system which is fully compliant to Bluetooth 4.2 and v2.1 that supports EDR of 2Mbps and 3Mbps for data and audio communications. It enables a high performance, cost effective, low power, compact solution that easily fits onto the SDIO and UART combo LGA module. Generic interfaces include SDIO 3.0 and high-speed UART interfaces for connecting WLAN and Bluetooth technologies to the host processor.

AW-CM358 uses Direct Sequence Spread Spectrum (DSSS), Orthogonal Frequency Division Multiplexing (OFDM), BPSK, QPSK, CCK and QAM baseband modulation technologies. A high level of integration and full implementation of the power management functions specified in the IEEE 802.11 standard minimize the system power requirements by using AW-CM358. In addition to the support of **WPA/WPA2** and **WEP** 64-bit and 128-bit encryption, It also supports the **IEEE 802.11i** security standard through the implementation of **Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), AES/Galois/Counter Mode Protocol (GCMP),** Wired Equivalent Privacy (**WEP**) with Temporal Key Integrity Protocol (**TKIP**), Advanced Encryption Standard (**AES**)/Cipher-Based Message Authentication Code (**CMAC**), and WLAN Authentication and Privacy Infrastructure (**WAPI**) security mechanisms. For video, voice, and multimedia applications, 802.11e Quality of Service (QoS) is supported. The device also supports 802.11h Dynamic Frequency Selection (DFS) for detecting radar pulses when operating in the 5 GHz range.

Wireless home audio and video entertainment systems including DVT, set-top boxes, blue-ray DVD players, media servers, and gaming consoles. Mobile routers and Internet of Things (IoT) gateways. AW-CM358 module adopts NXP's latest highly-integrated WLAN & Bluetooth SoC---**88W8987**. All the other components are implemented by all means to reach the mechanical specification required.

6

1.2 Specifications Table

1.2.1 General

Features	Description
Product Description	IEEE 802.11 a/b/g/n/ac Wi-Fi with Bluetooth 5.2 combo LGA module
Major Chipset	NXP 88W8987
Host Interface	WiFi + BT ● SDIO + UART
Dimension	12 mm X 12mm x 1.65 mm (Tolerance remarked in mechanical drawing)
Package	LGA module, 47 pins
Antenna	1T1R, external
Weight	0.5 g

1.2.2 WLAN

Features	Description
WLAN Standard	IEEE802.11 a/b/g/n/ac
WLAN VID/PID	N/A
WLAN SVID/SPID	N/A
Frequency Rage2.4 GHz ISM Bands 2.412-2.472 GHz 5.15-5.25 GHz (FCC UNII-low band) for US/Canada and Eu 5.25-5.35 GHz (FCC UNII-middle band) for US/Canada and 5.47-5.725 GHz (FCC UNII-high band) for US/Canada and 5.725-5.825 GHz (FCC UNII-high band) for US/Canada	
Modulation	802.11a/g/n/ac: OFDM 802.11b: CCK(11, 5.5Mbps), DQPSK(2Mbps), BPSK(1Mbps)
Number of Channels	802.11b: USA, Canada and Taiwan $- 1 \sim 11$ Most European Countries $- 1 \sim 13$ 802.11g: USA and Canada $- 1 \sim 11$ Most European Countries $- 1 \sim 13$ 802.11n: USA and Canada $- 1 \sim 11$ Most European Countries $- 1 \sim 13$ 802.11a:

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.

	USA – 36, 40, 44, 48, 52	2, 56, 60, 64	4, 100, 104	, 108, 112,	116, 120,			
	124, 128, 132, 136, 140, 149, 153, 157, 161, 165							
	2.4G							
		Min	Тур	Max	Unit			
	11b (11Mbps) @EVM<35%	14	16	18	dBm			
	11g (54Mbps) @EVM≦ -27 dB	12	14	16	dBm			
	11n (HT20 MCS7) @EVM≤ -28 dB	11	13	15	dBm			
	11n (HT40 MCS7) @EVM≦ -28 dB	10	12	14	dBm			
	5G							
Output Power		Min	Тур	Max	Unit			
(Board Level Limit) [*] (For Europe)	11a (54Mbps) @EVM≦27 dB	11	13	15	dBm			
	11n (HT20 MCS7) @EVM≦ -28 dB	8	10	12	dBm			
	11n (HT40 MCS7) @EVM≤ -28 dB	8	10	12	dBm			
	11ac (VHT20 MCS8) @EVM≦ -30 dB	8	10	12	dBm			
	11ac (VHT40 MCS9) @EVM≦ -32 dB	7	9	11	dBm			
	11ac (VHT80 MCS9) @EVM≦ -32 dB	6	8	10	dBm			
	2.4G							
		Min	Тур	Max	Unit			
	11b (11Mbps)		-87	-84	dBm			
	11g (54Mbps)		-73	-70	dBm			
	11n (HT20 MCS7)		-69	-66	dBm			
	11n (HT40 MCS7)		-67	-64	dBm			
Receiver Sensitivity	5G							
,		Min	Тур	Max	Unit			
	11a (54Mbps)		-71	-68	dBm			
	11n (HT20 MCS7)		-67	-64	dBm			
	11n (HT40 MCS7)		-63	-60	dBm			
	11ac (VHT20 MCS8)		-67	-64	dBm			
	11ac (VHT40 MCS9)		-59	-56	dBm			
	11ac (VHT80 MCS9)		-55	-52	dBm			
	WLAN:		•	•	<u> </u>			
Data Rate	802.11b : 1, 2, 5.5, 11M	bps						
	802.11a/g : 6, 9, 12, 18, 24, 36, 48, 54Mbps							

8

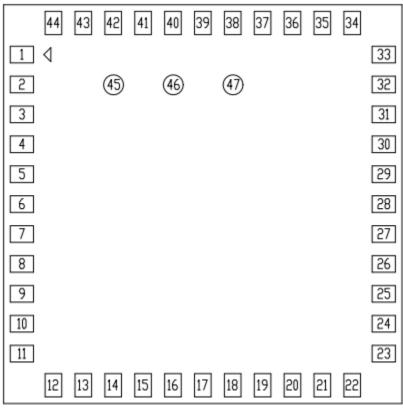
Expiry Date: Forever

FORM NO.: FR2-015_A Responsible Department : WBU The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

	802.11ac/n : Maximum data rates up to 86.7 Mbps(20MHz
	channel),200 Mbps (40 MHz channel), 433 Mbps (80 MHz channel)
	 WPA/WPA2 and WEP 64-bit and 128-bit encryption
	 Advanced Encryption Standard (AES)/Counter Mode CBC-MAC
	Protocol (CCMP)
	 AES/Galois/Counter Mode Protocol (GCMP)
Security	 Wired Equivalent Privacy (WEP) /Temporal Key Integrity Protocol
	(TKIP)
	 Advanced Encryption Standard (AES)/Cipher-Based Message
	Authentication Code (CMAC)
	WLAN Authentication and Privacy Infrastructure (WAPI)

* If you have any certification questions about output power please contact FAE directly.

1.2.3 Bluetooth


Features	Description						
Bluetooth Standard	BT4.2+Enhanced Data Rate (EDR) Bluetooth 5.2 support						
Bluetooth VID/PID	N/A						
Frequency Rage	2402MHz~2483	2402MHz~2483MHz					
Modulation	Header GFSK Payload 2M: π/4-DQPSK Payload 3M: 8DPSK						
		Min	Тур	Max	Unit		
Output Power	BDR	0	2	4	dBm		
(For Europe)	EDR	-4	-1	1	dBm		
	Low Energy	0	2	4	dBm		
	BT Sensitivity (BER<0.1%)						
		Min	Тур	Max	Unit		
Receiver Sensitivity	GFSK		-88	-86	dBm		
	π/4-DQPSK		-88	-86	dBm		
	8DPSK		-80	-78	dBm		

1.2.4 Operating Conditions

Features	Description					
	Operating Conditions					
Voltage	VBAT: 3.07~3.53 VIO : 1.8					
Operating Temperature	-30 °C to +85 °C					
Operating Humidity Less than 85%R.H.						
Storage Temperature	-40 °C to +90 °C					
Storage Humidity	Less than 60%R.H.					
	ESD Protection					
Human Body Model	±2KV per MIL-STD-883H Method 3015.8					
Changed Device Model	±500V per JEDEC EIA/JESD22-C101E					

2. Pin Definition

2.1 Pin Map

AW-CM358 Top View Pin Map

2.2 Pin Table

Pin No	Definition	Basic Description	Voltage	Туре
1	GND	Ground.		GND
2	WL_BT_ANT	WLAN/BT RF TX/RX path.		RF
3	GND	Ground.		GND
4	NC	Floating Pin, No connect to anything.		Floating
5	NC	Floating Pin, No connect to anything.		Floating
6	HOST_WAKE_B T	Host wake-up Bluetooth device		I
7	BT_WAKE_HOS T	Bluetooth device to wake-up Host		0
8	NC	Floating Pin, No connect to anything.		Floating
9	VBAT	3.3V power pin	3.3V	VCC
10	NC	Floating Pin, No connect to anything.		Floating
11	NC	Floating Pin, No connect to anything.		Floating
12	PDn	Power up/ down internal regulators. 0 = full power-down mode 1 = normal mode Default pull high in module internal		I
13	WL_HOST_WAK E	WLAN to wake-up HOST		0
14	SDIO_DATA2	SDIO Data Line 2		I/O
15	SDIO_DATA3	SDIO Data Line 3		I/O
16	SDIO_CMD	SDIO Command Input		I/O
17	SDIO_CLK	SDIO Clock Input		I
18	SDIO_DATA0	SDIO Data Line 0		I/O
19	SDIO_DATA1	SDIO Data Line 1		I/O
20	GND	Ground.		GND
21	VIN_LDO_OUT	Switch Node of Internal DC-DC convertor	1.8V	VCC
22	VDDIO	1.8V VDDIO supply for WLAN and Bluetooth	1.8V	VCC

FORM NO.: FR2-015_A Responsible Department : WBU The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

12

Expiry Date: Forever

23	VIN_LDO	DC-DC convertor to supply AVDD18 of IC	1.8V	VCC
24	SUSCLK_IN	External 32K or RTC clock		I
25	BT_PCM_OUT	PCM data out		0
26	BT_PCM_CLK	PCM Clock		I/O
27	BT_PCM_IN	PCM data Input		I
28	BT_PCM_SYNC	PCM Synchronization control		0
29	NC	Floating Pin, No connect to anything.		Floating
30	NC	Floating Pin, No connect to anything.		Floating
31	GND	Ground.		GND
32	NC	Floating Pin, No connect to anything.		Floating
33	GND	Ground.		GND
34	NC	Floating Pin, No connect to anything.		Floating
35	NC	Floating Pin, No connect to anything.		Floating
36	GND	Ground.		GND
37	NC	Floating Pin, No connect to anything.		Floating
38	NC	Floating Pin, No connect to anything.		Floating
39	HOST_WL_WAK E	Host wake-up WLAN device		Floating
40	NC	Floating Pin, No connect to anything.		Floating
41	UART_RTS_N	High-Speed UART RTS		0
42	UART_TXD	High-Speed UART Data Out		0
43	UART_RXD	High-Speed UART Data In		I
44	UART_CTS_N	High-Speed UART CTS		I
45	TP1 (NC)	Floating Pin, No connect to anything.		Floating
46	TP2 (NC)	Floating Pin, No connect to anything.		Floating
47	TP3 (NC)	Floating Pin, No connect to anything.		Floating

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.

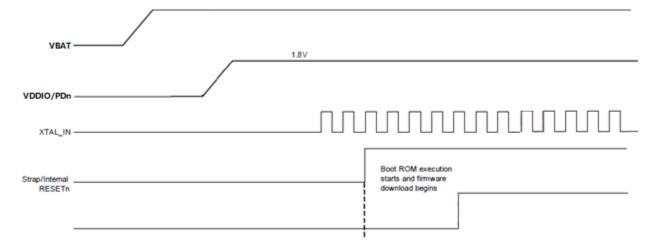
3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Symb	ol Paramete	er	Minimum	Typical	Maximum	Unit
VDD3	3 DC supply	y for the 3.3V input	2.5	3.3	4.0	V
VDDI	DC supply I/O	y voltage for digital		1.8	2.2	V

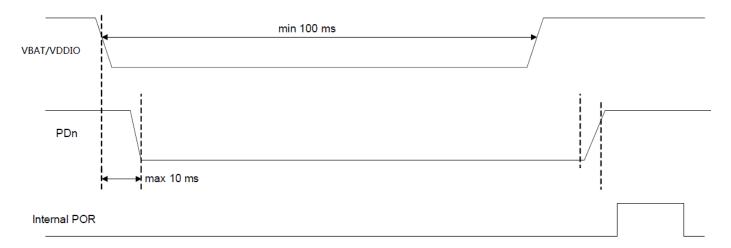
3.2 Recommended Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VDD33	DC supply for the 3.3V input	3.07	3.3	3.53	V
VDDIO	DC supply voltage for digital I/O	1.67	1.8	1.98	V


3.3 Digital IO Pin DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Digital I/C	D pins, VDDIO=1.8V				
Vін	Input high voltage	1.26	-	2.2	V
VIL	Input low voltage	-0.4	-	0.54	V
V _{он}	Output High Voltage	1.4	-	-	V
Vol	Output Low Voltage	-	-	0.4	V

3.4 Power up Timing Sequence


Power-up Sequence

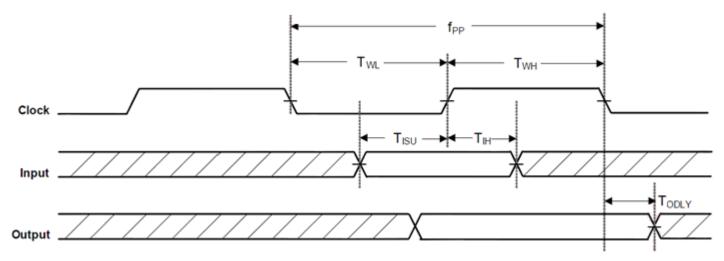
VDDIO/Pdn no specific time requirement, just need to follow up the power on sequence waveform.

Power-down Sequence

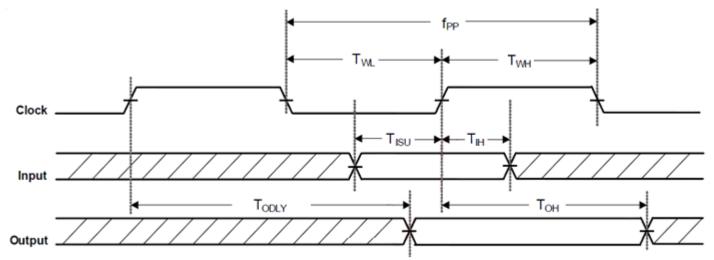
The table is AW-CM358 module power down sequence, the maximum ramp-down time for PDn from VBAT assertion is 10ms.VBAT must be asserted a minimum of 100 ms to guarantee that PDn are discharged to less than 0.2V for the POR generate properly after VBAT is deasserted.

3.4.1 SDIO Host Interface Specification

The AW-CM358 supports a SDIO device interface that conforms to the industry SDIO Full-Speed card specification and allows a host controller using the SDIO bus protocol to access the Wireless SoC device.


The AW-CM358 acts as the device on the SDIO bus. The host unit can access registers of the SDIO interface directly and can access shared memory in the frvice through the use of BARs and a DMA engine.

- Support SDIO 3.0 Standard.
- On-chip memory used for CIS.
- Supports 4-bit SDIO and 1-bit SDIO transfer modes.
- Special interrupt register for information exchange.


AW-CM358 SDIO Pin Name	Туре	Description		
SDIO_DATA_CLK	I	SDIO 4-bit mode: Clock		
SDIO_DATA_CMD I/O		SDIO 1-bit mode: Clock SDIO 4-bit mode: Command line SDIO 1-bit mode: Command line		
SDIO_DATA_3	I/O	SDIO 4-bit mode: Data line Bit[3] SDIO 1-bit mode: Not used		
SDIO_DATA_2	I/O	SDIO 4-bit mode: Data line Bit[2] or Read Wait (optional) SDIO 1-bit mode: Read Wait (optional)		
SDIO_DATA_1	I/O	SDIO 4-bit mode: Data line Bit[1] SDIO 1-bit mode: Interrupt		
SDIO_DATA_0	I/O	SDIO 4-bit mode: Data line Bit[0] SDIO 1-bit mode: Data line		

Default Speed, High-Speed Modes

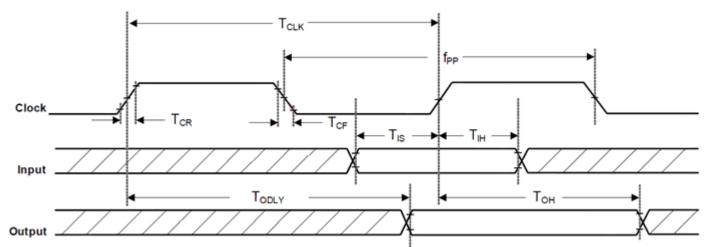
SDIO Protocol Timing Diagram – Default Speed Mode

SDIO Protocol Timing Diagram - High Speed Mode

SDIO Timing Data- Default Speed, High-Speed Modes

Symbol	Parameter	Condition	Min	Max	Unit s
f pp	CLK Frequency	Normal	0	25	MHz
- 66		High Speed	0	50	101112
tw∟	CLK low Time	Normal	10	-	
		High Speed	7	-	ns
twн	CLK High Time	Normal	10	-	115
		High Speed	7	-	

Expiry Date: Forever

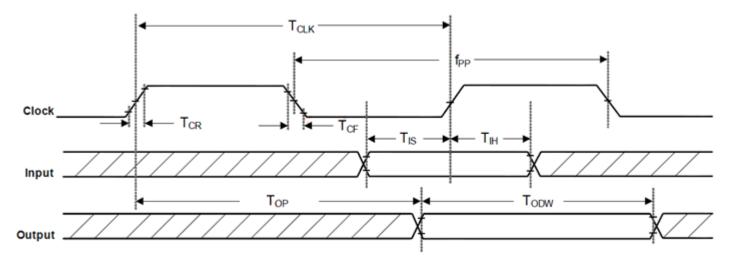

FORM NO.: FR2-015_A Responsible Department : WBU The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

tısu Input Setup Time	Input Setup Time	Normal	5	-	
		High Speed	6	-	
tıн	Input Hold Time	Normal	5	-	
		High Speed	2	-	
todly	Output Delay Time	Normal	-	14	
CODET		High Speed	-	14	
Тон	Output hold time	High Speed	2.5		

1. For SDIO 2.0 running at 50MHz clock frequency, only 1.8V is supported.

2. For SDIO 2.0 running at 25MHz clock frequency, 1.8V is supported.

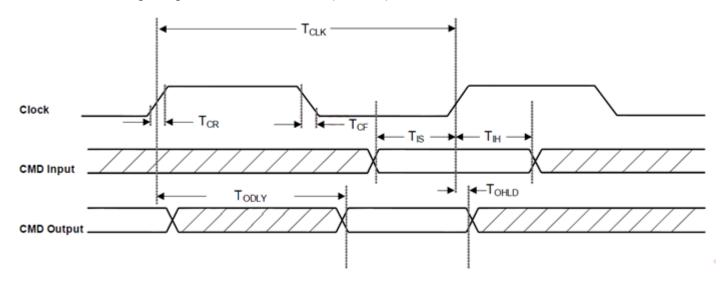
SDIO Protocol Timing Diagram - SDR12, SDR25, SDR50 Modes (up to 100MHz) (1.8V)



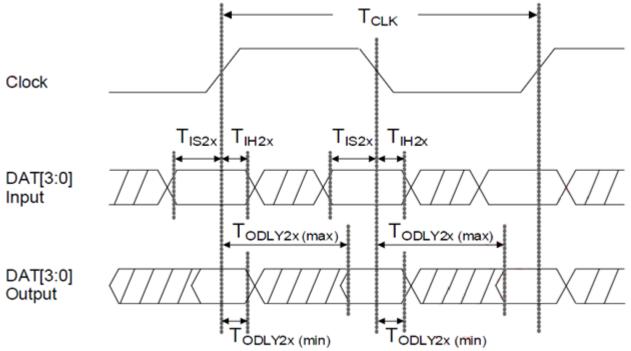
SDIO Timing Data- SDR12, SDR25, SDR50 Modes (up to 100MHz) (1.8V)

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{pp}	CLK Frequency	SDR12/25/50	25	-	100	MHz
Tıs	Input setup time	SDR12/25/50	3	-	-	ns
Тін	Input hold time	SDR12/25/50	0.8	-	-	ns
Тсік	Clock time	SDR12/25/50	10	-	40	ns
T _{CR} , T _{CF}	Rise time, fall time	SDR12/25/50	-	-	0.2*Тсік	ns
TODLY	Output delay time	SDR12/25/50	-	-	7.5	ns
Тон	Output hold time	SDR12/25/50	1.5	-	-	ns

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.


18

SDIO Protocol Timing Diagram – SDR104 Mode (208MHz)


SDIO Timing Data- SDR104 Mode (208MHz)

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{pp}	CLK Frequency	SDR104	0	-	208	MHz
Tıs	Input setup time	SDR104	1.4	-	-	ns
Тін	Input hold time	SDR104	0.8	-	-	ns
Тсік	Clock time	SDR104	4.8	-		ns
T _{CR} , T _{CF}	Rise time, fall time	SDR104	-	-	0.2*Тськ	ns
TODLY	Output delay time	SDR104	0	-	10	ns
Тон	Output hold time	SDR104	2.88	-	-	ns

SDIO CMD Timing Diagram – DDR50 Mode (50MHz)

SDIO SAT [3:0] Timing Diagram – SDR50 Mode (50MHz)

SDIO Timing Data- DDR50 Mode (50MHz)

Symbol	Parameter	Condition	Min	Тур	Мах	Units	
Clock							
Тськ	Clock time	DDR50	20	-	-	ns	
Tcr, Tcf	Rise time, fall time	DDR50	-	-	0.2*Тськ	Ns	
				•	•		

20

Expiry Date: Forever

FORM NO.: FR2-015_A Responsible Department : WBU The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

Clock Duty		DDR50	45	-	55	%
CMD Input	I	1	I	I	1	1
Tıs	Input setup time	DDR50	6	-	-	ns
Тін	Input hold time	DDR50	0.8	-	-	ns
CMD Output	t					
TODLY	Output delay time during data transfer mode	DDR50	-	-	13.7	ns
TOHLD	Output hold time	DDR50	1.5	-	-	ns
DAT [3:0] Input						
T _{IS2X}	Input hold time	DDR50	3	-	-	ns
Тін2х	Input hold time	DDR50	0.8	-	-	ns
DAT [3:0] Output						
TODLY2X(max)	Output delay time during data transfer mode	DDR50	-	-	7	ns
TODLY2X(min)	Output hold time	DDR50	1.5	-	-	ns

3.4.2 UART Interface

High-Speed UART interface

The AW-CM358 supports a high-speed Universal Asynchronous Receiver/ Transmitter (UART)

interface, compliant to the industry standard 16550 specification.

- FIFO mode permanently selected for transmit and receive operations.
- 2 pins for transmit and receive operations.
- 2 flow control pins.
- Interrupt triggers for low-power, internal CPU (for debug purposes).
- Support diagnostic tests.
- Support data input/ output operations for peripheral devices connected through a standard UART interface.

UNIT INCHAGE OIGHAIS	UART	Interface	Signals
----------------------	------	-----------	---------

Pin Number	Signal Name	16550 Standard Name	Туре	Description
42	UART_SOUT	SOUT	0	Serial data
43	UART_SIN	SIN	I	Serial data
44	UART_CTSn	CTSn	I	Clear To Send
41	UART_RTSn	RTSn	0	Request To Send

UART Baud Rates Supported

Baud Rate				
1200	38400	460800	1500000	3000000
2400	57600	500000	1843200	3250000
4800	76800	921600	2000000	3692300
9600	115200	1000000	2100000	4000000
19200	230400	1382400	2764800	-

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.

The UART Tx and Rx pins are powered from the VDDIO voltage supply.

UART Timing Diagram

UART Timing Data

Symbol	Parameter	Condition	Min	Тур	Max	Units
TBAUD	Baud rate	26MHz input clock	250	-	-	ns
TBAUD	Baud rate	38.4MHz input clock	250	-	-	ns

3.4.3 Frequency Reference

An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative, an external frequency reference driven by a temperature-compensated crystal oscillator (TCXO) signal may be used. No software settings are required to differentiate between the two. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.

External 32.768KHz Low-Power Oscillator

Symbol	Parameter	Min	Тур	Max	Units
CLK	Clock frequency range/ accuracy CMOS input clock signal type ±250 ppm (initial, aging, temperature)	-	32.768	-	kHz
Vін	Input levels, where VDDIO=1.8, 3.3V	0.7*VDDIO	-	VDDIO_0.4	V
Vı∟	for VIH, VIL	-0.4	-	0.3*VDDIO	V
PN	Phase noise requirement (@ 100KHz)	-	-125	-	dBc/Hz
Jc	Cycle jitter	-	1.5	-	ns (RMS)
SR	Slew rate limit (10-90%)	-	-	100	ns
DC	Duty cycle tolerance	20	-	80	%

The AW-CM358 module crystal specifications

3.5 Power Consumption^{*}

3.5.1 WLAN

No.	ltem			VBAT_IN=3.3 V				
				Max. Avg			Avg.	
1	Power Down ^{*(1)(2)}			1.0mA		0.	92mA	
2	Sleep *(2)(4) (Not associa	ted with AP)	1.3mA	1.2mA		.2mA	
3	Power Save (2.4GHz)*(2) (3)(4)			49.5mA	2.4mA		.4mA	
4	Power Save (5GHz)*(2) (3)(4)			80.4mA	80.4mA 2.1mA		.1mA	
Band		BW	RF Power	Transmit				
(GHz)	Mode	(MHz)	(dBm)	Max.	Avg] .	Duty(%) (Mean)	
2.4	11b@1Mbps	20	16	287	161	1	67	
	11b@11Mbps	20	16	277	163	3	65	
	11g@54Mbps	20	14	191	120	0	52	
	11n@MCS7	40	12	98	57	,	36	
	11a@6Mbps	20	13	247	143	3	64	
	11a@54Mbps	20	13	198	130	0	53	
5	11n@MCS7	40	10	112	74		16	
	11ac@MCS0	20	10	217	129	9	48	
	11ac@MCS9	40	9	103	74	-	42	
	11ac@MCS0 NSS1	80	8	212	88		55	
	11ac@MCS9 NSS1	80	8	93	76	5	27	
Band	Mode	BW(MHz)		Receive				
(GHz)				Max.			Avg.	
2.4	11b@1Mbps		20	57		55		
2.7	11n@MCS7	40		64		63		
	11a@6Mbps	20		71			69	
5	11ac@MCS8 NSS1	20		73		72		
э	11ac@MCS9 NSS1	40		85		84		
	11ac@MCS9 NSS1	80		98		95		

*Current Unit: mA

* The power consumption is based on Azurewave test environment, these data for reference only.

(1) WLAN and Bluetooth off (WL_REG_ON=LOW, #hciconfig hciX down)

(2) Using normal firmware.

(3) Link AP use ASUS RT-AC66U, DTIM = 1, Beacon Interval = 100 ms

(4) WLAN Initial value is too high, in SD-UART mode, BT power save mode is Active, About this issue, Please refer below bring up commend: modprobe cfg80211

FORM NO.: FR2-015_A

25 Responsible Department : WBU

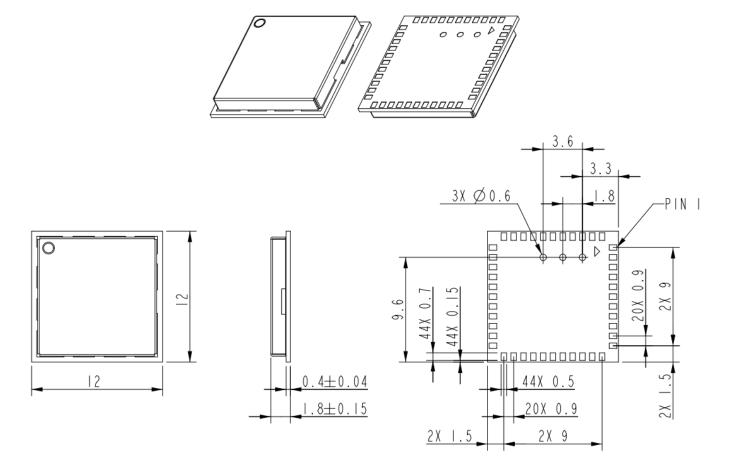
Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

insmod mlan.ko insmod sd8987.ko cal_data_cfg=none fw_name=mrvl/sdio8xxx_uart_combo_pxx.bin insmod hci_uart.ko ps_mode=1 hciattach /dev/ttyUSB0 any 115200 flow

3.5.2 Bluetooth

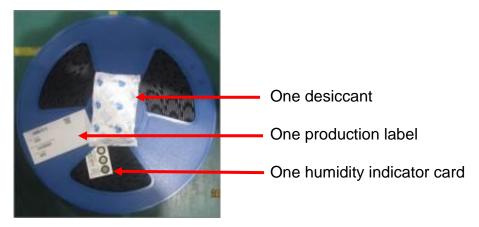
No.	Mode	Packet Type	RF Power	VBAT_	VBAT_IN=3.3 V	
NO.	Mode	T deket Type	(dBm)	Max.	Avg.	
1	Play Music*(1)	A2DP	n/a	21.6	12	
2	Transmit*(2)	DH5	4	68.9	62.8	
3	Receive*(2)	3-DH5	n/a	61.4	57.3	


*Current Unit: mA

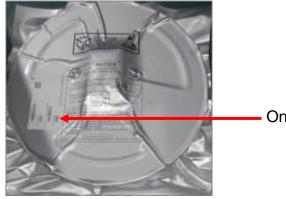
* The power consumption is based on Azurewave test environment, these data for reference only.

- 1. Using Normal Firmware
- 2. Using MFG Firmware

4. Mechanical Information


4.1 Mechanical Drawing

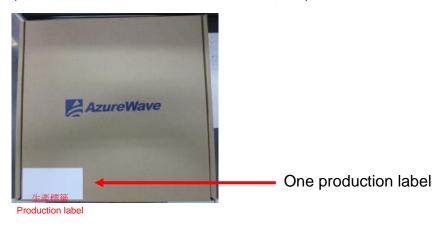
TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0.1mm


5. Packaging Information

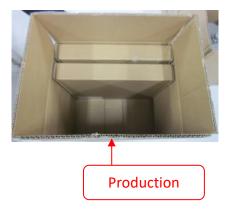
- 1. One reel can pack 1,500pcs 12x12 LGA modules (整軸產品數量為 1500pcs)
- 2. One production label is pasted on the reel, one desiccant and one humidity indicator card are put on the reel

(卷軸貼上一張生產標籤,並放上一包防潮包及濕度指示卡)

3. One reel is put into the anti-static moisture barrier bag, and then one label is pasted on the bag (卷軸放進防靜電鋁箔袋,再貼上一張生產標籤)


One production label

4. A bag is put into the anti-static pink bubble wrap (防靜電鋁箔袋放進氣泡袋內)


One anti-static pink bubble wrap

5. A bubble wrap is put into the inner box and then one label is pasted on the inner box (氣泡袋放進內箱中,再貼上一張生產標籤)

6. 5 inner boxes could be put into one carton

(五個內箱可以放進一個外箱)

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.

7. Sealing the carton by AzureWave tape

(使用海華 Logo 膠帶將外箱進行工字型封箱)

8. One carton label and one box label are pasted on the carton. If one carton is not full, one balance label pasted on the carton

(外箱上貼附出貨標籤和箱號標籤;如不滿箱,需貼附尾數標籤)

Operational use conditions:

Module has professional users use condition limitations, Host product manufacturer please ensure giving such warning like "Product is limited to professional users use" in your product's instruction.

Antenna used

Antenna Type	Brand/ manufacturer	Model No.	Max. Antenna Gain
PCB Antenna	INPAQ TECHNOLOGY	WA-P-LB-	4.5dBi(BT/BLE/2.4G WiFi)
	CO., LTD.	02-941	5.69dBi (5G WiFi)

Notice to Host Product Manufacturer

Any deviation(s) from the defined parameters of the antenna trace, as described by this instruction, host product manufacturer must notify us that you wish to change the antenna trace design. In this case, a Class II permissive change application is required to be filed by us, or you (host manufacturer) can take responsibility through the change in FCC ID and IC ID (new application) procedure followed by a Class II permissive change application.

FCC&IC regulatory compliance statement

§15.19 &RSS-Gen Statement

This device complies with part 15 of the FCC Rules and with Innovation, Science and Economic Development Canada's license-exempt RSS(s). Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

§15.21 Information to user

Warning: changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

RF Exposure compliance statement

This Module complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Labelling Instruction for Host Product Integrator

Please notice that if the FCC and IC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. For FCC, this exterior label should follow "Contains FCC ID: 2ASC3CM358". In accordance with FCC KDB guidance 784748 Labeling Guidelines. For IC, this exterior label can use wording "Contains IC: 24992-CM358".

§ 15.19 Labelling requirements shall be complied on end user device. Labelling rules for special device, please refer to §2.925, § 15.19 (a)(5) and relevant KDB publications. For E-label, please refer to §2.935.

Installation Notice to Host Product Manufacturer

The OEM integrator is responsible for ensuring that the end-user has no manual instruction to remove or install module.

The module is limited to installation in mobile application, a separate approval is required for all other operating configurations, including portable configurations with respect to §2.1093 and difference antenna configurations.

Antenna Change Notice to Host manufacturer

If you desire to increase antenna gain and either change antenna type or use same antenna type certified, a Class II permissive change application is required to be filed by us, or you (host manufacturer) can take responsibility through the change in FCC ID&IC ID (new application) procedure followed by a Class II permissive change application.

FCC other Parts, Part 15B Compliance Requirements for Host product manufacturer This modular transmitter is only FCC authorized for the specific rule parts listed on our grant, host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification.

Host manufacturer in any case shall ensure host product which is installed and operating with the module is in compliant with Part 15B requirements.

Please note that For a Class B or Class A digital device or peripheral, the instructions furnished the user manual of the end-user product shall include statement set out in §15.105 Information to the user or such similar statement and place it in a prominent location in the text of host product manual. Original texts as following:

For Class B

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

—Reorient or relocate the receiving antenna.

—Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

For Class A

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

The user manual for local area network devices shall contain instructions related to the restrictions mentioned in the above sections, namely that:

(i) the device for operation in the band 5150-5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems;

(ii) the maximum antenna gain permitted for devices in the bands 5250-5350 MHz and 5470-5725 MHz shall comply with the e.i.r.p. limit; and

(iii) the maximum antenna gain permitted for devices in the band 5725-5825 MHz shall comply with the e.i.r.p. limits specified for point-to-point and non point-to-point operation as appropriate.

(i)Les dispositifs fonctionnant dans la bande 5150-5250 MHz sont réservés uniquement pour une utilisation à l'intérieur afin de réduire les risques de brouillage préjudiciable aux systèmes de satellites mobiles utilisant les mêmes canaux.

(ii) le gain d'antenne maximal autorisé pour les appareils dans les bandes 5250-5350 MHz et 5470-5725 MHz doivent respecter le pire limiter; et

(iii) le gain d'antenne maximal autorisé pour les appareils dans la bande 5725-5825 MHz doivent respecter le pire limites spécifiées pour le point-à-point et l'exploitation non point à point, le cas échéant.

Users should also be advised that high-power radars are allocated as primary users (i.e. priority users) of the bands 5250-5350 MHz and 5650-5850 MHz and that these radars could cause interference and/or damage to LE-LAN devices.

Les utilisateurs de radars de haute puissance sont désignés utilisateurs principaux (c.à-d., qu'ils ont la priorité) pour les bandes 5250-5350 MHz et 5650-5850 MHz et que ces radars pourraient causer du brouillage et/ou des dommages aux dispositifs LAN-EL.