

RADIO PERFORMANCE TEST REPORT

Test Report No. : OT-243-RWD-055

Reception No. : 2402000496

Applicant : AMOSENSE

Address : 19-1BL, 90, 4Sandan 5 gil, Jiksan-eup, Cheonan-Si, Chungcheongnam-Do, South Korea

Manufacturer : AMOSENSE

Address : 19-1BL, 90, 4Sandan 5 gil, Jiksan-eup, Cheonan-Si, Chungcheongnam-Do, South Korea

Type of Equipment : ATOZ R3

FCC ID. : 2AS9T-SB530-SW

Model Name : SB530-SW

Multiple Model Name: N/A

Serial number : N/A

Total page of Report : 29 pages (including this page)

Date of Incoming : January 19, 2024

Date of issue : March 27, 2024

SUMMARY

The equipment complies with the regulation; FCC PART 15 SUBPART C Section 15.247

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

This report is not correlated with the "KS Q ISO/IEC 17025 and KOLAS accreditation" of Korean Laboratory Accreditation Scheme.

Su-Min, Yoo / Sr. Engineer ONETECH Corp.

Tested by

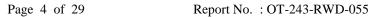
Reviewed by Tae-Ho, Kim / Chief Engineer ONETECH Corp.

Approved by Jae-Ho, Lee / Chief Engineer ONETECH Corp.

Report No.: OT-243-RWD-055

It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)


CONTENTS

	rage
1. VERIFICATION OF COMPLIANCE	6
2. TEST SUMMARY	7
2.1 Test items and results	7
2.2 Additions, deviations, exclusions from standards	7
2.3 Related Submittal(s) / Grant(s)	7
2.4 Purpose of the test	7
2.5 Test Methodology	7
2.6 Test Facility	7
3. GENERAL INFORMATION	8
3.1 Product Description	8
3.2 Alternative type(s)/model(s); also covered by this test report	10
4. EUT MODIFICATIONS	10
5. SYSTEM TEST CONFIGURATION	11
5.1 Justification	11
5.2 Peripheral equipment	11
5.3 Mode of operation during the test	11
5.4 Configuration of Test System	13
5.5 Antenna Requirement	13
6. MEASUREMENT UNCERTAINTY	13
7. PRELIMINARY TEST	14
7.1 AC Power line Conducted Emissions Tests	14
7.2 General Radiated Emissions Tests	14
8. MAXIMUM PEAK OUTPUT POWER	15
8.1 Operating environment	15
8.2 Test set-up	15
8.3 Test Date	15
8.4 Test data	15
9. MINIMUM 20 dB BANDWIDTH	16
9.1 Operating environment	16
9.2 Test set-up	16
9.3 Test Date	16
9.4 Test data	16

Report No.: OT-243-RWD-055

10. HOPPING FREQUENCY SEPARATION	17
10.1 Operating environment	17
10.2 Test set-up	17
10.3 Test Date	17
10.4 Test data	17
11. NUMBER OF HOPPING FREQUENCY	18
11.1 Operating environment	18
11.2 Test set-up	18
11.3 Test Date	18
11.4 Test data	18
12. TIME OF OCCUPANCY	19
12.1 Operating environment	19
12.2 Test set-up	19
12.3 Test Date	19
12.4 Test data	19
13. 100 kHz BANDWIDTH OUTSIDE THE FREQUENCY BAND	20
13.1 Operating environment	20
13.2 Test set-up for conducted measurement	20
13.3 Test set-up for radiated measurement	20
13.4 Test Date	20
13.5 Test data for conducted emission	20
13.6 Test data for Transmitting mode radiated emission	21
13.6.1 Spurious & Harmonic Radiated Emission above 1 GHz	21
14. RADIATED EMISSION TEST	22
14.1 Operating environment	22
14.2 Test set-up	22
14.3 Test Date	23
14.4 Test data for 30 MHz ~ 1 000 MHz	24
14.5 Test data for Below 30 MHz	25
14.6 Test data for above 1 GHz	25
15. CONDUCTED EMISSION TEST	26
15.1 Operating environment	26
15.2 Test set-up	26
15.3 Test Date	26
15.4 Test Data	27

16 I ICT OF TECT F	OUDMENT	29
10. L151 OF TEST E	AUIPMENT	

* Please refer to the Annex section for All test plots

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-243-RWD-055	March 27, 2024	Initial Release	All

1. VERIFICATION OF COMPLIANCE

Applicant : AMOSENSE

Address : 19-1BL, 90, 4Sandan 5 gil, Jiksan-eup, Cheonan-Si, Chungcheongnam-Do, South Korea

Contact Person : Jaeho Hong / Diretor
Telephone No. : +82-31-277-0598
FCC ID : 2AS9T-SB530-SW

Model Name : SB530-SW

Brand Name : Serial Number : N/A

Date : March 27, 2024

EQUIPMENT CLASS	DSS – PART 15 SPREAD SPECTRUM TRANSMITTER
E.U.T. DESCRIPTION	ATOZ R3
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.10: 2013
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT	
AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED	FCC PART 15 SUBPART C Section 15.247
UNDER FCC RULES PART(S)	558074 D01 15.247 Meas Guidance v05r02
Modifications on the Equipment to	Name
Achieve Compliance	None
Final Test was Conducted On	3 m, Semi Anechoic Chamber

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.247(a)(1)(i)	20 dB Bandwidth	Met the Limit / PASS
15.247(b)(2)	Conducted Maximum Peak Output Power	Met the Limit / PASS
15.247(a)(1)	Carrier Frequency Separation	Met the Limit / PASS
15.247(a)(1)(i)	Number of Hopping Frequencies	Met the Limit / PASS
15.247(a)(1)(i)	Time of Occupancy	Met the Limit / PASS
15.247(d)	100 kHz Bandwidth Outside the Frequency Band	Met the Limit / PASS
15.207	Conducted Limits	Met the Limit / PASS
15.209	Radiated Emission Limits, General Requirement	Met the Limit / PASS
15.203	Antenna Requirement	Met requirement / PASS

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.247.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-20122/ C-14617/ G-10666/ T-11842

ISED (Innovation, Science and Economic Development Canada) - Registration No. Site# 3736A-3

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

3. GENERAL INFORMATION

3.1 Product Description

The AMOSENSE, Model SB530-SW (referred to as the EUT in this report) is a ATOZ R3. The product specification described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	ATOZ R3			
Temperature Range	-20 °C ~ +60 °C			
	SigFox	902.137 5 MHz ~ 904.662 5 MHz		
	Bluetooth LE	2 402 MHz ~ 2 480 MHz		
	WLAN 2.4 GHz	2 412 MHz ~ 2 462 MHz (802.11b/g/n(HT20))		
	WLAN 5 150 MHz ~ 5 250 MHz Band	5 180 MHz ~ 5 240 MHz (802.11a)		
OPERATING FREQUENCY	WLAN 5 250 MHz ~ 5 350 MHz Band	5 260 MHz ~ 5 320 MHz (802.11a)		
	WLAN 5 470 MHz ~ 5 725 MHz Band	5 500 MHz ~ 5 720 MHz (802.11a)		
	WLAN 5 725 MHz ~ 5 850 MHz Band	5 745 MHz ~ 5 825 MHz (802.11a)		
	SigFox	DBPSK		
	Bluetooth LE	GFSK		
MODULATION TYPE	WLAN 2.4 GHz	802.11b: DSSS Modulation(DBPSK/DQPSK/CCK) 802.11g/n(HT20): OFDM Modulation(BPSK/QPSK/16QAM/64QAM)		
	WLAN 5 GHz	802.11a: OFDM Modulation(BPSK/QPSK/16QAM/64QAM)		

	SigFox	18.95 dBm		
	Bluetooth LE	-4.61 dBm		
		5.81 dBm(802.11b)		
	WLAN 2.4 GHz	3.00 dBm(802.11g)		
		2.85 dBm(802.11n_HT20)		
	WLAN 5 150 MHz	3.69 dBm(802.11a)		
	~ 5 250 MHz Band	5.07 dBin(002.114)		
	WLAN 5 250 MHz	3.63 dBm(802.11a)		
	~ 5 350 MHz Band	3.03 dbii (002.11 d)		
RF OUTPUT	WLAN 5 470 MHz	4.64 dBm(802.11a)		
POWER	~ 5 725 MHz Band	4.04 ubii(802.11a)		
	WLAN 5 470 MHz			
	~ 5 725 MHz Band	3.76 dBm(802.11a)		
	(Straddle)			
	WLAN 5 725 MHz	5 50 dD::/(902 11a)		
	~ 5 850 MHz Band	5.59 dBm(802.11a)		
	WLAN 5 725 MHz			
	~ 5 850 MHz Band	-4.07 dBm(802.11a)		
	(Straddle)			
ANTENNA TYPE	Chip Antenna			
	SigFox	1.06 dBi		
	Bluetooth LE	0.13 dBi		
	WLAN 2.4 GHz	0.13 dBi		
	WLAN 5 150 MHz			
	~ 5 250 MHz Band	-0.05 dBi		
ANTENNA GAIN	WLAN 5 250 MHz	0.05 ID:		
	~ 5 350 MHz Band	-0.05 dBi		
	WLAN 5 470 MHz	0.75.4D:		
-	~ 5 725 MHz Band	-0.75 dBi		
	WLAN 5 725 MHz	0.00 dB:		
	~ 5 850 MHz Band	0.00 dBi		
List of each Osc. or crystal		22 MHz, 40 MHz		
Freq.(Freq. >= 1 MHz)		32 MHz, 40 MHz		

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Main Board	AMOSENSE	ATOZ R3 Rev10	N/A

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to
SB530-SW	AMOSENSE	ATOZ R3(EUT)	-
IdeaPad L340	LENOVO	Notebook PC	EUT
U0181-KV	Dongguan Citiland Electronics Co., Ltd	Adapter	-

5.3 Mode of operation during the test

For the testing, software used to control the EUT for staying in continuous transmitting is programmed.

For final testing, the EUT was set at 902.137 5 MHz, 903.412 5 MHz, and 904.662 5 MHz to get a maximum emission levels from the EUT. The EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XZ" axis, but the worst data was recorded in this report.

-. Duty Cycle

Mode	Tx On Time	Tx Off Time	Duty Cycle	Correction Factor
Mode	[ms]	[ms]	[%]	[dB]
Sig Fox	-	-	100.00	0.00

Note – Duty Cycle: (Tx On Time / (Tx On Time + Tx Off Time)) * 100

Correction Factor: 10 * Log(1 / (Duty Cycle / 100))

-. Channel List

	SigFox					
Channel	Frequency [MHz]	Channel	Frequency [MHz]	Channel	Frequency [MHz]	
1	902.137 5	22	903.112 5	43	904.237 5	
2	902.162 5	23	903.137 5	44	904.262 5	
3	902.187 5	24	903.162 5	45	904.287 5	
4	902.212 5	25	903.337 5	46	904.312 5	
5	902.237 5	26	903.362 5	47	904.337 5	
6	902.262 5	27	903.387 5	48	904.362 5	
7	902.437 5	28	903.412 5	49	904.537 5	
8	902.462 5	29	903.437 5	50	904.562 5	
9	902.487 5	30	903.462 5	51	904.587 5	
10	902.512 5	31	903.637 5	52	904.612 5	
11	902.537 5	32	903.662 5	53	904.637 5	
12	902.562 5	33	903.687 5	54	904.662 5	
13	902.737 5	34	903.712 5			
14	902.762 5	35	903.737 5			
15	902.787 5	36	903.762 5			
16	902.812 5	37	903.937 5			
17	902.837 5	38	903.962 5			
18	902.862 5	39	903.987 5			
19	903.037 5	40	904.012 5			
20	903.062 5	41	904.037 5			
21	903.087 5	42	904.062 5			

Page 13 of 29 Report No. : OT-243-RWD-055

5.4 Configuration of Test System

Line Conducted Test: The EUT was tested in a Charging & Transmitting mode. The EUT was connected to

USB and the Power of USB was Connected to DC Adaptor. All supporting equipments were connected to another LISN. Preliminary Power line Conducted Emission test was performed by using the procedure in ANSI C63.10: 2013 to determine the worse

operating conditions.

Radiated Emission Test: Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:

2013 to determine the worse operating conditions. Final radiated emission tests were

conducted at 3 meter Semi Anechoic Chamber.

The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once maximum reading was determined, the search antenna was raised and lowered in both

vertical and horizontal polarization.

5.5 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The antenna of the EUT is Chip Antenna on the main board in the EUT, so no consideration of replacement by the user.

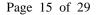
6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

	1
Parameter	Expanded Uncertainty (dB)
Conducted Output Power	0.68
Conducted Spurious Emission < 26.5 GHz	1.60
Power Spectral Density	1.55
Line Conducted Disturbance (150 kHz ~ 30 MHz)	2.00
Radiated Disturbance (9 kHz ~ 30 MHz)	4.09
Radiated Disturbance (30 MHz ~ 1 GHz)	3.98
Radiated Disturbance (1 GHz ~ 18 GHz)	5.56
Radiated Disturbance (18 GHz ~ 40 GHz)	5.65

7. PRELIMINARY TEST

7.1 AC Power line Conducted Emissions Tests


During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)				
Charging & Transmitting Mode	X				

7.2 General Radiated Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)				
Transmitting Mode	X				

8. MAXIMUM PEAK OUTPUT POWER

8.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$

Relative humidity : 46 % R.H.

8.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to ≥ 20 dB Bandwidth, the video bandwidth is set to 3 times the resolution bandwidth.

8.3 Test Date

January 19, 2024 ~ March 25, 2024

8.4 Test data

CHANNEL	FREQUENCY	MEASURE	ED VALUE	LIMIT	MARGIN	
CHANNEL	(MHz)	(dBm) (mW)		(mW)	(mW)	
LOW	902.137 5	18.95	78.52	1 000.00	921.48	
MIDDLE	903.412 5	18.93	78.16	1 000.00	921.84	
HIGH	904.662 5	18.92	77.98	1 000.00	922.02	

Page 16 of 29 Report No. : OT-243-RWD-055

9. MINIMUM 20 dB BANDWIDTH

9.1 Operating environment

ONETECH

Temperature : 23 °C

Relative humidity : 46 % R.H.

9.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 3 kHz, and peak detection was used. The 20 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 20 dB.

9.3 Test Date

January 19, 2024 ~ March 25, 2024

9.4 Test data

CHANNEL	FREQUENCY (MHz)	20 dB Bandwidth (kHz)	Limit (kHz)
Low	902.137 5	7.46	250.00
Middle	903.412 5	7.46	250.00
High	904.662 5	7.46	250.00

10. HOPPING FREQUENCY SEPARATION

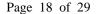
10.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$

Relative humidity : 46 % R.H.

10.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The frequency span is set to 100 kHz. The analyzer is set to peak hold then a pseudo-random hopping sequence of the transmitter is captured. The mark delta function was used to measure the frequency separation between two adjacent hopping channels.



10.3 Test Date

January 19, 2024 ~ March 25, 2024

10.4 Test data

MEASURED VALUE (kHz)	20 dB Bandwidth (kHz)	LIMIT
25.07	7.46	Separated by a minimum of 25.00 kHz

11. NUMBER OF HOPPING FREQUENCY

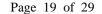
11.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$

Relative humidity : 46 % R.H.

11.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller. The analyzer is set to peak hold and then complete pseudo-random hopping sequence of the transmitter is captured.



11.3 Test Date

January 19, 2024 ~ March 25, 2024

11.4 Test data

Measured value (Number)	Limit (Number)	Margin (Number)
54	Minimum of 50	4

12. TIME OF OCCUPANCY

12.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$

Relative humidity : 46 % R.H.

12.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The transmitter is set to operate in its normal frequency hopping mode. The center frequency of the spectrum analyzer is set to one of hopping channels near the center of the operating band and span is set to zero Hz. The sweep time is set to display one complete pulse. The mark delta function is used to measure the duration of the pulses.

12.3 Test Date

January 19, 2024 ~ March 25, 2024

12.4 Test data

-. Test Result : Pass

Pulse Time (ms)	Number of hops on	Period Time (s)	Analyzer sweep	Total Dwell	Limit (ms)
Tuise Time (ms)	spectrum analyzer	1 0110 0 111110 (8)	time (s)	Time (ms)	2 (11.5)
349.00	1	20.00	20.00	349.00	400.00

Note: Total Dwell Time = Pulse time * (Number of hops on spectrum analyzer * (Period specified in the requirements / Analyzer sweep time))

Page 20 of 29 Report No. : OT-243-RWD-055

13. 100 kHz BANDWIDTH OUTSIDE THE FREQUENCY BAND

13.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$

Relative humidity : 46 % R.H.

13.2 Test set-up for conducted measurement

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz and video bandwidth is set to 300 kHz, and peak detection was used.

13.3 Test set-up for radiated measurement

The radiated emissions measurements were performed on the 3 m semi anechoic chamber. The EUT was placed on turntable approximately 1.5 m above the ground plane.

The frequency spectrum from 30 MHz to 26.5 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

13.4 Test Date

January 19, 2024 ~ March 25, 2024

13.5 Test data for conducted emission

Please refer to the Annex.

13.6 Test data for Transmitting mode radiated emission

13.6.1 Spurious & Harmonic Radiated Emission above 1 GHz

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 3 MHz for Peak Mode(Peak Detector), 3 MHz for Average Mode(RMS Detector)

-. Frequency range : $1 \text{ GHz} \sim 10.0 \text{ GHz}$

-. Measurement distance : 3 m-. Duty cycle : 100 %-. Result : PASSED

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	AMP Factor	Duty Factor (dB)	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
			To	est Data f	or Low	Channel				
1 804.375	65.35	Peak	Н	25.23	4.50	42.03	-	53.05	74.00	20.95
1 804.275	64.16	Average	Н	25.23	4.50	42.03	-	51.86	54.00	2.14
1 804.285	64.87	Peak	V	25.23	4.50	42.03	-	52.57	74.00	21.43
1 804.275	63.60	Average	V	25.23	4.50	42.03	-	51.30	54.00	2.70
			Tes	t Data fo	r Middle	Channe	l			
1 806.695	64.67	Peak	Н	25.24	4.50	42.04	-	52.37	74.00	21.63
1 806.825	63.40	Average	Н	25.24	4.50	42.04	-	51.10	54.00	2.90
1 806.875	63.91	Peak	V	25.24	4.50	42.04	-	51.61	74.00	22.39
1 806.815	62.67	Average	V	25.24	4.50	42.04	-	50.37	54.00	3.63
Test Data for High Channel										
1 809.335	64.21	Peak	Н	25.26	4.50	42.05	_	51.92	74.00	22.08
1 809.325	62.97	Average	Н	25.26	4.50	42.05	-	50.68	54.00	3.32
1 809.435	63.41	Peak	V	25.26	4.50	42.05	-	51.12	74.00	22.88
1 809.325	62.10	Average	V	25.26	4.50	42.05	-	49.81	54.00	4.19

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

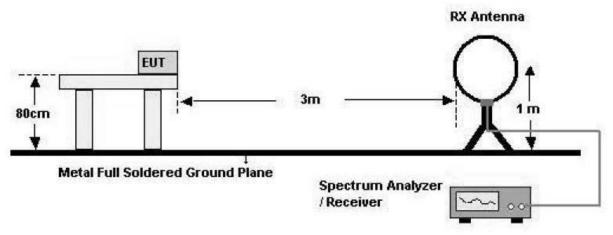
 $Total\ Level = Reading + Antenna\ Factor + Cable\ Loss + Duty\ Factor\ -\ Amp\ Factor$

14. RADIATED EMISSION TEST

14.1 Operating environment

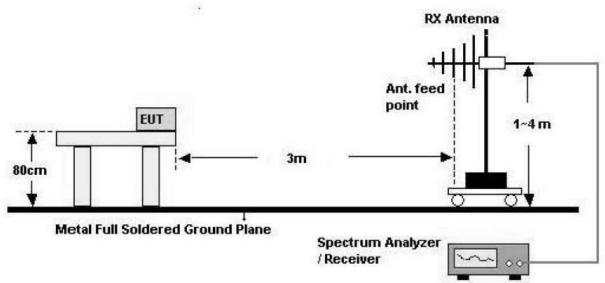
Temperature : $23 \, ^{\circ}\text{C}$

Relative humidity : 46 % R.H.

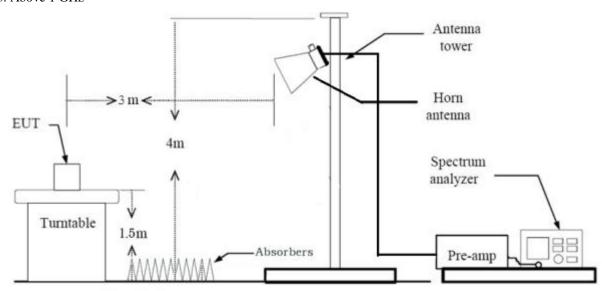

14.2 Test set-up

The radiated emissions measurements were on the 3 m semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 MHz to 10.0 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.


- Test Configuration

1. Below 30 MHz



2. 30 MHz - 1 GHz

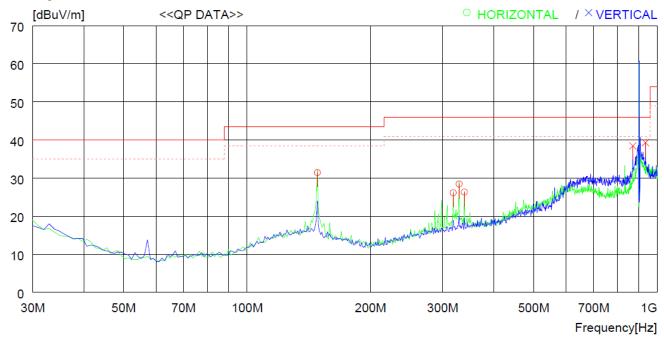
3. Above 1 GHz

14.3 Test Date

January 19, 2024 ~ March 25, 2024

14.4 Test data for 30 MHz ~ 1 000 MHz

-. Resolution bandwidth : 120 kHz


-. Frequency range $: 30 \text{ MHz} \sim 1000 \text{ MHz}$

-. Measurement distance : 3 m

-. Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

-. Test mode : Worst case (Low CH)

-. The highest value is the fundamental.

No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizo	ntal								
1	148.34	0 43.1	18.6	1.8	32.	1 31.4	43.5	12.1	400	0
2	318.09	0 36.0	19.5	2.7	32.	1 26.1	46.0	19.9	100	359
3	328.76	0 38.1	19.6	2.8	32.1	1 28.4	46.0	17.6	100	359
4	338.46	0 35.9	19.7	2.8	32.	26.3	46.0	19.7	100	359
	Vertic	al								
5	871.95	0 38.6	27.4	4.5	32.	1 38.4	46.0	7.6	100	211
6	935.96	8 38.5	27.9	4.7	31.8	39.3	46.0	6.7	100	0

Page 25 of 29 Report No. : OT-243-RWD-055

14.5 Test data for Below 30 MHz

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

Frequency	Reading	Ant. Pol.	Ant. Factor	Cable	Amp	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	(dB/m)	Loss	Gain	Level(dBµV/m)	$(dB\mu V/m)$	(dB)

Emission from the EUT more than 20 dB below the limit in each frequency range.

14.6 Test data for above 1 GHz

-. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode

1 MHz and RMS Detector for Average Mode

-. Video bandwidth : 3 MHz for Peak and Average Mode

-. Frequency range : 1 GHz \sim 10.0 GHz

-. Measurement distance : 3 m

Frequency	Reading	Ant. Pol.	Ant. Factor	Cable	Amp	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	(dB/m)	Loss	Gain	Level(dBµV/m)	$(dB\mu V/m)$	(dB)

Emission from the EUT more than 20 dB below the limit in each frequency range.

Page 26 of 29 Report No. : OT-243-RWD-055

15. CONDUCTED EMISSION TEST

15.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$

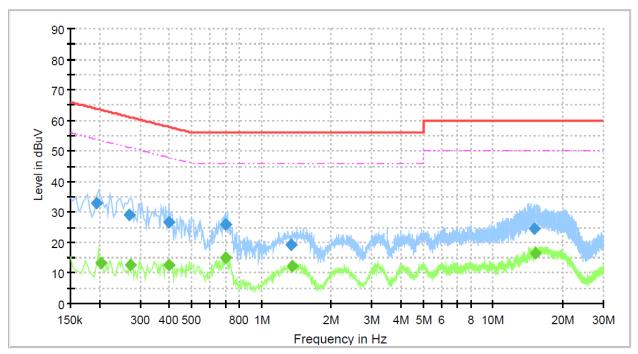
Relative humidity : 46 % R.H.

15.2 Test set-up

The EUT was placed on a wooden table, 0.8 m height above the floor. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

15.3 Test Date

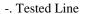
January 19, 2024 ~ March 25, 2024

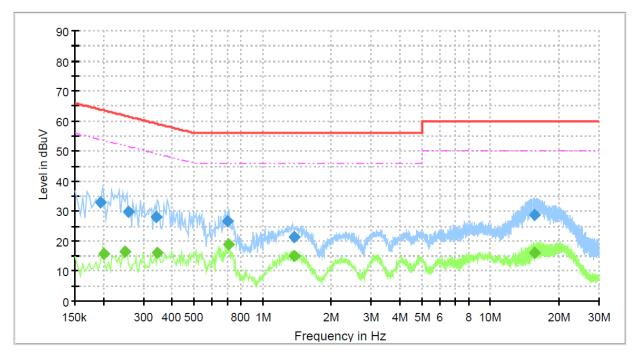


15.4 Test Data

-. Resolution bandwidth : 9 kHz

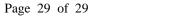
-. Frequency range : 0.15 MHz ~ 30 MHz-. Test mode : Worst case (Low CH)


-. Tested Line : HOT LINE


Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)	(ms)	(kHz)		(dB)
0.194	32.92		63.89	30.97	3000.0	9.0	L1	10.22
0.203		13.34	53.51	40.17	3000.0	9.0	L1	10.22
0.269	29.00		61.13	32.13	3000.0	9.0	L1	10.21
0.273		12.64	51.01	38.37	3000.0	9.0	L1	10.21
0.398	26.63		57.91	31.28	3000.0	9.0	L1	10.22
0.398		12.53	47.91	35.38	3000.0	9.0	L1	10.22
0.699		14.97	46.00	31.03	3000.0	9.0	L1	10.24
0.703	25.86		56.00	30.14	3000.0	9.0	L1	10.24
1.352	19.37		56.00	36.63	3000.0	9.0	L1	10.28
1.364		12.17	46.00	33.83	3000.0	9.0	L1	10.28
15.139	24.56		60.00	35.44	3000.0	9.0	L1	10.91
15.207		16.57	50.00	33.43	3000.0	9.0	L1	10.92

: NEUTRAL LINE


Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)	(ms)	(kHz)		(dB)
0.194	32.79		63.89	31.10	3000.0	9.0	N	10.24
0.202		15.81	53.55	37.73	3000.0	9.0	N	10.24
0.250		16.45	51.77	35.32	3000.0	9.0	N	10.22
0.258	29.67		61.51	31.84	3000.0	9.0	N	10.22
0.342	28.02		59.17	31.15	3000.0	9.0	N	10.22
0.346		16.08	49.07	32.99	3000.0	9.0	N	10.22
0.703	26.61		56.00	29.39	3000.0	9.0	N	10.24
0.707		18.81	46.00	27.19	3000.0	9.0	N	10.24
1.368	21.19		56.00	34.81	3000.0	9.0	N	10.28
1.376		15.23	46.00	30.77	3000.0	9.0	N	10.28
15.582	28.71		60.00	31.29	3000.0	9.0	N	10.96
15.686		16.26	50.00	33.74	3000.0	9.0	N	10.97

Remark: Margin(dB) = Limit - Level(Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN),

cable loss and attenuator.

16. LIST OF TEST EQUIPMENT

Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)	
FSV40-N	Rohde & Schwarz	Signal Analyzer	102196	Jan. 15, 2024 (1Y)	
FSV40-N	Rohde & Schwarz	Signal Analyzer	101651	Jan. 15, 2024 (1Y)	
H-3005D	FinePower	DC POWER SUPPLY	FP09092008	Jan. 15, 2024 (1Y)	
ESR	Rohde & Schwarz	EMI Test Receiver	101470	Jun. 16, 2023 (1Y)	
310N	Sonoma Instrument	Pre-Amplifier	312544	Mar. 14, 2023 (1Y)	
SCU18	Rohde & Schwarz	Pre-Amplifer	102266	Jul. 11, 2023 (1Y)	
SCU40A	Rohde & Schwarz	Pre-Amplifer	100436	Jan. 23, 2024 (1Y)	
DT3000	Innco System	Turn Table	DT3000/093	N/A	
MA4000-EP	Innco System	Antenna Master	MA4000/332/27030611/L	N/A	
CO3000	Innco System	Controller	CO3000/904/37211215/L	N/A	
FMZB 1513	Schwarzbeck	Loop Antenna	1513-235	Mar. 24, 2022 (2Y)	
HLP-2008	TDK	Hybrid Antenna	131316	Mar. 07, 2022 (2Y)	
BBHA9120D	Schwarzbeck	Horn Antenna	9120D-1349	Jul. 04, 2023 (1Y)	
BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Jan. 04, 2024 (1Y)	
WRCT 890/960- 5/40-8SSK	Wainwright Instruments GmbH	Tunable Band Reject Filter	7	Jul. 11, 2023 (1Y)	
F-40-10.0-RF	RLC Electronis	High Pass Filter	0427	Jan. 15, 2024 (1Y)	
HPF 3GHz	Rohde & Schwarz	High Pass Filter	N/A	Jan. 15, 2024 (1Y)	
HPF 1.5GHz	Rohde & Schwarz	High Pass Filter	N/A	Jan. 15, 2024 (1Y)	
10 dB Attenuator	Rohde & Schwarz	10 dB Attenuator	14100882-4	Jul. 11, 2023 (1Y)	
8493C	HP	6 dB Attenuator	01925	Jul. 11, 2023 (1Y)	
ESR 3	Rohde & Schwarz	EMI TEST RECEIVER	102602	Mar. 15, 2023 (1Y)	
NSLK8126	Schwarzbeck	LISN	8126404	Mar. 15, 2023 (1Y)	
3825/2	EMCO	AMN	9109-1869	Mar. 15, 2023 (1Y)	
VTSD 9561-F	Schwarzbeck	PULSE LIMITER	01337	Nov. 23, 2023 (1Y)	
QFA1802-26-6-S	Qualwave	6 dB Attenuator	225338	Jan. 17, 2024 (1Y)	
QPD2-0-26500-2-S	Qualwave	Divider	22175074	Jan. 17, 2024 (1Y)	
QPD2-0-26500-2-S	Qualwave	Divider	22175075	Jan. 17, 2024 (1Y)	
8494B	Agilent	Manual Attenuator	MY42143102	Jan. 15, 2024 (1Y)	
8495B	Agilent	70dB ATTENUATOR	MY42141151	Jan. 15, 2024 (1Y)	
SH-242	ESPEC	Temperature & Humidity Chamber	0093011138	Jan. 16, 2024 (1Y)	
NRP-Z81	Rohde & Schwarz	Wideband Power Sensor	104811	Jan. 17, 2024 (1Y)	
SMBV100A	Rohde & Schwarz	VECTOR SIGNAL GENERATOR	260423	Jan. 17, 2024 (1Y)	
RT-AX88U	ASUS	Router	N/A	N/A	