

TEST REPORT

Report No. : KES-RF-23T0131 Page **1** / **22** KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil,Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel : +82-31-425-6200, Fax : +82-31-425-6200

FCC TEST REPORT

- 1. Client
 - Name : AMOSENSE
 - Address : 19-1BL, 90, 4sandan 5-gil, Jiksan-eup, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea

2. Sample Description

- Product item : AMOBAND
- \circ Model name : AMB-100
- Manufacturer etc. : AMOSENSE
- 3. Date of test : 2023.08.01 ~ 2023.10.11
- **4. Location of Test :** ☑ Permanent Testing Lab □ On Site Testing ○ Adress : 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea
 - 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
- 5. Test method used : Part 15 Subpart C 15.225
- 6. Test result : PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This laboratory is not accredited for the test results marked *. This test report is not related to KOLAS accreditation.

A 66	Tested by		Technical Manager	
Ammation	Name : Do-won, Ahn	(Signature)	Name : Young-Jin Lee	(Signature)

2023.10.30.

Accredited by KOLAS, Republic of KOREA

Page 2 / 22

REPORT REVISION HISTORY

Date	Test Report No.	Revision History
2023.10.30	KES-RF-23T0131	Initial

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KES Co., Ltd. will constitute fraud and shall nullify the document.

Use of uncertainty of measurement for decisions on conformity (decision rule):

■ No decision rule is specified by the standard, when comparing the measurement result with the applicable limit according to the specification in that standard. The decisions on conformity are made without applying the measurement uncertainty("simple acceptance" decision rule, previously known as "accuracy method").

□ Other (to be specified, for example when required by the standard or client)

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

Page **3** / **22**

TABLE OF CONTENTS

1.	General	information	.4
	1.1.	EUT description	. 4
	1.2.	Test configuration	. 4
	1.3.	Derivative Model Information	. 5
	1.4.	Information about derivative model	. 5
	1.5.	Accessory information	. 5
	1.6.	Measurement Uncertainty	. 5
	1.7.	Frequency/channel operations	. 6
2.	Summar	y of tests	.7
	3	Test results	. 8
	3.1.	Radiated spurious emissions	. 8
	3.2	20 dB bandwidth	15
	3.3.	Frequency Stability	17
	3.4.	AC conducted emissions	19
	3.5.	Antenna Requirement	21
A p	pendix A.	Measurement equipment	22

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

1. General information

Applicant:	AMOSENSE		
Applicant address:	19-1BL, 90, 4sandan 5-gil, Jił Chungcheongnam-do, Repub	san-eup, Seobuk-gu, Cheonan- lic of Korea	si,
Test site:	KES Co., Ltd.		
Test site address:	🔲 3701, 40, Simin-daero 36	5beon-gil, Dongan-gu, Anyang-s	i,
	Gyeonggi-do, 14057, Korea		
	🛛 473-21, Gayeo-ro, Yeoju-s	si, Gyeonggi-do, Korea	
Test Facility	FCC Accreditation Designatio	n No.: KR0100, Registration No.	: 444148
FCC rule part(s):	15.225		
FCC ID:	2AS9T-AMB100		
Test device serial No.:	⊠ Production	Pre-production	Engineering

1.1. EUT description

Equipment under test	AMOBAND
Frequency range	2 402 MHz ~ 2 480 MHz (BLE 1 Mbps)
	13.561 Mz (NFC)
Model	AMB-100
Modulation technique	GFSK, ASK
Number of channels	2 402 MHz ~ 2 480 MHz (BLE 1 Mbps) : 40 ch
	13.561 ₩2 (NFC):1ch
Antenna specification	Chip Antenna // Peak gain: -3.87 dBi
	Antenna type(NFC) : Loop Antenna
Power source	DC 3.70 V (Battery)
H/W version	MAIN BOARD 4.0 / PPG SENSOR BOARD 5.0
S/W version	Ver 4.1

1.2. Test configuration

The AMOSENSE // AMOBAND // AMB-100 // FCC ID: 2AS9T-AMB100

was tested according to the specification of EUT, the EUT must comply with following standards and KDB documents.

FCC Part 15 FCC Part 2 ANSI C63.10-2013

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

KES Co., Ltd.

Page 4 / 22

Page 5 / 22

1.3. Derivative Model Information

AMB-100-1

(A derivative model was added at the buyer's request, and there is no other difference.)

1.4. Information about derivative model

N/A

1.5. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
NFC Reader	N/A	N/A	N/A	AC 120 V (Output : DC 5.0V/1.0A)

For Radiation test :

Field strength level ($^{dB}\mu$ /m) = Measured level ($^{dB}\mu$) + Antenna factor (dB) + Cable loss (dB) – Amplifier gain (dB)

1.6. Measurement Uncertainty

Test Item	Uncertainty		
Uncertainty for Conduction en	2.22 dB (SHIELD ROOM #6)		
Uncertainty for Radiation emission test	Below 16Hz	4.04 dB(SAC #6)	
(include Fundamental emission)	Above 10Hz	5.32 dB(SAC #5)	
Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

KES-QP16-F01(00-23-01-01)

Page 6 / 22

1.7. Frequency/channel operations

01 13.561	

Ch.	Frequency (Mb)	Rate(Mbps)
00	2 402	BLE_1 Mbps
•	-	•
20	2 442	BLE_1 Mbps
		· .
39	2 480	BLE_1 Mbps

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

Page **7** / **22**

2. Summary of tests

Section in FCC Part 15	Test description	Test results
15.225(a)	The field strength of fundamental	Pass
15.225(b)(c)	The field strength of spurious emission(In-band)	Pass
15.225(d) 15.209	The field strength of spurious emission(Out- band)	Pass
2.1049	20 dB bandwidth	Pass
15.225(e)	Frequency stability	Pass
15.207	AC conducted emissions	Pass
15.203	Antenna Requirement	Pass

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

3 Test results

3.1. Radiated spurious emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\rm klz\,$ to

30 Mt Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

Page 9 / 22

Test procedure

[9 kHz to 30 MHz]

The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Quasi-peak function and specified bandwidth with maximum hold mode.

The spectrum analyzer is set to:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 200 Hz for Quasi-peak detection (QP) at frequency below 9 kHz~150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 9 kl for Quasi-peak detection (QP) at frequency below 150 kl ~ 30 kl.

[30 Mtz to 1 Gtz]

The height of the measuring antenna was varied between 1 to 4 m and the table was rotated a full revolution in order to obtain maximum values of the electric field intensity.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

The spectrum analyzer is set to:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.

Note.

According to exploratory test no any obvious emission except for fundamental 13.56 We were detected from 9 kHz to 30 MHz. Although these test were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

KES-QP16-F01(00-23-01-01)

Page 10 / 22

Report No. : KES-RF-23T0131

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72 \text{ Mb}$, $76 \sim 88 \text{ Mb}$, $174 \sim 216 \text{ Mb}$ or $470 \sim 806 \text{ Mb}$. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

In the section 15.225:

- (a) The field strength of any emissions within the band 13.553 ~ 13.567 Mz shall not exceed 15,848 microvolts/meter (= 84 dB μ N/m) at 30 meters.
- (b) Within the bands 13.410 ~ 13.553 № and 13.567 ~ 13.710 №, the field strength of any emissions shall not exceed 334 microvolts/meter (=50.5 dB_µV/m) at 30 meters.
- (c) Within the bands 13.110 ~ 13.410 № and 13.710 ~ 14.010 № the field strength of any emissions shall not exceed 106 microvolts/meter (=40.5 dB_µV/m) at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 ~ 14.010 Mb band shall not exceed the general radiated emission limits in § 15.209.

KES-QP16-F01(00-23-01-01)

Test results for fundamental

Operating frequency:	13.561 Mz
Distance of	3 meter
measurement:	5 meter

Radiated emissions		Ant.	Total fact	Total	Limit		
Frequency (Mb)	Reading (dBµV)	Pol.	Correction factor (dB/m)	Distance factor (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
13.561	16.50	Н	19.80	40.00	3.70	84.00	87.70
13.561	27.90	V	19.80	40.00	7.70	84.00	76.30

Test results for in-band & out-band(9 kt to 30 Mt)

Radiated emissions		Ant.	Total fact	ors	Total	Lin	nit
Frequency (Mb)	Reading (dBµV)	Pol.	Correction factor (dB/m)	Distance factor (dB)	Actual (dB _# N/m)	Limit (dBµN/m)	Margin (dB)
12.082	11.18	Н	19.78	40.00	-9.04	29.54	38.58
12.566	10.90	V	19.79	40.00	-9.31	29.54	38.85
13.162	10.98	Н	19.79	40.00	-9.23	40.50	49.73
13.311	10.45	V	19.79	40.00	-9.76	40.50	50.26
13.501	10.58	Н	19.79	40.00	-9.63	50.50	60.13
13.552	14.53	V	19.80	40.00	-5.67	50.50	56.17
13.561	20.25	V	19.80	40.00	0.05	84.00	83.95
13.562	12.55	Н	19.80	40.00	-7.65	84.00	91.65
13.647	10.11	Н	19.80	40.00	-10.09	50.50	60.59
13.568	16.09	V	19.80	40.00	-4.11	50.50	54.61
13.765	10.06	V	19.79	40.00	-10.15	40.50	50.65
13.976	10.70	Н	19.80	40.00	-9.50	40.50	50.00
14.125	11.39	Н	19.81	40.00	-8.80	29.54	38.34
14.631	10.54	V	19.81	40.00	-9.65	29.54	39.19

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

Page 11 / 22

Page **12 / 22**

Note.

- 1. All measurements were performed using a loop antenna. The antenna was investigated with three polarizations, and horizontal and vertical polarizations were reported as the worst case.
- 2. The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst case emissions.
- 3. Measurements were performed at 3m and the data was extrapolated to the specified measurement distance of 30m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in $\frac{15.31(f)(2)}{2}$. Extrapolation Factor = 20 log10(30/3)² = 40 dB.
- 4. The spectrum was investigated from 9 klz up to 30 Mz using the loop antenna. Only the emissions shown in the table above were found to be significant.
- 5. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector.
- 6. Actual = Reading + Correction factors(Ant. factor + Cable loss) Distance factor
- 7. Margin [dB] = Limit [dB μ V//m] Field Strength Level [dB μ V//m]

8. All modes (e.g. with and without a tag) were investigated. Only the radiated emissions of the configuration (with a tag) that produced the worst case emissions are reported in this section.

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

Page 13 / 22

Test results (9 kHz to 30 MHz)

Horizontal // in-band & out-band						Vertical // in-band & out-band						
Spectrum	Spectrum 2	Spectrum 3	Spectrum	4 🛛		Spectrum	6	Spectrum 2	Spectrum	3 🙁 Spectrun	14 🛛	T T
						Ref Level	57.00 dB	μV	Mode Auto FFT			
1 Max						1 Max				-		
60 dBull		PASS	MI[I]		12.53 dBµV	60 dBul/	heck		PASS	MI[1]		20.25 dBj
SPURI	DUS_LINE_ABS_	PASS		1 I I	3.561000 MHZ	CO OPHTE _S	PURIOU	S_LINE_ABS_	PASS		1 1	13.560800 Mi
50 dBµV						50 dBµV						_
0 dBµV						40 dBµV						
SPURIOUS LINE	AS	_				SPURIOUS L	INE ABS	8	_			
						20 40.4/		-		W		
U UBHV		1	1			20 UBHV				1		
(AdBull						10 dBillio						
				Contraction of the second	Contraction of the Automation				- Charles and a contraction of			
) dBuV						0 dBuV						
-10 dBµV						-10 dBµV-						
20 dBµV-						-20 dBµV				-		
зо авил-						-30 GBHA						
CF 13.56 MHz		707	pts	s	pan 3.12 MHz	CF 13.56 M	Hz		70	7 pts		Span 3.12 MH
purious Emissio	ns					Spurious Err	nissions					
Range Low	Range Up	RBW	Frequency	Power Abs	∆Limit	Range Li	w	Range Up	RBW	Frequency	Power Abs	∆Limit
12.000 MHz	13.110 MHz	10.000 kHz	12.08243 MHz	11.18 dBµV	-18.32 dB	12.000	MHz	13.110 MHz	10.000 kHz	12.56599 MHz	10.90 dBµV	-18.60 d
13.110 MHz	13.410 MHz	10.000 kHz	13.16198 MHz	10.98 dBµV	-29.52 dB	13.110	MH2	13.410 MHz	10.000 kHz	13.31050 MHz	10.45 dBµV	-30.05 d
13.410 MHz	13.553 MHz	10.000 kHz	13.50132 MHz	10.58 dBµV	-39.92 dB	13.410	MHz	13.553 MHz	10.000 kHz	13.55229 MHz	14.53 dBµV	-35.97 d
13.553 MHz	13.567 MHz	10.000 kHz	13.56152 MHz	12.55 dBµV	-71.45 dB	13.553	MHz	13.567 MHz	10.000 kHz	13.56083 MHz	20.25 dBµV	-63.75 d
13.567 MHz	13.710 MHz	10.000 kHz	13.64700 MHz	10.11 dBµV	-40.39 dB	13.567	MHz	13.710 MHz	10.000 kHz	13.56771 MHz	16.09 dBµV	-34.41 d8
13.710 MHz	14.010 MHz	10.000 kHz	13.97584 MHz	10.70 dBµV	-29.80 dB	13.710	MHz	14.010 MHz	10.000 kHz	13.76495 MHz	10.06 dBµV	-30.44 di
14.010 MHz	15.120 MHz	10.000 kHz	14.12540 MHz	11.39 dBµV	-18.11 dB	14.010	MHz	15.120 MHz	10.000 kHz	14.63094 MHz	10.54 dBµV	-18.96 d
T T			Measuring	11	05.10.2023		11			Measuring	E	05.10.2023

KES-QP16-F01(00-23-01-01)

Page 14 / 22

Test results (Below 1 000 M₂)

Note.

- 1. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector for emissions below 960 №.
- 2. Below 30 MHz, loop Antenna was investigated with three polarizations, horizontal and vertical polarizations were reported as the worst case.
- The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst case emissions.
- 4. The spectrum is measured from 9 km to the 10th harmonic and the worst-case emissions are reported.
- 5. No spurious emissions levels were found to be greater than the level of the fundamental.

KES-QP16-F01(00-23-01-01)

3.2 20 dB bandwidth

Test setup

Test procedure

ANSI C63.10-2013 - Section 6.9.2

- 1. Spectrum analyzer frequency is set to the nominal EUT channel center frequency.
- 2. RBW = 1~5% OBW
- 3. VBW \ge 3 x RBW
- 4. Reference level set to keep signal from exceeding maximum input mixer for linear operation.
- 5. Detector = Peak
- 6. Trace mode = Max hold
- 7. Sweep = Auto couple
- 8. The trace was allowed to stabilize
- 9. Using the marker-delta function, determine the "-20 dB down amplitude" using [(highest in band spectral density) 20 dB]
- 10. Set a marker at the lowest frequency of the envelope of the spectral density, such that the marker is at or slightly below the "-20 dB down amplitude" determined in Step 9.
- 11. Reset Marker-delta function and move the marker to other side of the emission until the delta marker amplitude is the same level as reference amplitude. The marker delta frequency reading at this point is the specified emission bandwidth.

KES-QP16-F01(00-23-01-01)

"The authenticity of the test report, contact kes@kes.co.kr

KES Co., Ltd.

Page 15 / 22

Page 16 / 22

Test results

Note.

Because the measured signal is CW/CW-like, adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

3.3. Frequency Stability

Test procedure ANSI C63.10-2013, clause 6.8.1

Test setup

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
- 7. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.

Limit

According to §15.225 (e), the frequency tolerance of the carrier signal shall be maintained within +/-0.01 % of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

KES Co., Ltd.

Page **17** / **22**

Page 18 / 22

Test results

Test voltage	Test voltage	Temperature (°C)	Maintaining	Measure frequency	Frequency deviation	Deviation
(%)	(V)		time	(MHz)	(Hz)	(%)
			Startup	13.560 532	-468	0.003 451
		00	2 minutes	13.560 385	-615	0.004 535
		-20	5 minutes	13.560 533	-467	0.003 444
			10 minutes	13.560 536	-464	0.003 422
			Startup	13.560 595	-405	0.002 987
		10	2 minutes	13.560 595	-405	0.002 987
		-10	5 minutes	13.560 594	-406	0.002 994
			10 minutes	13.560 532	-468	Deviation (%) 0.003 451 0.004 535 0.003 444 0.003 444 0.002 987 0.002 987 0.002 987 0.002 994 0.002 994 0.002 824 0.003 451 0.002 824 0.003 540 0.003 540 0.003 540 0.003 540 0.003 525 0.003 510 0.002 773 0.003 510 0.002 817 0.002 817 0.002 810 0.003 591 0.003 591 0.003 591 0.003 540 0.002 876 0.002 094 0.003 016 0.003 016 0.003 0287 0.003 090 0.003 255 0.003 090 0.003 287 0.002 877 0.003 865 0.003 377 0.003 894
			Startup	13.560 617	-383	0.002 824
		0	2 minutes	13.560 527	-473	0.003 488
		0	5 minutes	13.560 604	-396	0.002 920
			10 minutes	13.560 520	-480	0.003 540
			Startup	13.560 521	-479	0.003 532
		10	2 minutes	13.560 624	-376	0.002 773
		10	5 minutes	13.560 522	-478	0.003 525
100.9/			10 minutes	13.560 524	-476	0.003 510
100 %	DC 3.70 V	20	Startup	13.560 624	-376	0.002 773
			2 minutes	13.560 521	-479	0.003 532
			5 minutes	13.560 618	-382	0.002 817
			10 minutes	13.560 619	-381	0.002 810
			Startup	13.560 513	-487	0.003 591
		30	2 minutes	13.560 539	-461	0.003 399
			5 minutes	13.560 520	-480	0.003 540
			10 minutes	13.560 610	-390	0.002 876
			Startup	13.560 716	-284	0.002 094
		40	2 minutes	13.560 591	-409	0.003 016
		40	5 minutes	13.560 591	-409	0.003 016
			10 minutes	13.560 437	-563	0.004 152
			Startup	13.560 581	-419	0.003 090
		50	2 minutes	13.560 522	-478	0.003 525
		50	5 minutes	13.560 581	-419	0.003 090
			10 minutes	13.560 631	-369	0.002 721
			Startup	13.560 717	-283	0.002 087
85 %	DC 3 15 V	23	2 minutes	13.560 611	-389	0.002 869
00 /0	DO 0.10 V	20	5 minutes	13.560 503	-497	0.003 665
			10 minutes	13.560 542	-458	0.003 377
			Startup	13.560 590	-410	0.003 023
115 %	DC 4 26 V	23	2 minutes	13.560 303	-697	0.005 140
110 /0	DO 7.20 V	25	5 minutes	13.560 615	-385	0.002 839
			10 minutes	13.560 472	-528	0.003 894

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

Page 19 / 22

3.4. AC conducted emissions

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kt to 30 Mt, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Fraguancy of Emission (MR)	Conducted limit (dB _µ N/m)				
Frequency of Emission (mz)	Quasi-peak	Average			
0.15 – 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

Page 20 / 22

Test results

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

Page 21 / 22

3.5. Antenna Requirement

According to 15.207(a), An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

The EUT has an internal Loop antenna and meets the requirements of this section.

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr

Page 22 / 22

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
EMI Test Receiver	R&S	ESU26	100552	1 year	2024.03.21
Spectrum Analyzer	R&S	FSV40	101002	1 year	2024.06.14
EMI Test Receiver	R&S	ESR3	101783	1 year	2023.11.11
ATTENUATOR	KEYSIGHT	8493C	82506	1 year	2024.01.17
SIGNAL GENERATOR	KEYSIGHT	N5182B	MY59100115	1 year	2024.05.26
SIGNAL GENERATOR	Anritsu	68369B	002118	1 year	2024.05.12
Loop Antenna	Schwarzbeck	FMZB1513	1513-257	2 years	2025.03.22
TRILOG- BROADBAND ANTENNA	VULB9163	Schwarzbeck	714	2 years	2024.04.19
Amplifier	SONOMA INSTRUMENT	310N	186549	1 year	2024.03.21
LISN	R&S	ENV216	101787	1 year	2023.11.10
PULSE LIMITER	R&S	ESH3-Z2	101915	1 year	2023.11.10
Attenuator	KEYSIGHT	-	-	1 year	2024.03.21
Temperature Chamber	TABAI	MC711P	112000492	1 year	2024.01.13
DIGITAL MULTI METER	TEKTRONIX	DMM916	138401	1 year	2024.01.13
DC POWER SUPPLY	AGILENT	6632B	US36351824	1 year	2024.01.13
Programmable AC Source	Chroma ATE Inc	61501	615010000000	1 year	2024.06.14

A ppendix A. Measurement equipment

Peripheral device

Device	Manufacturer	Model No.	Serial No.	
-	-	-	-	

The end of test report.

KES-QP16-F01(00-23-01-01)

The authenticity of the test report, contact kes@kes.co.kr