

# **RADIO TEST REPORT**

S

5

# Report No: STS1905146W04

Issued for

CHINA NATIONAL HUACHEN ENERGY GROUP CO., LTD.

3/F,Sangpu Building,No.10 Dayangfang, Beiyuan Road, Chaoyang Dist, Beijing, 100012, China

| Product Name:  | Tablet          |
|----------------|-----------------|
| Brand Name:    | Blueing         |
| Model Name:    | RK8863H         |
| Series Model:  | N/A             |
| FCC ID:        | 2AS9KRK8863H    |
| Test Standard: | FCC Part 15.247 |

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL





## **TEST RESULT CERTIFICATION**

| Applicant's Name:   | CHINA NATIONAL HUACHEN ENERGY GROUP CO.,LTD.                                                 |
|---------------------|----------------------------------------------------------------------------------------------|
| Address             | 3/F,Sangpu Building,No.10 Dayangfang, Beiyuan Road,<br>Chaoyang Dist, Beijing, 100012, China |
| Manufacture's Name: | CHINA NATIONAL HUACHEN ENERGY GROUP CO., LTD.                                                |
| Address             | 3/F,Sangpu Building,No.10 Dayangfang, Beiyuan Road,<br>Chaoyang Dist, Beijing, 100012, China |
| Product Description |                                                                                              |
| Product Name:       | Tablet                                                                                       |
| Brand Name:         | Blueing                                                                                      |
| Model Name:         | RK8863H                                                                                      |
| Series Model:       | N/A                                                                                          |
| Test Standards:     | FCC Part15.247                                                                               |
| Test Procedure:     | ANSI C63.10-2013                                                                             |

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document...

Date of Test.....

Date (s) of performance of tests .: 09 May 2019 ~ 14 May 2019

Date of Issue ..... 14 May 2019

Test Result ..... Pass

Testing Engineer

(Chris Chen)

Technical Manager

Ju

(Sunday Hu)



Authorized Signatory :

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 3 of 68 Report No.: STS1905146W04



| Table of Contents                                           | Page |
|-------------------------------------------------------------|------|
| 1. SUMMARY OF TEST RESULTS                                  | 6    |
| 1.1 TEST FACTORY                                            | 7    |
| 1.2 MEASUREMENT UNCERTAINTY                                 | 7    |
| 2. GENERAL INFORMATION                                      | 8    |
| 2.1 GENERAL DESCRIPTION OF THE EUT                          | 8    |
| 2.2 DESCRIPTION OF THE TEST MODES                           | 10   |
| 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING            | 10   |
| 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 11   |
| 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS  | 12   |
| 2.6 EQUIPMENTS LIST                                         | 13   |
| 3. EMC EMISSION TEST                                        | 14   |
| 3.1 CONDUCTED EMISSION MEASUREMENT                          | 14   |
| 3.2 RADIATED EMISSION MEASUREMENT                           | 18   |
| 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION                  | 29   |
| 4.1 LIMIT                                                   | 29   |
| 4.2 TEST PROCEDURE                                          | 29   |
| 4.3 TEST SETUP                                              | 29   |
| 4.4 EUT OPERATION CONDITIONS                                | 29   |
| 4.5 TEST RESULTS                                            | 30   |
| 5. NUMBER OF HOPPING CHANNEL                                | 42   |
| 5.1 LIMIT                                                   | 42   |
| 5.2 TEST PROCEDURE                                          | 42   |
| 5.3 TEST SETUP                                              | 42   |
| 5.4 EUT OPERATION CONDITIONS                                | 42   |
| 5.5 TEST RESULTS                                            | 43   |
| 6. AVERAGE TIME OF OCCUPANCY                                | 44   |
| 6.1 LIMIT                                                   | 44   |
| 6.2 TEST PROCEDURE                                          | 44   |
| 6.3 TEST SETUP                                              | 44   |
| 6.4 EUT OPERATION CONDITIONS                                | 44   |
| 6.5 TEST RESULTS                                            | 45   |
| 7. HOPPING CHANNEL SEPARATION MEASUREMEN                    | 51   |
| 7.1 LIMIT                                                   | 51   |

Ħ

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 4 of 68 Report No.: STS1905146W04



| Table of Contents P          | age |
|------------------------------|-----|
| 7.2 TEST PROCEDURE           | 51  |
| 7.3 TEST SETUP               | 51  |
| 7.4 EUT OPERATION CONDITIONS | 51  |
| 7.5 TEST RESULTS             | 52  |
| 8. BANDWIDTH TEST            | 58  |
| 8.1 LIMIT                    | 58  |
| 8.2 TEST PROCEDURE           | 58  |
| 8.3 TEST SETUP               | 58  |
| 8.4 EUT OPERATION CONDITIONS | 58  |
| 8.5 TEST RESULTS             | 59  |
| 9. OUTPUT POWER TEST         | 65  |
| 9.1 LIMIT                    | 65  |
| 9.2 TEST PROCEDURE           | 65  |
| 9.3 TEST SETUP               | 65  |
| 9.4 EUT OPERATION CONDITIONS | 65  |
| 9.5 TEST RESULTS             | 66  |
| 10. ANTENNA REQUIREMENT      | 67  |
| 10.1 STANDARD REQUIREMENT    | 67  |
| 10.2 EUT ANTENNA             | 67  |

Π



Page 5 of 68 Report No.: STS1905146W04

## **Revision History**

| Rev. | Issue Date  | Report NO.    | Effect Page | Contents      |
|------|-------------|---------------|-------------|---------------|
| 00   | 14 May 2019 | STS1905146W04 | ALL         | Initial Issue |
|      |             |               |             |               |



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



## 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

|                                  | FCC Part 15.247,Subpart C                  |          |        |
|----------------------------------|--------------------------------------------|----------|--------|
| Standard<br>Section              | Test Item                                  | Judgment | Remark |
| 15.207                           | Conducted Emission                         | PASS     |        |
| 15.247(a)(1)                     | Hopping Channel Separation                 | PASS     |        |
| 15.247(a)(1)&(b)(1)              | Output Power                               | PASS     |        |
| 15.247(c)                        | Radiated Spurious Emission                 | PASS     |        |
| 15.247(d)                        | Conducted Spurious & Band Edge<br>Emission | PASS     |        |
| 15.247(a)(iii)                   | Number of Hopping Frequency                | PASS     |        |
| 15.247(a)(iii)                   | Dwell Time                                 | PASS     |        |
| 15.247(a)(1)                     | Bandwidth                                  | PASS     |        |
| 15.205                           | Restricted Band Edge Emission              | PASS     |        |
| Part 15.247(d)/part<br>15.209(a) | Band Edge Emission                         | PASS     |        |
| 15.203                           | Antenna Requirement                        | PASS     |        |

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.



#### 1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China FCC test Firm Registration Number: 625569 A2LA Certificate No.: 4338.01;

#### **1.2 MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | RF output power, conducted          | ±0.71dB     |
| 2   | Unwanted Emissions, conducted       | ±0.63dB     |
| 3   | All emissions, radiated 30-200MHz   | ±3.43dB     |
| 4   | All emissions, radiated 200MHz-1GHz | ±3.57dB     |
| 5   | All emissions, radiated>1G          | ±4.13dB     |
| 6   | Conducted Emission (9KHz-150KHz)    | ±3.18dB     |
| 7   | Conducted Emission (150KHz-30MHz)   | ±2.70dB     |



## 2. GENERAL INFORMATION

## 2.1 GENERAL DESCRIPTION OF THE EUT

| Product Name            | Tablet                                                                                  |
|-------------------------|-----------------------------------------------------------------------------------------|
| Trade Name              | Blueing                                                                                 |
| Model Name              | RK8863H                                                                                 |
| Series Model            | N/A                                                                                     |
| Model Difference        | N/A                                                                                     |
| Channel List            | Please refer to the Note 2.                                                             |
| Bluetooth               | Frequency:2402 – 2480 MHz<br>Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps),<br>8DPSK(3Mbps) |
| Bluetooth Version       | 4.2                                                                                     |
| Bluetooth configuration | BR+EDR                                                                                  |
| Adapter                 | Input: 100-240V, 50-60Hz, 0.35A<br>Output: DC 5V, 2A                                    |
| Battery                 | Rated Voltage: 3.8V<br>Charge Limit: 4.35V<br>Capacity: 6000mAh                         |
| Hardware version number | R863-3368-168-V1.0                                                                      |
| Software version number | Rk3368-userdebug 8.1.0 OPM6.171019.030.B1<br>200617 test-keys                           |
| Connecting I/O Port(s)  | Please refer to the User's Manual                                                       |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Shenzhen STS Test Services Co., Ltd.





2.

|         |                    | Chanr   | nel List           |         |                    |
|---------|--------------------|---------|--------------------|---------|--------------------|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 00      | 2402               | 27      | 2429               | 54      | 2456               |
| 01      | 2403               | 28      | 2430               | 55      | 2457               |
| 02      | 2404               | 29      | 2431               | 56      | 2458               |
| 03      | 2405               | 30      | 2432               | 57      | 2459               |
| 04      | 2406               | 31      | 2433               | 58      | 2460               |
| 05      | 2407               | 32      | 2434               | 59      | 2461               |
| 06      | 2408               | 33      | 2435               | 60      | 2462               |
| 07      | 2409               | 34      | 2436               | 61      | 2463               |
| 08      | 2410               | 35      | 2437               | 62      | 2464               |
| 09      | 2411               | 36      | 2438               | 63      | 2465               |
| 10      | 2412               | 37      | 2439               | 64      | 2466               |
| 11      | 2413               | 38      | 2440               | 65      | 2467               |
| 12      | 2414               | 39      | 2441               | 66      | 2468               |
| 13      | 2415               | 40      | 2442               | 67      | 2469               |
| 14      | 2416               | 41      | 2443               | 68      | 2470               |
| 15      | 2417               | 42      | 2444               | 69      | 2471               |
| 16      | 2418               | 43      | 2445               | 70      | 2472               |
| 17      | 2419               | 44      | 2446               | 71      | 2473               |
| 18      | 2420               | 45      | 2447               | 72      | 2474               |
| 19      | 2421               | 46      | 2448               | 73      | 2475               |
| 20      | 2422               | 47      | 2449               | 74      | 2476               |
| 21      | 2423               | 48      | 2450               | 75      | 2477               |
| 22      | 2424               | 49      | 2451               | 76      | 2478               |
| 23      | 2425               | 50      | 2452               | 77      | 2479               |
| 24      | 2426               | 51      | 2453               | 78      | 2480               |
| 25      | 2427               | 52      | 2454               |         |                    |
| 26      | 2428               | 53      | 2455               |         |                    |

## 3. Table for Filed Antenna

| Ant. | Brand   | Model<br>Name | Antenna Type | Connector | Gain (dBi) | NOTE          |
|------|---------|---------------|--------------|-----------|------------|---------------|
| 1    | Blueing | RK8863H       | PIFA         | N/A       | 0 dBi      | BT<br>Antenna |



#### 2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Description | Data Rate/Modulation                                                                                                                                                                                                    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TX CH00     | 1Mbps/GFSK                                                                                                                                                                                                              |
| TX CH39     | 1Mbps/GFSK                                                                                                                                                                                                              |
| TX CH78     | 1Mbps/GFSK                                                                                                                                                                                                              |
| TX CH00     | 2 Mbps/π/4-DQPSK                                                                                                                                                                                                        |
| TX CH39     | 2 Mbps/π/4-DQPSK                                                                                                                                                                                                        |
| TX CH78     | 2 Mbps/π/4-DQPSK                                                                                                                                                                                                        |
| TX CH00     | 3 Mbps/8DPSK                                                                                                                                                                                                            |
| TX CH39     | 3 Mbps/8DPSK                                                                                                                                                                                                            |
| TX CH78     | 3 Mbps/8DPSK                                                                                                                                                                                                            |
|             | TX CH00         TX CH39         TX CH78         TX CH00         TX CH39         TX CH78         TX CH78         TX CH78         TX CH78         TX CH00         TX CH78         TX CH78         TX CH00         TX CH39 |

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz

and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report

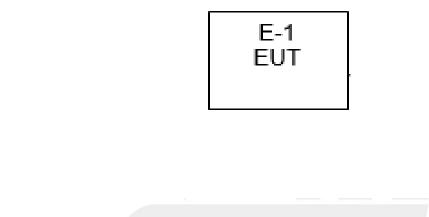
#### For AC Conducted Emission

|              | Test Case               |
|--------------|-------------------------|
| AC Conducted | Mode 10 : Keeping BT TX |
| Emission     |                         |

#### 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

| Test software Version                             | Test program: Bluetooth                                             |                                                                     |                                                                     |  |  |
|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Frequency                                         | 2402 MHz 2441 MHz 2480 MHz                                          |                                                                     |                                                                     |  |  |
| (Power control software)<br>Parameters(1/2/3Mbps) | Power class:<br>1 M rate:4:27<br>2 M rate:11:183<br>3 M rate:15:339 | Power class:<br>1 M rate:4:27<br>2 M rate:11:183<br>3 M rate:15:339 | Power class:<br>1 M rate:4:27<br>2 M rate:11:183<br>3 M rate:15:339 |  |  |




Page 11 of 68 Report No.: STS1905146W04

## 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

**Radiated Spurious Emission Test** 



**Conducted Emission Test** 

|  | E-2<br>apter | E-1<br>EUT |
|--|--------------|------------|
|--|--------------|------------|

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



#### 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

|      | Necessary accessories |           |                 |      |     |  |  |  |
|------|-----------------------|-----------|-----------------|------|-----|--|--|--|
| Item | Equipment             | Mfr/Brand | Serial<br>No.   | Note |     |  |  |  |
| E-2  | Adapter               | MINGXIN   | JZB310-050200UU | N/A  | N/A |  |  |  |
| C-1  | DC Cable              | N/A       | 100cm           | N/A  | N/A |  |  |  |
|      |                       |           |                 |      |     |  |  |  |
|      |                       |           |                 |      |     |  |  |  |

#### Support units

| Item | Equipment | Mfr/Brand | Model/Type No. | Serial<br>No. | Note |
|------|-----------|-----------|----------------|---------------|------|
| N/A  | N/A       | N/A       | N/A            | N/A           | N/A  |
|      |           |           |                |               |      |
|      |           |           |                |               |      |
|      |           |           |                |               |      |

#### Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <sup>r</sup>Length<sub>a</sub> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".



## 2.6 EQUIPMENTS LIST

#### Radiation Test equipment

| Kind of Equipment                   | Manufacturer | Type No.            | Serial No.       | Last calibration | Calibrated until |
|-------------------------------------|--------------|---------------------|------------------|------------------|------------------|
| Test Receiver                       | R&S          | ESCI                | 101427           | 2018.10.13       | 2019.10.12       |
| Signal Analyzer                     | Agilent      | N9020A              | MY51110105       | 2019.03.02       | 2020.03.01       |
| Active loop Antenna                 | ZHINAN       | ZN30900C            | 16035            | 2018.03.11       | 2021.03.10       |
| Bilog Antenna                       | TESEQ        | CBL6111D            | 34678            | 2017.11.02       | 2020.11.1        |
| Horn Antenna                        | SCHWARZBECK  | BBHA<br>9120D(1201) | 9120D-1343       | 2018.10.19       | 2021.10.18       |
| SHF-EHF Horn<br>Antenna (18G-40GHz) | A-INFO       | LB-180400-KF        | J211020657       | 2018.03.11       | 2021.03.10       |
| Pre-Amplifier(0.1M-3G<br>Hz)        | EM           | EM330               | 060665           | 2018.10.13       | 2019.10.12       |
| Pre-Amplifier<br>(1G-18GHz)         | SKET         | LNPA-01018G-45      | SK201808090<br>1 | 2018.10.13       | 2019.10.12       |
| Temperature &<br>Humidity           | HH660        | Mieo                | N/A              | 2018.10.11       | 2019.10.10       |
| turn table                          | EM           | SC100_1             | 60531            | N/A              | N/A              |
| Antenna mast                        | EM           | SC100               | N/A              | N/A              | N/A              |

## Conduction Test equipment

| Kind of Equipment         | Manufacturer | Type No. | Serial No. | Last calibration | Calibrated until |
|---------------------------|--------------|----------|------------|------------------|------------------|
| Test Receiver             | R&S          | ESCI     | 101427     | 2018.10.13       | 2019.10.12       |
| LISN                      | R&S          | ENV216   | 101242     | 2018.10.11       | 2019.10.10       |
| LISN                      | EMCO         | 3810/2NM | 23625      | 2018.10.11       | 2019.10.10       |
| Temperature &<br>Humidity | HH660        | Mieo     | N/A        | 2018.10.11       | 2019.10.10       |

### **RF** Connected Test

| Kind of Equipment         | Manufacturer | Type No. | Serial No.    | Last calibration | Calibrated until |
|---------------------------|--------------|----------|---------------|------------------|------------------|
| USB RF power sensor       | DARE         | RPR3006W | 15100041SNO03 | 2018.10.13       | 2019.10.12       |
| Signal Analyzer           | Agilent      | N9020A   | MY49100060    | 2018.10.13       | 2019.10.12       |
| Temperature &<br>Humidity | HH660        | Mieo     | N/A           | 2018.10.11       | 2019.10.10       |



## 3. EMC EMISSION TEST

## 3.1 CONDUCTED EMISSION MEASUREMENT

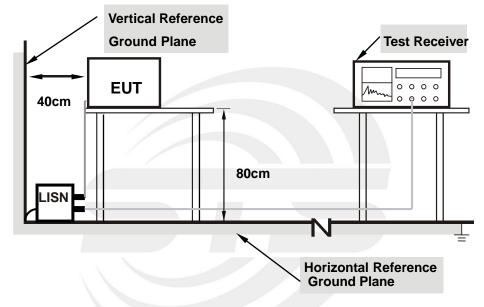
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

|                 | Conducted Emissionlimit (dBuV) |           |  |
|-----------------|--------------------------------|-----------|--|
| FREQUENCY (MHz) | Quasi-peak                     | Average   |  |
| 0.15 -0.5       | 66 - 56 *                      | 56 - 46 * |  |
| 0.50 -5.0       | 56.00                          | 46.00     |  |
| 5.0 -30.0       | 60.00                          | 50.00     |  |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |



## 3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.



#### 3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

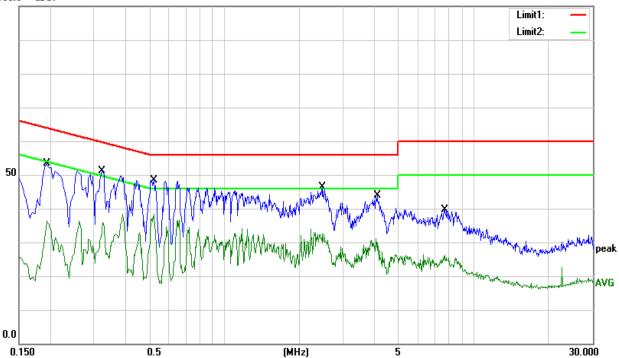
#### 3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



## 3.1.5 TEST RESULT

| Temperature:  | 23.7°C       | Relative Humidity: | 67% |
|---------------|--------------|--------------------|-----|
| Test Voltage: | AC 120V/60Hz | Phase:             | L   |
| Test Mode:    | Mode 10      |                    |     |


| No. | Frequency | Reading | Correct    | Result | Limit  | Margin | Remark |
|-----|-----------|---------|------------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1940    | 33.21   | 20.23      | 53.44  | 63.86  | -10.42 | QP     |
| 2   | 0.1940    | 16.05   | 20.23      | 36.28  | 53.86  | -17.58 | AVG    |
| 3   | 0.3220    | 30.38   | 20.67      | 51.05  | 59.66  | -8.61  | QP     |
| 4   | 0.3220    | 17.63   | 20.67      | 38.30  | 49.66  | -11.36 | AVG    |
| 5   | 0.5220    | 28.01   | 20.46      | 48.47  | 56.00  | -7.53  | QP     |
| 6   | 0.5220    | 17.87   | 20.46      | 38.33  | 46.00  | -7.67  | AVG    |
| 7   | 2.4740    | 26.29   | 20.02      | 46.31  | 56.00  | -9.69  | QP     |
| 8   | 2.4740    | 12.53   | 20.02      | 32.55  | 46.00  | -13.45 | AVG    |
| 9   | 4.1100    | 23.82   | 19.95      | 43.77  | 56.00  | -12.23 | QP     |
| 10  | 4.1100    | 7.71    | 19.95      | 27.66  | 46.00  | -18.34 | AVG    |
| 11  | 7.6860    | 19.71   | 19.95      | 39.66  | 60.00  | -20.34 | QP     |
| 12  | 7.6860    | 5.40    | 19.95      | 25.35  | 50.00  | -24.65 | AVG    |

#### Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor )-Limit

100.0 dBuV



Shenzhen STS Test Services Co., Ltd.

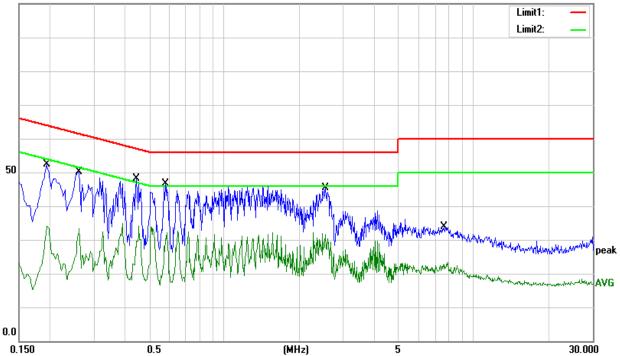
 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Page 17 of 68 Report No.: STS1905146W04

| Temperature:  | 23.7°C       | Relative Humidity: | 67% |
|---------------|--------------|--------------------|-----|
| Test Voltage: | AC 120V/60Hz | Phase:             | Ν   |
| Test Mode:    | Mode 10      |                    |     |


| No. | Frequency | Reading | Correct    | Result | Limit  | Margin | Remark |
|-----|-----------|---------|------------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1940    | 32.03   | 20.31      | 52.34  | 63.86  | -11.52 | QP     |
| 2   | 0.1940    | 13.84   | 20.31      | 34.15  | 53.86  | -19.71 | AVG    |
| 3   | 0.2620    | 29.56   | 20.60      | 50.16  | 61.37  | -11.21 | QP     |
| 4   | 0.2620    | 12.83   | 20.60      | 33.43  | 51.37  | -17.94 | AVG    |
| 5   | 0.4460    | 27.76   | 20.48      | 48.24  | 56.95  | -8.71  | QP     |
| 6   | 0.4460    | 13.57   | 20.48      | 34.05  | 46.95  | -12.90 | AVG    |
| 7   | 0.5820    | 26.20   | 20.37      | 46.57  | 56.00  | -9.43  | QP     |
| 8   | 0.5820    | 12.14   | 20.37      | 32.51  | 46.00  | -13.49 | AVG    |
| 9   | 2.5420    | 25.23   | 20.12      | 45.35  | 56.00  | -10.65 | QP     |
| 10  | 2.5420    | 11.50   | 20.12      | 31.62  | 46.00  | -14.38 | AVG    |
| 11  | 7.6260    | 13.95   | 19.89      | 33.84  | 60.00  | -26.16 | QP     |
| 12  | 7.6260    | 3.38    | 19.89      | 23.27  | 50.00  | -26.73 | AVG    |

#### Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor )-Limit

100.0 dBuV



 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com



## 3.2 RADIATED EMISSION MEASUREMENT

#### 3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

#### LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

| FREQUENCY (MHz) | (dBuV/m) (at 3M) |         |  |
|-----------------|------------------|---------|--|
|                 | PEAK             | AVERAGE |  |
| Above 1000      | 74               | 54      |  |

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### For Radiated Emission

| Spectrum Parameter              | Setting                         |  |  |
|---------------------------------|---------------------------------|--|--|
| Attenuation                     | Auto                            |  |  |
| Detector                        | Peak/AV                         |  |  |
| Start Frequency                 | 1000 MHz(Peak/AV)               |  |  |
| Stop Frequency                  | 10th carrier hamonic(Peak/AV)   |  |  |
| RB / VB (emission in restricted |                                 |  |  |
| band)                           | PK=1MHz / 1MHz, AV=1 MHz /10 Hz |  |  |

#### For Band edge

| Spectrum Parameter                    | Setting                           |  |  |
|---------------------------------------|-----------------------------------|--|--|
| Detector                              | Peak/AV                           |  |  |
| Chart/Oton Engruenau                  | Lower Band Edge: 2300 to 2403 MHz |  |  |
| Start/Stop Frequency                  | Upper Band Edge: 2479 to 2500 MHz |  |  |
| RB / VB (emission in restricted band) | PK=1MHz / 1MHz, AV=1 MHz / 10 Hz  |  |  |

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Page 19 of 68 Report No.: STS1905146W04

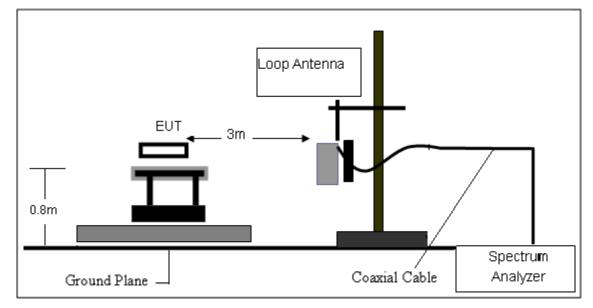
| Receiver Parameter     | Setting                              |
|------------------------|--------------------------------------|
| Attenuation            | Auto                                 |
| Start ~ Stop Frequency | 9kHz~90kHz / RB 200Hz for PK & AV    |
| Start ~ Stop Frequency | 90kHz~110kHz / RB 200Hz for QP       |
| Start ~ Stop Frequency | 110kHz~490kHz / RB 200Hz for PK & AV |
| Start ~ Stop Frequency | 490kHz~30MHz / RB 9kHz for QP        |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP     |

#### 3.2.2 TEST PROCEDURE

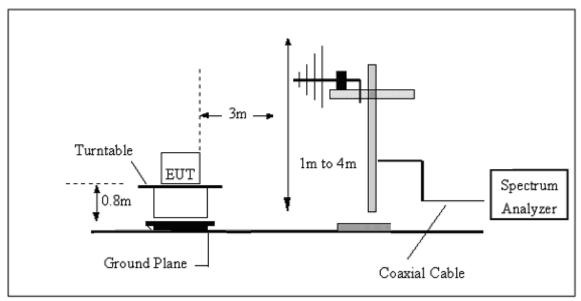
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

## 3.2.3 DEVIATION FROM TEST STANDARD


No deviation

Page 20 of 68 Report No.: STS1905146W04

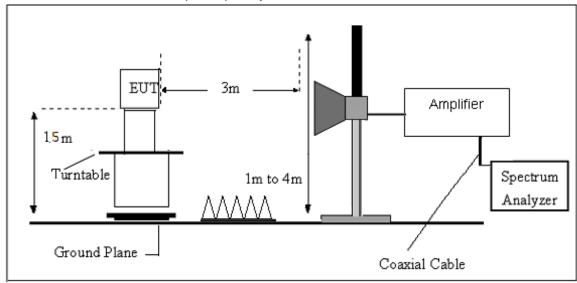



## 3.2.4 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz






Page 21 of 68

Report No.: STS1905146W04

(C) Radiated Emission Test-Up Frequency Above 1GHz



### 3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

## 3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

- AG = Amplifier Gain
- AF = Antenna Factor

For example

| Frequency | FS       | RA       | AF   | CL   | AG   | Factor |
|-----------|----------|----------|------|------|------|--------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB) | (dB) | (dB) | (dB)   |
| 300       | 40       | 58.1     | 12.2 | 1.6  | 31.9 | -18.1  |

Factor=AF+CL-AG



## 3.2.7 TEST RESULTS

#### (9KHz-30MHz)

| Temperature:  | 20.5°C  | Relative Humidity: | 64%     |
|---------------|---------|--------------------|---------|
| Test Voltage: | DC 3.8V | Test Mode:         | TX Mode |

| Freq. | Reading  | Limit    | Margin | State | Toot Dooult |
|-------|----------|----------|--------|-------|-------------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   | Test Result |
|       |          |          |        |       | PASS        |
|       |          |          |        |       | PASS        |

Note:

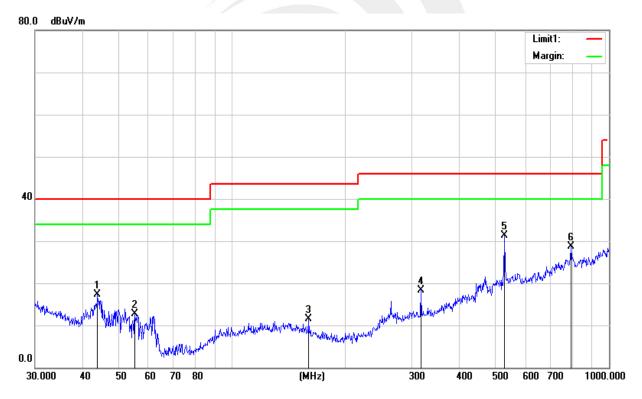
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.






(30MHz-1000MHz)

| Temperature:  | 20.5°C                                    | Relative Humidity: | 64%        |  |  |
|---------------|-------------------------------------------|--------------------|------------|--|--|
| Test Voltage: | DC 3.8V                                   | Phase:             | Horizontal |  |  |
| Test Mode:    | Mode 1/2/3/4/5/6/7/8/9(Mode 1 worst mode) |                    |            |  |  |

| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 43.9658   | 35.76   | -18.37       | 17.39    | 40.00    | -22.61 | QP     |
| 2   | 55.2207   | 35.76   | -22.97       | 12.79    | 40.00    | -27.21 | QP     |
| 3   | 159.7844  | 30.07   | -18.49       | 11.58    | 43.50    | -31.92 | QP     |
| 4   | 316.5890  | 32.68   | -14.28       | 18.40    | 46.00    | -27.60 | QP     |
| 5   | 528.2458  | 39.38   | -8.09        | 31.29    | 46.00    | -14.71 | QP     |
| 6   | 793.3960  | 32.02   | -3.34        | 28.68    | 46.00    | -17.32 | QP     |

#### Remark:

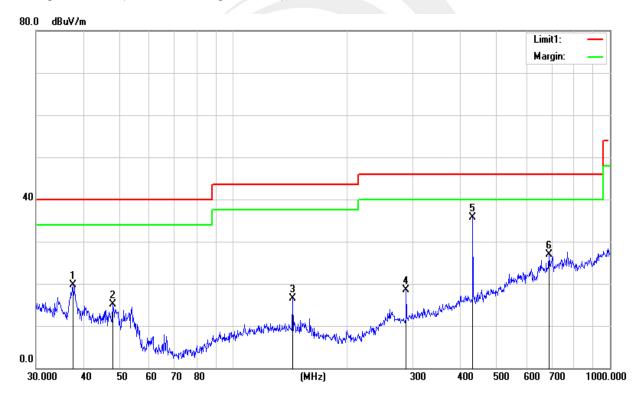
1. Margin = Result (Result = Reading + Factor )-Limit



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




| Temperature:  | 20.5°C                                    | Relative Humidity: | 64%      |  |  |
|---------------|-------------------------------------------|--------------------|----------|--|--|
| Test Voltage: | DC 3.8V                                   | Phase:             | Vertical |  |  |
| Test Mode:    | Mode 1/2/3/4/5/6/7/8/9(Mode 1 worst mode) |                    |          |  |  |

| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 37.5478   | 34.71   | -15.06       | 19.65    | 40.00    | -20.35 | QP     |
| 2   | 47.9940   | 35.64   | -20.45       | 15.19    | 40.00    | -24.81 | QP     |
| 3   | 143.8294  | 34.24   | -17.69       | 16.55    | 43.50    | -26.95 | QP     |
| 4   | 287.9904  | 34.00   | -15.49       | 18.51    | 46.00    | -27.49 | QP     |
| 5   | 432.5457  | 46.55   | -10.89       | 35.66    | 46.00    | -10.34 | QP     |
| 6   | 689.5643  | 32.39   | -5.57        | 26.82    | 46.00    | -19.18 | QP     |

Remark:

1. Margin = Result (Result = Reading + Factor )-Limit



Page 25 of 68



Report No.: STS1905146W04

## (1GHz~25GHz) Restricted band and Spurious emission Requirements

|           |                  |               |               |                   | GFSK               |                   |          |        |          |            |
|-----------|------------------|---------------|---------------|-------------------|--------------------|-------------------|----------|--------|----------|------------|
| Frequency | Meter<br>Reading | Amplifier     | Loss          | Antenna<br>Factor | Orrected<br>Factor | Emission<br>Level | Limits   | Margin | Detector | Comment    |
| (MHz)     | (dBµV)           | ( <b>dB</b> ) | ( <b>dB</b> ) | ( <b>dB/m</b> )   | ( <b>dB</b> )      | (dBµV/m)          | (dBµV/m) | (dB)   | Туре     |            |
|           |                  |               |               | Low C             | hannel (2402       | MHz)              |          |        |          |            |
| 3264.84   | 60.97            | 44.70         | 6.70          | 28.20             | -9.80              | 51.17             | 74.00    | -22.83 | PK       | Vertical   |
| 3264.84   | 51.55            | 44.70         | 6.70          | 28.20             | -9.80              | 41.75             | 54.00    | -12.25 | AV       | Vertical   |
| 3264.83   | 62.07            | 44.70         | 6.70          | 28.20             | -9.80              | 52.27             | 74.00    | -21.73 | PK       | Horizontal |
| 3264.83   | 50.42            | 44.70         | 6.70          | 28.20             | -9.80              | 40.62             | 54.00    | -13.38 | AV       | Horizontal |
| 4804.35   | 59.21            | 44.20         | 9.04          | 31.60             | -3.56              | 55.65             | 74.00    | -18.35 | PK       | Vertical   |
| 4804.35   | 49.38            | 44.20         | 9.04          | 31.60             | -3.56              | 45.82             | 54.00    | -8.18  | AV       | Vertical   |
| 4804.49   | 58.85            | 44.20         | 9.04          | 31.60             | -3.56              | 55.29             | 74.00    | -18.71 | PK       | Horizontal |
| 4804.49   | 50.34            | 44.20         | 9.04          | 31.60             | -3.56              | 46.78             | 54.00    | -7.22  | AV       | Horizontal |
| 5359.61   | 49.24            | 44.20         | 9.86          | 32.00             | -2.34              | 46.90             | 74.00    | -27.10 | PK       | Vertical   |
| 5359.61   | 39.52            | 44.20         | 9.86          | 32.00             | -2.34              | 37.18             | 54.00    | -16.82 | AV       | Vertical   |
| 5359.79   | 48.07            | 44.20         | 9.86          | 32.00             | -2.34              | 45.73             | 74.00    | -28.27 | PK       | Horizontal |
| 5359.79   | 38.70            | 44.20         | 9.86          | 32.00             | -2.34              | 36.36             | 54.00    | -17.64 | AV       | Horizontal |
| 7205.77   | 53.53            | 43.50         | 11.40         | 35.50             | 3.40               | 56.93             | 74.00    | -17.07 | PK       | Vertical   |
| 7205.77   | 44.20            | 43.50         | 11.40         | 35.50             | 3.40               | 47.60             | 54.00    | -6.40  | AV       | Vertical   |
| 7205.88   | 53.93            | 43.50         | 11.40         | 35.50             | 3.40               | 57.33             | 74.00    | -16.67 | PK       | Horizontal |
| 7205.88   | 44.50            | 43.50         | 11.40         | 35.50             | 3.40               | 47.90             | 54.00    | -6.10  | AV       | Horizontal |
|           |                  |               | •             | Middle            | Channel (244       | 1 MHz)            |          |        |          |            |
| 3264.79   | 61.82            | 44.70         | 6.70          | 28.20             | -9.80              | 52.02             | 74.00    | -21.98 | PK       | Vertical   |
| 3264.79   | 50.92            | 44.70         | 6.70          | 28.20             | -9.80              | 41.12             | 54.00    | -12.88 | AV       | Vertical   |
| 3264.74   | 62.02            | 44.70         | 6.70          | 28.20             | -9.80              | 52.22             | 74.00    | -21.78 | PK       | Horizontal |
| 3264.74   | 51.16            | 44.70         | 6.70          | 28.20             | -9.80              | 41.36             | 54.00    | -12.64 | AV       | Horizontal |
| 4882.43   | 59.52            | 44.20         | 9.04          | 31.60             | -3.56              | 55.96             | 74.00    | -18.04 | PK       | Vertical   |
| 4882.43   | 49.93            | 44.20         | 9.04          | 31.60             | -3.56              | 46.37             | 54.00    | -7.63  | AV       | Vertical   |
| 4882.49   | 59.59            | 44.20         | 9.04          | 31.60             | -3.56              | 56.03             | 74.00    | -17.97 | PK       | Horizontal |
| 4882.49   | 49.33            | 44.20         | 9.04          | 31.60             | -3.56              | 45.77             | 54.00    | -8.23  | AV       | Horizontal |
| 5359.74   | 48.86            | 44.20         | 9.86          | 32.00             | -2.34              | 46.52             | 74.00    | -27.48 | PK       | Vertical   |
| 5359.74   | 38.94            | 44.20         | 9.86          | 32.00             | -2.34              | 36.60             | 54.00    | -17.40 | AV       | Vertical   |
| 5359.62   | 47.91            | 44.20         | 9.86          | 32.00             | -2.34              | 45.57             | 74.00    | -28.43 | PK       | Horizontal |
| 5359.62   | 39.44            | 44.20         | 9.86          | 32.00             | -2.34              | 37.10             | 54.00    | -16.90 | AV       | Horizontal |
| 7323.95   | 54.76            | 43.50         | 11.40         | 35.50             | 3.40               | 58.16             | 74.00    | -15.84 | PK       | Vertical   |
| 7323.95   | 44.33            | 43.50         | 11.40         | 35.50             | 3.40               | 47.73             | 54.00    | -6.27  | AV       | Vertical   |
| 7323.84   | 54.63            | 43.50         | 11.40         | 35.50             | 3.40               | 58.03             | 74.00    | -15.97 | PK       | Horizontal |
| 7323.84   | 44.40            | 43.50         | 11.40         | 35.50             | 3.40               | 47.80             | 54.00    | -6.20  | AV       | Horizontal |



## Page 26 of 68 Report No.: STS1905146W04

|         |       |       |       | High C | hannel (248 | 0 MHz) |       |        |    |            |
|---------|-------|-------|-------|--------|-------------|--------|-------|--------|----|------------|
| 3264.64 | 62.07 | 44.70 | 6.70  | 28.20  | -9.80       | 52.27  | 74.00 | -21.73 | PK | Vertical   |
| 3264.64 | 50.62 | 44.70 | 6.70  | 28.20  | -9.80       | 40.82  | 54.00 | -13.18 | AV | Vertical   |
| 3264.75 | 61.01 | 44.70 | 6.70  | 28.20  | -9.80       | 51.21  | 74.00 | -22.79 | PK | Horizontal |
| 3264.75 | 50.52 | 44.70 | 6.70  | 28.20  | -9.80       | 40.72  | 54.00 | -13.28 | AV | Horizontal |
| 4960.51 | 58.53 | 44.20 | 9.04  | 31.60  | -3.56       | 54.97  | 74.00 | -19.03 | PK | Vertical   |
| 4960.51 | 50.14 | 44.20 | 9.04  | 31.60  | -3.56       | 46.58  | 54.00 | -7.42  | AV | Vertical   |
| 4960.33 | 58.88 | 44.20 | 9.04  | 31.60  | -3.56       | 55.32  | 74.00 | -18.68 | PK | Horizontal |
| 4960.33 | 50.47 | 44.20 | 9.04  | 31.60  | -3.56       | 46.91  | 54.00 | -7.09  | AV | Horizontal |
| 5359.81 | 49.45 | 44.20 | 9.86  | 32.00  | -2.34       | 47.11  | 74.00 | -26.89 | PK | Vertical   |
| 5359.81 | 39.97 | 44.20 | 9.86  | 32.00  | -2.34       | 37.63  | 54.00 | -16.37 | AV | Vertical   |
| 5359.69 | 48.21 | 44.20 | 9.86  | 32.00  | -2.34       | 45.87  | 74.00 | -28.13 | PK | Horizontal |
| 5359.69 | 38.86 | 44.20 | 9.86  | 32.00  | -2.34       | 36.52  | 54.00 | -17.48 | AV | Horizontal |
| 7439.72 | 54.86 | 43.50 | 11.40 | 35.50  | 3.40        | 58.26  | 74.00 | -15.74 | PK | Vertical   |
| 7439.72 | 44.94 | 43.50 | 11.40 | 35.50  | 3.40        | 48.34  | 54.00 | -5.66  | AV | Vertical   |
| 7439.73 | 54.08 | 43.50 | 11.40 | 35.50  | 3.40        | 57.48  | 74.00 | -16.52 | PK | Horizontal |
| 7439.73 | 44.98 | 43.50 | 11.40 | 35.50  | 3.40        | 48.38  | 54.00 | -5.62  | AV | Horizontal |

Note:

1) Scan with GFSK, π/4-DQPSK,8DPSK,the worst case is GFSK Mode

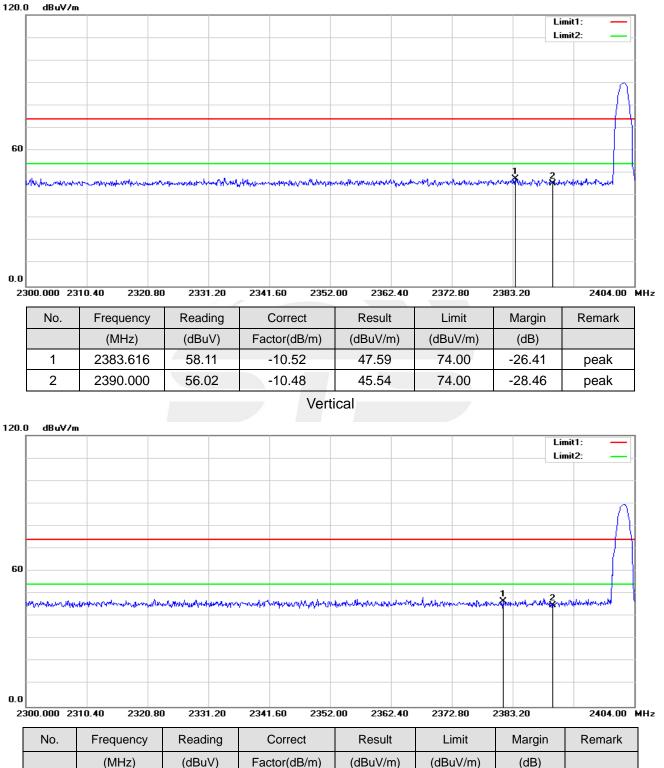
2) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Reading + Factor

The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency

emission is mainly from the environment noise.

Shenzhen STS Test Services Co., Ltd.


 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

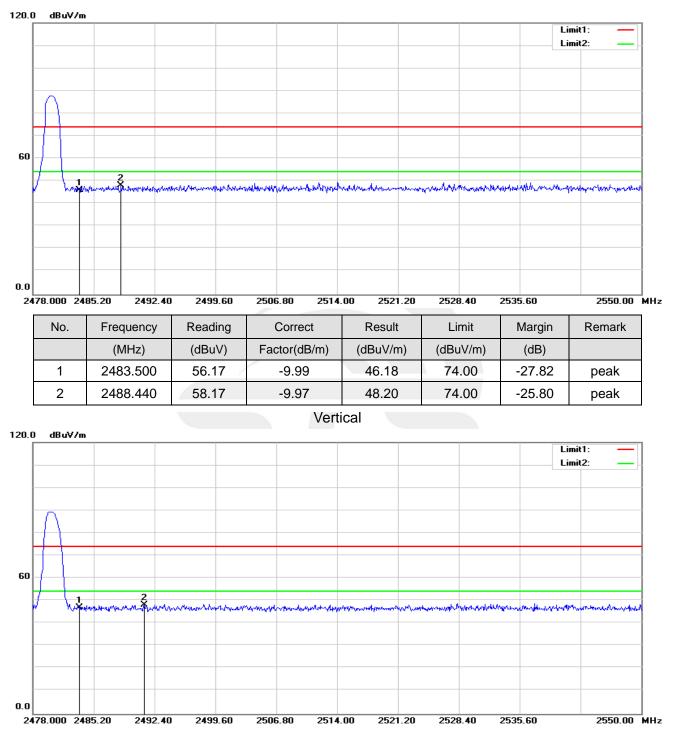


#### **Restricted band Requirements**

#### GFSK-Low Horizontal



Shenzhen STS Test Services Co., Ltd.


1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Page 28 of 68

Report No.: STS1905146W04

#### **GFSK-High** Horizontal



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 56.95   | -9.99        | 46.96    | 74.00    | -27.04 | peak   |
| 2   | 2491.176  | 58.19   | -9.95        | 48.24    | 74.00    | -25.76 | peak   |

Note: GFSK,  $\pi$ /4-DQPSK, 8DPSK of the nohopping and hopping mode all have been test, the worst case is GFSK of the nohopping mode, this report only show the worst case.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



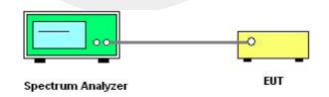


## 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

#### 4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### 4.2 TEST PROCEDURE


| Spectrum Parameter                    | Setting                         |
|---------------------------------------|---------------------------------|
| Detector                              | Peak                            |
| Start/Stop Frequency                  | 30 MHz to 10th carrier harmonic |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                 |
| Trace-Mode:                           | Max hold                        |

#### For Band edge

| Spectrum Parameter                    | Setting                          |
|---------------------------------------|----------------------------------|
| Detector                              | Peak                             |
| Start/Stop Eroguapau                  | Lower Band Edge: 2300– 2403 MHz  |
| Start/Stop Frequency                  | Upper Band Edge: 2479 – 2500 MHz |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                  |
| Trace-Mode:                           | Max hold                         |

Remark: Hopping on and Hopping off mode all have been tested, only worst case hopping off is reported.

#### 4.3 TEST SETUP



The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

#### 4.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



## 4.5 TEST RESULTS

| Temperature: | <b>25</b> ℃             | Relative Humidity: | 50%     |
|--------------|-------------------------|--------------------|---------|
| Test Mode:   | GFSK(1Mbps)-00/39/78 CH | Test Voltage:      | DC 3.8V |

## 00 CH

|                      | um Analyzer - Sw             |                                                |                                                                                                                  |                              |                         |         |                    |                                                                      |
|----------------------|------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|---------|--------------------|----------------------------------------------------------------------|
| enter Fr             |                              |                                                |                                                                                                                  | ≊E<br>j:FreeRun<br>:en:30 dB | ALIGN AUTO<br>Avg Type: | Log-Pwr |                    | S AM May 13, 20:<br>RACE 1 2 3 4 5<br>TYPE M WAAAAA<br>DET P P P P P |
| ) dB/div             | Ref Offset 0.9<br>Ref 4.67 d | 5 dB<br>Bm                                     |                                                                                                                  |                              |                         |         | Mkr1 2.4<br>-5     | .02 2 GH<br>.335 dBr                                                 |
| .33                  | <b>1</b>                     |                                                |                                                                                                                  |                              |                         |         |                    |                                                                      |
| i.3                  |                              |                                                |                                                                                                                  |                              |                         |         |                    | -25.33 di                                                            |
| 5.3                  |                              |                                                |                                                                                                                  |                              |                         |         |                    |                                                                      |
| i.3                  | <u>^2</u>                    |                                                |                                                                                                                  |                              |                         |         |                    |                                                                      |
| i.3                  | - P                          |                                                | and the second of the second |                              | and the second second   |         |                    |                                                                      |
| i.3                  |                              |                                                | a Marina and a star and a star a s  |                              |                         |         |                    |                                                                      |
| 5.3                  |                              |                                                |                                                                                                                  |                              |                         |         |                    |                                                                      |
| art 30 N<br>tes BW   | /Hz<br>100 kHz               |                                                | #VBW 30                                                                                                          | ) kHz                        |                         | Swe     | Stop<br>ep 2.387 s | ) 25.00 GH<br>(40001 pt                                              |
| IN 1<br>2N 1<br>3N 1 | f                            | ×<br>2.402 2 GHz<br>2.711 8 GHz<br>5.886 1 GHz | -5.335 dBm<br>-56.490 dBm<br>-56.523 dBm                                                                         | FUNCTION                     | FUNCTION WIDTH          |         | FUNCTION VALUE     |                                                                      |
| N 1                  | f                            | 24.327 1 GHz                                   | -47.728 dBm                                                                                                      |                              |                         |         |                    |                                                                      |
| 7<br>3<br>9          |                              |                                                |                                                                                                                  |                              |                         |         |                    |                                                                      |
| i I                  |                              |                                                |                                                                                                                  |                              |                         |         |                    | >                                                                    |
|                      |                              |                                                |                                                                                                                  |                              | STATUS                  |         |                    |                                                                      |

## 39 CH

| R L                 | rum Ana<br>RF | l <mark>lyzer - Swept</mark> S |                             | CEN                   | VSE:PULSE                                                                                                        |                       | LIGN AUTO      |                         | 10:54:4           | 2 AM May 13, 20                                 |
|---------------------|---------------|--------------------------------|-----------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|-------------------------|-------------------|-------------------------------------------------|
|                     |               | 2.515000                       | 1000 GHz                    | IO: Fast 😱<br>ain:Low | Trig: Free<br>#Atten: 30                                                                                         | Run                   | Avg Type: Lo   | -                       | т                 | RACE 1 2 3 4 5<br>TYPE MWAAAAA<br>DET P P P P F |
| ) dB/div            |               | Offset 0.5 dB<br>-0.31 dBn     |                             |                       |                                                                                                                  |                       |                |                         | Mkr1 2.4<br>-10.  | 40 9 GH<br>310 dBi                              |
| og<br>0.3           |               | 1                              |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| 0.3                 |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| 0.3                 |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   | -30.31 d                                        |
| 1.3                 |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| 0.3                 |               | ۸2                             | ∧3                          |                       |                                                                                                                  |                       |                |                         |                   | $\square$                                       |
|                     |               | $\langle Q \rangle$            | $\sum_{i=1}^{n}$            |                       | and the second | المتله ومناقروهم ومقا | And the second | No. of Concession, Name |                   | A CONTRACTOR                                    |
| ).3                 |               |                                | 1                           |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| 0.3                 |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| ).3                 |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| 0.3                 |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| tart 30 ľ<br>Res BW |               | kHz                            |                             | #VB\                  | N 300 kHz                                                                                                        |                       |                | Swee                    | Stop<br>p 2.387 s | 25.00 GH<br>(40001 pt                           |
| R MODE T            |               |                                | ×                           | Y                     |                                                                                                                  | CTION FUNC            | TION WIDTH     | FL.                     | INCTION VALUE     |                                                 |
| 1 N ^<br>2 N ^      |               |                                | 2.440 9 GHz<br>3.052 0 GHz  | -10.310<br>-57.312    |                                                                                                                  |                       |                |                         |                   |                                                 |
| 3 N<br>4 N          |               |                                | 5.992 2 GHz<br>24.281 5 GHz | -57.088<br>-48.541    |                                                                                                                  |                       |                |                         |                   |                                                 |
| 5                   |               |                                | 24.2010 0112                | -40.041               | abiii                                                                                                            |                       |                |                         |                   |                                                 |
| 5<br>7              |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| 3                   |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| 5                   |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |
| 1                   |               |                                |                             |                       |                                                                                                                  |                       |                |                         |                   |                                                 |

П



## 78 CH

| ilent Spectrum A                                               |                             |                                                                | SENS                                                | E:PULSE                         | AL            | IGNAUTO    |         | 10:57:         | 01 AM May 13, 20                             |
|----------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|-----------------------------------------------------|---------------------------------|---------------|------------|---------|----------------|----------------------------------------------|
| enter Freq                                                     |                             | 00000 GHz                                                      | NO: Fast 🖵<br>Gain:Low                              | Trig: Free Run<br>#Atten: 30 dB |               | Avg Type:  | Log-Pwr |                | TRACE 1 2 3 4 5<br>TYPE MWWWW<br>DET P P P P |
|                                                                | ef Offset 0.5<br>ef_1.02 dE |                                                                |                                                     |                                 |               |            |         |                | 480 2 GH<br>8.983 dBr                        |
| 98                                                             | 1                           |                                                                |                                                     |                                 |               |            |         |                |                                              |
| 9.0                                                            |                             |                                                                |                                                     |                                 |               |            |         |                | -28.98 di                                    |
| 0.0                                                            |                             |                                                                |                                                     |                                 |               |            |         |                |                                              |
| .0                                                             | <b>2</b>                    | 3                                                              |                                                     |                                 | المربعة المرا |            |         |                |                                              |
|                                                                |                             |                                                                |                                                     |                                 |               |            |         |                |                                              |
| 9.0                                                            |                             |                                                                |                                                     |                                 |               |            |         |                |                                              |
| art 30 MHz                                                     |                             |                                                                |                                                     |                                 |               |            |         | Sto            | p 25.00 GH                                   |
| Res BW 100                                                     |                             |                                                                | #VBW                                                | / 300 kHz                       |               |            | Swe     | ep 2.387 s     |                                              |
| 8 MODE TRG 50<br>1 N 1 f<br>2 N 1 f<br>3 N 1 f<br>4 N 1 f<br>5 |                             | ×<br>2.480 2 GHz<br>2.801 7 GHz<br>4.982 8 GHz<br>24.600 5 GHz | -8.983 dl<br>-57.038 dl<br>-56.840 dl<br>-48.010 dl | Bm<br>Bm                        | N FUNC        | TION WIDTH |         | FUNCTION VALUE |                                              |
|                                                                |                             |                                                                |                                                     |                                 |               |            |         |                |                                              |
| 3<br>9<br>0                                                    |                             |                                                                |                                                     |                                 |               |            |         |                |                                              |
| )                                                              |                             |                                                                |                                                     |                                 |               | STATUS     |         |                |                                              |



П

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



## For Band edge

00 CH

| Avg Type: Log-Pwr<br>PNO: Fast<br>PNO: Fast<br>PNO | 5.395 dB                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| All         All <th>5.395 dB</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.395 dB                  |
| 39     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| 4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4     4       4     4     4       4     4 <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     14     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                         |
| 4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4     4       4       4 <t< td=""><td>2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                         |
| 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - manager Miner           |
| art 2.30000 GHz Stop<br>es BW 100 kHz #VBW 300 kHz Sweep 9.867 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
| tes BW 100 kHz #VBW 300 kHz Sweep 9.867 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| N MODE   TRC   SCL   X   Y   FUNCTION VIDTH   FUNCTION VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.40300 Gi<br>ns (1001 pi |
| N 1 f 2.402 073 GHz -5.395 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E                         |
| N 1 f 2.390 022 GHz -60.091 dBm<br>N 1 f 2.398 777 GHz -58.946 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |

78 CH

| RL RF                            | - Swept SA<br>50 Ω AC               | SENSE:PULS                | E                       | ALIGNAUTO      |                | 10:57:39 AM May 13, 20                     |
|----------------------------------|-------------------------------------|---------------------------|-------------------------|----------------|----------------|--------------------------------------------|
| nter Freq 2.48                   | 9500000 GHz                         | NO: East Trig             | : Free Run<br>en: 30 dB | Avg Type: Lo   | og-Pwr         | TRACE 1 2 3 4<br>TYPE MWWWW<br>DET P P P P |
| Ref Offs<br>dB/div Ref 3.0       | et 0.5 dB<br>19 dBm                 |                           |                         |                | Mkr1           | 2.480 176 GH<br>-6.895 dB                  |
|                                  |                                     |                           |                         |                |                |                                            |
| 9                                |                                     |                           |                         |                |                | -26.91 c                                   |
|                                  |                                     |                           |                         |                |                |                                            |
|                                  | mm                                  | -monte                    | -m-masm                 | moundantia     | alman door and | mmmmmmm                                    |
| 9                                |                                     |                           |                         |                |                |                                            |
| 9                                |                                     |                           |                         |                |                |                                            |
| art 2.47900 GHz<br>es BW 100 kHz |                                     | #VBW 300                  | ) kHz                   |                |                | Stop 2.50000 G<br>067 ms (1001 p           |
| MODE TRC SCL<br>N 1 f<br>N 1 f   | ×<br>2.480 176 GHz<br>2.483 767 GHz | -6.895 dBm<br>-59.195 dBm | FUNCTION                | FUNCTION WIDTH | FUNCTIO        | ON VALUE                                   |
| N 1 f                            | 2.494 246 GHz                       | -57.752 dBm               |                         |                |                |                                            |
|                                  |                                     |                           |                         |                |                |                                            |
|                                  |                                     |                           |                         |                |                |                                            |
|                                  |                                     |                           |                         |                |                | >                                          |





## For Hopping Band edge

00 CH

| lent Spectr    | um Analyzer - S        | Swept SA                       | SENSE:                                | nuise                                     | ALIGNAUTO      |      | 18:42:42               | AM May 13, 20                               |
|----------------|------------------------|--------------------------------|---------------------------------------|-------------------------------------------|----------------|------|------------------------|---------------------------------------------|
|                |                        | 500000 GHz                     | NO: East                              | Folder<br>Trig: Free Run<br>#Atten: 30 dB | Aug Type:      |      | TR<br>T                | ACE 1 2 3 4 5<br>YPE MWWWW<br>DET P P P P F |
| dB/div         | Ref Offset<br>Ref 4.38 |                                |                                       |                                           |                | M    | kr1 2.402<br>-5.0      | 073 GH<br>625 dBr                           |
| 62             |                        |                                |                                       |                                           |                |      |                        |                                             |
| .6             |                        |                                |                                       |                                           |                |      |                        | -25.63 di                                   |
| .6             |                        |                                |                                       |                                           |                |      |                        | -25.63 0                                    |
| .6             |                        |                                |                                       |                                           |                |      |                        |                                             |
| i.6            |                        | a state the state of the       |                                       | a da a su da ta angla a da ang            |                |      |                        |                                             |
| .6             | and the spectrum.      |                                | and a second production and dependent |                                           |                |      |                        | in calling Crisic                           |
| i.6            |                        |                                |                                       |                                           |                |      |                        |                                             |
| i.6            |                        |                                |                                       |                                           |                |      |                        |                                             |
|                | 000 GHz<br>100 kHz     |                                | #VBW :                                | 300 kHz                                   |                | Swee | Stop 2.4<br>p 9.867 ms | 10300 GH<br>(1001 pt:                       |
| R MODE TR      | ic scu<br>f            | ×<br>2.402 073 GHz             | -5.625 dB                             | FUNCTION                                  | FUNCTION WIDTH |      | FUNCTION VALUE         |                                             |
| 2 N 1<br>8 N 1 |                        | 2.390 022 GHz<br>2.399 395 GHz | -58.835 dB<br>-58.470 dB              |                                           |                |      |                        |                                             |
|                |                        |                                |                                       |                                           |                |      |                        |                                             |
|                |                        |                                |                                       |                                           |                |      |                        |                                             |
| )<br>)<br>)    |                        |                                |                                       |                                           |                |      |                        |                                             |
|                |                        |                                |                                       |                                           |                |      |                        | >                                           |
|                |                        |                                |                                       |                                           | STATUS         |      |                        | /                                           |

78 CH

| RL RF                                   | 50 Ω AC                                              | SENSE:PULS                               | E                     | ALIGN AUTO                               |          | l0:45:04 AM May 13, 2                      |
|-----------------------------------------|------------------------------------------------------|------------------------------------------|-----------------------|------------------------------------------|----------|--------------------------------------------|
| nter Freq 2.48                          |                                                      |                                          | Free Run<br>en: 30 dB | Avg Type: Lo                             | ·g-Pwr   | TRACE 1 2 3 4<br>TYPE MWAAA<br>DET P P P P |
| Ref Offs<br>B/div Ref 3.0               |                                                      |                                          |                       |                                          | Mkr1 2.  | 480 176 GI<br>-6.990 dB                    |
|                                         |                                                      |                                          |                       |                                          |          |                                            |
| $\sqrt{1}$                              |                                                      |                                          |                       |                                          |          | -26.99                                     |
|                                         |                                                      |                                          |                       |                                          |          |                                            |
| <u> </u>                                | ^ <b>2</b>                                           |                                          |                       |                                          |          |                                            |
| - bres                                  | menninghamman                                        | www.www.                                 | m                     | an manana manana ana ana ana ana ana ana |          | - hydron lawyr ar yr fran                  |
|                                         |                                                      |                                          |                       |                                          |          |                                            |
|                                         |                                                      |                                          |                       |                                          |          |                                            |
| rt 2.47900 GHz<br>s BW 100 kHz          |                                                      | #VBW 300                                 | kHz                   |                                          |          | op 2.50000 G<br>7 ms (1001 p               |
| MODE TRC SCL<br>N 1 f<br>N 1 f<br>N 1 f | ×<br>2.480 176 GHz<br>2.483 641 GHz<br>2.487 841 GHz | -6.990 dBm<br>-57.855 dBm<br>-56.805 dBm | FUNCTION              | FUNCTION WIDTH                           | FUNCTION | ALUE                                       |
|                                         |                                                      |                                          |                       |                                          |          |                                            |
|                                         |                                                      |                                          |                       |                                          |          |                                            |
|                                         |                                                      |                                          |                       |                                          |          |                                            |
|                                         |                                                      |                                          |                       |                                          |          |                                            |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



#### Page 34 of 68 Report No.: STS1905146W04

| Temperature: | <b>25</b> ℃                      | Relative Humidity: | 50%     |
|--------------|----------------------------------|--------------------|---------|
| Test Mode:   | π/4-DQPSK(2Mbps)–<br>00/39/78 CH | Test Voltage:      | DC 3.8V |

| nt Spectrum Analyzer - S<br>L RF 50 |                            | SENSE:PUL                  | SE I                     | ALIGNAUTO      |         | 11:29:05 AM May 13,             |
|-------------------------------------|----------------------------|----------------------------|--------------------------|----------------|---------|---------------------------------|
| ter Freq 12.51                      | 5000000 GHz                | <b>.</b>                   | : Free Run               | Avg Type:      | Log-Pwr | TRACE 1 2 3                     |
|                                     |                            |                            | en:30 dB                 |                |         | DET P P P                       |
| Ref Offset                          |                            |                            |                          |                | Mk      | r1 2.402 2 G                    |
| B/div Ref -3.39                     |                            |                            |                          |                |         | -13.391 dE                      |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         | -33.35                          |
|                                     |                            |                            |                          |                |         |                                 |
| 2                                   | 3                          |                            |                          |                |         |                                 |
|                                     |                            |                            | a set of the set of      |                |         |                                 |
|                                     |                            | -                          | and the frequency of the |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         | <b>0</b> 4 05 00 <b>0</b>       |
| rt 30 MHz<br>s BW 100 kHz           |                            | #VBW 30                    | 0 kHz                    |                | Sweep 2 | Stop 25.00 G<br>ا 387 s (40001) |
| MODE TRC SCL                        | ×                          | Y                          | FUNCTION                 | FUNCTION WIDTH |         | ON VALUE                        |
| N 1 f                               | 2.402 2 GHz                | -13.391 dBm                |                          |                |         |                                 |
| N 1 f<br>N 1 f                      | 2.792 9 GHz<br>5.865 5 GHz | -57.182 dBm<br>-57.188 dBm |                          |                |         |                                 |
| N 1 f                               | 24.435 7 GHz               | -47.298 dBm                |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            |                            |                          | STATUS         |         |                                 |
|                                     |                            | 7                          |                          |                |         |                                 |
|                                     |                            |                            |                          |                |         |                                 |
|                                     |                            | ~                          | 9 CH                     |                |         |                                 |

#### 00 CH

| 39 | CH |
|----|----|
| 00 | 0  |

| RL                    | rum Analyzer<br>RF    | 50 Q AC                     | SENSE:PUL                  | 9E                        | ALIGNAUTO                    |                 | 11:26:1               | 2 AM May 13, 20              |
|-----------------------|-----------------------|-----------------------------|----------------------------|---------------------------|------------------------------|-----------------|-----------------------|------------------------------|
| enter F               |                       | 15000000 GHz                | NO: East 😱 Trig            | g: Free Run<br>ten: 30 dB | Avg Type                     | : Log-Pwr       | Т                     | TYPE MWAAAA<br>DET P P P P I |
| ) dB/div              | Ref Offse<br>Ref -7.4 |                             |                            |                           |                              |                 | Mkr1 2.4<br>-12.      | 40 9 GH<br>237 dB            |
| 7.5                   | 1                     |                             |                            |                           |                              |                 |                       |                              |
| .5                    |                       |                             |                            |                           |                              |                 |                       |                              |
| .5                    |                       |                             |                            |                           |                              |                 |                       | -37.49                       |
| 5                     |                       | 3                           |                            |                           |                              |                 |                       |                              |
| .5                    | $\langle \rangle^2$   |                             |                            |                           | and the second second second | - International | and the second second | No.                          |
| .5                    |                       |                             |                            |                           |                              |                 | -                     |                              |
| .5                    |                       |                             |                            |                           |                              |                 |                       |                              |
| .5                    |                       |                             |                            |                           |                              |                 |                       |                              |
| 5                     |                       |                             |                            |                           |                              |                 |                       |                              |
|                       |                       |                             |                            |                           |                              |                 |                       |                              |
| art 30 I<br>Res BW    | MHz<br>100 kHz        |                             | #VBW 30                    | 0 kHz                     |                              | Swe             | Stop<br>ep 2.387 s    | 25.00 GI<br>(40001 p         |
| R MODE T              |                       | X                           | Y                          | FUNCTION                  | FUNCTION WIDTH               |                 | FUNCTION VALUE        |                              |
|                       | 1 f<br>1 f            | 2.440 9 GHz<br>2.667 5 GHz  | -12.237 dBm<br>-56.637 dBm |                           |                              |                 |                       |                              |
|                       | 1 f<br>1 f            | 5.437 3 GHz<br>24.265 3 GHz | -55.595 dBm<br>-47.696 dBm |                           |                              |                 |                       |                              |
|                       |                       | 24.200 0 0112               | 47.000 dBill               |                           |                              |                 |                       |                              |
|                       |                       |                             |                            |                           |                              |                 |                       |                              |
| i<br>i                |                       |                             |                            |                           |                              |                 |                       |                              |
| 5<br>7<br>8           |                       |                             |                            |                           |                              |                 |                       |                              |
|                       |                       |                             |                            |                           |                              |                 |                       |                              |
| 5<br>5<br>7<br>3<br>9 |                       |                             |                            |                           |                              |                 |                       | >                            |

П



## 78 CH

|                   |                        | lyzer - Swept              |                                                |                                                |                            |          |                  |                                 |                    |                                                            |
|-------------------|------------------------|----------------------------|------------------------------------------------|------------------------------------------------|----------------------------|----------|------------------|---------------------------------|--------------------|------------------------------------------------------------|
| nter F            | <sub>RF</sub><br>req 1 |                            |                                                |                                                | g: Free Run<br>tten: 30 dB | ALIGN #  | NUTO<br>Ng Type: | Log-Pwr                         |                    | 34 AM May 13,<br>TRACE 1 2 3 4<br>TYPE MWWW<br>DET P P P F |
| dB/div            |                        | Offset 0.5 dl<br>-9.28 dBr |                                                |                                                |                            |          |                  |                                 | Mkr1 2.4<br>-19    | 180 2 G<br>.276 dE                                         |
| 3                 | (                      |                            |                                                |                                                |                            |          |                  |                                 |                    |                                                            |
| 3                 |                        |                            |                                                |                                                |                            |          |                  |                                 |                    | -39.28                                                     |
| 3                 |                        | <b>2</b>                   | 3                                              |                                                |                            | 6        |                  | Antonitika                      |                    |                                                            |
| 3                 |                        |                            |                                                |                                                |                            |          |                  | . Bracky, and the second second |                    |                                                            |
| 3                 |                        |                            |                                                |                                                |                            |          |                  |                                 |                    |                                                            |
| 3                 |                        |                            |                                                |                                                |                            |          |                  |                                 | _                  |                                                            |
| urt 30 I<br>es BW |                        | ĸHz                        |                                                | #VBW 30                                        | 0 kHz                      |          |                  | Swe                             | Stop<br>ep 2.387 s | o 25.00 G<br>(40001 p                                      |
| 14                | 1 f<br>1 f             |                            | ×<br>2.480 2 GHz<br>3.049 5 GHz<br>6.393 0 GHz | Y<br>-19.276 dBm<br>-56.100 dBm<br>-56.473 dBm | FUNCTION                   | FUNCTION | WIDTH            |                                 | FUNCTION VALUE     |                                                            |
| N 1               | 1 f<br>1 f             |                            | 24.094 8 GHz                                   | -47.618 dBm                                    |                            |          |                  |                                 |                    |                                                            |
| N <sup>*</sup>    |                        |                            |                                                |                                                |                            |          |                  |                                 |                    |                                                            |



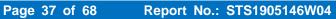
П

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




## For Band edge

00 CH

|                | um Analyzer           |         |                        |                    |                          |            |                        |               |                       |                                 |
|----------------|-----------------------|---------|------------------------|--------------------|--------------------------|------------|------------------------|---------------|-----------------------|---------------------------------|
| RL             | RF 1                  | 50Ω AC  | CH <sub>7</sub>        | SE                 | NSE:PULSE                |            | ALIGNAUTO<br>Avg Type: | Log-Pwr       |                       | AM May 13, 20<br>RACE 1 2 3 4 5 |
|                | 164 2.33              | 1300000 | Р                      | NO: Fast 🖵         | Trig: Free<br>#Atten: 30 |            |                        |               |                       | DET P P P P                     |
|                |                       |         | IF                     | Gain:Low           | #Atten: 30               | dВ         |                        |               |                       | ,                               |
| ) dB/div       | Ref Offse<br>Ref -1.7 |         |                        |                    |                          |            |                        | IVI           | 402 kr1 2.40<br>11-   | 176 GH<br>773 dBr               |
| g aBlaiv       | Rei -1.7              |         |                        |                    |                          |            |                        |               |                       |                                 |
| 1.8            |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
| 1.8            |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
| .8             |                       |         |                        |                    |                          |            |                        |               |                       | -31.77 d                        |
| .8             |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
| .8             |                       |         |                        |                    |                          |            |                        |               |                       | <u></u>                         |
| 1.8            | mellenan              | mughow  | miletinente            | mehrhan            | al where many            | -          | Murranner              | un markanalow | montenergetine        | manyment                        |
|                |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
| 1.8            |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
| 1.8            |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
|                |                       |         |                        |                    |                          |            |                        |               | <b>0</b> 1 0          | 10000 01                        |
|                | 000 GHz<br>100 kHz    |         |                        | #VB                | W 300 kHz                |            |                        | Swee          | 5.0p 2.<br>p 9.867 ms | 40300 GH                        |
| R MODE TH      | ad sa l               | ×       |                        | Y                  | FUN                      | ICTION FUN | ICTION WIDTH           |               | UNCTION VALUE         | · ·                             |
| 1 N 1          | f                     | 2.40    | 2 176 GHz              | -11.773            | dBm                      |            |                        |               |                       |                                 |
| 2 N 1<br>3 N 1 |                       |         | 0 022 GHz<br>9 704 GHz | -59.757<br>-59.187 |                          |            |                        |               |                       |                                 |
| 5              |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
| 3              |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
| 7<br>3         |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
| 9              |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
| í              |                       |         |                        |                    |                          |            |                        |               |                       |                                 |
|                |                       |         |                        |                    |                          |            |                        |               |                       | >                               |
| i              |                       |         |                        |                    |                          |            | STATUS                 |               |                       |                                 |

78 CH

| ent Spectrum Analyze<br>R L RF | r - Swept SA<br>50 Ω AC                         | SENSE:PULS  | Ξ                       | ALIGN AUTO     |          | 11:23:13 AM May 13, 2                      |
|--------------------------------|-------------------------------------------------|-------------|-------------------------|----------------|----------|--------------------------------------------|
| nter Freq 2.48                 | 39500000 GHz                                    |             | : Free Run<br>en: 30 dB | Avg Type: Lo   | og-Pwr   | TRACE 1 2 3 4<br>TYPE MWWWW<br>DET P P P P |
|                                | et 0.5 dB<br>68 dBm                             |             |                         |                | Mkr1 2   | .480 176 GI<br>-13.682 dB                  |
| 7                              |                                                 |             |                         |                |          |                                            |
| 7 N M                          |                                                 |             |                         |                |          |                                            |
|                                |                                                 |             |                         |                |          | -33.68                                     |
|                                |                                                 |             |                         |                |          |                                            |
|                                | 2                                               |             |                         |                |          |                                            |
|                                | hornorman                                       | manhamman   | mmmmul                  | monnon         | mann     | mana                                       |
|                                |                                                 |             |                         |                |          |                                            |
|                                |                                                 |             |                         |                |          |                                            |
|                                |                                                 |             |                         |                |          |                                            |
|                                |                                                 |             |                         |                |          |                                            |
| rt 2.47900 GHz<br>s BW 100 kHz |                                                 | #VBW 300    | ) kHz                   |                |          | top 2.50000 G<br>67 ms (1001 p             |
| MODE TRC SCL                   | X                                               | Y           | FUNCTION                | FUNCTION WIDTH | FUNCTION | VALUE                                      |
| N 1 f<br>N 1 f<br>N 1 f        | 2.480 176 GHz<br>2.484 313 GHz<br>2.499 643 GHz | -58.536 dBm |                         |                |          |                                            |
|                                |                                                 |             |                         |                |          |                                            |
|                                |                                                 |             |                         |                |          |                                            |
|                                |                                                 |             |                         |                |          |                                            |
|                                |                                                 |             |                         |                |          |                                            |
|                                |                                                 |             |                         |                |          | 3                                          |
|                                |                                                 |             |                         |                |          |                                            |





## For Hopping Band edge

00 CH

|             | ectrur     |                     | zer - Swept            |                              |          |                    |            |        |       |                     |           |                |                                                   |
|-------------|------------|---------------------|------------------------|------------------------------|----------|--------------------|------------|--------|-------|---------------------|-----------|----------------|---------------------------------------------------|
| RL<br>enter | r Fre      | RF<br>9 <b>q 2.</b> | 50 Ω<br>351500         | AC<br>000 GHz                | PNO: F   |                    | NSE:PULSE  | Run    | AL    | IGNAUTO<br>Avg Type | : Log-Pwr | 11:16          | 20 AM May 13, 20<br>TRACE 1 2 3 4 5<br>TYPE MWWWW |
|             |            |                     |                        |                              | IFGain:L | ast 🖵              | #Atten: 30 |        |       |                     |           |                | DETPPPF                                           |
| ) dB/d      |            |                     | ffset 0.5 d<br>2.09 dB |                              |          |                    |            |        |       |                     | IV        |                | 2 176 GH<br>2.093 dBr                             |
| 2.1         |            |                     |                        |                              |          |                    |            |        |       |                     |           |                |                                                   |
| 2.1         |            |                     |                        |                              |          |                    |            |        |       |                     |           |                |                                                   |
| 2.1         |            |                     |                        |                              |          |                    |            |        |       |                     |           |                | -32.09 d                                          |
| 2.1         |            |                     |                        |                              |          |                    |            |        |       |                     |           |                | 2 3.                                              |
| 2.1         | horan      | menu                | بالهممين               | menonen                      | mono     | ي.<br>مرمي مي مرمي | havenan    | mont   | monul | mondula             | manyman   | n              | 2<br>                                             |
| 2.1         |            |                     |                        |                              |          |                    |            |        |       |                     |           |                |                                                   |
| 2.1         |            |                     |                        |                              |          |                    |            |        |       |                     |           |                |                                                   |
| 2.1         |            |                     |                        |                              | _        |                    |            |        |       |                     |           |                |                                                   |
| tart 2      | .300       | 00 G                | Hz                     |                              |          |                    |            |        |       |                     |           | Stop           | 2.40300 GH                                        |
| Res E       | 3W 1       | 00 kl               | Hz                     |                              |          | #VB                | W 300 kH:  | z      |       |                     | Swe       | ep 9.867 n     | ns (1001 pt                                       |
| R MOD       | e Trc<br>1 | SCL<br>f            |                        | ×<br>2.402 176 GH            | -Iz      | ۲<br>-12.093       |            | NCTION | FUNC  | TION WIDTH          |           | FUNCTION VALUE |                                                   |
| 2 N<br>3 N  | 1          | f                   |                        | 2.390 022 GH<br>2.398 571 GH |          | -58.418<br>-57.988 |            |        |       |                     |           |                |                                                   |
| 4           |            |                     |                        |                              |          |                    |            |        |       |                     |           |                |                                                   |
| 5           |            |                     |                        |                              |          |                    |            |        |       |                     |           |                |                                                   |
| 3           |            |                     |                        |                              |          |                    |            |        |       |                     |           |                |                                                   |
| )           |            |                     |                        |                              |          |                    |            |        |       |                     |           |                |                                                   |
|             |            |                     |                        |                              |          |                    | :<br>111   |        |       |                     |           |                |                                                   |
|             |            |                     |                        |                              |          |                    |            |        |       | STATUS              |           |                |                                                   |

#### 78 CH

| tL                |                         | ίΟ Ω ΑC                                         | SENSE:PUL:                                | SE                        | ALIGN AUTO     |         | 11:18:41 AM May 13, 20                     |
|-------------------|-------------------------|-------------------------------------------------|-------------------------------------------|---------------------------|----------------|---------|--------------------------------------------|
| nter Fi           | req 2.489               | 9500000 GHz<br>PN<br>IFG                        |                                           | g: Free Run<br>:en: 30 dB | Avg Type: L    | og-Pwr  | TRACE 1 2 3 4<br>TYPE MMMMM<br>DET P P P P |
| B/div             | Ref Offset<br>Ref -3.94 |                                                 |                                           |                           |                | Mkr1    | 2.479 189 GF<br>-13.943 dB                 |
|                   | \                       |                                                 |                                           |                           |                |         |                                            |
| ΨŲ.               | 1                       |                                                 |                                           |                           |                |         | -33.94 (                                   |
|                   |                         |                                                 |                                           |                           |                |         |                                            |
|                   | L,                      | ()2                                             |                                           |                           | 3              |         |                                            |
|                   | when                    | manhan                                          | an a  | mm                        | m              |         | man the state of the second                |
|                   |                         |                                                 |                                           |                           |                |         |                                            |
| <u> </u>          |                         |                                                 |                                           |                           |                |         |                                            |
|                   |                         |                                                 |                                           |                           |                |         |                                            |
|                   | 900 GHz<br>100 kHz      |                                                 | #VBW 30                                   | 0 kHz                     |                | Sweep 2 | Stop 2.50000 G<br>.067 ms (1001 p          |
| MODE TH           |                         | ×                                               | Y                                         | FUNCTION                  | FUNCTION WIDTH | FUNCTI  | ON VALUE                                   |
| N 1<br>N 1<br>N 1 | f                       | 2.479 189 GHz<br>2.483 998 GHz<br>2.491 873 GHz | -13.943 dBm<br>-57.353 dBm<br>-57.122 dBm |                           |                |         |                                            |
|                   |                         |                                                 |                                           |                           |                |         |                                            |
|                   |                         |                                                 |                                           |                           |                |         |                                            |
|                   |                         |                                                 |                                           |                           |                |         |                                            |
|                   |                         |                                                 |                                           |                           |                |         |                                            |
|                   |                         |                                                 |                                           |                           |                |         |                                            |



Page 38 of 68 Report No.: STS1905146W04

| Temperature: | <b>25</b> ℃               | Relative Humidity: | 50%     |
|--------------|---------------------------|--------------------|---------|
| Test Mode:   | 8DPSK(3Mbps) -00/39/78 CH | Test Voltage:      | DC 3.8V |

# 00 CH

|                     | ım Analyzer - Swe             |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|-------------------------------|----------------------------|----------------------------|-----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| enter Fr            | RF 50 Ω                       | AC 00000 GHz               | SENSE:P                    |                             | ALIGNAUTO<br>Avg Type: | Log-Pwr                                                                                                          |                              | O AM May 13, 201<br>RACE 1 2 3 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                               | PI                         |                            | ig: Free Run<br>tten: 30 dB |                        |                                                                                                                  |                              | DET P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     |                               |                            |                            |                             |                        |                                                                                                                  | Mkr1 2.4                     | 02 2 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ) dB/div            | Ref Offset 0.5<br>Ref -5.05 d |                            |                            |                             |                        |                                                                                                                  |                              | .050 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.1                 | <b>1</b>                      |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.1                 |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.1                 |                               |                            |                            |                             |                        |                                                                                                                  |                              | -35.05 df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.1                 |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.1                 | $\Diamond^2$                  | $\langle \rangle^3$        |                            |                             |                        | and the second | and the second second second | and the second sec |
|                     |                               |                            | والمراجع المراجع المراجع   | أراف فالجويل                |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.1                 |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.1                 |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.1                 |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tart 30 M<br>Res BW |                               |                            | #VBW 3                     | 00 641-                     |                        | <b>C</b> auca                                                                                                    |                              | 25.00 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                               |                            | #VBW J                     |                             |                        |                                                                                                                  | ep 2.387 s                   | (40001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KR MODE TR          | f                             | ×<br>2.402 2 GHz           | -15.050 dBm                | FUNCTION                    | FUNCTION WIDTH         |                                                                                                                  | FUNCTION VALUE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2 N 1<br>3 N 1      | f                             | 3.030 8 GHz<br>5.532 8 GHz | -56.075 dBm<br>-57.082 dBm |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4 N 1               | f                             | 24.811 5 GHz               | -47.451 dBm                |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5<br>6              |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7<br>B              |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9                   |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0                   |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9<br>0<br>1         |                               |                            |                            |                             |                        |                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## 39 CH

|                          |                   | zer - Swept S                            |                                            |                                     |                                                                                                                 |                  |                    |                    |                                                              |
|--------------------------|-------------------|------------------------------------------|--------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|--------------------|--------------------|--------------------------------------------------------------|
| enter F                  | req 12            | 50 Q AC<br>2.515000                      | 000 GHz                                    | SENS<br>10: Fast<br>Gain:Low        | E:PULSE<br>Trig: Free Run<br>#Atten: 30 dB                                                                      | ALIGNAUTO<br>Avg | )<br>Type: Log-Pwr |                    | 36 AM May 13, 2<br>TRACE 1 2 3 4<br>TYPE MWMM<br>DET P P P P |
| ) dB/div                 |                   | ffset 0.5 dB<br>•2 <mark>.27 dB</mark> m |                                            |                                     |                                                                                                                 |                  |                    |                    | 440 9 GI<br>2.267 dB                                         |
| 2.3                      |                   | 1                                        |                                            |                                     |                                                                                                                 |                  |                    |                    |                                                              |
| 2.3                      |                   |                                          |                                            |                                     |                                                                                                                 |                  |                    |                    | -32.27                                                       |
| 2.3                      |                   | \ <mark>2</mark>                         | 3                                          |                                     |                                                                                                                 |                  |                    | استغارین از        |                                                              |
| .3<br>.3 <mark>.1</mark> |                   |                                          |                                            |                                     | and the second secon | Angel Street     |                    |                    |                                                              |
| .3                       |                   |                                          |                                            |                                     |                                                                                                                 |                  |                    |                    |                                                              |
| 2.3                      |                   |                                          |                                            |                                     |                                                                                                                 |                  |                    |                    |                                                              |
| art 30 I<br>tes BW       |                   | Hz                                       |                                            | #VBW                                | 300 kHz                                                                                                         |                  | Sw                 | Sto<br>eep 2.387 s | p 25.00 <b>G</b><br>s (40001 p                               |
|                          | 1 f               |                                          | ×<br>2.440 9 GHz                           | -12.267 d                           |                                                                                                                 | FUNCTION WIDT    | Н                  | FUNCTION VALUE     |                                                              |
| N                        | 1 f<br>1 f<br>1 f |                                          | 2.700 5 GHz<br>5.933 5 GHz<br>24.278 4 GHz | -56.744 d<br>-56.680 d<br>-46.563 d | Bm                                                                                                              |                  |                    |                    |                                                              |
|                          |                   |                                          |                                            |                                     |                                                                                                                 |                  |                    |                    |                                                              |
| :<br>                    |                   |                                          |                                            |                                     |                                                                                                                 |                  |                    |                    |                                                              |
|                          |                   |                                          |                                            |                                     |                                                                                                                 |                  |                    |                    |                                                              |
|                          |                   |                                          |                                            |                                     |                                                                                                                 | STAT             |                    |                    |                                                              |

Ħ



## 78 CH

| enter Fre             | RF 50 Ω<br>q 12.5150          | AC 00000 GHz                                                   | SENSE:PUL:                                               |                           | ALIGNAUTO                 |         |                   | LAM May 13, 20:                                 |
|-----------------------|-------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------|---------------------------|---------|-------------------|-------------------------------------------------|
|                       |                               | PN                                                             | 0: Fast 😱 Trig<br>ain:Low #Att                           | g: Free Run<br>ten: 30 dB | Avg Type:                 | Log-Pwr |                   | RACE 1 2 3 4 5<br>TYPE MWAAAAA<br>DET P P P P P |
|                       | Ref Offset 0.5<br>Ref -4.02 d |                                                                |                                                          |                           |                           |         | Mkr1 2.4<br>-14.  | 80 2 GH<br>020 dBr                              |
| .0                    | 1                             |                                                                |                                                          |                           |                           |         |                   |                                                 |
| 0                     |                               |                                                                |                                                          |                           |                           |         |                   | -34.02 d                                        |
| o                     | <u>2</u>                      | 3                                                              |                                                          |                           |                           |         |                   | {√4                                             |
|                       | Y                             | $\nabla^{-}$                                                   | elel anno de a basela la fra-                            | and the second            | A CONTRACTOR OF THE OWNER |         |                   |                                                 |
|                       |                               |                                                                |                                                          |                           |                           |         |                   |                                                 |
| 0                     |                               |                                                                |                                                          |                           |                           |         |                   |                                                 |
|                       |                               |                                                                |                                                          |                           |                           |         |                   |                                                 |
| art 30 MH<br>es BW 10 |                               |                                                                | #VBW 300                                                 | ) kHz                     |                           | Swee    | Stop<br>p 2.387 s | 25.00 GH<br>(40001 pt                           |
|                       | SCL<br>f<br>f<br>f<br>f       | x<br>2.480 2 GHz<br>2.613 8 GHz<br>5.458 5 GHz<br>24.184 7 GHz | -14.020 dBm<br>-55.303 dBm<br>-56.673 dBm<br>-47.057 dBm | FUNCTION                  | FUNCTION WIDTH            | F       | UNCTION VALUE     |                                                 |
|                       |                               | 24.1047 0112                                                   |                                                          |                           |                           |         |                   |                                                 |
|                       |                               |                                                                |                                                          |                           |                           |         |                   |                                                 |
|                       |                               |                                                                |                                                          |                           |                           |         |                   | >                                               |
|                       |                               |                                                                |                                                          |                           |                           |         |                   |                                                 |

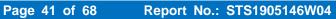


Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



## For Band edge


00 CH

| RL                                    |                         | Swept SA                     |                           |                              |            |                     |             |                    |                   |
|---------------------------------------|-------------------------|------------------------------|---------------------------|------------------------------|------------|---------------------|-------------|--------------------|-------------------|
| optor E                               |                         | 0 Ω AC<br>500000 GHz         |                           | ENSE:PULSE                   | AL         | IGNAUTO Avg Type: I | og-Pwr      |                    | AM May 13, 20     |
|                                       | eq 2.551                | 500000 GH2                   | PNO: Fast 😱<br>IFGain:Low | Trig: Free R<br>#Atten: 30 d |            |                     |             |                    | DET P P P F       |
| dB/div                                | Ref Offset<br>Ref -1.88 |                              |                           |                              |            |                     | MI          | kr1 2.402<br>-11.8 | 176 GH<br>875 dBi |
| g                                     |                         |                              |                           |                              |            |                     |             |                    |                   |
| .9                                    |                         |                              |                           |                              |            |                     |             |                    |                   |
| .9                                    |                         |                              |                           |                              |            |                     |             |                    | -31.88 d          |
| .9                                    |                         |                              |                           |                              |            |                     |             |                    |                   |
| .9                                    |                         |                              |                           |                              |            |                     |             | <u>2</u>           | $-0^3$            |
| 9 marte                               | universiteshere         | wangerman                    | whenter                   | wan manuel                   | hounderson | montport            | mangenerary | mannakin           | modal             |
| .9                                    |                         |                              |                           |                              |            |                     |             |                    |                   |
| .9                                    |                         |                              |                           |                              |            |                     |             |                    |                   |
| .9                                    |                         |                              |                           |                              |            |                     |             |                    |                   |
|                                       |                         |                              |                           |                              |            |                     |             | Stop 2.4           | 40300 GH          |
| art 2.30                              | 1000 GHz                |                              |                           |                              |            |                     | Sweet       | p 9.867 ms         | (1001 pt          |
| art 2.30<br>Res BW                    | 0000 GHz<br>100 kHz     |                              | #VB                       | W 300 kHz                    |            |                     |             |                    | (1001             |
| Res BW                                | 100 kHz                 | X                            | Y                         | FUNC                         | TION FUNCT | ION WIDTH           |             | UNCTION VALUE      | (1001 - 20        |
| Res BW<br>R MODE TR<br>N 1<br>2 N 1   | 100 kHz<br>f<br>f       | 2.402 176 GI<br>2.390 022 GI | Hz -11.875<br>Hz -59.249  | dBm<br>dBm                   | TION FUNCT | ION WIDTH           |             |                    | (1001 )           |
| Res BW<br>Mode H<br>N 1<br>N 1<br>N 1 | 100 kHz<br>Reisel<br>f  | 2.402 176 G                  | Hz -11.875<br>Hz -59.249  | dBm<br>dBm                   | TION FUNCT | ION WIDTH           |             |                    | (1                |
| Res BW                                | 100 kHz<br>f<br>f       | 2.402 176 GI<br>2.390 022 GI | Hz -11.875<br>Hz -59.249  | dBm<br>dBm                   | TION FUNCT | ION WIDTH           |             |                    | (1                |
| Res BW                                | 100 kHz<br>f<br>f       | 2.402 176 GI<br>2.390 022 GI | Hz -11.875<br>Hz -59.249  | dBm<br>dBm                   | TION FUNC  | ION WIDTH           |             |                    | (1                |
| N 1<br>N 1<br>N 1                     | 100 kHz<br>f<br>f       | 2.402 176 GI<br>2.390 022 GI | Hz -11.875<br>Hz -59.249  | dBm<br>dBm                   | TION FUNCT | ION WIDTH           |             |                    | (                 |
| es BW<br>MODE TE<br>N 1<br>N 1        | 100 kHz<br>f<br>f       | 2.402 176 GI<br>2.390 022 GI | Hz -11.875<br>Hz -59.249  | dBm<br>dBm                   | FUNCT      | ION WIDTH           |             |                    |                   |

78 CH

|                      | RF 50 Ω AC                         |                           | SENSE;PU                                  | JLSE                                          | ALIGNAUTO      |          | 11:39:30 AM May 13, 2                     |
|----------------------|------------------------------------|---------------------------|-------------------------------------------|-----------------------------------------------|----------------|----------|-------------------------------------------|
| nter Frec            | 2.489500000                        | GHz<br>PNO: F<br>IFGain:I | ]<br>ast ⊂⊃ Tr<br>Low #A                  | rig: Free Run<br>Atten: 30 dB                 | Avg Type: L    | .og-Pwr  | TRACE 1 2 3 4<br>TYPE MWWW<br>DET P P P P |
|                      | tef Offset 0.5 dB<br>tef -3.63 dBm |                           |                                           |                                               |                | Mkr1     | 2.480 176 GF<br>-13.625 dB                |
| ' 1                  |                                    |                           |                                           |                                               |                |          |                                           |
| s N h                |                                    |                           |                                           |                                               |                |          |                                           |
| i                    |                                    |                           |                                           |                                               |                |          | -33.63                                    |
| μ                    |                                    |                           |                                           |                                               |                |          |                                           |
| Υ                    | 4                                  | 2                         |                                           |                                               |                |          |                                           |
|                      | monter                             | mon                       | mann                                      | man man and and and and and and and and and a | montermo       | ummennen | and a manufacture of the second second    |
|                      |                                    |                           |                                           |                                               |                |          |                                           |
|                      |                                    |                           |                                           |                                               |                |          |                                           |
|                      |                                    |                           |                                           |                                               |                |          |                                           |
|                      |                                    |                           |                                           |                                               |                |          |                                           |
| rt 2.4790<br>s BW 10 |                                    |                           | #VBW 3                                    | 00 kHz                                        |                |          | Stop 2.50000 G<br>.067 ms (1001 p         |
| MODE TRC S           |                                    |                           | Y                                         | FUNCTION                                      | FUNCTION WIDTH | FUNCT    | ON VALUE                                  |
| N 1                  | f 2.484                            | 187 GHz                   | -13.625 dBm<br>-58.969 dBm<br>-57.691 dBm | 1                                             |                |          |                                           |
|                      |                                    |                           |                                           |                                               |                |          |                                           |
|                      |                                    |                           |                                           |                                               |                |          |                                           |
|                      |                                    |                           |                                           |                                               |                |          |                                           |
|                      |                                    |                           |                                           |                                               |                |          |                                           |
|                      |                                    |                           |                                           |                                               |                |          |                                           |
|                      |                                    |                           |                                           |                                               |                |          |                                           |

Shenzhen STS Test Services Co., Ltd.





## For Hopping Band edge

00 CH

|        |                | alyzer - Swep            |                                |                           |                               |                |                   |            |                   |                         |
|--------|----------------|--------------------------|--------------------------------|---------------------------|-------------------------------|----------------|-------------------|------------|-------------------|-------------------------|
| RL     | RF             |                          |                                | SE                        | NSE:PULSE                     | A              | IGNAUTO Avg Type: | Log Pur    |                   | 3 PM May 13, 20         |
| enter  | Freq           | 2.351500                 | 0000 GHz                       | PNO: Fast 🖵<br>IFGain:Low | Trig: Free R<br>#Atten: 30 dl |                | Avg type.         |            |                   | DET P P P P             |
| dB/div |                | Offset 0.5<br>f -2.05 dE |                                |                           |                               |                |                   | N          | lkr1 2.403<br>-12 | 000 GH<br>.048 dBi      |
|        |                |                          |                                |                           |                               |                |                   |            |                   |                         |
| .1     |                |                          |                                |                           |                               |                |                   |            |                   |                         |
| .1     |                |                          |                                |                           |                               |                |                   |            |                   | -32.05 d                |
| .1     |                |                          |                                |                           |                               |                |                   |            |                   |                         |
| .1     |                |                          |                                |                           |                               |                |                   |            |                   | $\rightarrow$           |
| .1     | wantra         | - Marcharles             | on the most of the second      | waterland and             | anner and                     | wylanes masule | temotector        | montheline | vouenenalis       | mound                   |
| .1     |                |                          |                                |                           |                               |                |                   |            |                   |                         |
| .1     |                |                          |                                |                           |                               |                |                   |            |                   |                         |
| .1     |                |                          |                                |                           |                               |                |                   |            |                   |                         |
|        | 30000<br>W 100 |                          |                                | #VB                       | W 300 kHz                     |                | 1                 | Swee       | Stop 2<br>9.867 m | .40300 GH<br>s (1001 pt |
| R MODE | TRO SCL<br>1 f |                          | ×<br>2.403 000 GHz             | -12.048                   | dBm                           | ION FUNC       | TION WIDTH        |            | FUNCTION VALUE    |                         |
| N<br>N | 1 f<br>1 f     |                          | 2.390 022 GHz<br>2.398 983 GHz | -59.409                   | dBm                           |                |                   |            |                   |                         |
|        |                |                          |                                |                           |                               |                |                   |            |                   |                         |
|        |                |                          |                                |                           |                               |                |                   |            |                   |                         |
| 1      |                |                          |                                |                           |                               |                |                   |            |                   |                         |
|        |                |                          |                                |                           |                               |                |                   |            |                   |                         |
|        |                |                          |                                |                           |                               |                |                   |            |                   | >                       |
|        |                |                          |                                |                           |                               |                |                   |            |                   |                         |

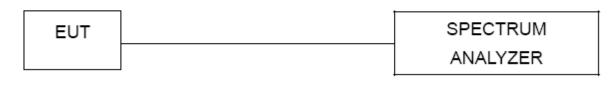
78 CH

| L      | RF                | 50 Ω                       |                                                 | SENSE                                  | E:PULSE                         | ALIGNAUTO      |           | 01:14:53 PM May 13,                    |
|--------|-------------------|----------------------------|-------------------------------------------------|----------------------------------------|---------------------------------|----------------|-----------|----------------------------------------|
| ter F  | req 2             | 2.489500                   | PN                                              | 0: Fast 😱<br>ain:Low                   | Trig: Free Run<br>#Atten: 30 dB | Avg Type       | : Log-Pwr | TRACE 1 2 3<br>TYPE MWAAN<br>DET P P P |
| B/div  |                   | Offset 0.5 d<br>f -3.86 dB |                                                 |                                        |                                 |                | Mkr       | 1 2.480 155 G<br>-13.863 dE            |
| n. 1   |                   |                            |                                                 |                                        |                                 |                |           |                                        |
| W      | Vh                |                            |                                                 |                                        |                                 |                |           |                                        |
|        | +                 |                            |                                                 |                                        |                                 |                |           | -33.8                                  |
| -      |                   | n                          | <u>^2</u>                                       |                                        |                                 |                |           |                                        |
|        | ſ                 | hormours                   |                                                 | mannon                                 | mann                            | man            | mmmaa     | manna                                  |
|        |                   |                            |                                                 |                                        |                                 |                |           |                                        |
|        |                   |                            |                                                 |                                        |                                 |                |           |                                        |
|        |                   |                            |                                                 |                                        |                                 |                |           |                                        |
|        |                   |                            |                                                 |                                        |                                 |                |           |                                        |
|        | 7900              |                            |                                                 | #VBW                                   | 300 kHz                         |                | Sweep     | Stop 2.50000 G<br>2.067 ms (1001 j     |
| MODE T |                   |                            | ×                                               | Y                                      | FUNCTION                        | FUNCTION WIDTH | FUNC      | TION VALUE                             |
| N      | 1 f<br>1 f<br>1 f |                            | 2.480 155 GHz<br>2.484 124 GHz<br>2.498 236 GHz | -13.863 dE<br>-57.280 dE<br>-56.877 dE | Зm                              |                |           |                                        |
|        |                   |                            |                                                 |                                        |                                 |                |           |                                        |
|        |                   |                            |                                                 |                                        |                                 |                |           |                                        |
|        |                   |                            |                                                 |                                        |                                 |                |           |                                        |
|        |                   |                            |                                                 |                                        |                                 |                |           |                                        |
|        |                   |                            |                                                 |                                        |                                 |                |           |                                        |



## 5. NUMBER OF HOPPING CHANNEL

### 5.1 LIMIT


|                       | FCC Part 15.247,Subpart C    |       |                         |        |  |  |  |  |  |
|-----------------------|------------------------------|-------|-------------------------|--------|--|--|--|--|--|
| Section               | Test Item                    | Limit | FrequencyRange<br>(MHz) | Result |  |  |  |  |  |
| 15.247<br>(a)(1)(iii) | Number of Hopping<br>Channel | ≥15   | 2400-2483.5             | PASS   |  |  |  |  |  |

| Spectrum Parameters | Setting                    |
|---------------------|----------------------------|
| Attenuation         | Auto                       |
| Span Frequency      | > Operating FrequencyRange |
| RB                  | 300KHz                     |
| VB                  | 300KHz                     |
| Detector            | Peak                       |
| Trace               | Max Hold                   |
| Sweep Time          | Auto                       |

#### 5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 300KHz, VBW=300KHz, Sweep time = Auto.

#### 5.3 TEST SETUP



#### 5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



### 5.5 TEST RESULTS

| Temperature: | <b>25</b> ℃             | Relative Humidity: | 60%     |
|--------------|-------------------------|--------------------|---------|
| Test Mode:   | Hopping Mode -GFSK Mode | Test Voltage:      | DC 3.8V |

## Number of Hopping Channel

#### 79

## Hopping channel

| Ref Offset 0.5 dB         Mkr2 2.479 930 G           0         GB/div         Ref offset 0.5 dB           0         GB/div         Ref 0.11 (GB/div           0         GB/div         GB/div           0         GB/div         GB/div <th>ent Spectrum Analyzer - Swept SA<br/>R L RF 50 Q AC</th> <th>SENSE:PULSE</th> <th>ALIGNAUTO</th> <th>10:40:20 AM May 13, 20</th>                                                                                                                                                   | ent Spectrum Analyzer - Swept SA<br>R L RF 50 Q AC | SENSE:PULSE              | ALIGNAUTO | 10:40:20 AM May 13, 20                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------|-----------|-----------------------------------------------------------|
| dB/div     Ref 3.31 dBm     -6.57 dE       37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nter Freq 2.441750000 GHz                          | PNO: Fast C Trig: Free I | Run       | TRACE 1 2 3 4 5<br>TYPE MWMMMM<br>DET P P P P             |
| art 2.40000 GHz Stop 2.48350 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dB/div Ref 3.31 dBm                                |                          | Mk        | r2 2.479 993 0 GH<br>-6.57 dBi                            |
| art 2.40000 GHz Stop 2.48350 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                          |           |                                                           |
| X         X         FUNCTION         FUNCTION< | art 2.40000 GHz<br>es BW 300 kHz                   | GHz -5.05 dBm            |           | Stop 2.48350 GF<br>ep 1.133 ms (1001 pt<br>FUNCTION VALUE |

Shenzhen STS Test Services Co., Ltd.



## 6. AVERAGE TIME OF OCCUPANCY

#### 6.1 LIMIT

| FCC Part 15.247,Subpart C |                              |        |                         |        |  |
|---------------------------|------------------------------|--------|-------------------------|--------|--|
| Section                   | Test Item                    | Limit  | FrequencyRange<br>(MHz) | Result |  |
| 15.247<br>(a)(1)(iii)     | Average Time<br>of Occupancy | 0.4sec | 2400-2483.5             | PASS   |  |

#### 6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). Sothe dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So he dwell time is the time duration of the pulse times  $5.06 \times 31.6 = 160$  within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the dwell time is the time duration of the pulse times  $10.12 \times 31.6 = 320$  within 31.6 seconds.

#### 6.3 TEST SETUP



#### 6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

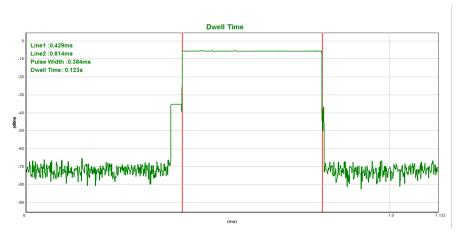


## 6.5 TEST RESULTS

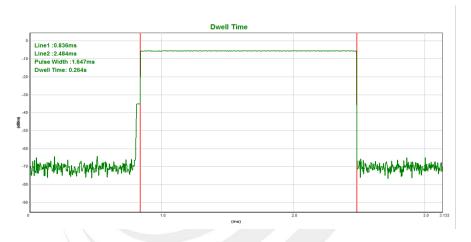
| Temperature: | <b>25</b> ℃             | Relative Humidity: | 50%     |
|--------------|-------------------------|--------------------|---------|
| Test Mode:   | GFSK(1Mbps)-DH1/DH3/DH5 | Test Voltage:      | DC 3.8V |

| Data Packet | Channel | pulse time(ms) | Dwell Time(s) | Limits(s) |
|-------------|---------|----------------|---------------|-----------|
| DH1         | middle  | 0.384          | 0.123         | 0.4       |
| DH3         | middle  | 1.647          | 0.264         | 0.4       |
| DH5         | middle  | 2.808          | 0.300         | 0.4       |

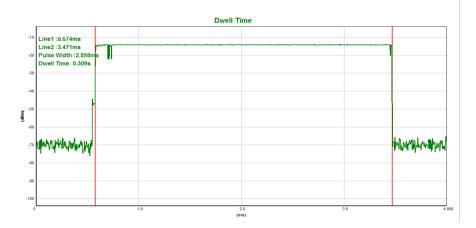



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




### CH39-DH1



#### CH39-DH3







Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

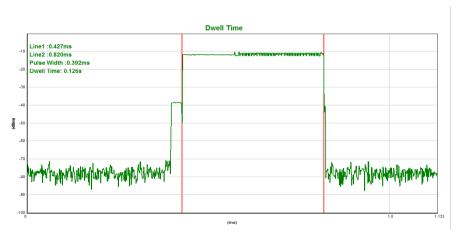


Page 47 of 68 Report No.: STS1905146W04

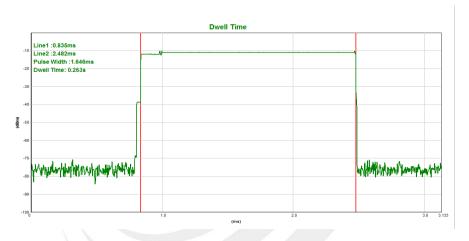
| Temperature: | <b>25</b> ℃                         | Relative Humidity: | 50%     |
|--------------|-------------------------------------|--------------------|---------|
| Test Mode:   | π/4-DQPSK(2Mbps)–<br>2DH1/2DH3/2DH5 | Test Voltage:      | DC 3.8V |

| Data Packet | Channel | pulse time(ms) | Dwell Time(s) | Limits(s) |
|-------------|---------|----------------|---------------|-----------|
| 2DH1        | middle  | 0.392          | 0.125         | 0.4       |
| 2DH3        | middle  | 1.646          | 0.263         | 0.4       |
| 2DH5        | middle  | 2.901          | 0.309         | 0.4       |

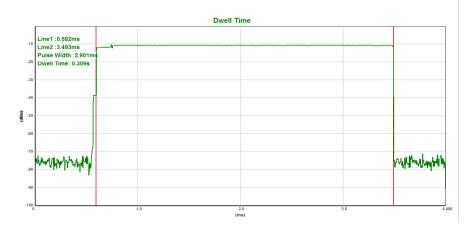



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




### CH39-2DH1



## CH39-2DH3



#### CH39-2DH5





Page 49 of 68 Report No.: STS1905146W04

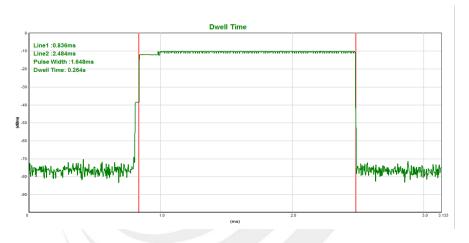
| Temperature: | <b>25</b> ℃                     | Relative Humidity: | 50%     |
|--------------|---------------------------------|--------------------|---------|
|              | 8DPSK(3Mbps)–<br>3DH1/3DH3/3DH5 | Test Voltage:      | DC 3.8V |

| Data Packet | Channel | pulse time(ms) | Dwell Time(s) | Limits(s) |
|-------------|---------|----------------|---------------|-----------|
| 3DH1        | middle  | 0.392          | 0.125         | 0.4       |
| 3DH3        | middle  | 1.648          | 0.264         | 0.4       |
| 3DH5        | middle  | 2.899          | 0.309         | 0.4       |

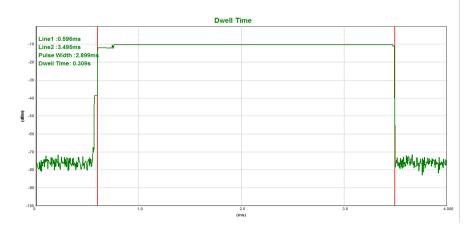


Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




### CH39-3DH1



### CH39-3DH3



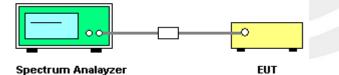
#### CH39-3DH5





## 7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

| Spectrum Parameter | Setting                                                 |
|--------------------|---------------------------------------------------------|
| Attenuation        | Auto                                                    |
| Span Frequency     | > 20 dB Bandwidth or Channel Separation                 |
| RB                 | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)   |
| VB                 | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |
| Detector           | Peak                                                    |
| Trace              | Max Hold                                                |
| Sweep Time         | Auto                                                    |

#### 7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

#### 7.3 TEST SETUP



#### 7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.



7.5 TEST RESULTS

| Temperature: | 25°C                                     | Relative Humidity: | 50%     |
|--------------|------------------------------------------|--------------------|---------|
|              | CH00 / CH39 / CH78<br>(GFSK(1Mbps) Mode) | Test Voltage:      | DC 3.8V |

| Frequency | Ch. Separation<br>(MHz) | Limit (MHz) | Result   |
|-----------|-------------------------|-------------|----------|
| 2402 MHz  | 1.002                   | 0.697       | Complies |
| 2441 MHz  | 1.002                   | 0.697       | Complies |
| 2480 MHz  | 0.999                   | 0.696       | Complies |

For GFSK: Ch. Separation Limits: > two-thirds 20dB bandwidth

| RL                            | RF 5                   | iOΩ AC                 |                                        | SENSE:PULSE      | ALIGNAU         | ЛО                                     | 10:52:49 AM               | May 13, 20                             |
|-------------------------------|------------------------|------------------------|----------------------------------------|------------------|-----------------|----------------------------------------|---------------------------|----------------------------------------|
| enter F                       | req 2.402              | 2500000 GHz            | PNO: Wide C<br>IFGain:Low              |                  | Av              | g Type: Log-Pwr                        | TRACE                     | 12345<br>MWWWW<br>PPPPF                |
| ) dB/div                      | Ref Offsel<br>Ref 2.23 |                        |                                        |                  |                 | M                                      | kr2 2.403 01<br>-7.71     | I0 GH<br>0 dBr                         |
| 2g                            |                        |                        | <u>1</u>                               |                  |                 | 2                                      |                           |                                        |
| 7.8                           |                        |                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\gamma$         | $\sim$          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                           |                                        |
| 7.8                           |                        | $\sim$                 |                                        | ~                | $\sim$          | ~~~ \                                  | 00                        |                                        |
|                               |                        |                        |                                        |                  |                 |                                        |                           |                                        |
| 7.8                           |                        |                        |                                        |                  |                 |                                        |                           |                                        |
| .8                            |                        |                        |                                        |                  |                 |                                        |                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| .8                            |                        |                        |                                        |                  |                 |                                        |                           |                                        |
| .8                            |                        |                        |                                        |                  |                 |                                        |                           |                                        |
| .8                            |                        |                        |                                        |                  |                 |                                        |                           |                                        |
| 7.8                           |                        |                        |                                        |                  |                 |                                        |                           |                                        |
| enter 2.<br>Res BW            | 402500 GI<br>30 kHz    | Hz                     | #V                                     | BW 100 kHz       |                 | Swee                                   | Span 3.0<br>p 3.200 ms (1 | 000 MH<br>001 pt                       |
| R MODE T                      |                        | ×                      | Y                                      | FUNC             | TION FUNCTION W | IDTH                                   | FUNCTION VALUE            |                                        |
| 1 N 1<br>2 N 1<br>3<br>4<br>5 |                        | 2.402 008<br>2.403 010 |                                        | 78 dBm<br>71 dBm |                 |                                        |                           |                                        |
| 7<br>3<br>9<br>0<br>1         |                        |                        |                                        |                  |                 |                                        |                           |                                        |
| •                             |                        |                        |                                        |                  |                 |                                        |                           | >                                      |

## CH00 -1Mbps

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com





### CH39 -1Mbps



### CH78 -1Mbps



 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Page 54 of 68 Report No.: STS1905146W04

| Temperature: | 25℃                                           | Relative Humidity: | 50%     |
|--------------|-----------------------------------------------|--------------------|---------|
| Test Mode:   | CH00 / CH39 / CH78<br>(π/4-DQPSK(2Mbps) Mode) | Test Voltage:      | DC 3.8V |

| Frequency | Ch. Separation<br>(MHz) | Limit (MHz) | Result   |
|-----------|-------------------------|-------------|----------|
| 2402 MHz  | 0.999                   | 0.872       | Complies |
| 2441 MHz  | 0.996                   | 0.873       | Complies |
| 2480 MHz  | 1.005                   | 0.872       | Complies |

For  $\pi$ /4-DQPSK(2Mbps): Ch. Separation Limits: > two-thirds 20dB bandwidth

| RF 50 Ω<br>cq 2.40250 | AC 00000 GHz       | - SENG                           | E:PULSE                        | AL AL                                                                                                                                                                                                                                                                | IGN AUTO                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|--------------------|----------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      | Avg Type:                                                                                                                                                                                                                                                                                                                                        | Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Т                                                                                                                                                                                                                                     | 5 AM May 13,<br>RACE 1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       |                    | NO: Wide 😱<br>Gain:Low           | Trig: Free Ru<br>#Atten: 30 dB | 1                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       | DET P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Offset 0 /        | 5 dB               |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  | Mk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r2 2.403                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -14.                                                                                                                                                                                                                                  | 393 dI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | ~~~~               | 1° hay                           | $\sim$                         | $\Lambda$                                                                                                                                                                                                                                                            | $\sim \sim$                                                                                                                                                                                                                                                                                                                                      | $m_{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sim$                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /                     |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u> </u>              |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2500 GHz              |                    | -43 (D14                         | 400 611-                       |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       | 3.000 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       | , (1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | ×<br>2.402 008 GHz |                                  |                                | N FUNCT                                                                                                                                                                                                                                                              | TION WIDTH                                                                                                                                                                                                                                                                                                                                       | FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NCTION VALUE                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| f                     | 2.403 007 GHz      |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                    |                                  |                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | Ref -4.52 c        | 0 kHz<br>sciX<br>f 2.402 008 GHz | Ref -4.52 dBm                  | Ref -4.52 dBm           4.52 dBm           4.52 dBm           4.52 dBm           4.52 dBm           4.52 dBm           502500 GHz           0 kHz           #VBW 100 kHz           502           7           2.402 008 GHz           -14.42 dBm           -14.39 dBm | Kef         4.52 dBm           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           500 GHz         #VBW 100 kHz           501         2.402 008 GHz           7         2.402 008 GHz           -14.39 dBm         4 | Kef         4.52 dBm           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1 | Ref - 4.52 dBm           1         2           2         2           4         2           4         4           4         4           500 GHz         #VBW 100 kHz           500 GHz         14.42 dBm           1         14.39 dBm | Ref -4.52 dBm     -14.       1     2       1     2       2     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     2       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1        1     1 </td |

### CH00 -2Mbps



#### CH39 -2Mbps



#### CH78 -2Mbps



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com





| Temperature: | 25℃                                      | Relative Humidity: | 50%     |
|--------------|------------------------------------------|--------------------|---------|
| LOCT MINDAD. | CH00 / CH39 / CH78<br>(8DPSK(3Mbps)Mode) | Test Voltage:      | DC 3.8V |

| Frequency | Ch. Separation<br>(MHz) | Limit (MHz) | Result   |
|-----------|-------------------------|-------------|----------|
| 2402 MHz  | 0.996                   | 0.855       | Complies |
| 2441 MHz  | 1.002                   | 0.854       | Complies |
| 2480 MHz  | 1.002                   | 0.855       | Complies |

For 8DPSK(3Mbps):Ch. Separation Limits: > two-thirds 20dB bandwidth

|                                                            |                          | yzer - Swept S             |                                 |                                         |                                       |            |                        |    |                                         |                                                               |
|------------------------------------------------------------|--------------------------|----------------------------|---------------------------------|-----------------------------------------|---------------------------------------|------------|------------------------|----|-----------------------------------------|---------------------------------------------------------------|
| enter F                                                    | <sub>R</sub> ,<br>req 2. | 50 Ω AC<br>4025000         | 00 GHz<br>P                     | SB<br>NO: Wide 🖵<br>Gain:Low            | NSE:PULSE<br>Trig: Free<br>#Atten: 30 | Run        | LIGN AUTO<br>Avg Type: |    | т                                       | DAM May 13, 20<br>RACE 1 2 3 4 5<br>TYPE MWWWW<br>DET P P P P |
| 0 dB/div                                                   |                          | offset 0.5 dB<br>-4.54 dBm |                                 |                                         |                                       |            |                        | MI | kr2 2.403<br>-14.                       | 001 GH<br>518 dBi                                             |
| .0g<br>14.5<br>24.5<br>34.5<br>44.5                        |                          | $\sim$                     | ~~~~~                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\Lambda$                             | ~~~~       | 2                      |    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                               |
| 54.5<br>54.5<br>74.5                                       |                          |                            |                                 |                                         |                                       |            |                        |    |                                         |                                                               |
| 34.5<br>94.5 <b></b>                                       |                          |                            |                                 |                                         |                                       |            |                        |    | Span                                    | 3.000 MI                                                      |
| Res BW                                                     |                          |                            |                                 | #VB                                     | W 100 kHz                             |            |                        |    | p 3.200 ms                              | s (1001 p                                                     |
| KE MODE 17<br>1 N 1<br>2 N 1<br>3<br>4<br>5<br>6<br>7<br>8 | f                        | 2                          | ×<br>402 005 GHz<br>403 001 GHz | -14.39<br>-14.52                        | dBm                                   | CTION FUNC | TION WIDTH             |    | UNCTION VALUE                           |                                                               |
| 9<br>0<br>1<br>G                                           |                          |                            |                                 |                                         |                                       |            | STATUS                 |    |                                         | >                                                             |

### CH00 -3Mbps

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



#### CH39 -3Mbps



#### CH78 -3Mbps



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



# 8. BANDWIDTH TEST

## 8.1 LIMIT

| FCC Part15 15.247,Subpart C |           |                  |                         |        |  |  |
|-----------------------------|-----------|------------------|-------------------------|--------|--|--|
| Section                     | Test Item | Limit            | FrequencyRange<br>(MHz) | Result |  |  |
| 15.247<br>(a)(1)            | Bandwidth | (20dB bandwidth) | 2400-2483.5             | PASS   |  |  |

| Spectrum Parameter | Setting                                                 |  |
|--------------------|---------------------------------------------------------|--|
| Attenuation        | Auto                                                    |  |
| Span Frequency     | > Measurement Bandwidth or Channel Separation           |  |
| RB                 | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)   |  |
| VB                 | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |  |
| Detector           | Peak                                                    |  |
| Trace              | Max Hold                                                |  |
| Sweep Time         | Auto                                                    |  |

#### 8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

### 8.3 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

### 8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



### 8.5 TEST RESULTS

| Temperature: | 25℃                              | Relative Humidity: | 50%     |
|--------------|----------------------------------|--------------------|---------|
|              | GFSK(1Mbps)<br>CH00 / CH39 / C78 | Test Voltage:      | DC 3.8V |

| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 1.045                   | PASS   |
| 2441 MHz  | 1.045                   | PASS   |
| 2480 MHz  | 1.044                   | PASS   |

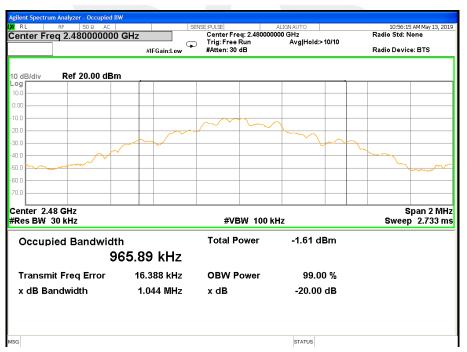
## CH00 -1Mbps



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax: + 86-755 3688 6277


 Http://www.stsapp.com
 E-mail: sts@stsapp.com



### CH39 -1Mbps



CH78 -1Mbps



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Page 61 of 68 Report No.: STS1905146W04

| Temperature: | 25℃                                   | Relative Humidity: | 50%     |
|--------------|---------------------------------------|--------------------|---------|
|              | π/4-DQPSK(2Mbps)<br>CH00 / CH39 / C78 | Test Voltage:      | DC 3.8V |

| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 1.308                   | PASS   |
| 2441 MHz  | 1.309                   | PASS   |
| 2480 MHz  | 1.308                   | PASS   |

### CH00 -2Mbps



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



#### CH39 -2Mbps



#### CH78 -2Mbps



1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Page 63 of 68 Report No.: STS1905146W04

| Temperature: | 25°C                               | Relative Humidity: | 50%     |
|--------------|------------------------------------|--------------------|---------|
|              | 8DPSK(3Mbps)<br>CH00 / CH39 / CH78 | Test Voltage:      | DC 3.8V |

| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 1.282                   | PASS   |
| 2441 MHz  | 1.281                   | PASS   |
| 2480 MHz  | 1.282                   | PASS   |

### CH00 -3Mbps



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



#### CH39 -3Mbps



CH78 -3Mbps



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



# 9. OUTPUT POWER TEST

## 9.1 LIMIT

| FCC Part 15.247,Subpart C |                 |                                                                                                                                  |                         |        |  |
|---------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|--|
| Section                   | Test Item       | Limit                                                                                                                            | FrequencyRange<br>(MHz) | Result |  |
| 15.247                    | Outout          | 1 W or 0.125W                                                                                                                    |                         |        |  |
| (a)(1)&(b)(1)             | Output<br>Power | if channel separation ><br>2/3 bandwidthprovided<br>thesystems operatewith an<br>output power no greater<br>than125 mW(20.97dBm) | 2400-2483.5             | PASS   |  |

#### 9.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&PC

#### 9.3 TEST SETUP

| EUT | Power sensor |  | PC |
|-----|--------------|--|----|
|-----|--------------|--|----|

#### 9.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



### 9.5 TEST RESULTS

| Temperature:  | 25°C    | Relative Humidity: | 60% |
|---------------|---------|--------------------|-----|
| Test Voltage: | DC 3.8V |                    |     |

| Mode     | Channel | Frequency | Peak Power | Average<br>Power | Limit |
|----------|---------|-----------|------------|------------------|-------|
|          | Number  | (MHz)     | (dBm)      | (dBm)            | (dBm) |
|          | 0       | 2402      | -4.98      | -13.89           | 20.97 |
| GFSK(1M) | 39      | 2441      | -5.68      | -14.60           | 20.97 |
|          | 78      | 2480      | -6.70      | -15.66           | 20.97 |

Note: the channel separation >2/3 20dB bandwidth

| Mode                | Channel | Frequency | Peak Power<br>(dBm)<br>-8.81 | Average<br>Power | Limit |
|---------------------|---------|-----------|------------------------------|------------------|-------|
|                     | Number  | (MHz)     |                              | (dBm)            | (dBm) |
| π/4-DQPSK(<br>2bps) | 0       | 2402      | -8.81                        | -18.51           | 20.97 |
|                     | 39      | 2441      | -9.25                        | -19.02           | 20.97 |
|                     | 78      | 2480      | -10.60                       | -19.33           | 20.97 |

Note: the channel separation >2/3 20dB bandwidth

| Mode              | Channel | Frequency | Peak Power     | Average<br>Power | Limit |
|-------------------|---------|-----------|----------------|------------------|-------|
|                   | Number  | (MHz)     | (dBm)<br>-8.82 | (dBm)            | (dBm) |
| 8-DPSK(3Mb<br>ps) | 0       | 2402      | -8.82          | -20.12           | 20.97 |
|                   | 39      | 2441      | -9.21          | -21.85           | 20.97 |
|                   | 78      | 2480      | -10.56         | -22.20           | 20.97 |

Note: the channel separation >2/3 20dB bandwidth



## 10. ANTENNA REQUIREMENT

### **10.1 STANDARD REQUIREMENT**

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

### 10.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



## **APPENDIX-PHOTOS OF TEST SETUP**

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com