

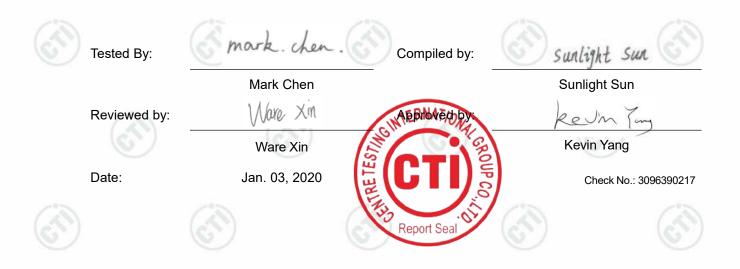
Report No. : EED32L00319201R1

Page 1 of 89

TEST REPORT

Product	(3	2.0Cł
Trade mark	Q	BOM
Model/Type reference	:	Odine
Serial Number	:	N/A
Report Number	:	EED3
FCC ID	:	2AS9
Date of Issue:	:	Jan. (
Test Standards	12	47 CF
Test result	6	PASS

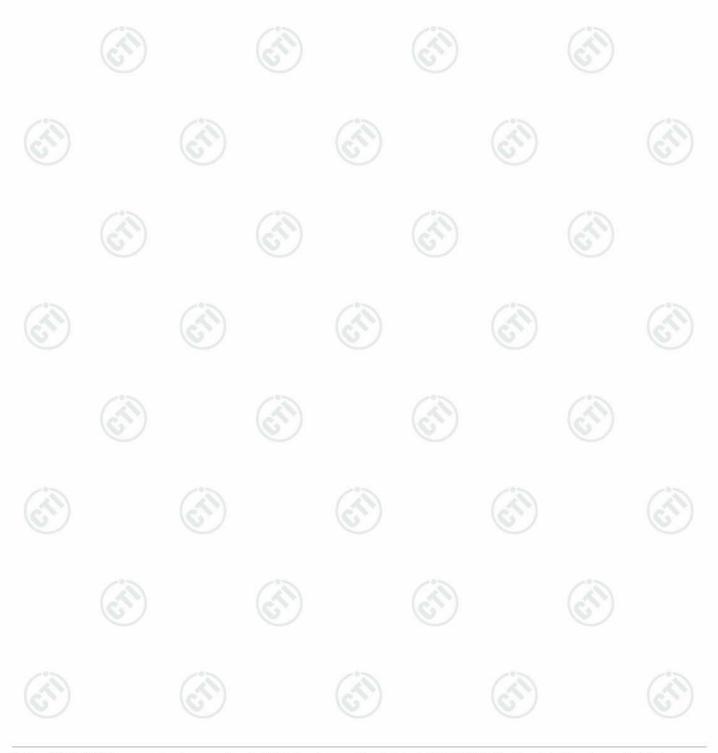
H SOUNDBAR SYSTEM


- AKER
- e II,Odine III
- 32L00319201R1
- DODINE2
- 03, 2020 FR Part 15 Subpart C

Prepared for:

GuangDong Substanbo Technology Co., Ltd. 8F, Building D, Bantian International Center, Longgang District, Shenzhen, China.

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385



Version No.	Date	Description
00	Dec. 19, 2019	Original
01	Jan. 03, 2020	Change the bluetooth version

3 Test Summary

Test Requirement	Test method	Result
47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
	 47 CFR Part 15, Subpart C Section 15.203/15.247 (c) 47 CFR Part 15, Subpart C Section 15.207 47 CFR Part 15, Subpart C Section 15.247 (b)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b) 47 CFR Part 15, Subpart C Section 15.247 (b) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b)(4)&TCB Exclusion List (7 July 2002) 47 CFR Part 15, Subpart C Section 15.247(d) 47 CFR Part 15, Subpart C Section 15.247(d) 47 CFR Part 15, Subpart C Section 15.205/15.209 47 CFR Part 15, Subpart C Section 15.205/15.209 47 CFR Part 15, Subpart C Section 	47 CFR Part 15, Subpart C Section 15.203/15.247 (c) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.207 ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247 (b)(1) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.247(d) ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.205/15.209 ANSI C63.10-2013 47 CFR Part 15, Subpart C Section 15.205/15.209 ANSI C63.10-2013 47 CFR Part 15Subpart C Section 15.205/15.209 ANSI C63.10-2013

Remark:

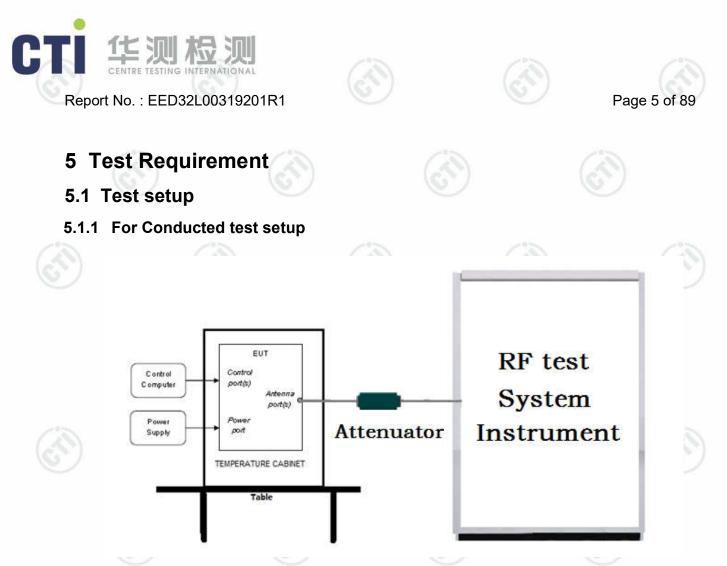
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

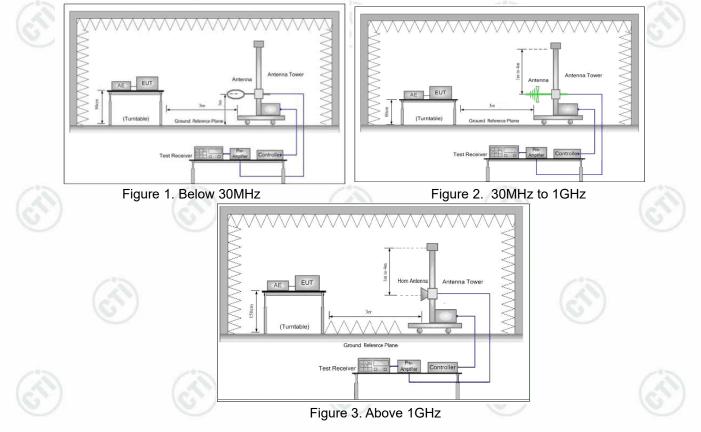
The tested samples and the sample information are provided by the client.

Model No.:Odine II ,Odine III

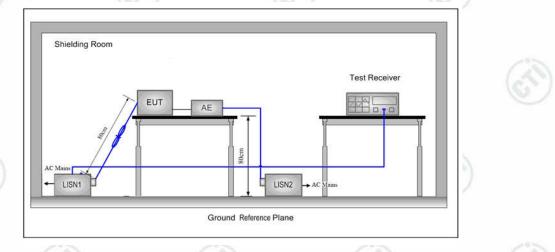
Only the model Odine II was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference model name.

This testing report displaces the original report of No. EED32L00319201, and the original one No. EED32 L00319201 was invalid since the date of this testing report released.




2 VERSION		•••••	
3 TEST SUMMARY			
4 CONTENT			
5 TEST REQUIREMENT			
 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test 5.1.3 For Conducted Emissions test 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 	t setup est setup		9
6 GENERAL INFORMATION			
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECT 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD 6.8 OTHER INFORMATION REQUESTED 6.9 MEASUREMENT UNCERTAINTY(959) 	TIVE TO THIS STANDARD CONDITIONS BY THE CUSTOMER		
7 EQUIPMENT LIST			
8 RADIO TECHNICAL REQUIREMEN	TS SPECIFICATION		
	(G [*])		
EUT DUTY CYCLE			
EUT DUTY CYCLE. Appendix A): 20dB Occupied Ban Appendix B): Carrier Frequency S Appendix C): Dwell Time Appendix D): Hopping Channel N	dwidth Separation umber		
EUT DUTY CYCLE. Appendix A): 20dB Occupied Ban Appendix B): Carrier Frequency S Appendix C): Dwell Time	dwidth Separation umber utput Power conducted Emissions rious Emissions uency Hopping Sequence	e	

5.1.2 For Radiated Emissions test setup



5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environ	nent:		
Temperature:	23.0 °C		
Humidity:	54 % RH	(6)	(5)
Atmospheric Pressure:	1010mbar		

5.3	Test Condition	<u>\</u>	(a)			
Y	Test Mode	Tx/Rx		Low(L)	RF Channel Middle(M)	High(H)
	GFSK/π/4DQPSK	2402MHz ~2480	MHz	Channel 1	Channel 40	Channel79
	(ST)	(cri)		2402MHz	2441MHz	2480MHz

Report No. : EED32L00319201R1

6 General Information

6.1 Client Information

Applicant:	GuangDong Substanbo Technology Co., Ltd.
Address of Applicant:	8F, Building D, Bantian International Center, Longgang District, Shenzhen, China.
Manufacturer:	HanHong Digital Technology Co., Ltd
Address of Manufacturer:	401, Building E, Yuxing Technology Park, Nanchang 3rd Industry Zone, Nanchang Community, Xixiang Street, Baoan District, Shenzhen City, China
Factory:	HanHong Digital Technology Co., Ltd
Address of Factory:	401, Building E, Yuxing Technology Park, Nanchang 3rd Industry Zone, Nanchang Community, Xixiang Street, Baoan District, Shenzhen City, China

6.2 General Description of EUT

Product Name:	2.0CH SOUNDBAR SYSTEM	
Model No.(EUT):	Odine II, Odine III	
Test Mode No.:	Odine II	
Trade Mark:	BOMAKER	0.
EUT Supports Radios application	BT 5.0 Single mode 2402MHz to 2480MHz	
Power Supply:	Adapter INPUT:AC100-240V~50/60Hz 1.5A Max OUTPUT:DC19V 2.5 A	Ì
Sample Received Date:	Oct. 31, 2019	
Sample tested Date:	Oct. 31, 2019 to Dec. 06, 2019	
		S

6.3 Product Specification subjective to this standard

Operati	on Frequency:	2402M	Hz~2480MHz	6	20)	6	(5)			
Bluetoc	oth Version:	5.0 (BT	5.0 (BT2.0+EDR)							
Modula	tion Technique	: Freque	ency Hopping S	pread Spect	rum(FHSS)					
Modula	tion Type:	GFSK,	GFSK, π/4DQPSK							
Numbe	r of Channel:	79	79							
Hoppin	g Channel Type	e: Adaptiv	Adaptive Frequency Hopping systems							
Test Po	ower Grade:	GFSK: π/4DQ	10 PSK:10							
Test So	oftware of EUT:	FCCAs	FCCAssist							
Antenn	а Туре:	PCB A	ntenna	6	N)	3	9			
Antenn	a Gain:	-0.58 d	lbi							
Test Vo	oltage:	AC120	V/60Hz							
	on Frequency			2	10	0	10			
Chan nel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz			
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz			
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz			
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz			
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz			
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz			
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz			
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz			
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz			
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz			
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz			
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz			
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz			
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz			
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz			
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz			
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz			
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz			
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz			
20	2421MHz	40	2441MHz	60	2461MHz	6	0			

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
2	Dedicted Spurious optionics test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

7 Equipment List

Г

Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY56376072	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	158060006	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		03-01-2019	02-29-2020



Page 11 of 89

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020			
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-13-2020			
LISN	R&S	ENV216	100098	05-08-2019	05-07-2020			
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020			

Page 12 of 89

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021		
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020		
Multi device Controller	maturo	NCD/070/107 11112	<u> </u>	01-09-2019	01-08-2020		
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020		
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020		
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020		
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020		
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020		

Hotline: 400-6788-333

Page 13 of 89

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-16-2019	01-15-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Fully Anechoic Chamber	TDK	FAC-3)	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

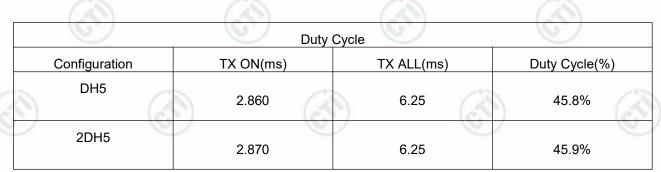
8 Radio Technical Requirements Specification

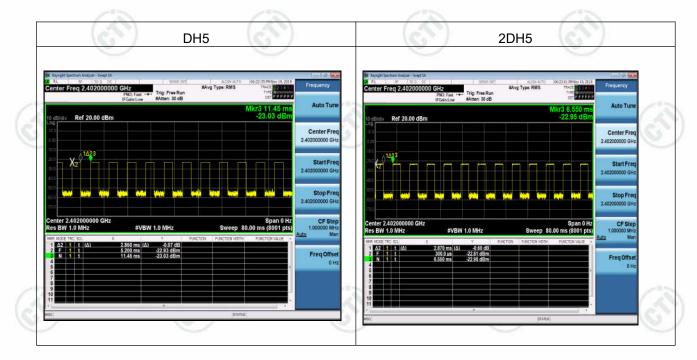
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	AppendixL)





EUT DUTY CYCLE

Appendix A): 20dB Occupied Bandwidth

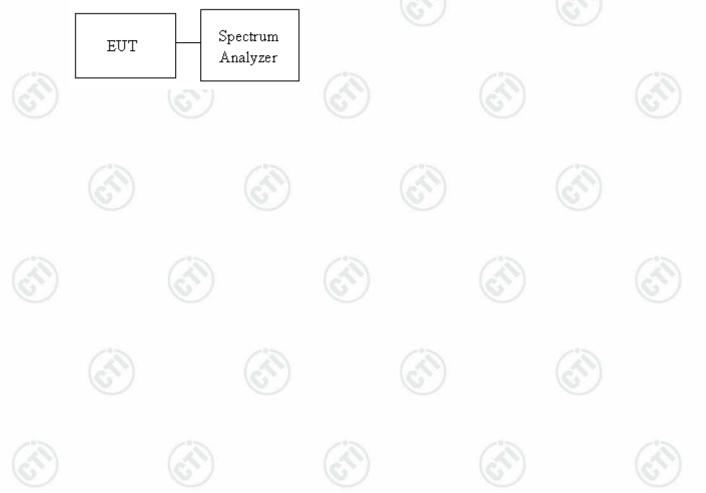
Test Limit

According to §15.247(a) (1),

<u>20 dB Bandwidth</u> : For reporting purposes only.

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure


Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

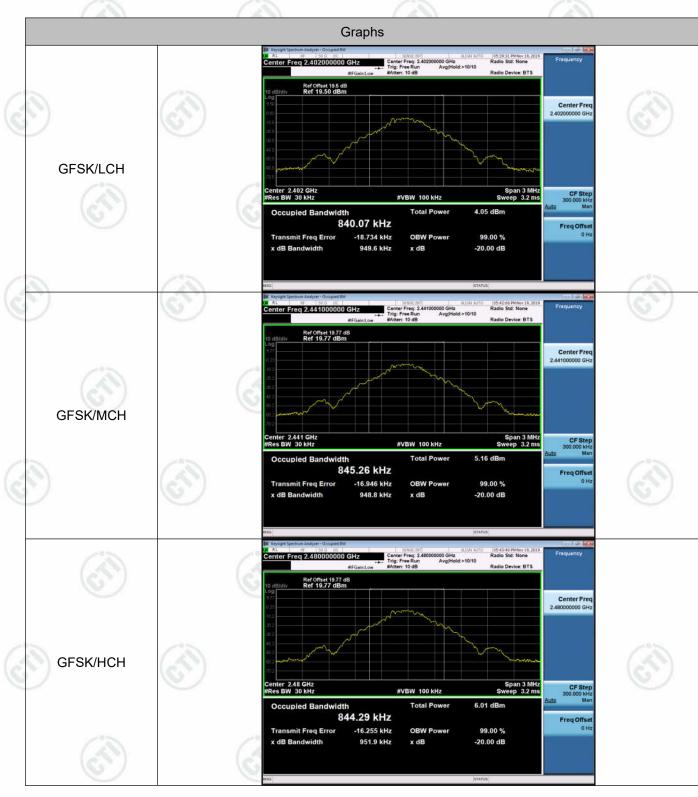
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100kHz, VBW = 300kHz and Detector = Peak, to measurement 20dB Bandwidth.

- SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report

Test Setup

99% Occupy B			2
Mode	Channel.	99% OBW [MHz]	Verdict
GFSK	LCH	0.84007	PASS
GFSK	MCH	0.84526	PASS
GFSK	HCH	0.84429	PASS
π /4DQPSK	LCH	1.2202	PASS
π /4DQPSK	MCH	1.1822	PASS
π /4DQPSK	HCH	1.1896	PASS

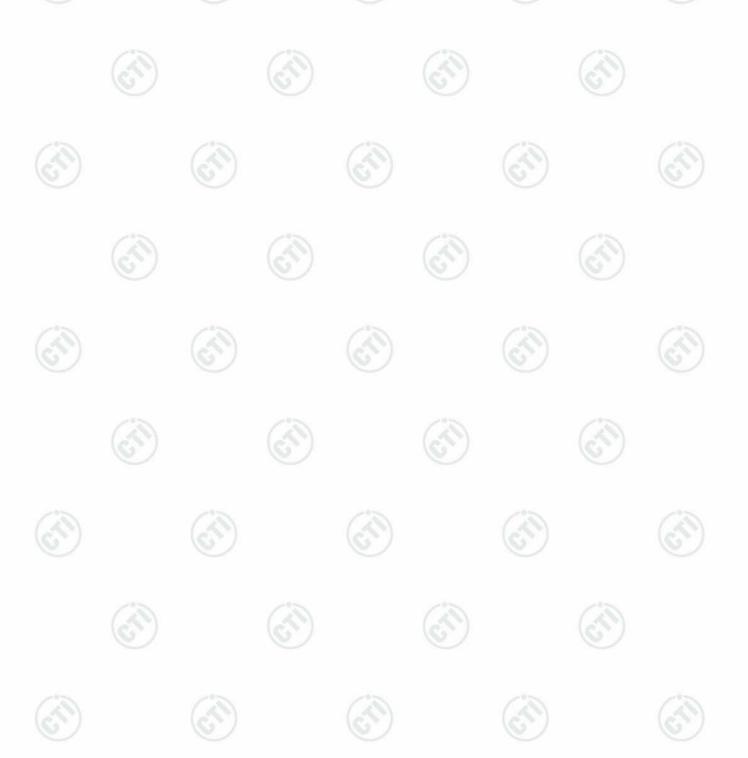
Page 17 of 89



Test Graph

Page 19 of 89

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



20dB Bandwidth

Mode	Channel.	20dB Bandwidth [MHz]	Verdict
GFSK	LCH	1.095	PASS
GFSK	MCH	1.091	PASS
GFSK	HCH	1.092	PASS
π /4DQPSK	LCH	1.369	PASS
π /4DQPSK	MCH	1.371	PASS
π /4DQPSK	НСН	1.378	PASS

Page 21 of 89

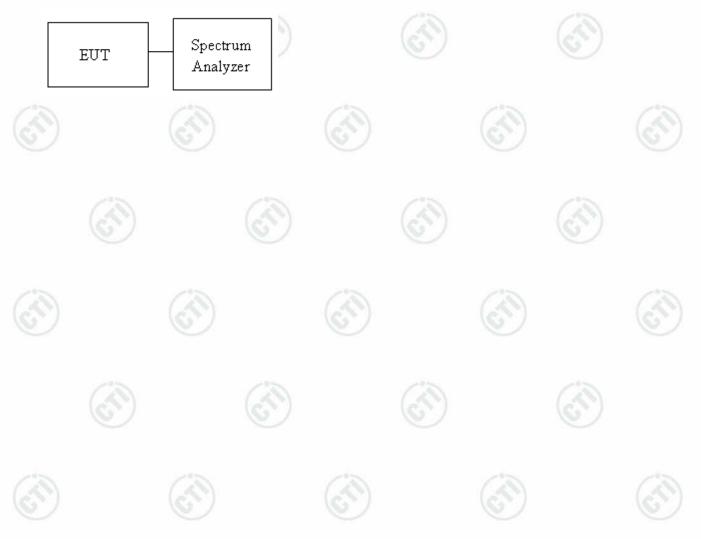
Page 22 of 89

Page 23 of 89

Appendix B): Carrier Frequency Separation

Test Limit

According to §15.247(a)(1),

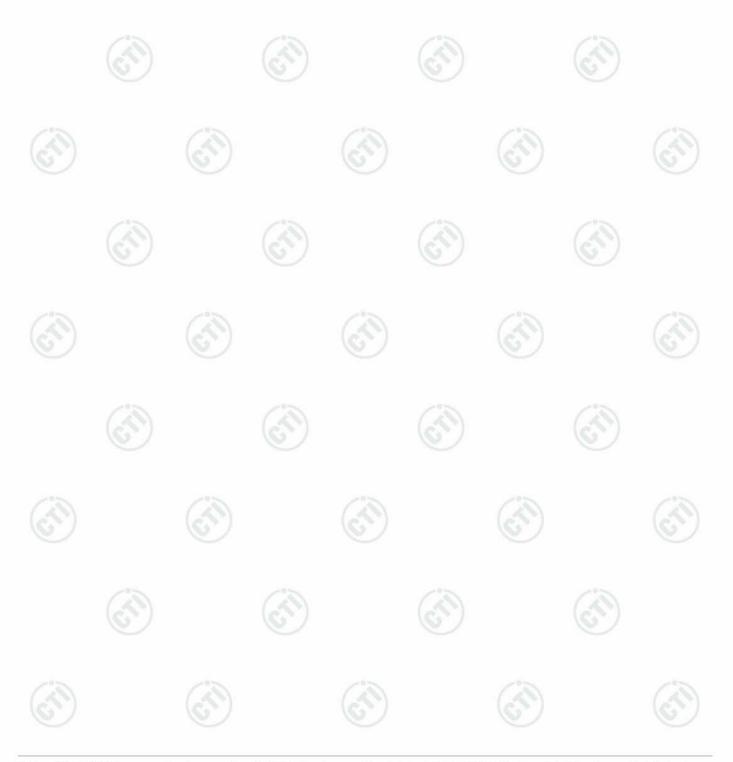

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

-		
	Limit	> two-thirds of the 20 dB bandwidth

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Sweep = auto.
 - Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

Test Setup



Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.020	PASS
GFSK	MCH	0.962	PASS
GFSK	HCH	0.982	PASS
π/4DQPSK	LCH	1.166	PASS
π/4DQPSK	MCH	1.148	PASS
π/4DQPSK	HCH	0.998	PASS

Test Graph



Ì

Page 26 of 89

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix C): Dwell Time Test Limit

According to §15.247(a)(1)(iii),

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

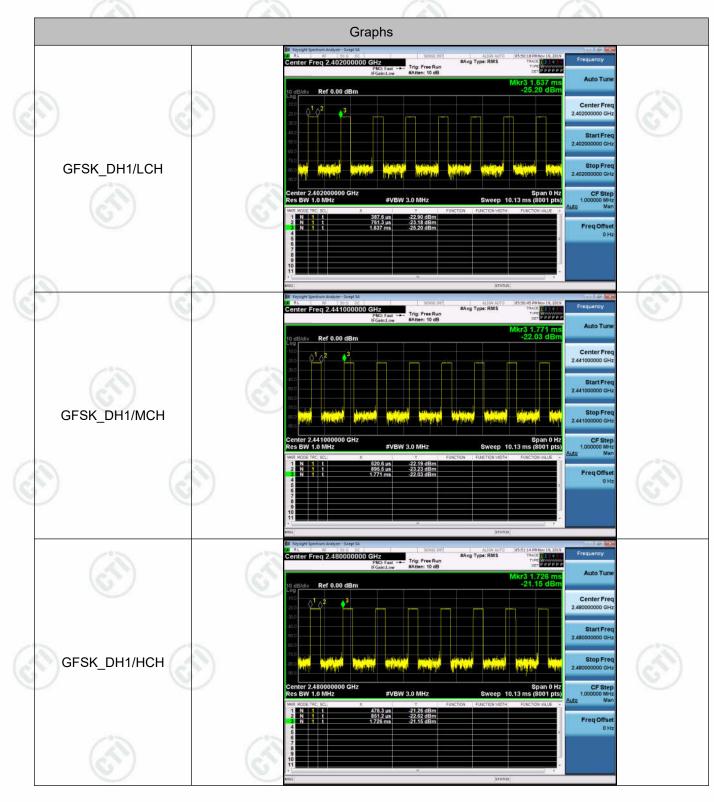
Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Sweep = auto
- Test Setup

Page 28 of 89

Result Table

Mod	e Packet	Chann el	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdic t
GFS	K DH1	LCH	0.373667	320	0.12	0.30	PASS
GFS	K DH1	MCH	0.374933	320	0.12	0.30	PASS
GFS	K DH1	HCH	0.374933	320	0.12	0.30	PASS
GFS	K DH3	LCH	1.63147	160	0.261	0.43	PASS
GFS	K DH3	MCH	1.63147	160	0.261	0.43	PASS
GFS	K DH3	HCH	1.6302	160	0.261	0.43	PASS
GFS	K DH5	LCH	2.8704	106.7	0.306	0.46	PASS
GFS	K DH5	MCH	2.8612	106.7	0.305	0.46	PASS
GFS	K DH5	HCH	2.8612	106.7	0.305	0.46	PASS



Test Graph

Page 31 of 89

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix D): Hopping Channel Number

Test Limit

According to §15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

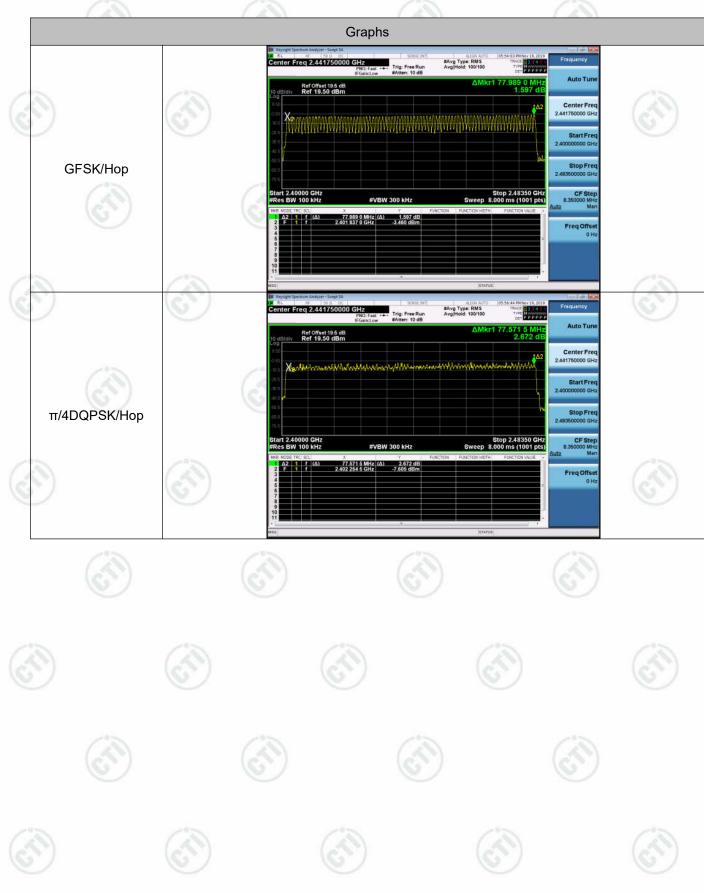
Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4.Max hold, view and count how many channel in the band.

Test Setup

Result Table


	Mode	Channe	əl.	Number	of Hopping	Channel		Verdict
Π	GFSK /4DQPSK	Hop Hop			79 79		~	PASS PASS
(J)				(L)		(L)		(i)

Test Graph

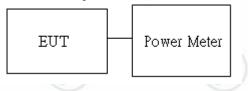
Appendix E): Conducted Peak Output Power

Test Limit According to §15.247(b)(1).

Peak output power:

<u>FCC</u>

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.



Average output power: For reporting purposes only.

Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

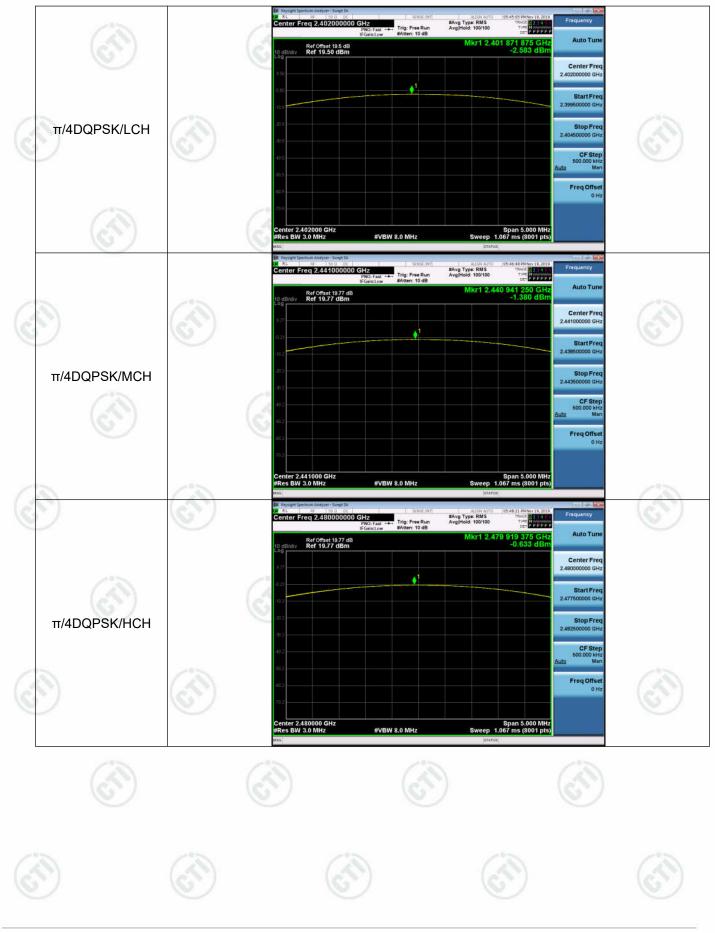
Test Setup

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH 📉	-3.268	PASS
GFSK	MCH	-1.981	PASS
GFSK	HCH	-1.210	PASS
π/4DQPSK	LCH	-2.583	PASS
π/4DQPSK	MCH	-1.380	PASS
π/4DQPSK	HCH	-0.633	PASS



Test Graph



CTI 华汉极汉 CENTRE TESTING INTERNATIONAL Report No. : EED32L00319201R1

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

Limit

-20 dBc

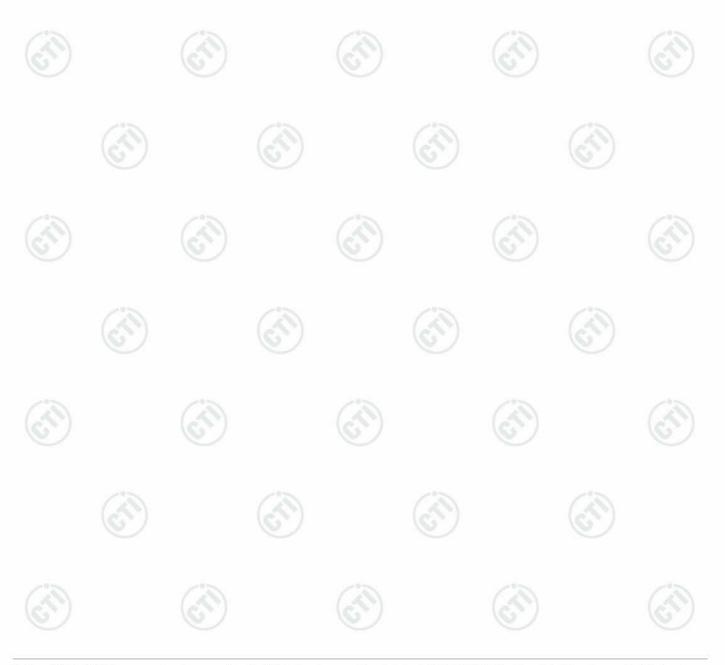
Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

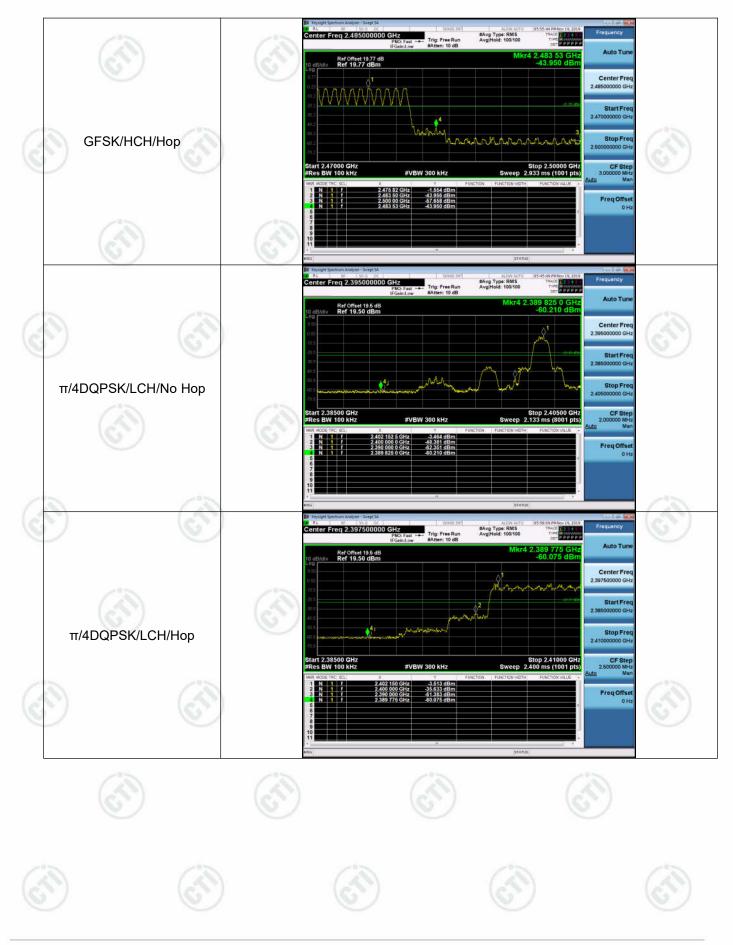
Test Setup



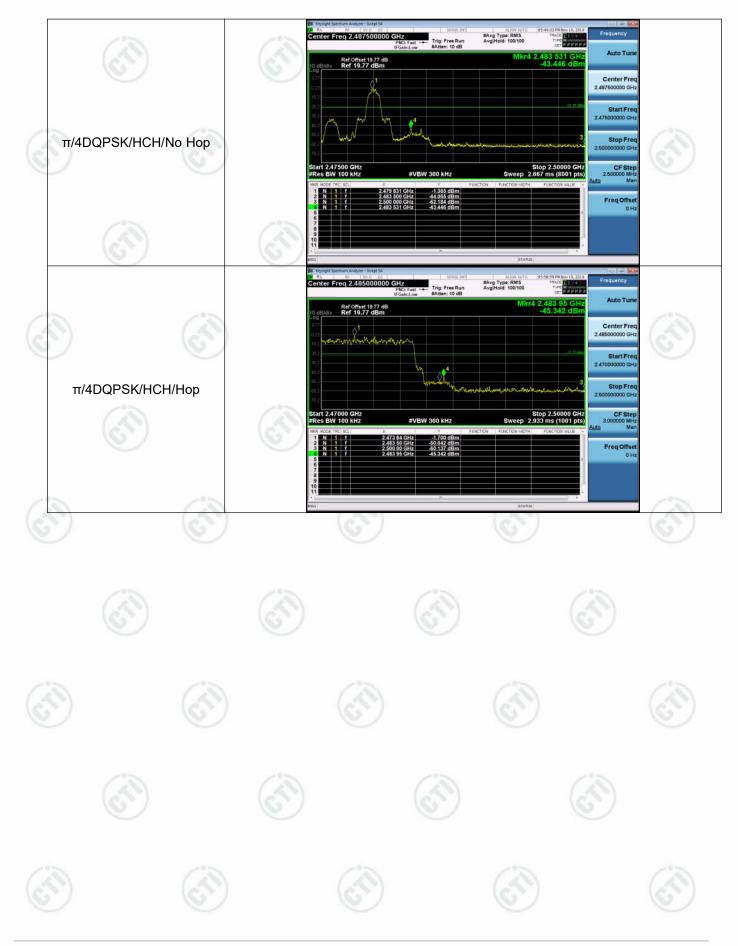
Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequenc y Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
OFOK		0400	-3.369	Off	-59.635	-23.37	PASS
GFSK	LCH	2402	-3.529	On	-58.721	-23.53	PASS
OFOK	нен	2480	-1.394	Off	-43.880	-21.39	PASS
GFSK	HCH	2400	-1.554	On	-43.950	-21.55	PASS
π/4DQPSK	LCH	2402	-3.464	Off	-60.210	-23.46	PASS
11/4DQPSK	LCH	2402	-3.513	On	-60.075	-23.51	PASS
		0400	-1.365	Off	-43.446	-21.37	PASS
π/4DQPSK	HCH	2480	-1.700	On	-45.342	-21.7	PASS

Test Graph



Page 42 of 89


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

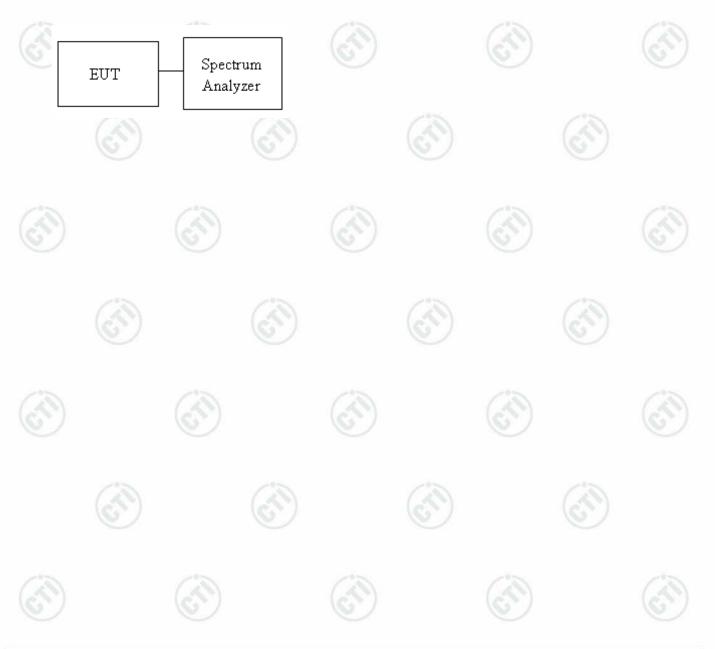
Page 43 of 89

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix G): RF Conducted Spurious Emissions

Test Limit According to §15.247(d),

Limit


-20 dBc

Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

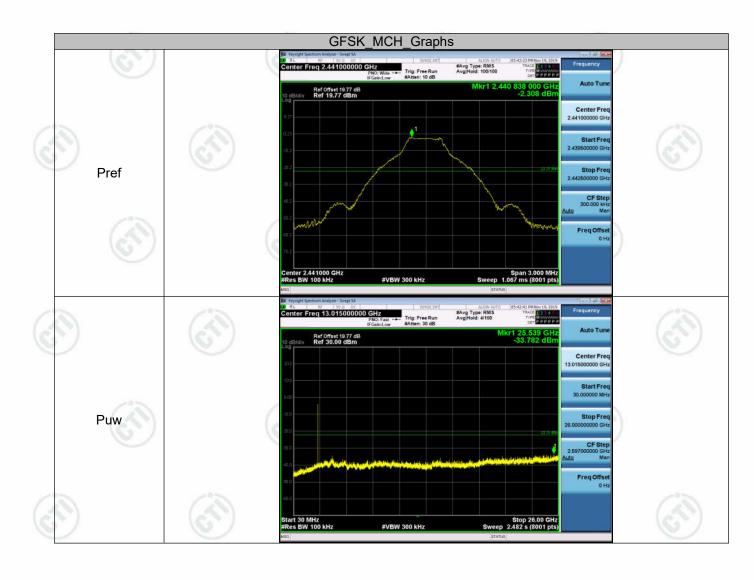
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

Test Setup

Result Table

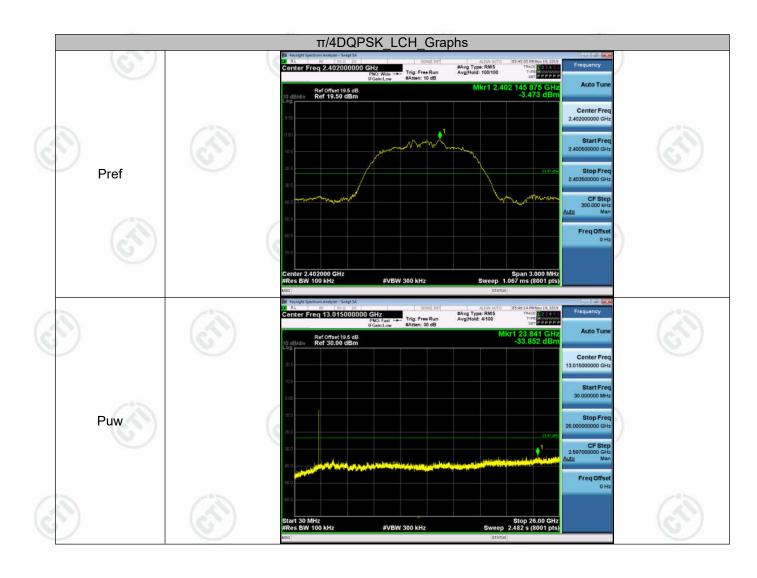
	1.9			
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-3.354	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	-2.308	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	-1.429	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-3.473	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	-2.29	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	-1.462	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

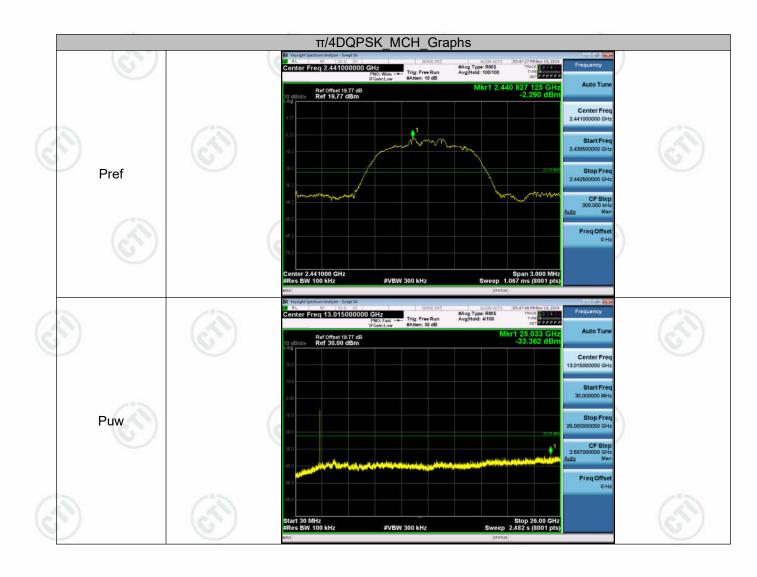


Page 47 of 89

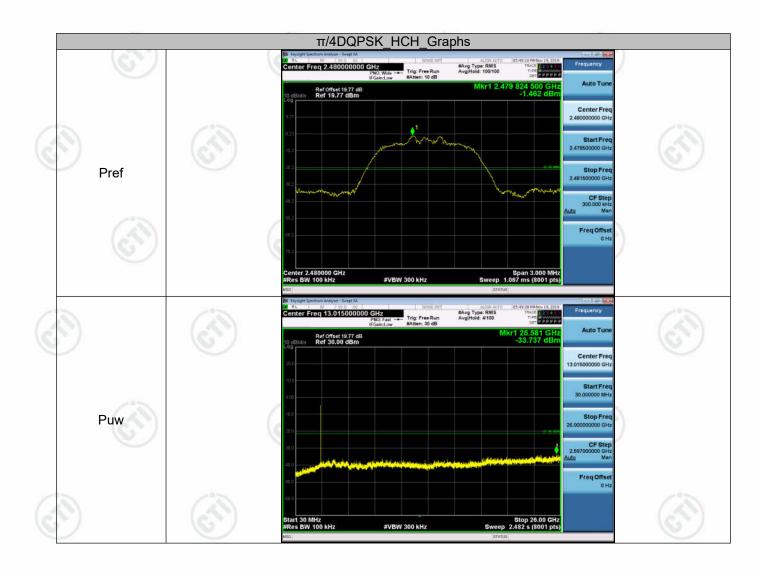
Page 48 of 89



Page 49 of 89



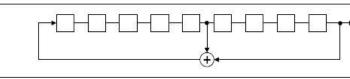
Page 50 of 89



Page 51 of 89

Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom orderec list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

20 62 46 77 7 64 8 73 16 75 1

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

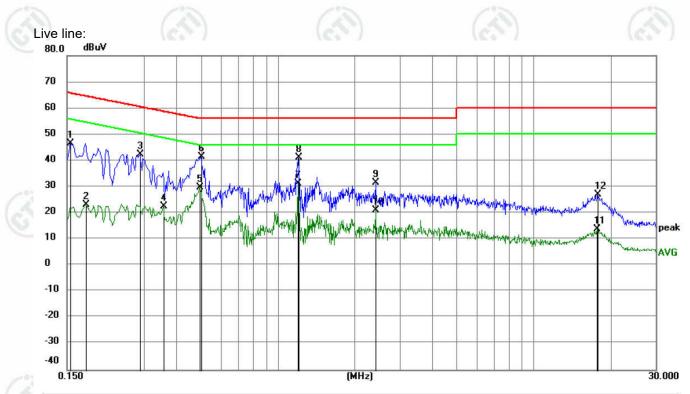
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentiona radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58 dBi.

Appendix J) AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Limit: Limit (dBuV) Frequency range (MHz) Quasi-peak Average 66 to 56* 56 to 46* 0.15-0.5 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency

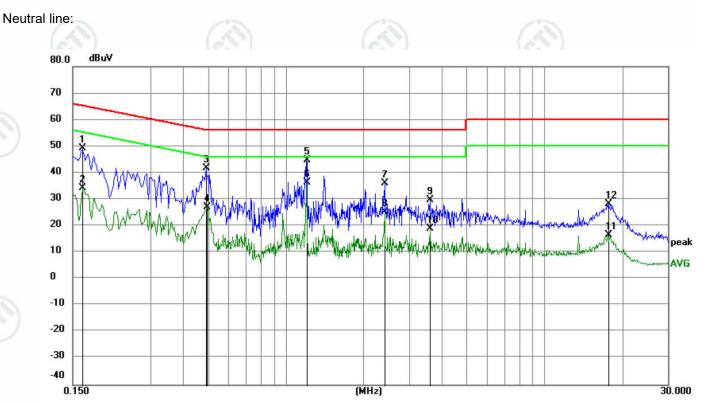


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1545	36.51	9.98	46.49	65.75	-19.26	peak	
2	0.1770	13.18	10.00	23.18	54.63	-31.45	AVG	
3	0.2895	32.31	10.09	42.40	60.54	-18.14	peak	
4	0.3570	12.38	10.04	22.42	48.80	-26.38	AVG	
5	0.4965	19.61	10.00	29.61	46.06	-16.45	AVG	
6 *	0.5010	31.45	10.00	41.45	56.00	-14.55	peak	
7	1.2030	21.25	9.89	31.14	46.00	-14.86	AVG	
8	1.2075	31.40	9.89	41.29	56.00	-14.71	peak	
9	2.4135	21.79	9.83	31.62	56.00	-24.38	peak	
10	2.4135	11.29	9.83	21.12	46.00	-24.88	AVG	
11	17.6775	3.92	9.95	13.87	50.00	-36.13	AVG	
12	17.7810	17.20	9.95	27.15	60.00	-32.85	peak	



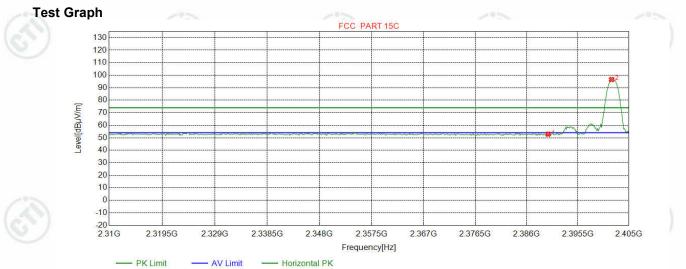
1	MHz	dBuV	10.00			Margin		
1	and a second		dB	dBuV	dBu∨	dB	Detector	Comment
	0.1635	39.20	9.99	49.19	65.28	-16.09	peak	
2	0.1635	24.14	9.99	34.13	55.28	-21.15	AVG	
3	0.4920	31.81	10.00	41.81	56.13	-14.32	peak	
4	0.4965	17.03	10.00	27.03	46.06	-19.03	AVG	
5	1.2075	34.85	9.89	44.74	56.00	-11.26	peak	
6 *	1.2075	26.55	9.89	36.44	46.00	-9.56	AVG	
7	2.4135	26.35	9.83	36.18	56.00	-19.82	peak	
8	2.4135	15.31	9.83	25.14	46.00	-20.86	AVG	
9	3.6195	20.06	9.83	29.89	56.00	-26.11	peak	
10	3.6195	9.08	9.83	18.91	46.00	-27.09	AVG	
11	17.6010	6.63	9.95	16.58	50.00	-33.42	AVG	
12	17.7045	18.40	9.95	28.35	60.00	-31.65	peak	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix K) Restricted bands around fundamental frequency (Radiated)

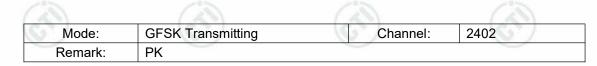
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark							
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peal	ĸ						
		Peak	1MHz	3MHz	Peak	12						
	Above 1GHz	Peak	1MHz	10Hz	Average	6						
Test Procedure:	 a. The EUT was placed on at a 3 meter semi-anech determine the position of b. The EUT was set 3 meter was mounted on the top c. The antenna height is var determine the maximum polarizations of the anten 4. For each suspected emit the antenna was tuned to table was turned from 0 e. The test-receiver system Bandwidth with Maximum 	 at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation 										
		m analyzer pl		emission	s in the restri							
	 bands. Save the spectru for lowest and highest ch Above 1GHz test procedur g. Different between above to fully Anechoic Chamb metre(Above 18GHz the h. b. Test the EUT in the lo i. The radiation measurem Transmitting mode, and 	m analyzer planannel e as below: is the test site er and change e distance is 1 west channel ents are perfor found the X as	ot. Repeat f e, change fr e form table meter and , the Highes prmed in X, xis positioni	or emissions or each po 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	s in the restri ower and mo Anechoic Cl to 1.5 metre). positioning fo t is worse ca	dulai namt						
Limit	 bands. Save the spectru for lowest and highest ch Above 1GHz test procedur g. Different between above to fully Anechoic Chamb metre(Above 18GHz the h. b. Test the EUT in the lo i. The radiation measurem 	m analyzer planannel e as below: is the test site er and change e distance is 1 west channel tents are perfor found the X as es until all freq	ot. Repeat f e, change fr e form table meter and , the Highes prmed in X, xis positioni uencies me	or emissions or each po 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa	s in the restri ower and mo Anechoic Cl to 1.5 metre). positioning fo t is worse ca	dulai namt						
Limit	 bands. Save the spectru for lowest and highest ch Above 1GHz test procedur g. Different between above to fully Anechoic Chamb metre(Above 18GHz the h. b. Test the EUT in the lo i. The radiation measurem Transmitting mode, and j. Repeat above procedure 	m analyzer planannel e as below: is the test site er and change e distance is 1 west channel ents are perfor found the X as	e, change fr e form table meter and , the Highes ormed in X, xis positioni uencies me /m @3m)	om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa	s in the restri ower and mo Anechoic Ch to 1.5 metre). positioning fo t is worse ca as complete.	dulai namt						
Limit:	bands. Save the spectru for lowest and highest ch Above 1GHz test procedur g. Different between above to fully Anechoic Chamb metre(Above 18GHz the h. b. Test the EUT in the lo i. The radiation measurem Transmitting mode, and j. Repeat above procedure Frequency	m analyzer planannel e as below: is the test site er and change e distance is 1 west channel nents are perfor found the X at es until all freq Limit (dBuV	ot. Repeat f e, change fr e form table meter and , the Highes ormed in X, xis positioni uencies me /m @3m) 0	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa Ren Quasi-pe	s in the restri ower and mo Anechoic Cf to 1.5 metre). positioning fo t is worse ca as complete. mark eak Value	dulat namt						
Limit:	bands. Save the spectru for lowest and highest ch Above 1GHz test procedur g. Different between above to fully Anechoic Chamb metre(Above 18GHz the h. b. Test the EUT in the lo i. The radiation measurem Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	m analyzer planannel e as below: is the test site e and change e distance is 1 west channel tents are perfor found the X are suntil all freq Limit (dBuV 40.	e, change fr e form table meter and , the Highes rrmed in X, xis positioni uencies me /m @3m) 0	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe	s in the restri ower and mo Anechoic Cl to 1.5 metre). oositioning fo t is worse ca as complete. mark eak Value eak Value	dulai namt						
Limit:	bands. Save the spectru for lowest and highest ch Above 1GHz test procedur g. Different between above to fully Anechoic Chamb metre(Above 18GHz the h. b. Test the EUT in the lo i. The radiation measurem Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	m analyzer planannel e as below: a is the test site er and change e distance is 1 west channel tents are perfor found the X at es until all freq Limit (dBuV 40. 43. 46.	ot. Repeat f e, change fr e form table meter and , the Highes ormed in X, xis positioni uencies me /m @3m) 0 5 0	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe	s in the restri ower and mo Anechoic Cf to 1.5 metre). positioning fo t is worse ca as complete. mark eak Value eak Value eak Value	dulai namt						
Limit:	bands. Save the spectru for lowest and highest ch Above 1GHz test procedur g. Different between above to fully Anechoic Chamb metre(Above 18GHz the h. b. Test the EUT in the lo i. The radiation measurem Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	m analyzer planannel e as below: e is the test site e and change e distance is 1 west channel nents are perfor found the X at es until all freq Limit (dBuV 40. 43. 46.	e, change fr e form table meter and , the Highes ormed in X, xis positioni uencies me /m @3m) 0 5 0	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa Ren Quasi-pe Quasi-pe Quasi-pe	s in the restri ower and mo Anechoic Ch to 1.5 metre). oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value eak Value	dulat namt						
Limit:	bands. Save the spectru for lowest and highest ch Above 1GHz test procedur g. Different between above to fully Anechoic Chamb metre(Above 18GHz the h. b. Test the EUT in the lo i. The radiation measurem Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	m analyzer planannel e as below: a is the test site er and change e distance is 1 west channel tents are perfor found the X at es until all freq Limit (dBuV 40. 43. 46.	ot. Repeat f e, change fr e form table meter and , the Highes ormed in X, xis positioni uencies me /m @3m) 0 5 0 0 0	or emissions or each po 0.8 metre table is 1.5 st channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	s in the restri ower and mo Anechoic Cf to 1.5 metre). positioning fo t is worse ca as complete. mark eak Value eak Value eak Value	dulat namb						

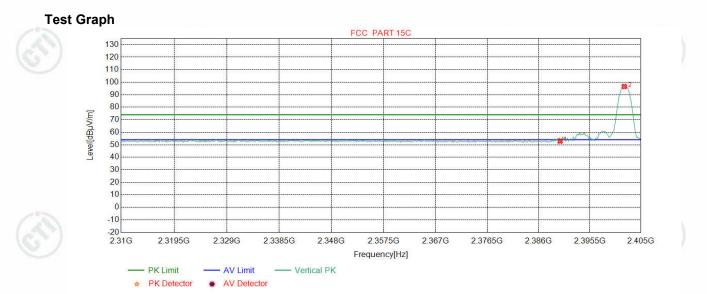


Test plot as follows:

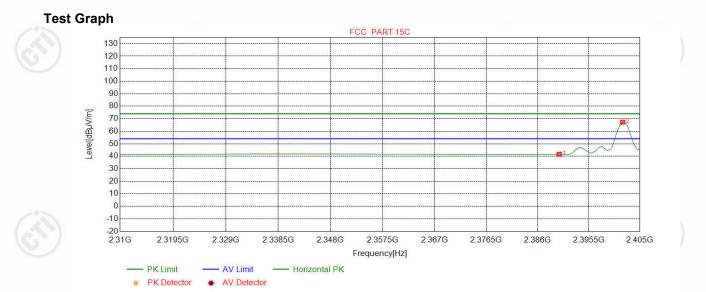
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.69	52.87	74.00	21.13	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	93.41	96.55	74.00	-22.55	Pass	Horizontal
6)	6	S)		(\mathcal{C})		6)		(\mathcal{E})

(A)

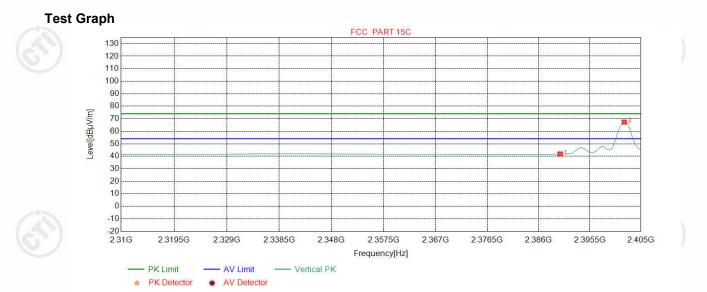




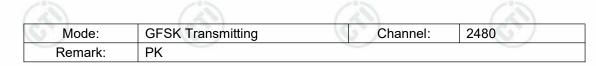
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.70	52.88	74.00	21.12	Pass	Vertical
2	2401.9086	32.26	13.31	-42.43	93.42	96.56	74.00	-22.56	Pass	Vertical
1.0		100	1							

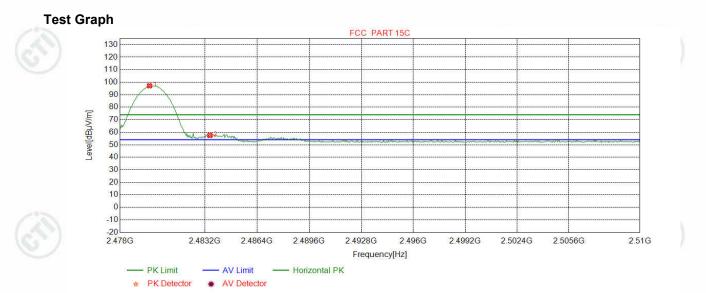


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.39	41.57	54.00	12.43	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	64.09	67.23	54.00	-13.23	Pass	Horizontal
1.0		100	1							

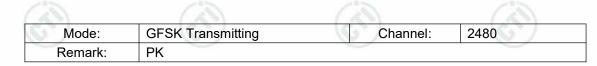


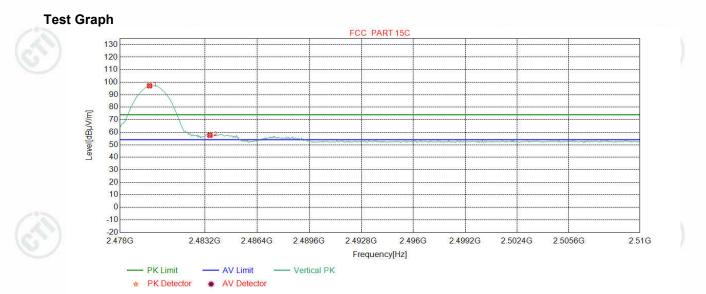
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.69	41.87	54.00	12.13	Pass	Vertical
2	2401.9086	32.26	13.31	-42.43	64.20	67.34	54.00	-13.34	Pass	Vertical
1.		100								



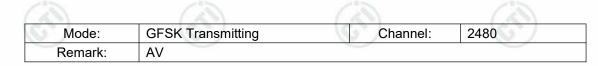


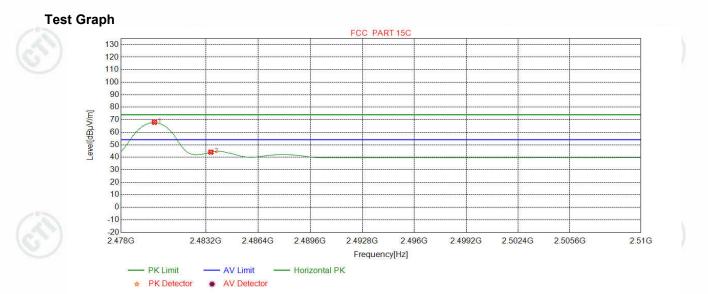
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-42.39	93.76	97.13	74.00	-23.13	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	54.10	57.46	74.00	16.54	Pass	Horizontal
1.0	N	100	1	•					•	1





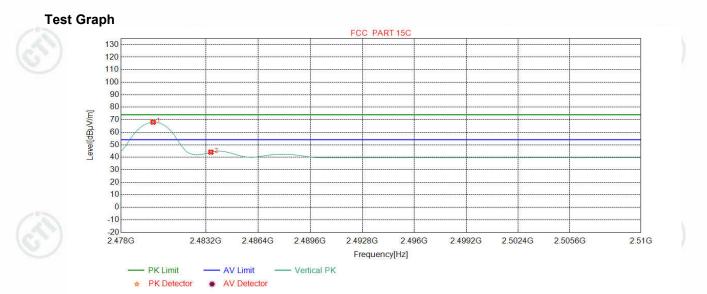
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-42.39	93.76	97.13	74.00	-23.13	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	54.17	57.53	74.00	16.47	Pass	Vertical
1.0	N	100	1	•						



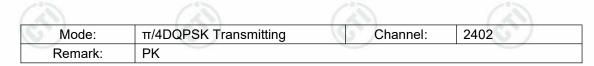


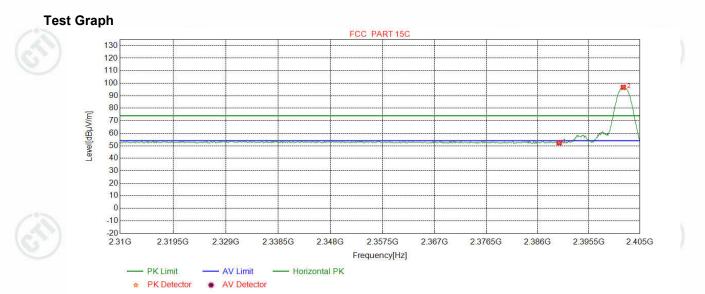
٦	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2480.0426	32.37	13.39	-42.39	64.61	67.98	54.00	-13.98	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	40.74	44.10	54.00	9.90	Pass	Horizontal
1	1.1		100	1							



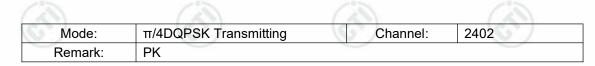


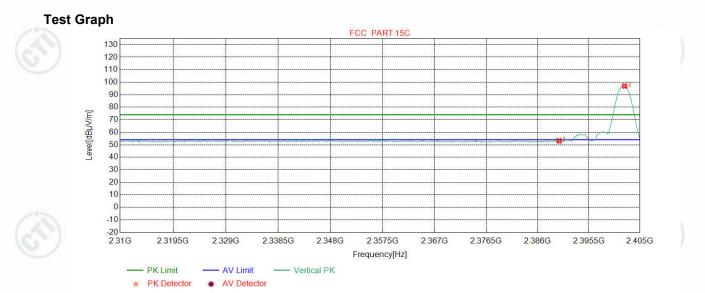
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9625	32.37	13.39	-42.39	64.71	68.08	54.00	-14.08	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	40.74	44.10	54.00	9.90	Pass	Vertical
1.0		100	4	•						



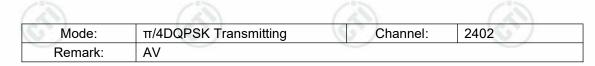


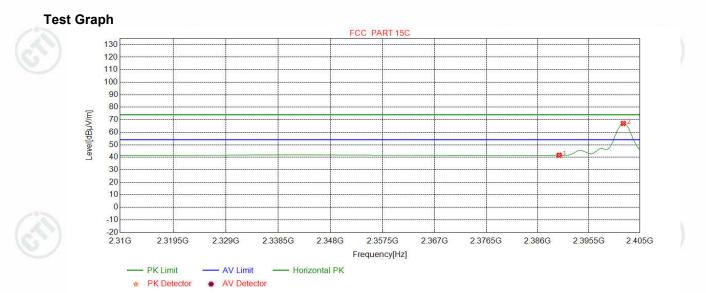
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.15	52.33	74.00	21.67	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	93.59	96.73	74.00	-22.73	Pass	Horizontal
1.0	N	164	1	•		•			•	1



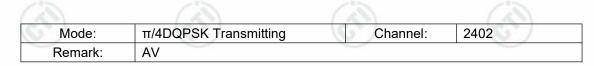


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.87	53.05	74.00	20.95	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	93.75	96.89	74.00	-22.89	Pass	Vertical
1.0		100	1							

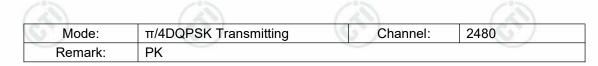


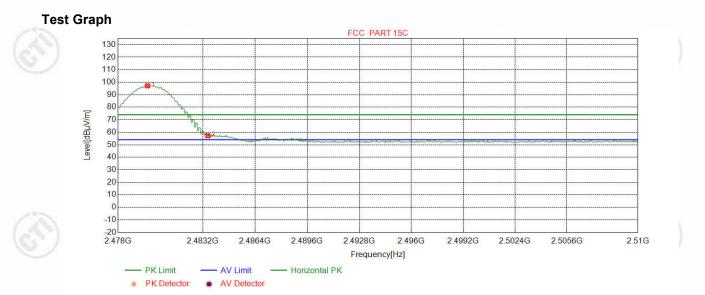


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.43	41.61	54.00	12.39	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	63.89	67.03	54.00	-13.03	Pass	Horizontal
1.		100	1	•					•	1

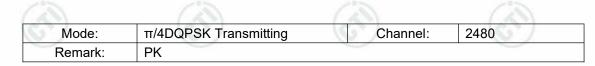


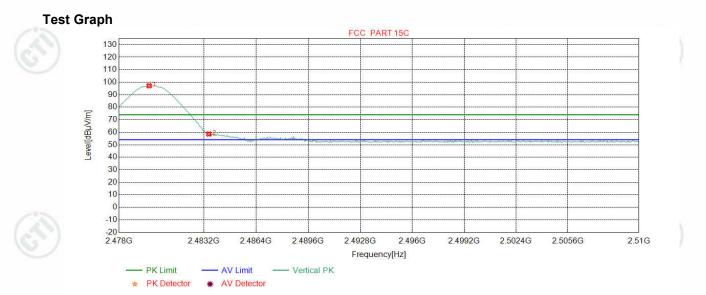
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.65	41.83	54.00	12.17	Pass	Vertical
2	2401.9086	32.26	13.31	-42.43	63.96	67.10	54.00	-13.10	Pass	Vertical
1.00		100	4	•						



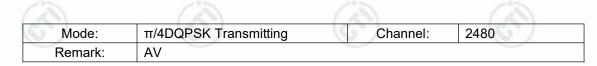


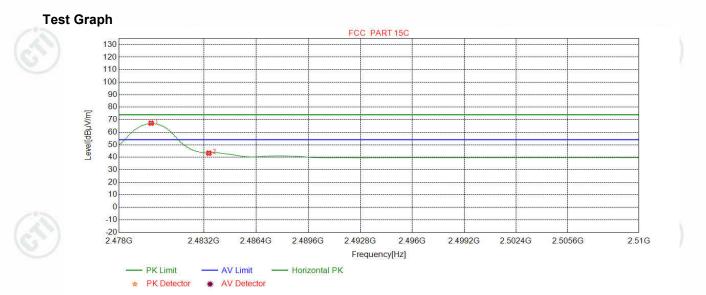
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-42.39	93.76	97.13	74.00	-23.13	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	53.81	57.17	74.00	16.83	Pass	Horizontal
1.1		1.	1							1



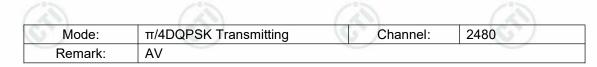

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

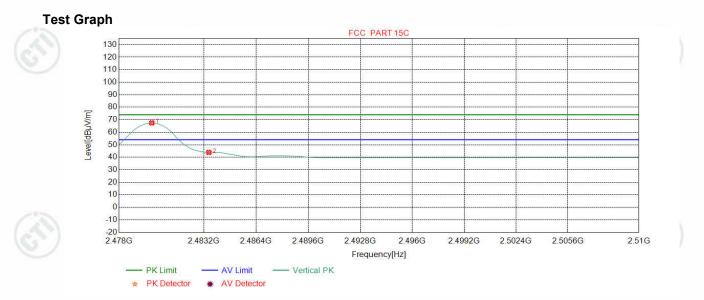
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8423	32.37	13.39	-42.39	93.77	97.14	74.00	-23.14	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	55.24	58.60	74.00	15.40	Pass	Vertical
1.0	N	1.	14	•						





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9625	32.37	13.39	-42.39	63.90	67.27	54.00	-13.27	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	39.90	43.26	54.00	10.74	Pass	Horizontal
1.2		1.	1							





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	64.10	67.47	54.00	-13.47	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	40.50	43.86	54.00	10.14	Pass	Vertical

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix L) Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	100
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	(\mathcal{A})
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	67
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	~
Above 1GHz	Peak	1MHz	3MHz	Peak	
Above IGHz	Peak	1MHz	10Hz	Average	

Test Procedure:

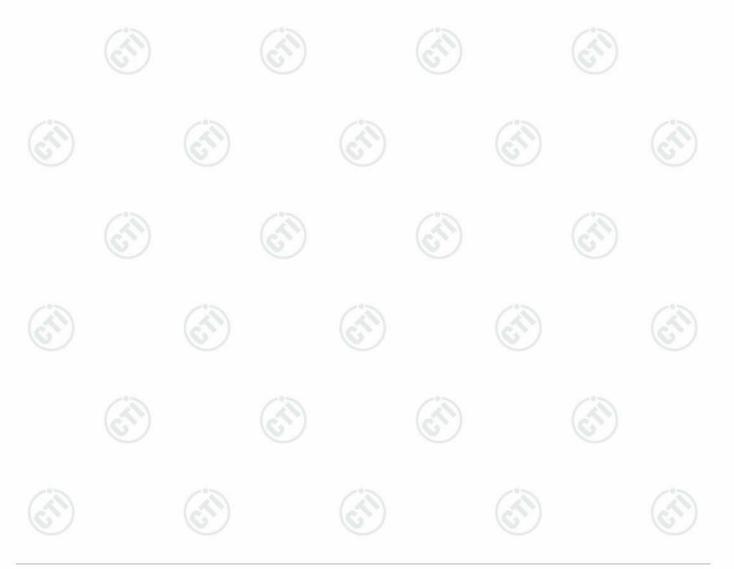
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value
- of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement	
	100		· /	(aBuv/m)		distance (m)	
		0.009MHz-0.490MHz	2400/F(kHz)		-	300	
	(G ²)	0.490MHz-1.705MHz	24000/F(kHz)		-	30	
		1.705MHz-30MHz	30		-	30	
		30MHz-88MHz	100	40.0	Quasi-peak	3	
		88MHz-216MHz	150	43.5	Quasi-peak	3	
- 10 -		216MHz-960MHz	200	46.0	Quasi-peak	3	.0.
4		960MHz-1GHz	500	54.0	Quasi-peak	3	10
31		Above 1GHz	500	54.0	Average	3	51
-		Note: 15.35(b), Unless	otherwise specifie	ed, the limi	t on peak radi	o frequency	
		emissions is 20dE	3 above the maxir	num permi	itted average e	emission limit	
		applicable to the	equipment under	test. This p	beak limit appli	ies to the total	
	12	peak emission lev	vel radiated by the	e device.			
				1			



Radiated Spurious Emissions test Data:

		2441		Channel:			ing	ransmitt	GFSK T	:	Mode
Remark	Polarity	Result	Margin [dB]	Limit [dBµV/m]	Level [dBµV/m]	Reading [dBµV]	Pream gain [dB]	Cable loss [dB]	Ant Factor [dB]	Freq. [MHz]	NO
PK	Н	Pass	19.37	40.00	20.63	38.77	-32.12	0.78	13.20	48.0438	1
PK	Н	Pass	10.27	43.50	33.23	56.30	-32.01	1.34	7.60	131.9572	2
PK	Н	Pass	17.69	46.00	28.31	47.04	-31.94	1.77	11.44	220.8181	3
PK	Н	Pass	14.00	46.00	32.00	47.70	-31.78	2.17	13.91	332.1852	4
PK	Н	Pass	24.77	46.00	21.23	33.40	-31.92	2.68	17.07	503.6014	5
PK	Н	Pass	23.48	46.00	22.52	29.38	-31.82	3.51	21.45	845.4635	6
PK	V	Pass	18.61	40.00	21.39	40.27	-32.07	0.84	12.35	55.3195	7
PK	V	Pass	20.06	43.50	23.44	46.21	-31.99	1.46	7.76	156.0156	8
PK	V	Pass	18.53	43.50	24.97	44.07	-31.94	1.71	11.13	208.8859	9
PK	V	Pass	16.82	46.00	29.18	46.39	-31.91	1.98	12.72	276.0166	10
PK	V	Pass	17.67	46.00	28.33	44.27	-31.81	2.14	13.73	324.0364	11
PK	V	Pass	18.74	46.00	27.26	34.52	-31.96	3.46	21.24	828.0018	12
	H H V V V V V V	Pass Pass Pass Pass Pass Pass Pass	24.77 23.48 18.61 20.06 18.53 16.82 17.67	46.00 46.00 40.00 43.50 43.50 46.00 46.00	21.23 22.52 21.39 23.44 24.97 29.18 28.33	33.40 29.38 40.27 46.21 44.07 46.39 44.27	-31.92 -31.82 -32.07 -31.99 -31.94 -31.91 -31.81	2.68 3.51 0.84 1.46 1.71 1.98 2.14	17.07 21.45 12.35 7.76 11.13 12.72 13.73	503.6014 845.4635 55.3195 156.0156 208.8859 276.0166 324.0364	5 6 7 8 9 10 11

Page 76 of 89

Mode):	GFSK T	ransmitt	ing			Channel:		2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1996.0996	31.67	3.47	-42.61	51.21	43.74	74.00	30.26	Pass	Н	PK	
2	3794.0529	33.64	4.37	-41.22	49.79	46.58	74.00	27.42	Pass	Н	PK	
3	4804.0000	34.50	4.55	-40.66	50.94	49.33	74.00	24.67	Pass	Н	PK	
4	7206.0000	36.31	5.81	-41.02	59.77	60.87	74.00	13.13	Pass	Н	PK	
5	9608.0000	37.64	6.63	-40.76	49.57	53.08	74.00	20.92	Pass	Н	PK	
6	12010.0000	39.31	7.60	-41.21	46.55	52.25	74.00	21.75	Pass	Н	PK	
7	7205.2804	36.31	5.82	-41.03	42.32	43.42	54.00	10.58	Pass	Н	AV	
8	2803.3803	32.89	4.24	-42.23	50.95	45.85	74.00	28.15	Pass	V	PK	
9	3597.0398	33.48	4.35	-41.62	49.21	45.42	74.00	28.58	Pass	V	PK	
10	4804.0000	34.50	4.55	-40.66	54.33	52.72	74.00	21.28	Pass	V	PK	
11	7206.2804	36.31	5.81	-41.02	54.66	55.76	74.00	18.24	Pass	V	PK	
12	9608.0000	37.64	6.63	-40.76	47.86	51.37	74.00	22.63	Pass	V	PK	
13	12010.0000	39.31	7.60	-41.21	46.25	51.95	74.00	22.05	Pass	V	PK	
14	7206.548	36.31	5.81	-41.01	44.51	45.62	54.00	8.38	Pass	V	AV	

	1	_11×									
Mode):	8DPSK Transmitting					Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3965.0643	33.77	4.34	-40.85	49.72	46.98	74.00	27.02	Pass	Н	PK
2	4882.0000	34.50	4.81	-40.60	50.60	49.31	74.00	24.69	Pass	Н	PK
3	6345.2230	35.87	5.46	-41.16	50.07	50.24	74.00	23.76	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.92	56.45	57.80	74.00	16.20	Pass	Н	PK
5	9764.0000	37.71	6.71	-40.62	55.82	59.62	74.00	14.38	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.16	46.41	52.34	74.00	21.66	Pass	Н	PK
7	9763.4509	37.71	6.72	-40.63	46.01	49.81	54.00	4.19	Pass	Н	AV
8	3193.0129	33.28	4.64	-42.01	51.83	47.74	74.00	26.26	Pass	V	PK
9	3790.0527	33.63	4.37	-41.22	50.86	47.64	74.00	26.36	Pass	V	PK
10	4882.0000	34.50	4.81	-40.60	52.05	50.76	74.00	23.24	Pass	V	PK
11	7323.2882	36.42	5.85	-40.92	58.77	60.12	74.00	13.88	Pass	V	PK
12	9764.0000	37.71	6.71	-40.62	54.98	58.78	74.00	15.22	Pass	V	PK
13	12205.0000	39.42	7.67	-41.16	46.09	52.02	74.00	21.98	Pass	V	PK
14	7323.2882	36.42	5.85	-40.92	46.32	47.67	54.00	6.33	Pass	V	AV

Mode):	GFSK T	ransmitt	ing			Channel:		2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	3790.0527	33.63	4.37	-41.22	49.40	46.18	74.00	27.82	Pass	Н	PK	
2	4960.0000	34.50	4.82	-40.53	54.12	52.91	74.00	21.09	Pass	Н	PK	
3	6457.2305	35.89	5.51	-41.18	49.55	49.77	74.00	24.23	Pass	Н	PK	
4	7440.0000	36.54	5.85	-40.82	54.58	56.15	74.00	17.85	Pass	Н	PK	
5	9920.0000	37.77	6.79	-40.48	52.76	56.84	74.00	17.16	Pass	Н	PK	
6	12400.0000	39.54	7.86	-41.12	48.18	54.46	74.00	19.54	Pass	Н	PK	
7	7439.2490	36.54	5.85	-40.82	45.65	47.22	54.00	6.78	Pass	Н	AV	
8	3637.0425	33.51	4.34	-41.54	48.93	45.24	74.00	28.76	Pass	V	PK	
9	4960.0000	34.50	4.82	-40.53	53.36	52.15	74.00	21.85	Pass	V	PK	
10	5979.1986	35.77	5.33	-41.07	48.83	48.86	74.00	25.14	Pass	V	PK	
11	7440.0000	36.54	5.85	-40.82	53.88	55.45	74.00	18.55	Pass	V	PK	
12	9920.0000	37.77	6.79	-40.48	53.86	57.94	74.00	16.06	Pass	V	PK	
13	12400.0000	39.54	7.86	-41.12	47.15	53.43	74.00	20.57	Pass	V	PK	

Mode	:	π/4DQF	PSK Tran	smitting			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3775.0517	33.62	4.36	-41.25	49.27	46.00	74.00	28.00	Pass	Н	PK
2	4804.0000	34.50	4.55	-40.66	49.55	47.94	74.00	26.06	Pass	Н	PK
3	5619.1746	35.19	5.04	-40.74	50.05	49.54	74.00	24.46	Pass	Н	PK
4	7204.2803	36.30	5.82	-41.02	51.81	52.91	74.00	21.09	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	50.24	53.75	74.00	20.25	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.21	48.07	53.77	74.00	20.23	Pass	Н	PK
7	3756.0504	33.60	4.35	-41.28	48.63	45.30	74.00	28.70	Pass	V	PK
8	4804.0000	34.50	4.55	-40.66	52.86	51.25	74.00	22.75	Pass	V	PK
9	5578.1719	35.13	5.12	-40.71	50.18	49.72	74.00	24.28	Pass	V	PK
10	7206.0000	36.31	5.81	-41.02	49.78	50.88	74.00	23.12	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	46.64	50.15	74.00	23.85	Pass	V	PK
12	12010.0000	39.31	7.60	-41.21	46.85	52.55	74.00	21.45	Pass	V	PK

Ì

Page 78 of 89

Mode):	π/4DQPSK Transmitting				Channel:			2441			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	3934.0623	33.75	4.34	-40.92	49.92	47.09	74.00	26.91	Pass	Н	PK	
2	4882.0000	34.50	4.81	-40.60	51.04	49.75	74.00	24.25	Pass	Н	PK	
3	5568.1712	35.11	5.13	-40.70	49.29	48.83	74.00	25.17	Pass	Н	PK	
4	7323.0000	36.42	5.85	-40.92	50.29	51.64	74.00	22.36	Pass	Н	PK	
5	9764.0000	37.71	6.71	-40.62	48.07	51.87	74.00	22.13	Pass	Н	PK	
6	12205.0000	39.42	7.67	-41.16	45.63	51.56	74.00	22.44	Pass	Н	PK	
7	2195.7196	31.97	3.65	-42.52	58.43	51.53	74.00	22.47	Pass	V	PK	
8	2990.5991	33.18	4.52	-42.12	56.05	51.63	74.00	22.37	Pass	V	PK	
9	4882.0000	34.50	4.81	-40.60	52.65	51.36	74.00	22.64	Pass	V	PK	
10	7321.2881	36.42	5.85	-40.92	52.02	53.37	74.00	20.63	Pass	V	PK	
11	9776.4518	37.71	6.65	-40.60	49.70	53.46	74.00	20.54	Pass	V	PK	
12	12205.0000	39.42	7.67	-41.16	46.12	52.05	74.00	21.95	Pass	V	PK	

Mode):	π/4DQF	PSK Trar	smitting		_	Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3498.0332	33.40	4.49	-41.82	48.72	44.79	74.00	29.21	Pass	PK	PK
2	4171.0781	34.04	4.50	-40.83	49.26	46.97	74.00	27.03	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	52.54	51.33	74.00	22.67	Pass	Н	PK
4	7442.2962	36.54	5.85	-40.82	51.42	52.99	74.00	21.01	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	49.04	53.12	74.00	20.88	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.12	47.17	53.45	74.00	20.55	Pass	Н	PK
7	3422.0281	33.37	4.50	-41.87	47.32	43.32	74.00	30.68	Pass	V	PK
8	4132.0755	33.98	4.44	-40.81	49.06	46.67	74.00	27.33	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	53.55	52.34	74.00	21.66	Pass	V	PK
10	7440.0000	36.54	5.85	-40.82	50.34	51.91	74.00	22.09	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	47.88	51.96	74.00	22.04	Pass	V	PK
12	12400.0000	39.54	7.86	-41.12	46.74	53.02	74.00	20.98	Pass	V	PK
1.4	100	1	4.31		1.4	10	1.1	S 34		1.4	3

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported