

TEST REPORT

Applicant Name : Address : Shenzhen Glory Star Technology Industrial Co., Ltd Room 2102, Block 1 st, Yi Luan Building, Xixiang Road 230, BaoAn District, Shenzhen, China SZ3220225-06042E-RF 2AS7V-TWS046

Report Number : FCC ID:

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: Model No: Date Received: Date of Test: Report Date: Bluetooth earphone XBE9-0134-BLK, TWS46 2022-02-25 2022-03-09 to 2022-05-27 2022-06-02

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Ting Lü EMC Engineer

Approved By:

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 46

FCC-BT

TABLE OF CONTENTS

GENERAL INFORMATION		4
PRODUCT DESCRIPTION FOR EQUIPMEN	NT UNDER TEST (EUT)	4
	N	
SUPPORT EQUIPMENT LIST AND DETAI	LS	6
SUMMARY OF TEST RESULTS		8
TEST EQUIPMENT LIST		9
FCC§15.247 (i), §1.1307 (b) (1) &§2.10	993 – RF EXPOSURE	
TEST RESULT:		
FCC §15.203 – ANTENNA REQUIRE	MENT	
APPLICABLE STANDARD		
ANTENNA CONNECTOR CONSTRUCTIO	Ν	
FCC §15.205, §15.209 & §15.247(d) - 1	RADIATED EMISSIONS	
	~	
	IALYZER SETUP	
FCC §15.247(a) (1)-CHANNEL SEPA	RATION TEST	
TEST DATA		19
FCC §15.247(a) (1) – 20 dB EMISSIO	N BANDWIDTH & 99% OCCUPIED BANDWIDTH	21
APPLICABLE STANDARD		
	OF HOPPING CHANNEL TEST	
	CCUPANCY (DWELL TIME)	
FCC §15.247(b) (1) - PEAK OUTPUT	POWER MEASUREMENT	
Version 11: 2021-11-09	Page 2 of 46	FCC-BT

Report No.: SZ3220225-06042E-RF

Applicable Standard	
Test Procedure	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

Product	Bluetooth earphone
Tested Model .	XBE9-0134-BLK
Multiple Model	TWS46
Model Different	Please refer to DOS letter.
Frequency Range	2402~2480MHz
Maximum conducted Peak output power	1.28dBm
Modulation Technique	BDR(GFSK), EDR(π /4-DQPSK)
Antenna Specification*	Internal Antenna: 1dBi (provided by the applicant)
Voltage Range	DC3.7V from battery
Sample number	SZ3220225-06042E-RF-S1
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	5%
RF output pov	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines Conducted Emissions		2.72dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Rudiated	18GHz - 26.5GHz	5.06dB
Temperature		1°C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

Software "FCC_assist_1.0.2.2"* was used during testing and the power level was 10*.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From/Port	То
/	/	/	/

Block Diagram of Test Setup

For radiated emission:

	EUT	1.0 Meter
Non-Conductive Table 80/150 cm above Ground Plane		

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Not Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

Note 1: Bluetooth does not work when the product is charged.

Note 2: The right and left earbuds are identical, please refer to the Declaration letter for more detail, only the left earbud was tested and reported.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Radiated Emissi	ons Test		
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13
Radiated Emission Test Software: e3 19821b (V9)					
RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.32	RF-02	Each	time

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] .

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Test Result:

For worst case:

Mode	Frequency	Maximum Tune-up power		Calculated Distance	Calculated	Threshold	SAR Test
	(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
BDR/EDR	2402-2480	1.5	1.41	5	0.4	3.0	Yes

Result: Compliant.

FCC §15.203 – ANTENNA REQUIREMENT

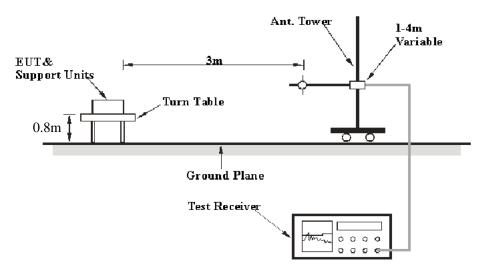
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

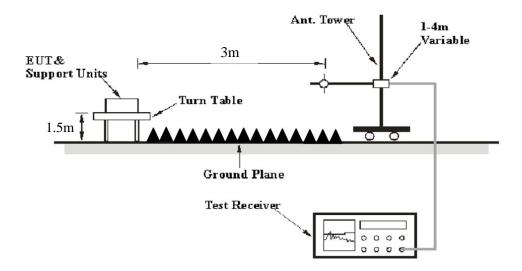
Antenna Connector Construction

The EUT has one PCB Antenna arrangement, which was permanently attached and the antenna gain is 1dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
Above I GHZ	1 MHz	10 Hz	/	Average

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

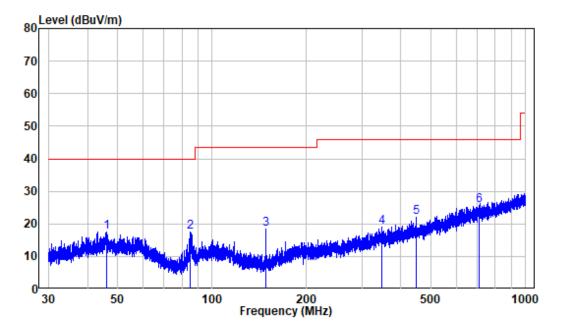
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	65 %
ATM Pressure:	101.2 kPa

The testing was performed by Level Li on 2022-05-27.

EUT operation mode: Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK mode at X axis, Y axis, Z axis, the worst case is $\pi/4$ -DQPSK Mode at X axis)


Below 1GHz: π/4-DQPSK Low channel (worst case)

Horizontal

Site : chamber Condition: 3m HORIZONTAL Job NO. : SZ3220225-06042E-RF Test Mode: BT

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	43.563	-9.92	26.95	17.03	40.00	-22.97	
2	53.015	-10.17	26.77	16.60	40.00	-23.40	
3	99.528	-11.91	26.25	14.34	43.50	-29.16	
4	148.376	-15.36	28.52	13.16	43.50	-30.34	
5	297.354	-9.25	26.28	17.03	46.00	-28.97	
6	409.664	-6.36	26.15	19.79	46.00	-26.21	

Vertical

Site : chamber Condition: 3m VERTICAL Job NO. : SZ3220225-06042E-RF Test Mode: BT

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	45.916	-9.99	27.65	17.66	40.00	-22.34	
2	85.335	-15.49	32.89	17.40	40.00	-22.60	
3	148.376	-15.36	33.68	18.32	43.50	-25.18	
4	348.485	-7.28	26.19	18.91	46.00	-27.09	
5	447.786	-5.63	27.72	22.09	46.00	-23.91	
6	708.561	-1.48	27.04	25.56	46.00	-20.44	

Above 1GHz

(Worst case for $\pi/4$ -DQPSK):

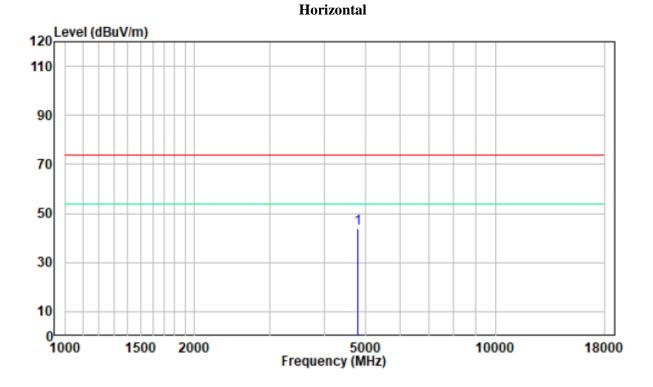
Frequency	Receiver		Turntable Angle	e Rx Antenna		Factor	Absolute Level	Limit	Margin
(MHz)	Reading	PK/AV	Degree	Height	Polar	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
	(dBuV)		Degree	(m)	(H/V)				
Low Channel									
2310	44.86	РК	94	1.5	Н	-7.23	37.63	74	-36.37
2310	47.55	PK	283	2.0	V	-7.23	40.32	74	-33.68
2390	48.51	PK	91	2.1	Н	-7.21	41.3	74	-32.7
2390	47.24	РК	141	1.9	V	-7.21	40.03	74	-33.97
4804	47.25	РК	87	1.9	Н	-3.52	43.73	74	-30.27
4804	46.94	РК	87	1.8	V	-3.52	43.42	74	-30.58
				Middle C	hannel				
4882	46.69	PK	305	1.6	Н	-3.37	43.32	74	-30.68
4882	46.32	PK	308	2.2	V	-3.37	42.95	74	-31.05
				High Ch	annel				
2483.5	46.62	РК	38	1.5	Н	-7.2	39.42	74	-34.58
2483.5	45.02	PK	52	1.3	V	-7.2	37.82	74	-36.18
2500	45.75	РК	215	1.6	Н	-7.18	38.57	74	-35.43
2500	44.87	РК	311	2.0	V	-7.18	37.69	74	-36.31
4960	46.13	РК	49	1.8	Н	-3.01	43.12	74	-30.88
4960	45.86	РК	30	1.7	V	-3.01	42.85	74	-31.15

Note:

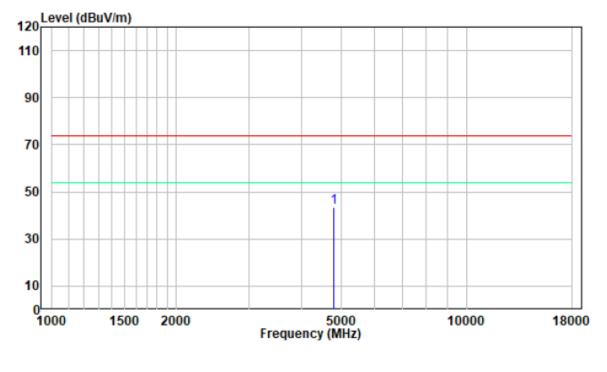
Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level (Corrected Amplitude) = Factor + Reading

Margin = Absolute Level - Limit


The other spurious emission which is in the noise floor level was not recorded.

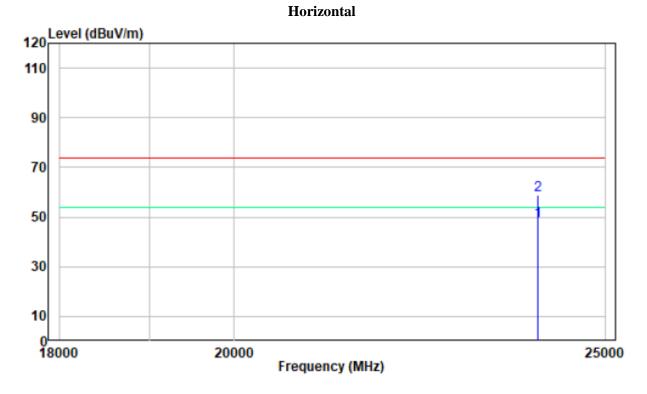
For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.


Report No.: SZ3220225-06042E-RF

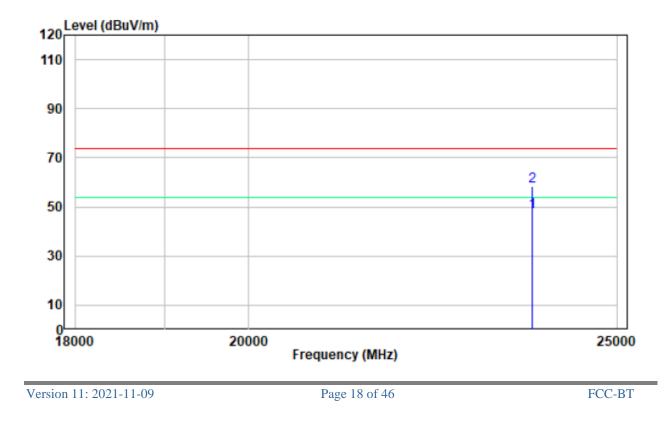
1 GHz - 18 GHz: (Pre-Scan plots)

Worst case for $\pi/4$ -DQPSK Low Channel

Vertical



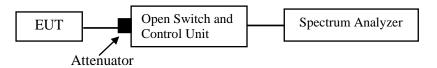
Version 11: 2021-11-09


Report No.: SZ3220225-06042E-RF

18-25GHz: (Pre-Scan plots)

Worst case for $\pi/4$ -DQPSK Low Channel

Vertical


FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	23 °C	
Relative Humidity:	51 %	
ATM Pressure:	101.1 kPa	

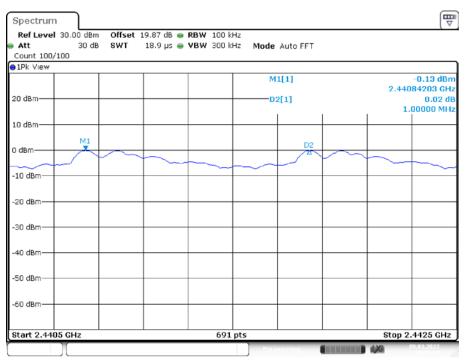
The testing was performed by Key Pei on 2022-03-09

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1	>=0.590	PASS
2DH1	Ant1	Нор	1	>=0.834	PASS

Note: The limit = (2/3) * 20dB bandwidth


Please refer to the below plots:

[₩] Spectrum Ref Level 30.00 dBm Offset 19.87 dB 👄 RBW 100 kHz 18.9 µs 👄 VBW 300 kHz 🛛 Mode Auto FFT Att 30 dB SWT Count 100/100 ∋1Pk View -0.19 dBm M1[1] 2.44084203 GHz 20 dBm-D2[1] -0.03 dE 1.00000 MHz 10 dBm-М1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm-Stop 2.4425 GHz Start 2.4405 GHz 691 pts

DH1_Ant1_Hop

Date: 9.MAR.2022 10:37:39

2DH1_Ant1_Hop

Date: 9.MAR.2022 10:43:31

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

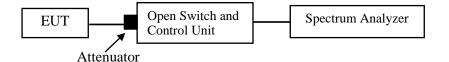
Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

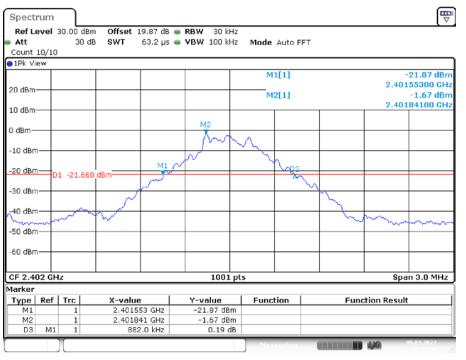
Temperature:	23 °C	
Relative Humidity:	51 %	
ATM Pressure:	101.1 kPa	

The testing was performed by Key Pei on 2022-03-09

EUT operation mode: Transmitting

Test Result: Compliant.

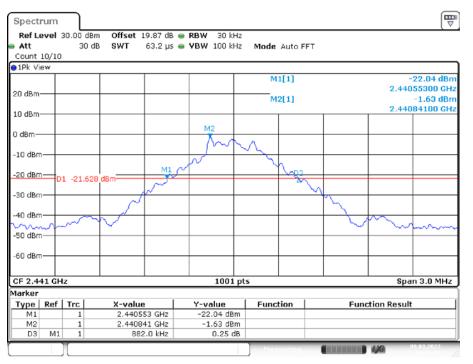
20 dB EMISSION BANDWIDTH


TestMode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.882	2401.553	2402.435		PASS
DH1	Ant1	2441	0.882	2440.553	2441.435		PASS
		2480	0.885	2479.553	2480.438		PASS
		2402	1.251	2401.373	2402.624		PASS
2DH1	Ant1	2441	1.251	2440.373	2441.624		PASS
		2480	1.251	2479.373	2480.624		PASS

99% OCCUPIED BANDWIDTH

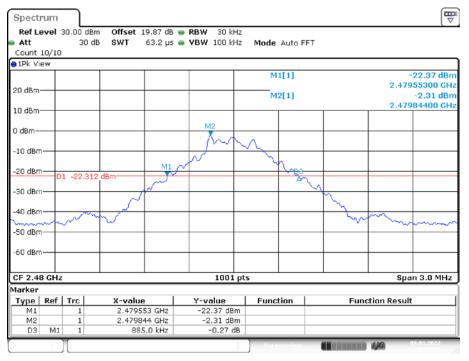
Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.842	2401.577	2402.420		PASS
DH1	Ant1	2441	0.842	2440.577	2441.420		PASS
		2480	0.848	2479.574	2480.423		PASS
		2402	1.166	2401.410	2402.575		PASS
2DH1	Ant1	2441	1.169	2440.410	2441.578		PASS
		2480	1.169	2479.410	2480.578		PASS

Please refer to the below plots:

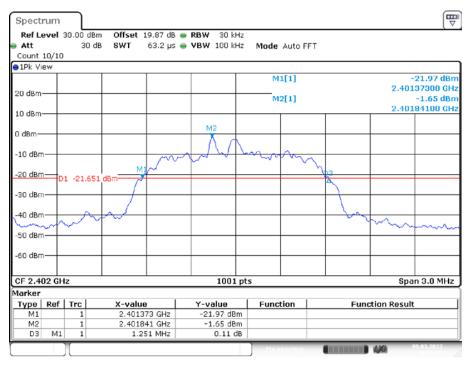

20 dB EMISSION BANDWIDTH

DH1_Ant1_2402

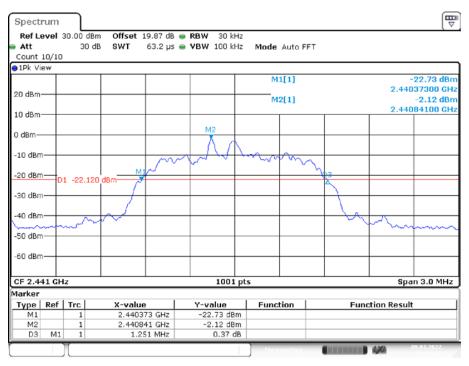
Date: 9.MAR.2022 10:24:04


DH1_Ant1_2441

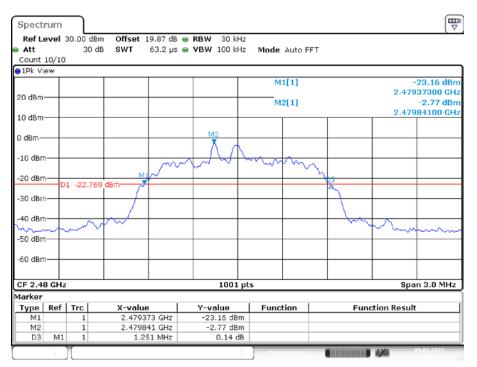
Date: 9.MAR.2022 10:25:35


Version 11: 2021-11-09

DH1_	_Ant1_	_2480
------	--------	-------


Date: 9.MAR.2022 10:26:32

2DH1_Ant1_2402


Date: 9.MAR.2022 10:29:35

Date: 9.MAR.2022 10:30:42

2DH1_Ant1_2480

Date: 9.MAR.2022 10:31:52

Span 3.0 MHz

842.157842158 kHz

Function Result

LX6

₽

99% OCCUPIED BANDWIDTH

Att

●1Pk View

20 dBm-

10 dBm-

0 dBm

-10 dBm

-20 dBm -30 dBm 40 dBm -50 dBm -60 dBm-

CF 2.402 GHz

Marker Type Ref Trc

M1

Τ1

Τ2

Spectrum Ref Level 30.00 dBm Offset 19.87 dB 🖷 RBW 30 kHz 30 dB SWT 63.2 µs 👄 **VBW** 100 kHz Mode Auto FFT Count 100/100 M1[1] -1.68 dBm 2.40184120 GHz Occ Bw 842.157842158 kHz м1 \sim τ1,

DH1_Ant1_2402

Date: 9.MAR.2022 10:24:21

1

1

1

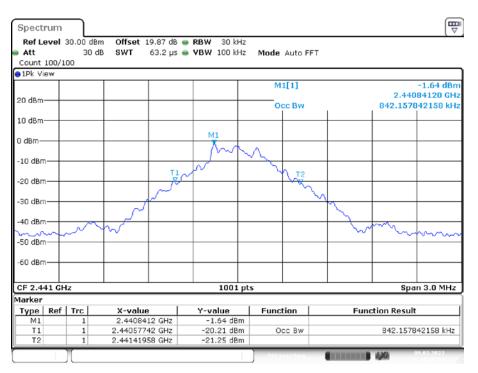
X-value 2.4018412 GHz

2.40157742 GHz

2.40241958 GHz

DH1 Ant1 2441

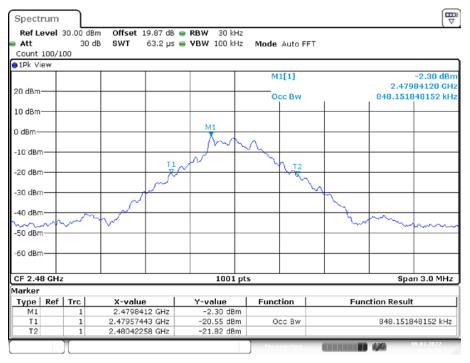
1001 pts


Function

Occ Bw

-1.68 dBm

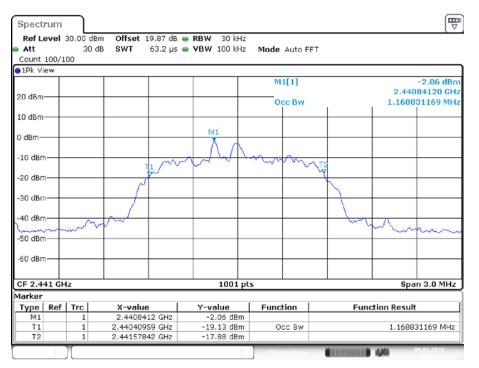
-20.14 dBm


-21.18 dBm

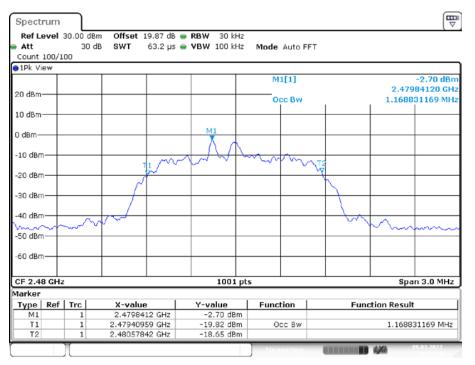
Date: 9.MAR.2022 10:25:52

Version 11: 2021-11-09

DH1_Ant1_2480


Date: 9.MAR.2022 10:26:49

2DH1_Ant1_2402


Date: 9.MAR.2022 10:29:52

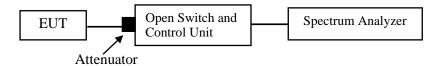
2DH1_Ant1_2441

Date: 9.MAR.2022 10:30:59

2DH1_Ant1_2480

Date: 9.MAR.2022 10:32:09

Version 11: 2021-11-09


FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

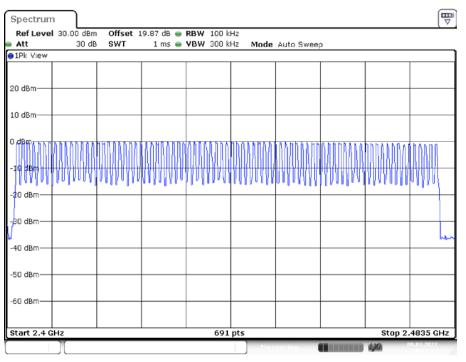
Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

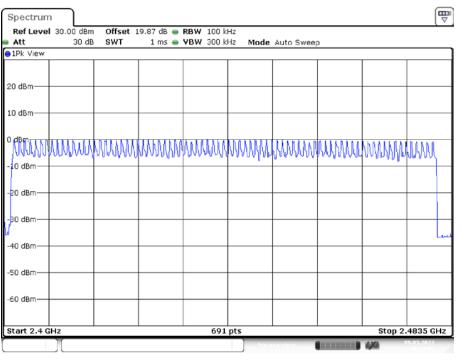
Temperature:	23 °C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa


The testing was performed by Key Pei on 2022-03-09

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Hop	79	>=15	PASS
2DH1	Ant1	Нор	79	>=15	PASS

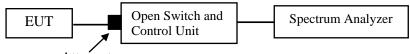

Please refer to the below plots:

DH1_Ant1_Hop

Date: 9.MAR.2022 10:38:27

2DH1_Ant1_ Hop

Date: 9.MAR.2022 10:44:05


FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

Test Data

Environmental Conditions

Temperature:	23 °C	
Relative Humidity:	51 %	
ATM Pressure:	101.1 kPa	

The testing was performed by Key Pei on 2022-03-09

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.38	330	0.125	<=0.4	PASS
DH3	Ant1	Нор	1.63	140	0.228	<=0.4	PASS
DH5	Ant1	Нор	2.87	120	0.344	<=0.4	PASS
2DH1	Ant1	Нор	0.39	330	0.128	<=0.4	PASS
2DH3	Ant1	Нор	1.63	170	0.278	<=0.4	PASS
2DH5	Ant1	Нор	2.87	120	0.345	<=0.4	PASS

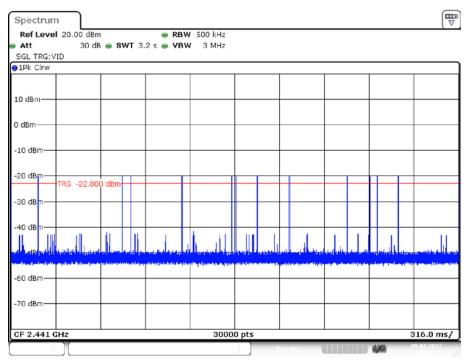
Note 1: A period time=0.4*79=31.6(s), Result=Burst Width*Total Hops

Note 2: Total Hops =Hopping Number in 3.16s*10

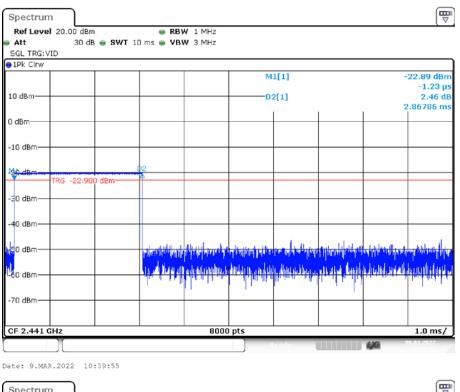
Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

Spectrum									
- p									
Ref Level	20.00 dBm		= RBV	V 1 MHz					(*)
Att		SWT 10	ms e VBV						
SGL TRG: VII	D								
⊖1Pk Clrw									
					м	1[1]		-	24.80 dBm -1.23 μs
10 dBm					D	2[1]			4.72 dB
									378.80 µs
0 dBm									
-10 dBm									
MP-RA	RG -22.800 d	il) es							
T I I	IKG -22,800 0	, max							
-30 dBm									
-40 dBm									
		п	1						
HEO dB	a l'her an a se		and the particular of the	ter a nati pri	nin naturni	a il il il i data i pe	والغ يجالبان به والعصو	किल्ला से सिंह के	कि पि जिल्हा, जिल्हि कि
во дв	anundula rateit.	Alar Mit Halart	t han haat bild	tablik denta di	tilka tari Jali	li, ur seidite dit	Region Landing	a kali litaka , aka	a included billing
HED OR WHAT	and the state of	a b hu ta t	J. B. D. H. D.	1. 1. 1.	n di dill	the surface of			41.4.4
-70 dBm		1.		· · · ·		· · · ·			· · · · · ·
-70 ubm									
CF 2.441 G	Hz			8000) pts				1.0 ms/
					R	e ady		4/4	10:32:45
Date: 9.MAR.	.2022 10:3	8:45							
Spectrum									_
Ref Level			👄 RBW	500 kHz					
🔵 Att	20.00 dBm 30 dB (SWT 3.3	● RBW 2 s ● VBW						
SGL TRG: VII	20.00 dBm 30 dB (SWT 3.:							
🔵 Att	20.00 dBm 30 dB (SWT 3.:							
SGL TRG: VII	20.00 dBm 30 dB (swt 3.:							
SGL TRG: VII	20.00 dBm 30 dB (● SWT 3.:							
● Att SGL TRG:VII ● 1Pk Cirw	20.00 dBm 30 dB (SWT 3.							
● Att SGL TRG:VII ● 1Pk Cirw	20.00 dBm 30 dB (SWT 3.							
Att SGL TRG:VII 10 dBm	20.00 dBm 30 dB (• SWT 3.:							♥
Att SGL TRG:VII 10 dBm	20.00 dBm 30 dB (• SWT 3.3							
Att SGL TRG: VII PIPk Cirw 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB (● SWT 3.							
Att SGL TRG: VII SGL TRG: VII 1Pk Clrw 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB • D								
Att SGL TRG: VII SGL TRG: VII 1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm T	20.00 dBm 30 dB (
Att SGL TRG: VII SGL TRG: VII 1Pk Clrw 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB • D								
● Att SGL TRG: VII ● 1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB • D								
Att SGL TRG: VII SGL TRG: VII 1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm T	20.00 dBm 30 dB • D								
● Att SGL TRG: VII ● 1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB • D								
● Att SGL TRG: VII ● 1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB • D								
● Att SGL TRG: VII ● IPk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB • D								
● Att SGL TRG: VII ● 1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB • D								
● Att SGL TRG: VII ● IPk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB • D								
● Att SGL TRG:VII ● 1Pk Cirw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm	20.00 dBm 30 dB • D								
● Att SGL TRG:VII ● 1Pk Cirw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm	20.00 dBm 30 dB D								16.0 ms/

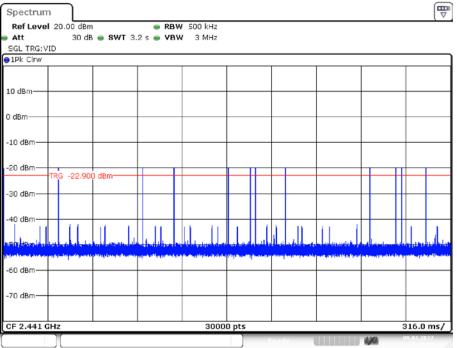
DH1_Ant1_Hop

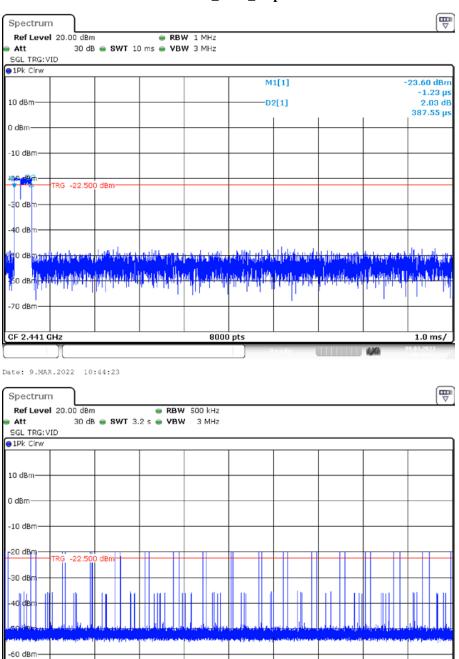

Date: 9.MAR.2022 10:38:50

4,40


GL TRG: VIE		b 🖶 awr 1	D ms 👄 VBN	W 3 MIHZ					
1Pk Clrw									
					м	1[1]		-	32.62 dBr
0 dBm					D:	2[1]			-1.23 μ 12.32 d
								. 1	.62770 m
dBm									
0 dBm									
	D2								
0 dBm	RG -22.80								
dBm									
0 dBm									
0 dBm		a that is the first sector of the sector of	High Head a co	an al an an bhair	n livizia in lar	all and the	and a state of the second	dami i kana	n Martin I
		ստեսին	in and a	بوالمنتقب الله	البالي الم	d han adda ad		and little mand	ad tala reliade
0 dBm		Like Late	hitte data	, du hai ha		t blicket to ol l			
0 dBm			· ·		1.1.1.	1			· · ·

DH3_Ant1_Hop


Date: 9.MAR.2022 10:39:20

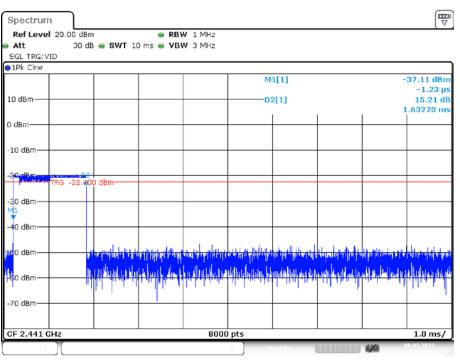

Date: 9.MAR.2022 10:39:25

DH5_Ant1_Hop

Date: 9.MAR.2022 10:40:00

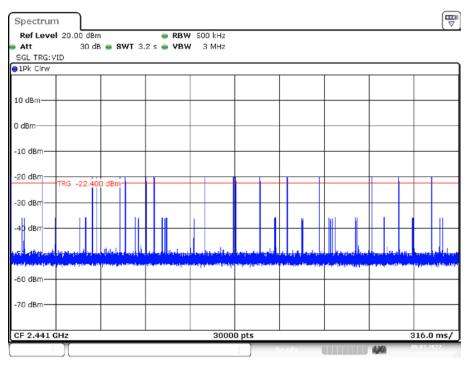
2DH1_Ant1_Hop

Date: 9.MAR.2022 10:44:28

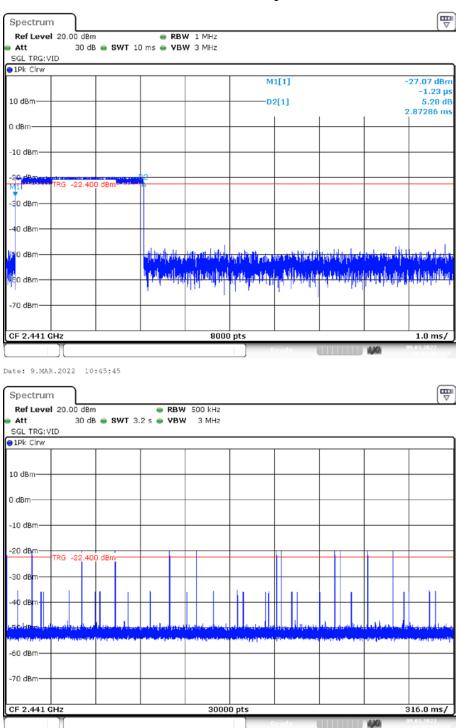

-70 dBm

CF 2.441 GHz

30000 pts


316.0 ms/

110



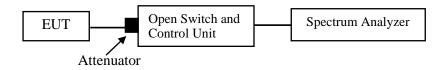
2DH3_Ant1_Hop

Date: 9.MAR.2022 10:45:08

Date: 9.MAR.2022 10:45:14

2DH5_Ant1_Hop

Date: 9.MAR.2022 10:45:51


FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

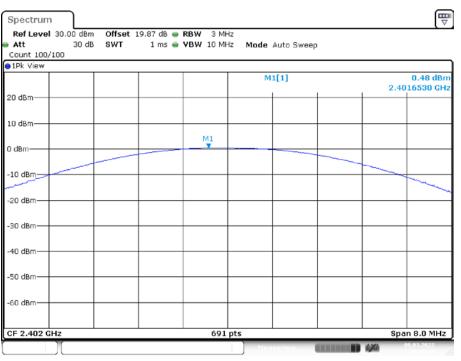
Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

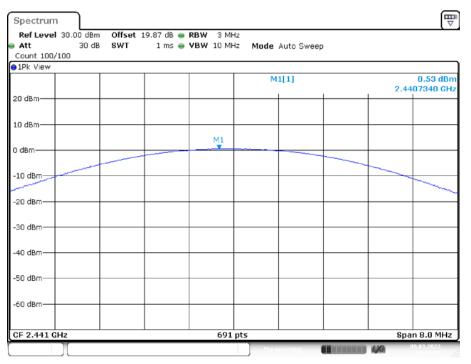
Temperature:	23 °C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

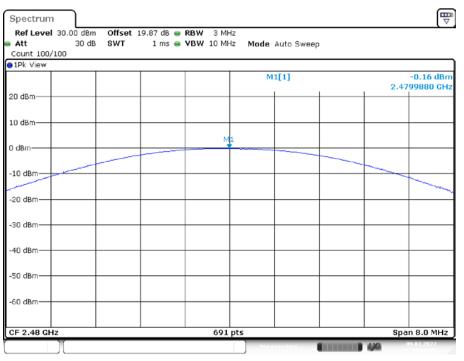

The testing was performed by Key. Pei on 2022-03-09

EUT operation mode: Transmitting

Test Result: Compliant.

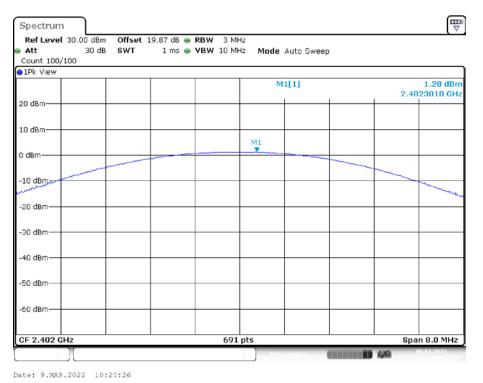
TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	2402	0.48	<=20.97	PASS
DH1		2441	0.53	<=20.97	PASS
		2480	-0.16	<=20.97	PASS
	Ant1	2402	1.28	<=20.97	PASS
2DH1		2441	1.26	<=20.97	PASS
		2480	0.58	<=20.97	PASS

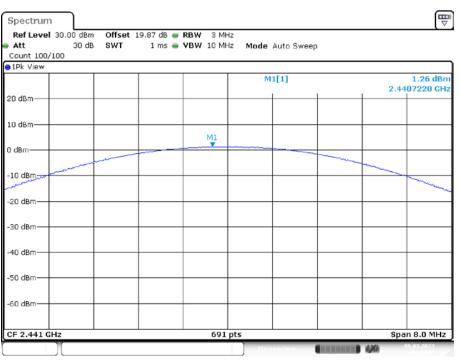

Please refer to the below plots:


DH1_Ant1_2402

Date: 9.MAR.2022 10:19:10

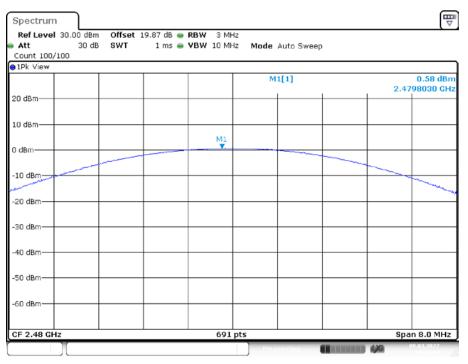
DH1_Ant1_2441


Date: 9.MAR.2022 10:19:36


DH1_Ant1_2480

Date: 9.MAR.2022 10:20:04

2DH1_Ant1_2402

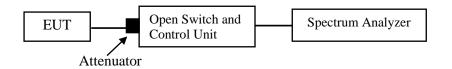

Version 11: 2021-11-09

2DH1_Ant1_2441

Date: 9.MAR.2022 10:20:47

2DH1_Ant1_2480

Date: 9.MAR.2022 10:21:07


FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

The testing was performed by Key Pei on 2022-03-09

EUT operation mode: Transmitting

Test Result: Compliant.

Please refer to the below plots:

DH1_Ant1_Low_2402

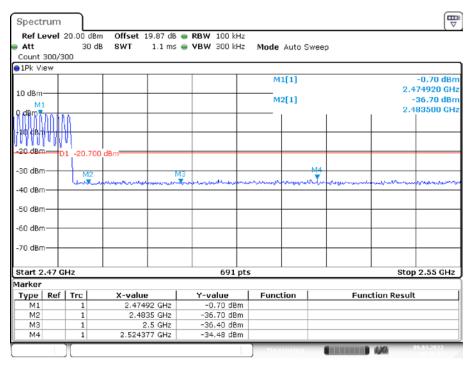
Spectrum						(₩
Ref Level			👄 RBW 100 kHz			
Att	30 (dB SWT 246.5µs	👄 VBW 300 kHz	Mode Auto F	FT	
Count 300/3	:00					
1Pk View						
				M1[1]		-0.01 dBn
						2.401880 GH
				M2[1]		- 43.47 d Bn
) dBm						2.400000 QH
I						
10 dBm						
e o dBm D	1 -20.01	LO dBm				M4
30 dBm						
						1 1 1 1
40 dBm		manundu	· Allow and Mallow			M3 Na
		an many hours	A	manun	and a second second	constantions a n
50 dBm —						
60 dBm —						
70 dBm						
Start 2.3 GH	IZ		691 pts	;		Stop 2.405 GHz
larker						
	Trc	X-value	Y-value	Function	Fu	nction Result
M1	1	2.40188 GHz	-0.01 dBm			
M2	1	2.4 GHz 2.39 GHz	-43.47 dBm -43.28 dBm			
MO	1 1	2.39 GHZ				
M3 M4	1	2.399065 GHz	-29.68 dBm			

Date: 9.MAR.2022 10:24:36

DH1_Ant1_ High_2480

Spectrum						Ē	
Ref Level Att Count 300/3	30		 RBW 100 kHz VBW 300 kHz 	Mode Auto S	Sweep	(.	
1Pk View							
				M1[1]	-0.72 dBn 2.479900 GH		
10 dBm	м1			M2[1]		-36.64 dBr	
) dBm —	7				1	2.483500 GH	
10 dBm			_				
20.dBm-	01 -20.7	20 dBm					
30 dBm 1	M2		3	M4			
40 dBm	- Walter	washing washing	hummetronisen	-	to control alla	man have the second	
50 dBm							
60 dBm							
-70 dBm							
Start 2.47 (GHz		691 pts	;		Stop 2.55 GHz	
larker							
	Trc	X-value	Y-value	Function	Fu	nction Result	
M1	1	2.4799 GHz	-0.72 dBm				
M2	1	2.4835 GHz	-36.64 dBm				
M3 M4	1	2.5 GHz 2.516145 GHz	-35.84 dBm -35.05 dBm				
	T			Measuring.		09.03.2022	

Date: 9.MAR.2022 10:27:04


Version 11: 2021-11-09

Spectrum	ſ							[₩	
Ref Level				RBW 100 kHz					
Att Count 300/3	-	DdB SWT	246.5 µs	VBW 300 kHz	Mode Auto F	FT			
1Pk View	300								
JIPK VIEW			-		M1[1]			-0.78 dBn	
					milil.		24	-0.76 UBI	
10 dBm —			+		M2[1]		-34.97 dBn		
					112[1]			00000 GH	
0 dBm						1	1	11	
-10 dBm									
10 dbiii								I M	
20 dBm	01 -20.	780 dBm						Į ľ	
ľ	-20.								
-30 dBm								M2	
				M 4			мз	1 M -	
AR PER m		mond	unprompte	mangin	Manuna	allynenne		whill	
50 dBm					·				
60 dBm							_		
-70 dBm									
Start 2.3 G	Hz			691 pt	5		Stop	2.405 GHz	
larker									
Type Ref	Trc	X-valu	ie I	Y-value	Function	Eu	nction Result		
M1	1		477 GHz	-0.78 dBm	. unotion				
M2	1		2.4 GHz	-34.97 dBm					
MЗ	1	2	2.39 GHz	-42.21 dBm					
M4	1	2.341	543 GHz	-38.77 dBm					
	1			1		COLUMN 1	IB 4440	19.03.2022	

DH1_Ant1_Low_Hop_2402

Date: 9.MAR.2022 10:36:52

DH1_Ant1_High_Hop_2480

Date: 9.MAR.2022 10:40:44

Version 11: 2021-11-09

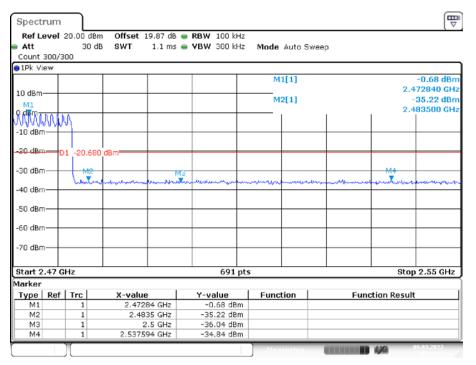
Spectrum									
Ref Level									
Att 🗧	30	dB SWT 246.	5 µs 👄 ۷	3W 300 kH	z Mode	Auto F	FT		
Count 300/3	00								
⊜1Pk View									
					IV.	11[1]			-0.02 dBm
10 dBm									101880 GH
					M	2[1]			- 43.08 d Bn
0 dBm								2.4	100000 <mark>G</mark> Ĥz
I									1 1
-10 dBm						-			
-20 dBm D	1 -20.03	20 dBm							
-30 dBm									M4
-30 abm									
A9 dBR								MB	No d
Met mark work	mun	1 Mar men mar of	mon	mont sur	man	wan	whatter	Marina	yalam 🕶 u
-50 dBm									
I									
-60 dBm									
I									
-70 dBm						-			
I									
Start 2.3 GH	z			691 p	ots			Stop	2.405 GHz
Marker									
Type Ref	Trc	X-value	1	'-value	Fund	tion	Fu	nction Result	t
M1	1	2.40188 0	Hz	-0.02 dBn	n				
M2	1	2.4 0		-43.08 dBn					
M3	1	2.39 0		-43.84 dBn					
M4	1	2.399217 0	Hz	-31.77 dBn	n				
					Me	suring.		B 436	09.03.2022

2DH1_Ant1_Low_2402

Date: 9.MAR.2022 10:30:07

2DH1_Ant1_ High_2480

Refle	vol	20.00 dB	m Offset	19.87 de	RBW 100 kHz				(,
Att	VGI 2	30 0			VBW 300 kHz	Mode Auto S	Sween		
Count	300/30			1.1 11.5		Mode Auto	oweeh		
1Pk Vi									
						M1[1]			-1.07 dBn
						witted.		2	479900 GH
10 dBm-	-					M2[1]		-	-37.16 dBn
) dBm—	N	11						2	483500 GH
J aBm—		λ							1
10 dBm		4							
20 dBm		1-21.07	0 dBm						_
30 dBm		M2		м				M4	
Jun		hurren	entronentre	menning	in momentane	markenbard	mound	unphorman	and the second second
40 dBm									
50 dBm									
So abii									
60 dBm	+			<u> </u>					
-70 dBm	+								
Start 2	.47 GI	Ηz			691 pt	5		Sto	p 2.55 GHz
1arker					•				•
Type	Ref	Trc	X-value	e	Y-value	Function	l F	unction Resu	lt
M1		1		99 GHz	-1.07 dBm				
M2		1	2.48	35 GHz	-37.16 dBm				
MЗ		1		2.5 GHz	-37.90 dBm				
M4		1	2.5363	19 GHz	-34.48 dBm				


Date: 9.MAR.2022 10:32:25

Spectrum							[₩
Ref Level			RBW 100 kHz				
Att	30	dB SWT 246.5 µs	👄 VBW 300 kHz	Mode Auto i	FFT		
Count 300/3	300						
1Pk View							
I				M1[1]		-0.77 2.403860	
10 dBm —				M2[1]		-34.12	
				M2[1]		2.40000	
0 dBm					1	2.40000	
-10 dBm							- 14
10 ubin							
20 dBm	01 -20.7	70 dBm					
	/1 -20.7						
-30 dBm						- M	2
			M4			M3 I	17
Al dBm	mayno	mounterman	Made market mark	mellingua	wynunge	march to all and the second sold	
50 dBm							
60 dBm							
-70 dBm							
I							
Start 2.3 G	17		691 pts			Stop 2.405	GHz
1arker						0.00	
	Trc	X-value	Y-value	Function	Eur	nction Result	
M1	1	2.40386 GHz	-0.77 dBm	, anotion	14	in the suit	
M2	1	2.4 GHz	-34.12 dBm				
MЗ	1	2.39 GHz	-41.67 dBm				
M4	1	2.350978 GHz	-39.45 dBm				
	11					IB AMA 09.03.202	22

2DH1_Ant1_Low_Hop_2402

Date: 9.MAR.2022 10:42:01

2DH1_Ant1_High_Hop_2480

Date: 9.MAR.2022 10:46:57

***** END OF REPORT *****

Version 11: 2021-11-09