

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC164766 Page: 1 of 25

FCC Radio Test Report FCC ID: 2AS7M-M2

Original Grant

Report No.	÷	TB-FCC164766
Applicant	:	Vama Product Innovation Inc.
Equipment Under Test	(E	UT)
EUT Name	:	Dock Me Mini
Model No.	:	M2
Serial Model No.	3	
Brand Name	:	DOCK ME
Receipt Date	•	2019-03-29
Test Date	:	2019-03-29 to 2019-06-12
Issue Date	÷	2019-06-12
Standards	:	FCC Part 15, Subpart C(15.209)
Test Method	1	ANSI C63.10: 2013
Conclusions	÷	PASS

In the configuration tested, the EUT complied with the standards specified above,

Jason Xu

Ivan Su

Ray Lai

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

: Jason xu : WRW SU : fugli.

TB-RF-074-1.0

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	6
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	9
4.	CONDUCTED EMISSION TEST	10
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	11
5.	RADIATED EMISSION TEST	12
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	14
	5.4 EUT Operating Condition	14
	5.5 Test Data	14
6.	BANDWIDTH MEASUREMENT	15
	6.1 Test Standard and Limit	
	6.2 Test Setup	15
	6.3 Test Procedure	15
	6.4 EUT Operating Condition	
	6.5 Test Data	15
7.	ANTENNA REQUIREMENT	
	7.1 Standard Requirement	
	7.2 Antenna Connected Construction	
	7.3 Result	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	
ATT	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C BANDWIDTH MEASUREMENT DATA	

Report No.: TB-FCC164766 Page: 3 of 25

Revision History

Description Issue	Version	Report No.
Initial issue of report 2019	Rev.01	TB-FCC164766
	101	and!
El and El and	TOBE OF	TEL C
	- DD2	and set
TOP TOP		TOP
TOBI FOUL	CUP -	COLUMN TO THE
THE FORM		A DUD
MOBIL MODIL	LUC OB	Dub an
	TI V	
TOD TO THE	6101	
	3 4	3

1. General Information about EUT

1.1 Client Information

Applicant		Vama Product Innovation Inc.	
Address	:	2680 Matheson Blvd East Suite 102 Mississauga ON L4W 0A5 Canada	
Manufacturer	3	REGENT INTERNATIONAL CO., LTD	
Address	÷	Floor 3, Block A, NO.1 Furong road, Gushu, Xi'xiang street, Bao'an, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Dock Me Mini		
Models No.	:	M2		
Model Difference	:	N/A		
		Operation Frequency:	120KHz-300KHz	
Product Description	-	Modulation Type:	MSK	
Description		Antenna:	Coil Antenna	
Power Supply	-	AC/DC Adapter Model:BSG-60W1305000 Input:100-240V AC 50/60Hz 1.5A Output:13V-5A		
Power Supply	:	Wireless Charger Output: 5V/1A, 9V/ 1.2A USB Output: (5.0V-2.1A ,9V-2A ,12.0V-1.5A) *2 TYPE-C Output: (5.0V-2.1A ,9V-2A ,12.0V-1.5A) *1		
Charging Distance		≪8mm		
Software Version		N/A		
Hardware Version	:	N/A		
Connecting I/O Port(S)	:	Please refer to the User's Manual		

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Low Frequency(KHz)	Middle Frequency(KHz)	High Frequency(KHz)	
120	210	300	
Note: Operation Frequency=120+1*k, k∈ (0,1,2,3,178)			

1.3 Block Diagram Showing the Configuration of System Tested Charging + TX Mode

EUT		
Load1	Load2	

1.4 Description of Support Units

Name	Model	S/N	Manufacturer	Used " √ "	
Load1	5W			\checkmark	
Load2	10W			\checkmark	
Input: AC110-240V,50/60Hz, 1A Output: DC 5V, 1A. DC 9V, 1.2A.					

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Pretest Mode				
Final Test Mode Description				
Mode 1	TX Mode(Low CH)			
Mode 2 TX Mode(Middle CH)				
Mode 3	TX Mode(High CH)			
Mode 4	Keeping TX Mode(5V/1A+9V/1.2A)			
For Conducted Test				
Final Test Mode Description				
Mode 4	Keeping TX Mode(5V/1A+9V/1.2A)			

Report No.: TB-FCC164766 Page: 6 of 25

For Radiated Test		
Final Test Mode Description		
Mode 4 Keeping TX Mode(5V/1A+9V/1.2A)		
For Bandwidth Test		
Final Test Mode Description		
Mode 1	TX Mode(144KHz)	

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

- TX Mode: Transmitting mode.
- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	N/A	
Frequency	120-300KHz	

TOBY

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Report No.: TB-FCC164766 Page: 8 of 25

2. Test Summary

Standard Section	Test Item	Judgment	Remark
15.203	Antenna Requirement	PASS	N/A
15.207(a)	Conducted Emission	PASS	N/A
15.209(a)(f)	Radiated emissions	PASS	N/A
15.215	Bandwidth	PASS	N/A

3. Test Equipment

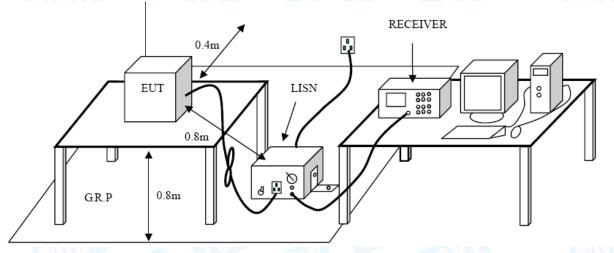
Conducted Emiss	ion Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019	
RF Switching Unit	Compliance Direction Systems Inc	Direction Systems RSU-A4 34403		Jul. 18, 2018	Jul. 17, 2019	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019	
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019	
Radiation Emissio	on Test	-	-	-	-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019	
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020	
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020	
Horn Antenna ETS-LINDGREN		3117	00143209	Mar.03, 2019	Mar. 02, 2020	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 03, 2018	Jul. 02, 2019	
Pre-amplifier	re-amplifier Sonoma		185903	Mar.04, 2019	Mar. 03, 2020	
Pre-amplifier HP		8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020	
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	
Antenna Conducto	ed Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019	
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019	
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019	
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019	
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019	
	DARE !! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 15, 2018	Sep. 14, 2019	
DE Dower Sorrer	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 15, 2018	Sep. 14, 2019	
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 15, 2018	Sep. 14, 2019	
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 15, 2018	Sep. 14, 2019	

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Conducted Emission Test Limit

Eroquonov	Maximum RF Line Voltage (dBµV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.209(a)(f)

5.1.2 Test Limit

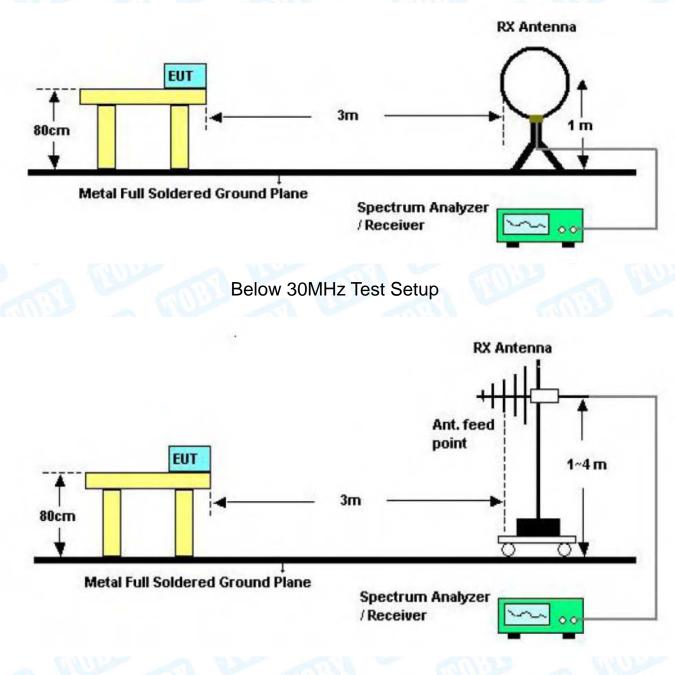
Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3 10 2

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:


(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Report No.: TB-FCC164766 Page: 13 of 25

5.2 Test Setup

Below 1000MHz Test Setup

Report No.: TB-FCC164766 Page: 14 of 25

5.3 Test Procedure

- (1) Measurements at frequency 9KHz~30MHz and Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) 9KHz~30MHz the test antenna 1m away from the ground, Both 0° and 90° antenna are set to make measurement.

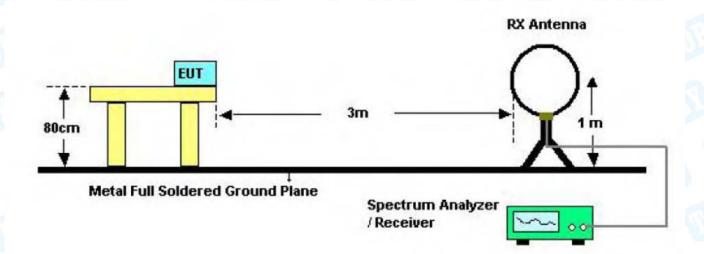
Below 1GHz the test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For 9kHz to 150kHz, Set the spectrum analyzer as: RBW= 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple. For 150kHz to 30MHz, Set the spectrum analyzer as: RBW= 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data


Please refer to the Attachment B.

6. Bandwidth Measurement

- 6.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.215

6.2 Test Setup

6.3 Test Procedure

1. The transmitter shall be operated at its maximum carrier power measured under normal test conditions;

2. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

3. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

7. Antenna Requirement

7.1 Standard Requirement

7.1.1 Standard

FCC Part 15.203

7.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Antenna Connected Construction

The antenna is Coil Antenna, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

7.3 Result

Attachment A-- Conducted Emission Test Data

TOBY

Temperature:	24 ℃	Relative Humi	dity: 55%			
Test Voltage:	AC 120V/60 Hz		dillo i			
Terminal:	Line	TUP T				
Test Mode:	Mode 4					
Remark:	Only worse case is reported					
80.0 dBuV						
			QP: AVG:			
~			Atu			
x						
Mux v						
*muxmm		In man				
- LA L [A]	MANDARA DALAMA AND AND AND AND AND AND AND AND AND AN	MMAADAM	A 111 A			
30 (, , , , , , , , , , , , , , , , , ,		n na shina ka ka ka ka sa	Water and the state of the second state of the			
- 7 93830080		al Al Martin A Al A				
	<u> </u>		L			
. ለ ո կ փ կ կ	IN COMPANY OF COMPANY					
. 4 . 4 4 4 4						
. 4 n fi ú á h			. In the second s			
. 4 n ll û k k			. In the second s			
. A n ll A N						
-20		(MHz) 5	30.000			

Mk. Freq.	Level	Factor	Measure- ment	Limit	Over	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.1582	35.44	9.58	45.02	65.55	-20.53	QP
0.1582	25.97	9.58	35.55	55.55	-20.00	AVG
0.2180	28.02	9.58	37.60	62.89	-25.29	QP
0.2180	2.69	9.58	12.27	52. 8 9	-40.62	AVG
0.3300	33.39	9.59	42.98	59.45	-16.47	QP
0.3300	30.79	9.59	40.38	49.45	-9.07	AVG
0.4980	37.67	9.60	47.27	56.03	-8.76	QP
* 0.4980	35.49	9.60	45.09	46.03	-0.94	AVG
0.9700	32.29	9.60	41.89	56.00	-14.11	QP
0.9700	29.60	9.60	39.20	46.00	-6.80	AVG
1.1820	31.78	9.60	41.38	56.00	-14.62	QP
1.1820	28.39	9.60	37.99	46.00	-8.01	AVG
	0.1582 0.1582 0.2180 0.2180 0.3300 0.3300 0.4980 0.4980 0.4980 0.9700 0.9700 1.1820	0.1582 35.44 0.1582 25.97 0.2180 28.02 0.2180 2.69 0.3300 33.39 0.3300 30.79 0.4980 37.67 0.9700 32.29 0.9700 29.60 1.1820 31.78	0.1582 35.44 9.58 0.1582 25.97 9.58 0.2180 28.02 9.58 0.2180 2.69 9.58 0.3300 33.39 9.59 0.3300 30.79 9.59 0.4980 37.67 9.60 0.9700 32.29 9.60 0.9700 29.60 9.60 1.1820 31.78 9.60	0.1582 35.44 9.58 45.02 0.1582 25.97 9.58 35.55 0.2180 28.02 9.58 37.60 0.2180 2.69 9.58 12.27 0.3300 33.39 9.59 42.98 0.3300 30.79 9.59 40.38 0.4980 37.67 9.60 47.27 0.4980 35.49 9.60 45.09 0.9700 32.29 9.60 41.89 0.9700 29.60 9.60 41.38	0.1582 35.44 9.58 45.02 65.55 0.1582 25.97 9.58 35.55 55.55 0.2180 28.02 9.58 37.60 62.89 0.2180 2.69 9.58 12.27 52.89 0.3300 33.39 9.59 42.98 59.45 0.3300 30.79 9.59 40.38 49.45 0.4980 37.67 9.60 47.27 56.03 * 0.4980 35.49 9.60 45.09 46.03 0.9700 32.29 9.60 41.89 56.00 0.9700 29.60 9.60 41.38 56.00	0.1582 35.44 9.58 45.02 65.55 -20.53 0.1582 25.97 9.58 35.55 55.55 -20.00 0.2180 28.02 9.58 37.60 62.89 -25.29 0.2180 2.69 9.58 12.27 52.89 -40.62 0.3300 33.39 9.59 42.98 59.45 -16.47 0.3300 30.79 9.59 40.38 49.45 -9.07 0.4980 37.67 9.60 47.27 56.03 -8.76 0.4980 35.49 9.60 45.09 46.03 -0.94 0.9700 32.29 9.60 41.89 56.00 -14.11 0.9700 29.60 9.60 39.20 46.00 -6.80 1.1820 31.78 9.60 41.38 56.00 -14.62

Terminal:	AC 120V/60 Hz Neutral Mode 4 Only worse case is reported	d	QP: AVG:
Test Mode:IRemark:(Mode 4	d	
Remark:		d	
	Only worse case is reported	d	
80.0 dBuV			
-20	0.5 (MHz)	<u>м</u> М М М М М М М М М М М М М М М М М М М	20.000

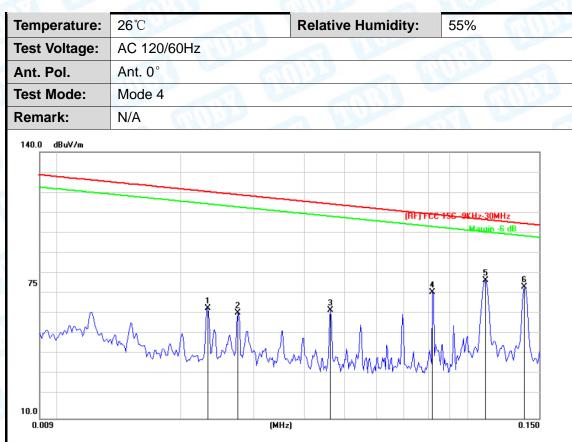
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1499	5.03	9.64	14.67	66.00	-51.33	QP
2		0.1499	1.97	9.64	11.61	56.00	-44.39	AVG
3		0.1819	30.27	9.65	39.92	64.39	-24.47	QP
4		0.1819	7.23	9.65	16.88	54.39	-37.51	AVG
5		0.4980	38.45	9.58	48.03	56.03	-8.00	QP
6	*	0.4980	36.16	9.58	45.74	46.03	-0.29	AVG
7		0.7580	32.97	9.59	42.56	56.00	-13.44	QP
8		0.7580	30.24	9.59	39.83	46.00	-6.17	AVG
9		0.9540	23.75	9.59	33.34	56.00	-22.66	QP
10		0.9540	14.98	9.59	24.57	46.00	-21.43	AVG
11		1.4180	32.20	9.60	41.80	56.00	-14.20	QP
12		1.4180	28.46	9.60	38.06	46.00	-7.94	AVG

Attachment B-- Radiated Emission Test Data

30MHz~1GHz

		. 6.411					
Temperatur	re: 26℃		65	Relative Humi	idity:	55%	~
Test Voltage	e: AC 12	20/60Hz		i and		611	1:3.2
Ant. Pol.	Horiz	ontal		MUR			
Test Mode:	Mode	4			ar li b		a V
Remark:	Only	worse case i	s reported				
80.0 dBuW/m			1 2 × ~ ×	× ×	(RF)FCC 1)	5C 3M Radiation Margin -6	JB C
30.000 40	50 60 7	0 80	(MHz)	300	400 5	00 600 700	1000.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m		Detector
	148.4410	55.86	-21.60	34.26	43.50	-9.24	QP
2	183.2005	55.37	-20.05	35.32	43.50	-8.18	QP
3	213.7634	53.39	-19.19	34.20	43.50	-9.30	QP
4 !	235.8164	59.07	-17.97	41.10	46.00	-4.90	QP
5 *	295.1469	59.44	-16.30	43.14	46.00	-2.86	QP
6	396.2415	41.82	-12.45	29.37	46.00	-16.63	QP

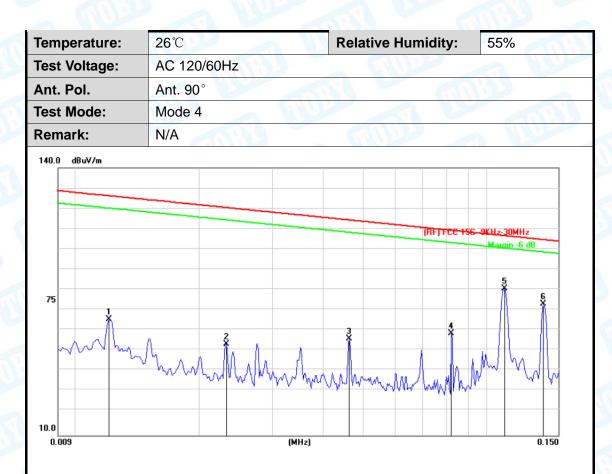
*:Maximum data x:Over limit !:over margin


Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz	THU P	
Ant. Pol.	Vertical		
Test Mode:	Mode 4		
Remark:	Only worse case is rep	orted	2 100
80.0 dBuV/m			
30	3 4 5 6 7 7 7 7		C 15C 3M Radiation Margin -6 dB

No	Mk.	Freq.	Reading Le∨el	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	41.1320	54.18	-19.67	34.51	40.00	-5.49	QP
2		51.4807	55.63	-23.41	32.22	40.00	-7.78	QP
3		63.0916	57.32	-24.09	33.23	40.00	-6.77	QP
4		91.4949	50.80	-22.00	28.80	43.50	-14.70	QP
5		113.7143	49.08	-22.38	26.70	43.50	-16.80	QP
6		139.3613	50.41	-22.48	27.93	43.50	-15.57	QP

*:Maximum data x:Over limit !:over margin

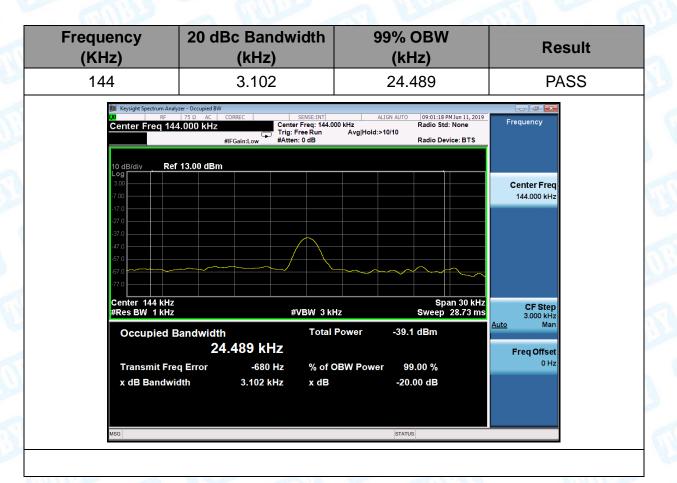
9KMz-30MHz


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		0.0232	74.02	-10.10	63.92	120.63	-56.71	QP
2		0.0274	71.48	-10.07	61.41	119.18	-57.77	QP
3		0.0463	72.89	-10.06	62.83	114.60	-51.77	QP
4		0.0822	81.72	-10.07	71.65	109.59	-37.94	QP
5	*	0.1107	81.62	-4.33	77.29	106.99	-29.70	QP
6		0.1379	79.54	-5.36	74.18	105.07	-30.89	QP

Temperature:	26 °C	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz	AUDA	
Ant. Pol.	Ant. 0°		
Test Mode:	Mode 4		
Remark:	N/A	MID P	A West
120.0 dBuV/m			
x x		(05) 50	C 15C 9KHz-30MHz
X	3		Margin -6 dB
55	V		Margin -6 dB
55	V		Margin -6 dB
55 / / / /	MWW/WMMMM		Margin -6 dB

No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		0.2197	75.09	-7.77	67.32	101.00	-33.68	QP
2		0.3286	85.85	-8.54	77.31	97.49	-20.18	QP
3		0.4105	72.08	-9.09	62.99	95.55	-32.56	QP
4	*	0.5464	78.47	-9.77	68.70	73. 0 4	-4.34	QP
5		0.7669	68.36	-10.09	58.27	70.05	-11.78	QP
6		0.9891	62.02	-10.26	51.76	67.80	-16.04	QP

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	0.0120	76.79	-10.34	66.45	126.39	-59.94	QP
2	0.0232	64.59	-10.10	54.49	120.63	-66.14	QP
3	0.0463	67.03	-10.06	56.97	114.60	-57.63	QP
4	0.0822	69.77	-10.07	59.70	109.59	-49.89	QP
5 *	0.1107	85.81	-4.33	81.48	106.99	-25.51	QP
6	0.1379	79.08	-5.36	73.72	105.07	-31.35	QP


Temperature:	26 ℃	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz	AUL -	
Ant. Pol.	Ant. 90°		133
Fest Mode:	Mode 4		
Remark:	N/A	The second se	
120.0 dBuV/m			
55			CC 15C 9KHz-30MHz Margin -6 dB
55 Amm			Margin -6 dB

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	0.1615	63.71	-6.22	57.49	103.69	-46.20	QP
2	0.3286	78.59	-8.54	70.05	97.49	-27.44	QP
3	0.4105	64.81	-9.09	55.72	95.55	-39.83	QP
4 *	0.5464	72.11	-9.77	62.34	73. 0 4	-10.70	QP
5	0.7669	61.59	-10.09	51.50	70.05	-18.55	QP
6	0.9891	55.95	-10.26	45.69	67.80	-22.11	QP

Report No.: TB-FCC164766 Page: 25 of 25

Attachment C-- Bandwidth Measurement Data

-----END OF REPORT-----