

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC164743

1 of 25 Page:

FCC Radio Test Report FCC ID: 2AS7M-M1

Original Grant

Report No. TB-FCC164743

Vama Product Innovation Inc. **Applicant**

Equipment Under Test (EUT)

EUT Name Dock Me Charging Tower

Model No. M1

Serial Model No. N/A

DOCK ME **Brand Name**

Receipt Date 2019-03-14

2019-03-15 to 2019-04-29 **Test Date**

Issue Date 2019-05-08

FCC Part 15, Subpart C(15.209) **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer

: LVAN SU **Engineer Supervisor**

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

TOBY

Report No.: TB-FCC164743

Page: 2 of 25

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	5
	1.6 Description of Test Software Setting	6
	1.7 Measurement Uncertainty	
	1.8 Test Facility	7
2.	TEST SUMMARY	8
3.	TEST EQUIPMENT	9
4.	CONDUCTED EMISSION TEST	10
	4.1 Test Standard and Limit	10
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	11
	4.5 Test Data	11
5.	RADIATED EMISSION TEST	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	13
	5.3 Test Procedure	
	5.4 EUT Operating Condition	14
	5.5 Test Data	14
6.	BANDWIDTH MEASUREMENT	15
	6.1 Test Standard and Limit	15
	6.2 Test Setup	15
	6.3 Test Procedure	15
	6.4 EUT Operating Condition	15
	6.5 Test Data	15
7.	ANTENNA REQUIREMENT	16
	7.1 Standard Requirement	16
	7.2 Antenna Connected Construction	16
	7.3 Result	
АТТ	FACHMENT A CONDUCTED EMISSION TEST DATA	
	FACHMENT B RADIATED EMISSION TEST DATA	
	FACHMENT C BANDWIDTH MEASUREMENT DATA	

Page: 3 of 25

Revision History

Report No.	Version	Description	Issued Date
TB-FCC164743	Rev.01	Initial issue of report	2019-05-08
WOO!	10	The state of the s	1000
	TO ITS		
TO THE	CO Proper		and a
D. T.	The same	(OB)	000
The same	3	031	TO THE REAL PROPERTY.
	((03)		
MOR			1 103
000		A COUNTY OF	THE STATE OF THE S
TO TO		WUBA WORK	
		(TU)))	
China Carlo	33 4	TODAY TODAY	THE STATE OF

Page: 4 of 25

1. General Information about EUT

1.1 Client Information

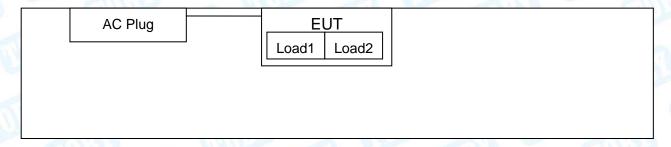
Applicant		Vama Product Innovation Inc.
Address : 2680 Matheson Blvd East Suite 102 Mississauga C		2680 Matheson Blvd East Suite 102 Mississauga ON L4W 0A5 Canada
Manufacturer		REGENT INTERNATIONAL CO., LTD
Address		Floor 3, Block A, NO.1 Furong road, Gushu, Xi'xiang street, Bao'an, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Dock Me Charging Tower			
Models No.	:	M1			
Model Difference	:	N/A			
		Operation Frequency:	110KHz-240KHz		
Product Description		Modulation Type:	MSK		
Description	13	Antenna:	Coil Antenna		
Power Supply		: Input: AC110-240V,50/60Hz, 1A Wireless Charger Output: 5V/1A, 9V/ 1.2A USB Output: (5.0V-2.1A, 9V-2A, 12.0V-1.5A) *4 TYPE-C Output: (5.0V-2.1A, 9V-2A, 12.0V-1.5A) *2			
Charging Distance	 :	≤8mm	≤8mm		
Software Version		N/A	N/A		
Hardware Version	•	N/A			
Connecting I/O Port(S)		Please refer to the User's Manual			

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.


(2) Channel List:

Low Frequency(KHz)	Middle Frequency(KHz)	High Frequency(KHz)			
110	175	240			
Note: Operation Frequency=110+1*k, k∈ (0,1,2,3,130)					

Page: 5 of 25

1.3 Block Diagram Showing the Configuration of System Tested Charging + TX Mode

1.4 Description of Support Units

Name	Model	S/N	Manufacturer	Used "√"				
Load1	5W	V		1				
Load2	10W	mn44	million.	√				
Input: AC110-240V,50/60Hz, 1A Output: DC 5V, 1A. DC 9V, 1.2A.								

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Pretest Mode							
Final Test Mode Description							
Mode 1 TX Mode(Low CH)							
Mode 2 TX Mode(Middle CH)							
Mode 3 TX Mode(High CH)							
Mode 4 Keeping TX Mode(5V/1A+9V/1.2A)							
Fo	For Conducted Test						
Final Test Mode Description							
Mode 4	Mode 4 Keeping TX Mode(5V/1A+9V/1.2A)						

Page: 6 of 25

For Radiated Test						
Final Test Mode Description						
Mode 4 Keeping TX Mode(5V/1A+9V/1.2A)						
For	For Bandwidth Test					
Final Test Mode Description						
Mode 1 TX Mode(130KHz)						

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	N/A	
Frequency	110-240KHz	

Page: 7 of 25

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})	
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB	
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB	
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB	
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB	

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 25

2. Test Summary

FCC Part 15 Subpart C(15.209)								
Standard Section Test Item Judgment Remai								
15.203	Antenna Requirement	PASS	N/A					
15.207(a)	Conducted Emission	PASS	N/A					
15.209(a)(f)	Radiated emissions	PASS	N/A					
15.215	Bandwidth	PASS	N/A					

Page: 9 of 25

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 03, 2018	Jul. 02, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducto	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019
DE Davis C	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019

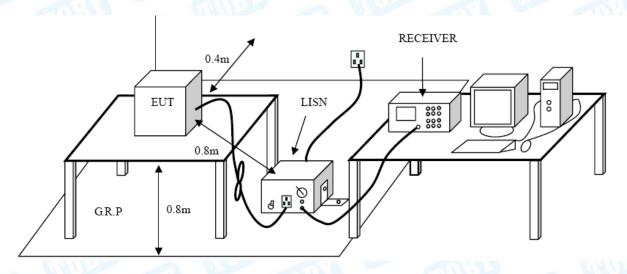
Page: 10 of 25

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

Franconov	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 11 of 25

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 12 of 25

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.209(a)(f)

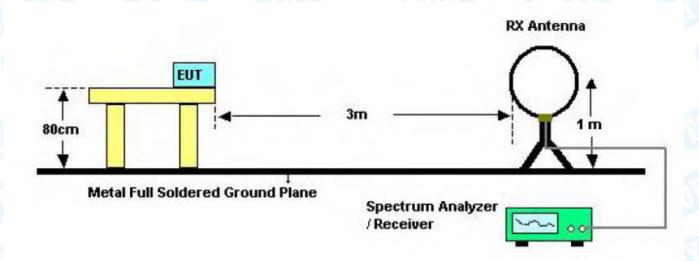
5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

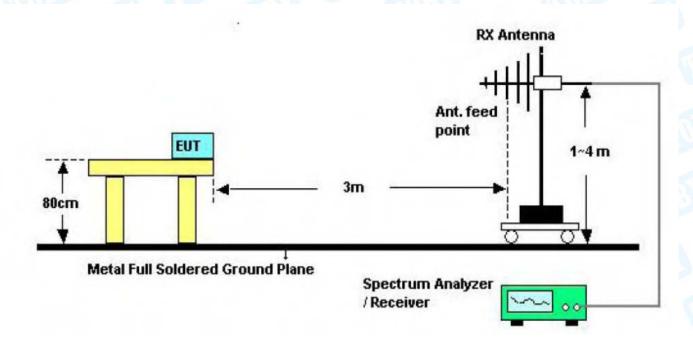
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3	m (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)



Page: 13 of 25

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 14 of 25

5.3 Test Procedure

(1) Measurements at frequency 9KHz~30MHz and Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The table was rotated 360 degrees to determine the position of the highest radiation.

- (2) 9KHz~30MHz the test antenna 1m away from the ground, Both 0° and 90° antenna are set to make measurement.
 - Below 1GHz the test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW= 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW= 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple

(8) For the actual test configuration, please see the test setup photo.

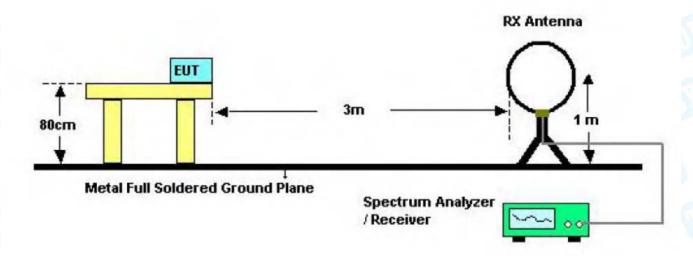
5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Please refer to the Attachment B.

Page: 15 of 25


6. Bandwidth Measurement

6.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.215

6.2 Test Setup

6.3 Test Procedure

- 1. The transmitter shall be operated at its maximum carrier power measured under normal test conditions;
- 2. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- 3. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 16 of 25

7. Antenna Requirement

7.1 Standard Requirement

7.1.1 Standard FCC Part 15.203

7.1.2 Requirement

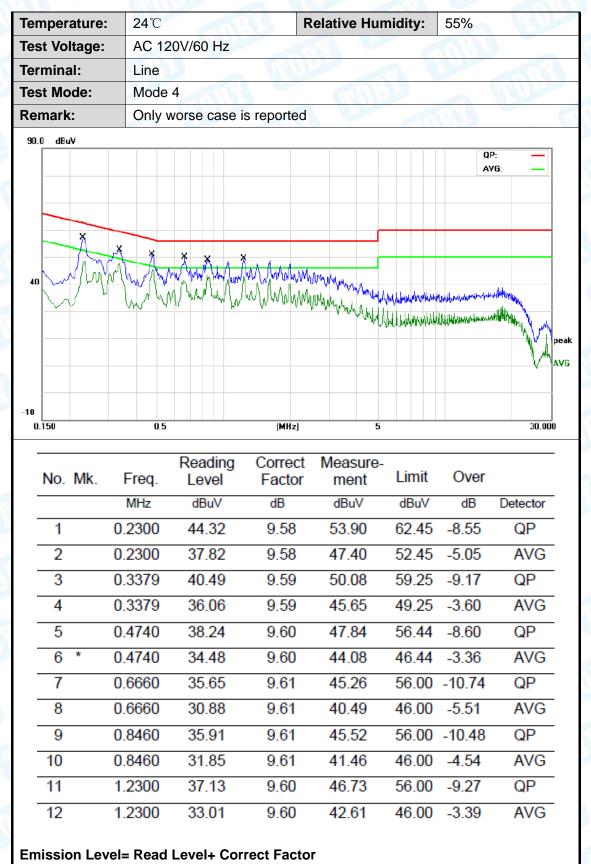
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Antenna Connected Construction

The antenna is Coil Antenna, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

7.3 Result

The EUT antenna is a Coil Antenna. It complies with the standard requirement.

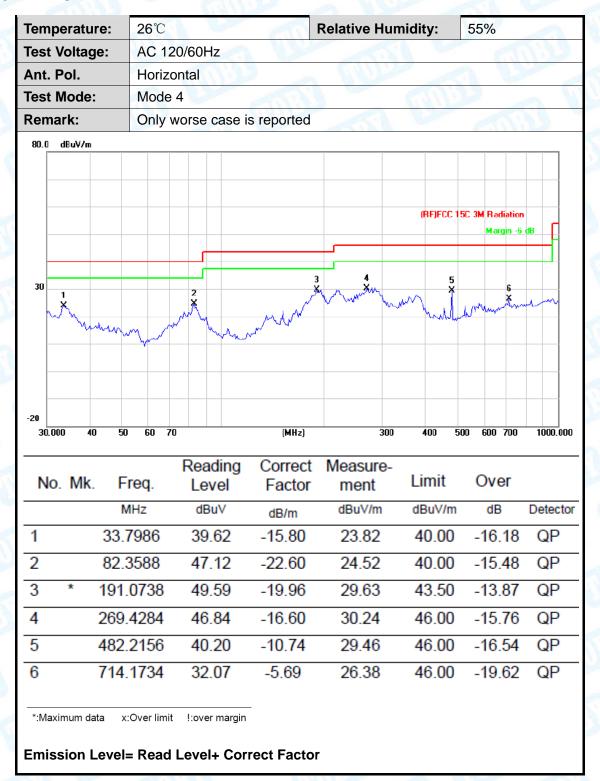

Antenna	Туре
⊠Permanent atta	ached antenna
☐Unique connec	ctor antenna
☐Professional in	stallation antenna

TOBY

Page: 17 of 25

Attachment A-- Conducted Emission Test Data

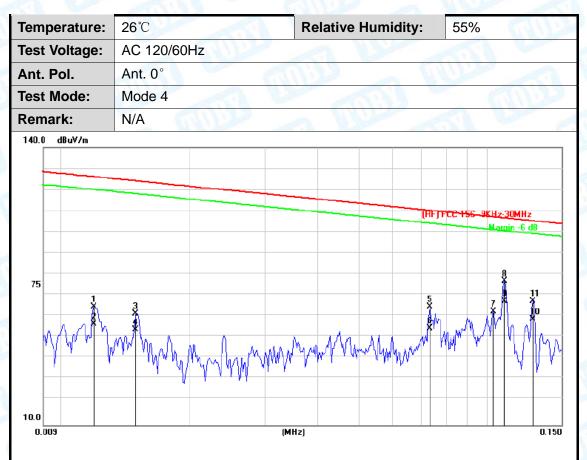
Page: 18 of 25


Temperature:	24 ℃		Relativ	e Humidity:	55%	
Test Voltage:	AC 120	V/60 Hz	_ 6	11103	-	Millian
Terminal:	Neutral	All lives	1000	GT.	1130	
Test Mode:	Mode 4	- W	Mr.	A V	100	Circum .
Remark:	Only wo	rse case is repo	orted		0 N	W.
90.0 dBuV	TAMA A		her had been been been been been been been bee		QP: AVG:	peak
0.150	0.5	(MI	lz)	5		30.000
No. Mk. F		eading Corre evel Fac		1 2 24	Over	
	MHz o	lBuV dB	dBuV	dBuV	dB	Detector
1 0.2	2340 4	4.57 9.6	2 54.19	62.30	-8.11	QP
2 0.2	2340 3	7.36 9.6	2 46.98	52.30	-5.32	AVG
3 0.3	3260 3	9.41 9.5	7 48.98	59.55	-10.57	QP
4 0.3	3260 3	5.21 9.5	7 44.78	49.55	-4.77	AVG
5 0.4	4780 3	9.22 9.5	8 48.80	56.37	-7.57	QP
6 * 0.4	4780 3	5.87 9.5	8 45.45	46.37	-2.92	AVG
7 0.0	6660 3	6.35 9.5	9 45.94	56.00	-10.06	QP
8 0.0	6660 3	1.67 9.5	9 41.26	46.00	-4.74	AVG
9 0.8	8620 3	7.28 9.5	9 46.87	56.00	-9.13	QP
10 0.8	8620 3	3.54 9.5	9 43.13	46.00	-3.87	AVG
11 1.3	2300 3	7.38 9.5	9 46.97	56.00	-9.03	QP
	2300 3	2.97 9.5		46.00	-3.44	AVG
Emission Level	i= Kead Le	vei+ Correct Fa	ictor			

Page: 19 of 25

Attachment B-- Radiated Emission Test Data

30MHz~1GHz


Page: 20 of 25

Temperature:	25℃	Re	elative Humi	dity: 5	55%		
Test Voltage:	AC 120/60Hz						
Ant. Pol.	Vertical			TIES	133		
Test Mode:	Mode 4	a WU		1 62			
Remark:	Only worse cas	se is reported	COLUMN TO SERVICE		2 MA	1 Barrier	
80.0 dBuV/m							
				(RF)FCC 15	C 3M Radiation	,	
					Margin -5	dB	
	2						
30	2			5 X		6	
Maria	, 1, 1 M	man Jana	1 MAN MANNING	m	MAN WANT THE	M.X.	
		~		,,,,,			
20							
30.000 40 50	0 60 70 80	(MHz)	300	400 50	0 600 700	1000.00	
	Readin	g Correct	Measure-				
No. Mk. F	req. Level	Factor	ment	Limit	Over		
	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto	
1 34.	.0365 47.55	-15.95	31.60	40.00	-8.40	QP	
	2207 56.01	-23.86	32.15	40.00	-7.85	QP	
	.9385 59.42		36.85	40.00	-3.15	QP	
4 136	5.4598 55.40	-21.42	33.98	43.50	-9.52	QP	
5 390	.7226 41.18	-12.41	28.77	46.00	-17.23	QP	
6 932	2.2715 29.06	-3.38	25.68	46.00	-20.32	QP	
		3.00					
*:Maximum data	x:Over limit !:over ma	rgin					
		· J ···					
	I= Read LeveI+ C						

Page: 21 of 25

9KMz-30MHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		0.0123	66.26	-10.33	55.93	126.08	-70.15	peak
2		0.0123	55.89	-10.33	45.56	106.08	-60.52	AVG
3		0.0151	64.33	-10.36	53.97	124.30	-70.33	peak
4		0.0151	53.61	-10.36	43.25	104.30	-61.05	AVG
5		0.0241	62.24	-10.09	52.15	120.23	-68.08	peak
6		0.0241	52.12	-10.09	42.03	100.23	-58.20	AVG
7		0.0331	72.53	-9.90	62.63	117.46	-54.83	peak
8		0.0331	61.68	-9.90	51.78	97.46	-45.68	AVG
9		0.0660	70.81	-10.06	60.75	111.46	-50.71	peak
10		0.0660	60.09	-10.06	50.03	91.46	-41.43	AVG
11	*	0.1491	80.30	-5.77	74.53	104.36	-29.83	peak
12		0.1491	69.40	-5.77	63.63	84.36	-20.73	AVG
Emis	sion L	.evel= Rea	d Level+ Cor	rect Facto	r			

22 of 25 Page:

Temperature	: 26 ℃	The state of	R	elative Humi	dity:	55%			
Test Voltage:	: AC 12	0/60Hz	33			- (1)	A REAL PROPERTY.		
Ant. Pol.	Ant. 0	0		111	GILL	1:30			
Test Mode:	Mode	Mode 4							
Remark:	N/A	N/A							
110.0 dBuV/m									
1 33 6 34 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z				(RF) FCC	: 15C 9KHz-30I Margin			
45	V MM		Mm,	Munterman	num	majorah			
-20 0.150	0.5		(MHz)	5			30.000		
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	0.1615	75.78	-6.22	69.56	103.66	-34.10	peak		
2	0.1615	65.18	-6.22	58.96	103.66	-44.70	AVG		
3	0.2151	78.01	-7.75	70.26	101.17	-30.91	peak		
4	0.2151	69.12	-7.75	61.37	101.17	-39.80	AVG		
5	0.2601	67.71	-8.09	59.62	99.51	-39.89	AVG		
6	0.2603	75.63	-8.09	67.54	99.51	-31.97	peak		
7	0.3251	76.57	-8.52	68.05	97.57	-29.52	peak		

Emission Level= Read Level+ Correct Factor

68.24

59.40

50.95

-8.52

-9.77

-10.33

59.72

49.63

40.62

97.57

72.94

64.53

-37.85

-23.31

-23.91

AVG

peak

peak

0.3251

0.5523

1.4333

9

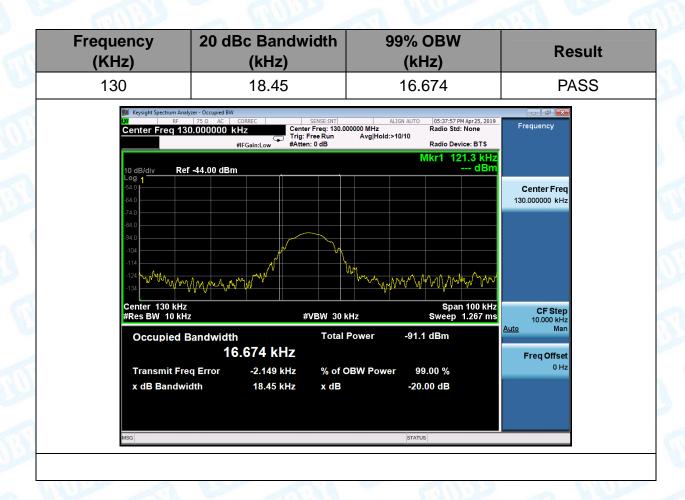
10

Page: 23 of 25

4	\cap	RV
1	U	דת

empe	eratur	e:	26℃			Relative H	umidity:	55%	
est V	oltage	e:	AC 120	/60Hz	(W)	- OIL	1150		187.98
nt. P	ol.		Ant. 90°	0		180	III	133	
est N	lode:		Mode 4		A AMO		1 67		
Rema	rk:		N/A	War.				3 187	
130.0	dBuV/m								
							(RF) FCC	. 150-9KHz-30 Margin	
								8 X	
65		1.							11 X
63	Λ۸	Ž	_	3	6			2) O
Λ_a	Married I	* purh	MAN	Λ	Ĩ			1 W/V	W.
77			- 12/41 V	, , , , , /	Mrythylm	\sqrt{r}	Marshall I	WY	
					1		T WY F Y		Í
0.0									
0.0 0.009	1				(MHz)				0.150
	1								0.150
0.009		Fred		eading	Correct	Measure-	Limit	Over	0.150
0.009	Mk.	Free	q. l	Level	Correct Factor	Measure- ment	Limit	Over	
0.009		MHz	q. I	Level dBu∀	Correct Factor	Measure- ment dBuV/m	dBuV/m	dB	Detecto
0.009 No.		MHz	q. l z 20 7	dBuV 74.88	Correct Factor dB/m -10.34	Measure- ment dBuV/m 64.54	dBuV/m 126.30	dB -61.76	Detecto
0.009 No.		0.012 0.012	q. l 2 20 7	dBuV 74.88 63.01	Correct Factor dB/m -10.34 -10.34	Measure- ment dBuV/m 64.54 52.67	dBuV/m 126.30 126.30	dB -61.76 -73.63	Detector peal
0.009 No.		MHz	q. l 2 20 7	dBuV 74.88	Correct Factor dB/m -10.34	Measure- ment dBuV/m 64.54 52.67 52.47	dBuV/m 126.30	dB -61.76	Detector peal
0.009 No.		0.012 0.012	q. 1 2 20 7 20 6	dBuV 74.88 63.01	Correct Factor dB/m -10.34 -10.34	Measure- ment dBuV/m 64.54 52.67	dBuV/m 126.30 126.30	dB -61.76 -73.63	Detector peal AVC
No.		0.012 0.012 0.024	q. 1 2 20 7 20 6 10 6	dBuV 74.88 63.01 62.56	Correct Factor dB/m -10.34 -10.09	Measure- ment dBuV/m 64.54 52.67 52.47	dBuV/m 126.30 126.30 120.26	dB -61.76 -73.63 -67.79	peal AVC peal
No. 1 2 3 4		0.012 0.012 0.012 0.024 0.024	q. 1 2 20 7 20 6 40 6	74.88 63.01 62.56	Correct Factor dB/m -10.34 -10.09 -10.09	Measure- ment dBuV/m 64.54 52.67 52.47 44.82	dBuV/m 126.30 126.30 120.26 120.26	dB -61.76 -73.63 -67.79 -75.44	Detector peal AVG peal AVG
No. 1 2 3 4 5		0.012 0.012 0.024 0.024 0.035 0.035	q. 1 2 20 7 20 6 10 6 50 5	10 dBuV 174.88 163.01 162.56 154.91 153.26 163.48	Correct Factor dB/m -10.34 -10.09 -10.09 -9.97 -9.98	Measure- ment dBuV/m 64.54 52.67 52.47 44.82 43.29 53.50	dBuV/m 126.30 126.30 120.26 120.26 116.98 116.95	dB -61.76 -73.63 -67.79 -75.44 -73.69 -63.45	Detector peal AVG peal AVG
No. 1 2 3 4 5 6		0.012 0.012 0.024 0.024 0.035 0.035	9. I 20. 70. 70. 70. 70. 70. 70. 70. 70. 70. 7	10 dBuV 174.88 163.01 162.56 154.91 153.26 163.48 164.49	Correct Factor dB/m -10.34 -10.09 -10.09 -9.97 -9.98 -10.09	Measure- ment dBuV/m 64.54 52.67 52.47 44.82 43.29 53.50 54.40	dBuV/m 126.30 126.30 120.26 120.26 116.98 116.95 108.62	dB -61.76 -73.63 -67.79 -75.44 -73.69 -63.45 -54.22	Detector peal AVC peal AVC peal peal
No. 1 2 3 4 5 6 7	Mk.	0.012 0.012 0.024 0.024 0.035 0.035 0.091	9. I 2. 20 7 20 6 10 6 50 5 14 6	T4.88 63.01 62.56 54.91 53.26 63.48 64.49 82.63	Correct Factor dB/m -10.34 -10.09 -10.09 -9.97 -9.98 -10.09 -4.31	Measure- ment dBuV/m 64.54 52.67 52.47 44.82 43.29 53.50 54.40 78.32	dBuV/m 126.30 126.30 120.26 120.26 116.98 116.95 108.62	dB -61.76 -73.63 -67.79 -75.44 -73.69 -63.45 -54.22 -28.68	peal AVG peal AVG peal peal
No. 1 2 3 4 5 6 7 8	Mk.	0.012 0.012 0.024 0.024 0.035 0.035 0.091 0.110	9. I 20. 72. 20. 60. 10. 60. 50. 51. 61. 61. 61. 61.	T4.88 63.01 62.56 54.91 53.26 63.48 64.49 82.63 74.08	Correct Factor dB/m -10.34 -10.09 -10.09 -9.97 -9.98 -10.09 -4.31 -4.31	Measure- ment 64.54 52.67 52.47 44.82 43.29 53.50 54.40 78.32 69.77	dBuV/m 126.30 126.30 120.26 120.26 116.98 116.95 108.62 107.00	-61.76 -73.63 -67.79 -75.44 -73.69 -63.45 -54.22 -28.68 -37.23	peal AVG peal AVG peal peal peal
No. 1 2 3 4 5 6 7	Mk.	0.012 0.012 0.024 0.024 0.035 0.035 0.091	9. I 20. 72. 20. 60. 10. 60. 10. 60. 14. 60. 14. 60. 15. 60. 14. 60. 15. 60. 1	T4.88 63.01 62.56 54.91 53.26 63.48 64.49 82.63	Correct Factor dB/m -10.34 -10.09 -10.09 -9.97 -9.98 -10.09 -4.31	Measure- ment dBuV/m 64.54 52.67 52.47 44.82 43.29 53.50 54.40 78.32	dBuV/m 126.30 126.30 120.26 120.26 116.98 116.95 108.62	dB -61.76 -73.63 -67.79 -75.44 -73.69 -63.45 -54.22 -28.68	peal AVG peal AVG peal peal

Page: 24 of 25



Temperature:	26℃	dity:	55%			
Test Voltage:	AC 120/60Hz		e (cliff)			
Ant. Pol.	Ant. 90°	-		(FILE)	133	
Test Mode:	Mode 4	A PROPERTY		1 63	-	
Remark:	N/A		WILL STATE		a 113	
110.0 dBuV/m						
				(RF) FCC	C 15C 9KHz-30M	lHz
1	3				Margin -	-e gr
M	5 S					
45 Y WALLAN WAN		7 ¥ 8				
	LA NAMA MATANA	M. IMM	Marie La La La Caracteria de la Caracteria			
	1 1 1 1 1	All A. All All All All All All All All A	hommunan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Myrahan	howar
0.150	0.5	(MHz)	5			30.000
	Reading	Correct	Measure-			
No. Mk.	Freq. Level	Factor	ment	Limit	Over	
	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 0.3	2197 67.39	-7.77	59.62	100.98	-41.36	peak
2 0.:	2197 58.39	-7.77	50.62	100.98	-50.36	AVG
3 0.	3286 71.59	-8.54	63.05	97.48	-34.43	peak
4 0.3	3286 63.27	-8.54	54.73	97.48	-42.75	AVG
5 * 0.	5523 61.57	-9.77	51.80	72.94	-21.14	peak
6 0.	6826 59.75	-9.97	49.78	71.08	-21.30	peak
7 1.	2098 51.50	-10.28	41.22	66.03	-24.81	peak
8 1.4	4333 48.67	-10.33	38.34	64.53	-26.19	peak
Ellission Level	I= Read Level+ Co	nect ractor				

Page: 25 of 25

Attachment C-- Bandwidth Measurement Data

----END OF REPORT-----