

FCC TEST REPORT

Test report
On Behalf of
BEZALEL INC.
For

Prelude SE MagSafe Portable Wireless Charger X Stand
Model No.: BZ1PSE15

FCC ID: 2AS7K-BZ1PSE15

Prepared For: BEZALEL INC.

3528 Torrance Boulevard, Suite 215, Torrance, California, 90503 United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Dec. 31, 2021 ~ Jan. 07, 2022

Date of Report: Jan. 07, 2022

Report Number: HK2201040019-1E

TEST RESULT CERTIFICATION

Applicant's name BEZALEL IN

90503 United States

Manufacture's Name BEZALEL INC.

90503 United States

Product description

Trade Mark: BEZALEL

Product name Prelude SE MagSafe Portable Wireless Charger X Stand

Model and/or type reference .: BZ1PSE15

Standards . FCC Rules and Regulations Part 15 Subpart C (Section

15.209), ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test....:

Date of Issue Jan. 07, 2022

Test Result : Pass

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

	Table of Contents	Page
TING 1	. TEST SUMMARY 1.1 . Test Procedures And Results	10 HUAN 5
	1.2 . Information of the Test Laboratory1.3 . Measurement Uncertainty	5 5
2.	GENERAL INFORMATION 2.1. General Description of EUT	6
	2.2. Carrier Frequency of Channels2.3. Operation of EUT during testing	7
	2.4. Description of Test Setup2.5. Measurement Instruments List	8
3.	CONDUCTED EMISSION TEST 3.1. Block Diagram of Test Setup 3.2. Conducted Power Line Emission Limit	9 9 9
4.	3.3. Test Procedure RADIATED EMISSIONS	9
	4.1. Block Diagram of Test Setup4.2. Rules and specifications4.3. Test Procedure	12 13 14
ZINC	4.4. Test Result	14 17
5. 6.	ANTENNA REQUIREMENT PHOTOGRAPH OF TEST	18
7.	PHOTOS OF THE EUT	20

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Jan. 07, 2022	Jason Zhou
LAKTES!	LAX TEST.	ES!	LAKTES
	9 m	- Andrews	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1. TEST SUMMARY

1.1. Test Procedures And Results

DESCRIPTION OF TEST	SECTION NUMBER	RESULT
CONDUCTED EMISSIONS TEST	15.207	COMPLIANT
RADIATED EMISSION TEST	15.209	COMPLIANT
ANTENNA REQUIREMENT	15.203	COMPLIANT

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

1.3. Measurement Uncertainty

Measurement Uncertainty

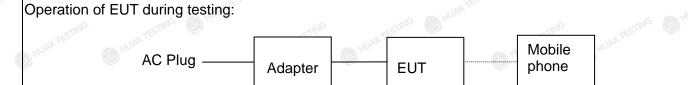
Conducted Emission Expanded Uncertainty = 2.71dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.28dB, k=2

2. GENERAL INFORMATION

2.1. General Description of EUT

Equipment:	Prelude SE MagSafe Portable Wireles	s Charger X S	tand
Model Name:	BZ1PSE15		
Series Models:	N/A	OKTESTING	a)G
Model Difference:	N/A HUMETES III	HO	HUAK TESTIL
Trade Mark:	BEZALEL	STING	
FCC ID:	2AS7K-BZ1PSE15	10	G
Antenna Type:	Coil Antenna	WAKTESTIN	HUAKTES
Antenna Gain:	0dBi	0	
Operation frequency:	125KHz		
Number of Channels:	1 AKTESTING	NK TESTING	.nkT
Modulation Type:	ASK	O HO.	O HO.
	USB-C Input: 5V/3A, 9V/2.2A	ESTING	
Power Source:	Wireless Output: 5W, 7.5W, 10W, 15W	HUAKTE	
	USB-C Output: 5V/3A, 9V/2.2A		
	USB-C Input: 5V/3A, 9V/2.2A	TESTING	
Power Rating:	Wireless Output: 5W, 7.5W, 10W, 15W	I CTIV	
	USB-C Output: 5V/3A, 9V/2.2A		

FICATION


2.2. Carrier Frequency of Channels

Operation I	Frequency each of channel	, LAK TESTING	- WAY TESTIN	HAK TESTING	- WAK TEST
Channel	Frequency	9 100	(ii)	O Ho	(D)
1	125KHz				

2.3. Operation of EUT during testing Operating Mode

The mode is used: Transmitting mode

2.4. Description of Test Setup

Adapter information Model: UP0920

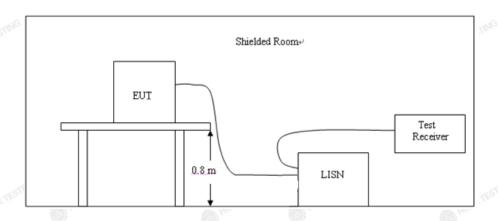
Input: AC100-240V~50/60Hz, 0.5A Output: 5VDC, 2A/9VDC, 2A

Mobile phone information Model: Samsung 6

The sample was placed (0.8m (30MHz~1GHz), 0.8m (9KHz~30MHz)) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

2.5. Measurement Instruments List

Z.J. I	vicasurcincin insu	umento List				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 09, 2021	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 09, 2021	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 09, 2021	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 09, 2021	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 09, 2021	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 09, 2021	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B HKE-014		Dec. 09, 2021	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	⊳ HKE-013	Dec. 09, 2021	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 09, 2021	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 09, 2021	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 09, 2021	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 09, 2021	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 09, 2021	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 09, 2021	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 17, 2020	3 Year


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

AF

3. CONDUCTED EMISSION TEST

3.1. Block Diagram of Test Setup

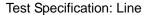
3.2. Conducted Power Line Emission Limit

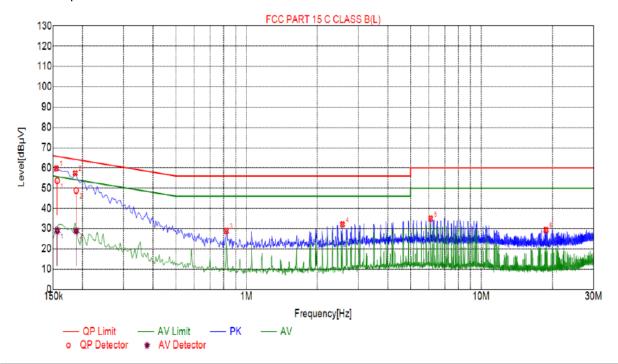
According to FCC Part 15.207(a)

F	M	aximum RF Li	ine Voltage (d	BμV)
Frequency (MHz)	CLAS	SS A	C	CLASS B
(11112)	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207 Line Conducted Emission Limit is same as above table.


3.3. Test Procedure

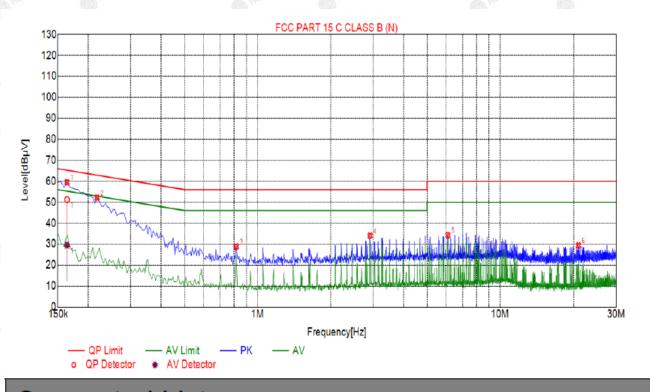

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes

3.4. Test Result PASS

All the test modes completed for test. only the worst result was reported as below:

Suspected List

NO.		Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
	1	0.1545	59.77	20.03	65.75	5.98	39.74	PK	L
	2	0.1860	57.37	20.05	64.21	6.84	37.32	PK	L
	3	0.8205	28.87	20.06	56.00	27.13	8.81	PK	L
8	4	2.5665	32.04	20.20	56.00	23.96	11.84	PK	L
	5	6.0990	34.89	20.23	60.00	25.11	14.66	PK	L
	6	18.7800	29.30	20.06	60.00	30.70	9.24	PK	L


Final Data List											
NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	AV Reading [dBμV]	Туре
1	0.1560	20.02	53.65	65.67	12.02	33.63	28.95	55.67	26.72	8.93	L
2	0.1879	20.04	48.80	64.13	15.33	28.76	28.88	54.13	25.25	8.84	L

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

Test Specification: Neutral

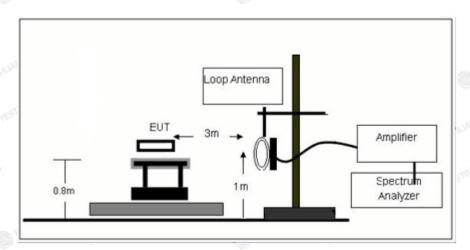
Sus	spected	List						
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
1	0.1635	59.51	19.98	65.28	5.77	39.53	PK	N
2	0.2175	52.16	20.05	62.91	10.75	32.11	PK	N
3	0.8160	28.85	20.06	56.00	27.15	8.79	PK	N
4	2.9085	34.01	20.21	56.00	21.99	13.80	PK	N
5	6.0990	34.24	20.23	60.00	25.76	14.01	PK	N
6	20.9445	29.37	20.13	60.00	30.63	9.24	PK	N

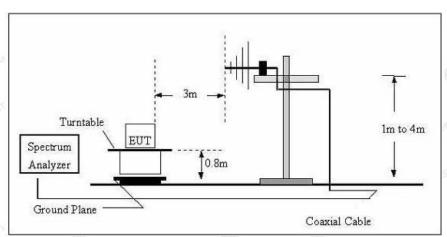
Final	Data	List									
NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	ΑV Reading [dBμV]	Туре
1	0.1635	19.98	51.22	65.28	14.06	31.19	29.47	55.28	25.81	9.44	N

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4. RADIATED EMISSIONS

4.1. Block Diagram of Test Setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

4.2. Rules and specifications

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections.

MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4		
6.31175-6.31225	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	(\2\)		
13.36-13.41					

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216-960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency (MHz)	Frequency Limit (MHz) (dBuV/m)				
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	(m)			
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3			
1.705-30.0	69.5	3			
30-88	40.0	3			
88-216	43.5	3			
216-960	46.0	3			
Above 960	54.0	3			

CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

Transmitter Spurious Emissions 9KHz-30MHz							
TESTING WAKTESTING	9-150KHz	150-490KHz	490KHz-30MHz				
Resolution Bandwidth	200Hz	9KHz	9KHz				
Video Bandwidth	600Hz	30KHz	30KHz				
Detector	Peak	Peak	Peak				
Trace Mode	Max Hold	Max Hold	Max Hold				
Sweep Time	Auto	Auto	Auto				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.3. Test Procedure

Measurement distance 3m

For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade, According to part 15.31(f)(2), per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits. Measurements with an average detector are not required.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

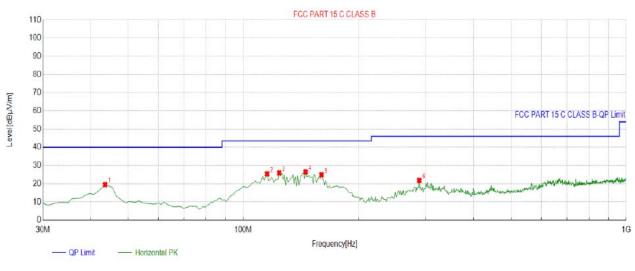
4.4. Test Result

PASS

Note: this EUT was tested for all models and the worst case model (DC5V) data was reported.

For 9KHz-30MHz

10000	Freq. (MHz)	Detector Mode (PK/QP/AV)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
	0.110	AV	21.84	24.8	46.64	106.24	59.6
2	0.125	AV	45.31	24.8	70.11	105.49	35.38
	0.486	AV	26.40	25.03	51.43	93.36	41.93
	0.500	Peak	27.42	25.03	52.45	73.55	21.1

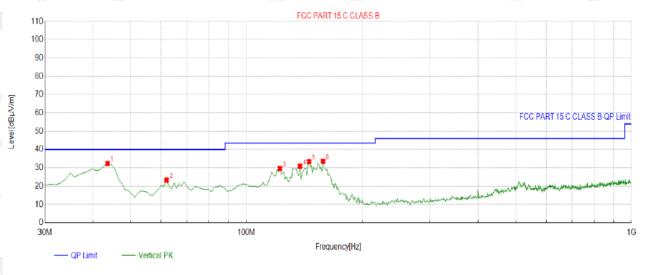

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

For 30MHz-1GHz

Antenna polarity: H

QP Detector


Suspe	Suspected List										
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolovity		
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	43.5936	-13.90	33.47	19.57	40.00	20.43	100	40	Horizontal		
2	115.4454	-16.34	41.78	25.44	43.50	18.06	100	172	Horizontal		
3	124.1842	-17.72	43.65	25.93	43.50	17.57	100	177	Horizontal		
4	145.5455	-19.05	45.55	26.50	43.50	17.00	100	351	Horizontal		
5	160.1101	-18.21	43.12	24.91	43.50	18.59	100	145	Horizontal		
6	288.2783	-12.91	34.73	21.82	46.00	24.18	100	108	Horizontal		

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor;

Margin = Limit – Level

Antenna polarity: V

QP Detector

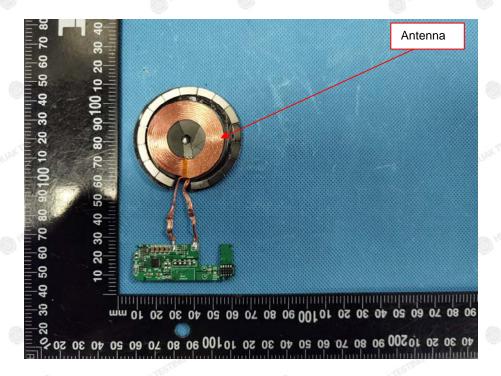
Sus	Suspected List									
⁸ NC	Fre	q.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolority
INC	^{′.} [M⊢	z]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	43.59	36	-13.90	46.34	32.44	40.00	7.56	100	99	Vertical
2	62.04	20	-15.67	38.96	23.29	40.00	16.71	100	104	Vertical
3	122.2	422	-17.43	47.10	29.67	43.50	13.83	100	207	Vertical
4	137.7	778	-19.04	49.92	30.88	43.50	12.62	100	157	Vertical
5	145.5	455	-19.05	52.43	33.38	43.50	10.12	100	152	Vertical
6	158.1	682	-18.35	51.99	33.64	43.50	9.86	100	175	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor;

Margin = Limit – Level

5. ANTENNA REQUIREMENT

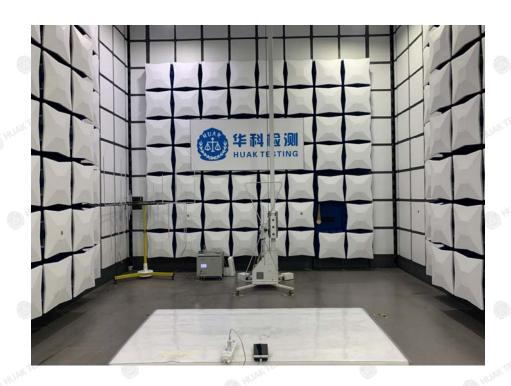
Standard Applicable


For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction


The antenna used in this product is a Coil Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 0dBi.

6. PHOTOGRAPH OF TEST

Radiated Emission

Conducted Emissions

7. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----