

FCC RADIO TEST REPORT FCC ID: 2AS6Q-ZFZA019C

Product : Access control management Trade Mark : N/A Model Name : ZFZA019C Family Model : N/A Report No. : S19030603101003

Prepared for

Zend Access

7 Upland, Irvine, Ca 92602, United States

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name: Zend Access	
Address 7 Upland, Irvine, Ca 92602, United States	
Manufacturer's Name Zend Access	
Address 7 Upland, Irvine, Ca 92602, United States	
Product description	
Product name Access control management	
Model and/or type reference : ZFZA019C	
Family Model : N/A	
Standards FCC Part15.225	
Test procedure ANSI C63.10-2013	
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable to the tested sample identified in the report.	only
This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revise the document. Date of Test	ion of
Date (s) of performance of tests 26 Mar. 2019 ~ 19 Apr. 2019	
Date of Issue	
Test Result Pass	
Testing Engineer : Many Hu	
(Mary Hu) Technical Manager :	
Jarrow Current	
(Jason Chen)	
Authorized Signatory : Sam. Chain	
(Sam Chen)	

 1. SUMMARY OF TEST RESULTS 1 TEST FACILITY 2 MEASUREMENT UNCERTAINTY 2. GENERAL INFORMATION 1 GENERAL DESCRIPTION OF EUT 2 DESCRIPTION OF TEST MODES 3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 5 EQUIPMENTS LIST FOR ALL TEST ITEMS 3. ANTENNA REQUIREMENT 1 STANDARD REQUIREMENT 2 EUT ANTENNA 4. EMC EMISSION TEST 1 CONDUCTED EMISSION MEASUREMENT 1.1 POWER LINE CONDUCTED EMISSION LIMITS 1.2 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 2.1 RADIATED EMISSION LIMITS 4.2.1 TEST PROCEDURE 4.2.3 DEVIATION FROM TEST STANDARD 	ge
 1.2 MEASUREMENT UNCERTAINTY 2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT 2.2 DESCRIPTION OF TEST MODES 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 3. ANTENNA REQUIREMENT 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.2 TEST PROCEDURE 	4
 2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT 2.2 DESCRIPTION OF TEST MODES 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 3. ANTENNA REQUIREMENT 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE 	5
 2.1 GENERAL DESCRIPTION OF EUT 2.2 DESCRIPTION OF TEST MODES 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 3. ANTENNA REQUIREMENT 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.2 TEST PROCEDURE 	5
 2.2 DESCRIPTION OF TEST MODES 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 3. ANTENNA REQUIREMENT 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE 	6
 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 3. ANTENNA REQUIREMENT 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.2 TEST PROCEDURE 	6
 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 3. ANTENNA REQUIREMENT 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.2 TEST PROCEDURE 	7
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 3. ANTENNA REQUIREMENT 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	8
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 3 . ANTENNA REQUIREMENT 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4 . EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	9
 3. ANTENNA REQUIREMENT 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE 	10
 3.1 STANDARD REQUIREMENT 3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE 	11
3.2 EUT ANTENNA 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	
 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE 	11
 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE 	11
 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE 	12
 4.1.2 TEST CONFIGURATION 4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE 	12
4.1.3 TEST PROCEDURE 4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	12 12
4.1.4 TEST RESULT 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	12
4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	13
4.2.2 TEST PROCEDURE	17
	17
4.2.3 DEVIATION FROM TEST STANDARD	18
	18
4.2.4 TEST SETUP 4.2.5 TEST RESULTS (BELOW 30MHZ)	19 20
4.2.6 TEST RESULTS (BETWEEN 30 – 1000 MHZ)	22
5. BANDWIDTH TEST	24
5.1 TEST PROCEDURE	24
5.2 DEVIATION FROM STANDARD	24
5.3 TEST SETUP	24
5.4 TEST RESULTS	25
6. FREQUENCY TOLERANCE	26

ilac-MR **NTEK北**测 Certificate #4298.01

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15, Subpart C (15.225)						
Standard Section	Test Item	Judgment	Remark			
15.207	Conducted Emission	Pass				
15.205(a) 15.209 15.225	Radiated Spurious Emission	Pass				
15.225	20dB Bandwidth	Pass				
15.225	15.225 Frequency Tolerance Pass					
15.203	Antenna Requirement	Pass				

ACCREDITED

NOTE:

(1) " N/A" denotes test is not applicable in this Test Report.

1.1 TEST FACILITY

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

TED

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

Site Description

CNAS-Lab.	 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516. 	
IC-Registration	The Certificate Registration Number is 9270A-1.	
FCC- Accredited	Test Firm Registration Number: 463705.	
	Designation Number: CN1184	
A2LA-Lab.	The Certificate Registration Number is 4298.01	
	This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality	
	management system	
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).	
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.	
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang	
	Street, Bao'an District, Shenzhen 518126 P.R. China.	

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately 95 % -

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated (<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

ED

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Access control management		
Trade Mark	N/A		
Model Name	ZFZA019C		
Family Model	N/A		
Model Difference	N/A		
Product Description	The EUT is a Access control managementOperation Frequency:13.56MHzModulation Type:ASKNumber Of Channel1CH.Antenna Designation:Induction coil		
Adapter	N/A		
Rating	DC 12V		
HW Version	N/A		
SW Version	N/A		

Note:

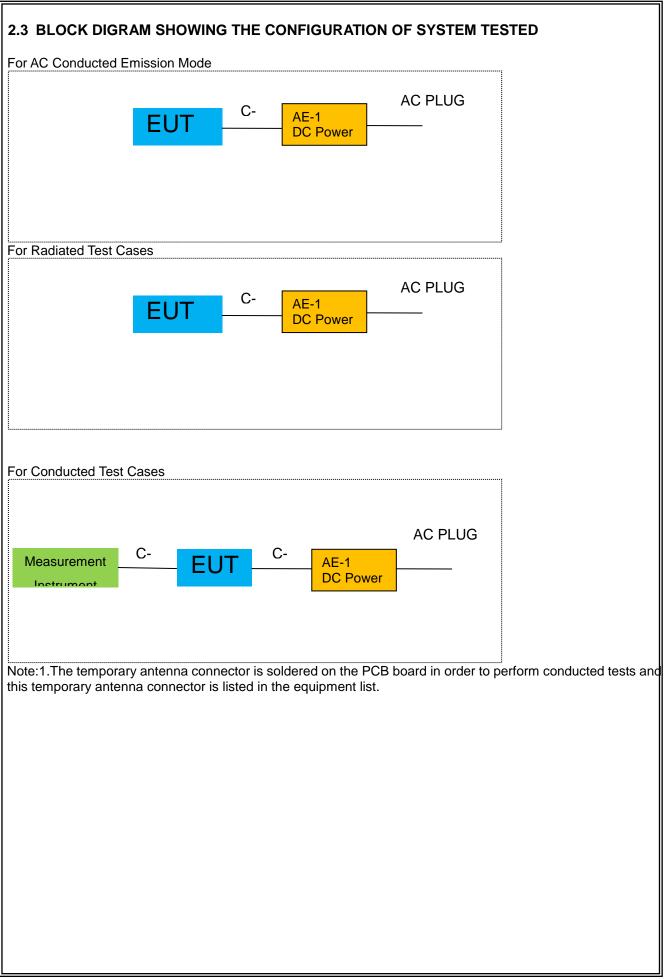
1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	N/A	Induction coil	N/A	N/A	Antenna

2.2 DESCRIPTION OF TEST MODES


To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX-13.56MHz

For Conducted Emission				
Final Test Mode Description				
Mode 1	TX-13.56MHz			

For Radiated Emission				
Final Test Mode Description				
Mode 1	TX-13.56MHz			

2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

NTEK北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
AE-1	DC Power	N/A	N/A	N/A	Peripherals

Item	Shielded Type	Ferrite Core	Length	Note
C-1	DC Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Note:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

<u>NTEKJL测</u>

Page 10 of 27

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

adiation& Conducted Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2018.05.19	2019.05.18	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2018.10.08	2019.10.04	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2018.10.08	2019.10.04	1 year
4	Test Receiver	R&S	ESPI7	101318	2018.05.19	2019.05.18	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2019.04.16 2019.04.15	2019.04.15 2020.04.14	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.04.16 2019.04.15	2019.04.15 2020.04.14	1 year
8	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2018.12.11	2019.12.10	1 year
9	LF Cable	N/A	R-03	N/A	2018.06.05	2021.06.05	3 year
10	PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2018.08.05	2019.08.04	1 year
11	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
12	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year

AC Conduction Test equipment

lte m	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2018.05.19	2019.05.18	1 year
2	LISN	R&S	ENV216	101313	2018.04.18	2019.04.19	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2018.05.19	2019.05.18	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note:

1.We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

2. Each piece of equipment is scheduled for calibration once a year except the Test Cable& Aux Equipment which is scheduled for calibration every 3 years.

3. ANTENNA REQUIREMENT

3.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

3.2 EUT ANTENNA

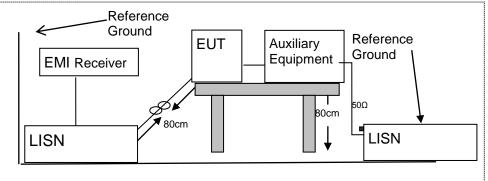
The EUT antenna is permanent attached antenna. It comply with the standard requirement.

4. EMC EMISSION TEST

NTEK北测

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)


	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

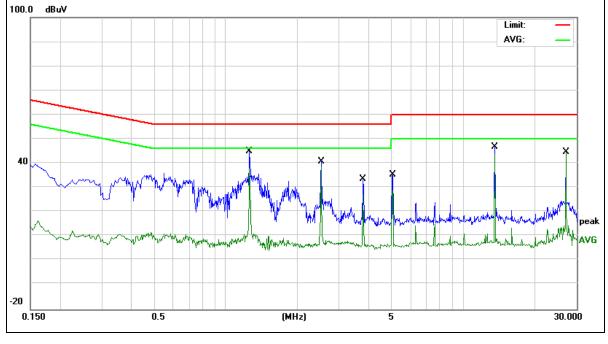
3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.1.2 TEST CONFIGURATION

4.1.3 TEST PROCEDURE

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

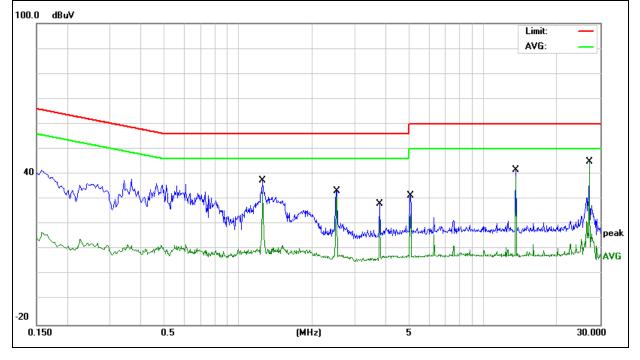

4.1.4 TEST RESULT

EUT :	Access control management	Model Name :	ZFZA019C
Temperature :	DG 1	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 12V from DC Power AC 120V/60Hz	Test Mode :	Mode 1

ACCREDITED Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
1.2620	35.07	9.74	44.81	56.00	-11.19	QP
1.2620	28.21	9.74	37.95	46.00	-8.05	AVG
2.5259	30.84	9.79	40.63	56.00	-15.37	QP
2.5259	28.77	9.79	38.56	46.00	-7.44	AVG
3.7860	23.85	9.85	33.70	56.00	-22.30	QP
3.7860	17.46	9.85	27.31	46.00	-18.69	AVG
5.0378	25.58	9.87	35.45	60.00	-24.55	QP
5.0378	19.04	9.87	28.91	50.00	-21.09	AVG
13.5618	36.83	10.07	46.90	60.00	-13.10	QP
13.5618	33.78	10.07	43.85	50.00	-6.15	AVG
27.1219	34.18	10.59	44.77	60.00	-15.23	QP
27.1219	33.88	10.59	44.47	50.00	-5.53	AVG

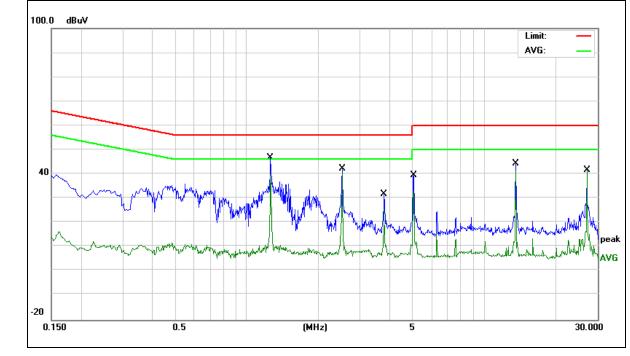
Remark:



EUT :	Access control management	Model Name :	ZFZA019C
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	N
Test Voltage :	DC 12V from DC Power AC 120V/60Hz	Test Mode :	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
1.2540	27.72	9.75	37.47	56.00	-18.53	QP
1.2540	23.31	9.75	33.06	46.00	-12.94	AVG
2.5178	23.57	9.82	33.39	56.00	-22.61	QP
2.5178	21.25	9.82	31.07	46.00	-14.93	AVG
3.7700	18.36	9.91	28.27	56.00	-27.73	QP
3.7700	12.58	9.91	22.49	46.00	-23.51	AVG
5.0377	21.39	9.94	31.33	60.00	-28.67	QP
5.0377	14.14	9.94	24.08	50.00	-25.92	AVG
13.5617	31.67	10.07	41.74	60.00	-18.26	QP
13.5617	29.01	10.07	39.08	50.00	-10.92	AVG
27.1219	34.49	10.56	45.05	60.00	-14.95	QP
27.1219	34.12	10.56	44.68	50.00	-5.32	AVG

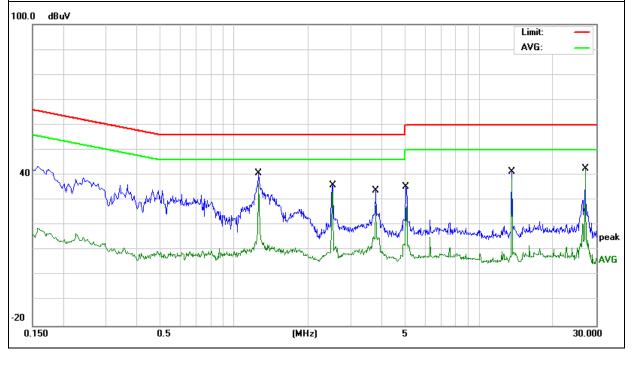
Remark:



EUT :	Access control management	Model Name :	ZFZA019C
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	L
	DC 12V from DC Power AC 240V/60Hz	Test Mode :	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
1.2620	37.07	9.74	46.81	56.00	-9.19	QP
1.2620	30.21	9.74	39.95	46.00	-6.05	AVG
2.5259	32.34	9.79	42.13	56.00	-13.87	QP
2.5259	30.27	9.79	40.06	46.00	-5.94	AVG
3.7860	21.85	9.85	31.70	56.00	-24.30	QP
3.7860	15.46	9.85	25.31	46.00	-20.69	AVG
5.0377	29.58	9.87	39.45	60.00	-20.55	QP
5.0377	23.04	9.87	32.91	50.00	-17.09	AVG
13.5617	34.33	10.07	44.40	60.00	-15.60	QP
13.5617	31.28	10.07	41.35	50.00	-8.65	AVG
27.1219	31.18	10.59	41.77	60.00	-18.23	QP
27.1219	30.88	10.59	41.47	50.00	-8.53	AVG

Remark:



EUT :	Access control management	Model Name :	ZFZA019C
Temperature :		Relative Humidity :	54%
Pressure :	1010hPa	Phase :	N
Test Voltage :	DC 12V from DC Power AC 240V/60Hz	Test Mode :	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demorily
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
1.2579	30.97	9.75	40.72	56.00	-15.28	QP
1.2579	26.81	9.75	36.56	46.00	-9.44	AVG
2.5178	26.07	9.82	35.89	56.00	-20.11	QP
2.5178	23.75	9.82	33.57	46.00	-12.43	AVG
3.7700	23.86	9.91	33.77	56.00	-22.23	QP
3.7700	18.08	9.91	27.99	46.00	-18.01	AVG
5.0297	25.33	9.94	35.27	60.00	-24.73	QP
5.0297	17.64	9.94	27.58	50.00	-22.42	AVG
13.5617	31.17	10.07	41.24	60.00	-18.76	QP
13.5617	28.51	10.07	38.58	50.00	-11.42	AVG
27.1219	31.99	10.56	42.55	60.00	-17.45	QP
27.1219	31.62	10.56	42.18	50.00	-7.82	AVG

Remark:

4.2 RADIATED EMISSION MEASUREMENT

NTEK北测

4.2.1 Radiated Emission Limits (FCC 15.209)					
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

Note:

(1) The tighter limit applies at the band edges.

(2) Emission level (dBuV/m)=20log Emission level (uV/m).

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a) must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

NAL I-	NALL-	N41 I-	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.225)

(a)The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters, equal to 104dBuV/m at 3 meters.

(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters, equal to 74.5dBuV/m at 3 meters.
(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters, equal to 60.5dBuV/m at 3 meters..
(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

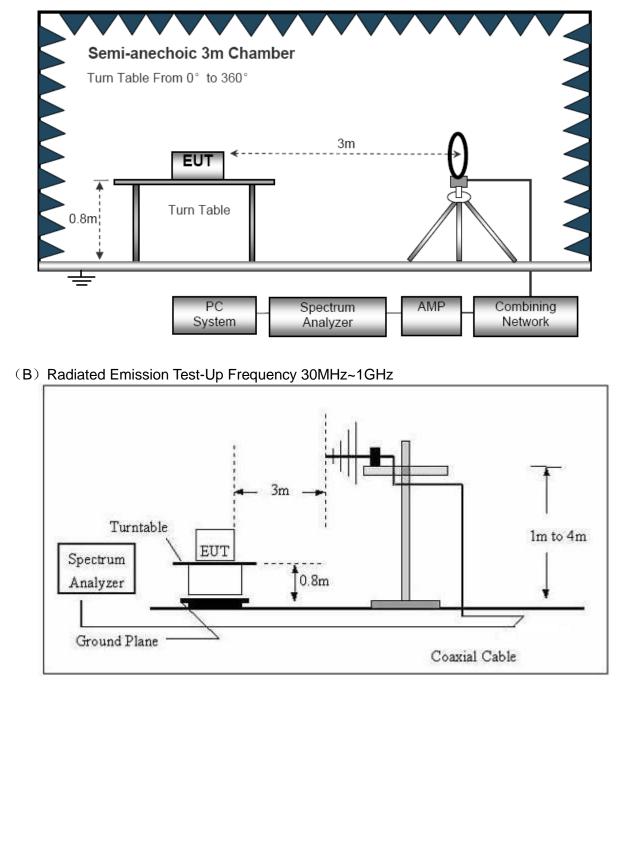
4.2.2 TEST PROCEDURE

NTEK北测

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz And above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported


4.2.3 DEVIATION FROM TEST STANDARD

No deviation

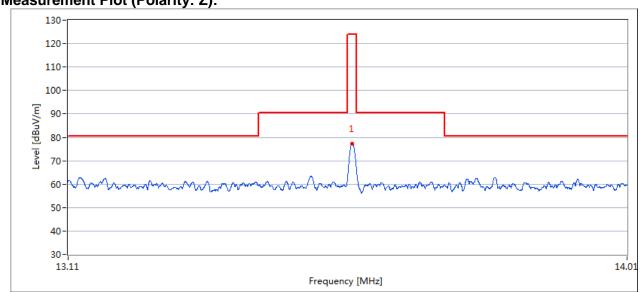
4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

ACCREDITED Certificate #4298.01

4.2.5 TEST RESULTS (BELOW 30MHz)

<u>NTEK北测</u>


EUT :	Access control man	agement Mo	del Name. :	ZFZA019C
Femperature :	20 °C		lative midtity:	54%
Pressure :	1010 hPa		st Voltage :	DC 12V
Test Mode :	TX-13.56MHz			
easurement Pl	ot (Polarity: X):			
130-				
120-		<u> </u>		
110-				
100-				
E 90-	r			
AB 80-		1		
e		Δ		
_			A	
60-v~v~v~v~v~	an a port of the Market and a set	ma manufacture provide	www.www.	man water water
50-				
40-				
30- 13.11				14.
13,11		Frequency [MHz]		14.
easurement Re	Pre-scan Level	Final Test Level	Limit	
Frequency MHz	MaxPeak	MaxPeak	MaxPeak	Margin dB
MHz 13.559	MaxPeak dBuV/m 78.8	MaxPeak dBuV/m	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI	MaxPeak dBuV/m	MaxPeak dBuV/m	MaxPeak dBuV/m	dB
MHz 13.559	MaxPeak dBuV/m 78.8	MaxPeak dBuV/m	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI	MaxPeak dBuV/m 78.8	MaxPeak dBuV/m	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI	MaxPeak dBuV/m 78.8	MaxPeak dBuV/m	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI	MaxPeak dBuV/m 78.8	MaxPeak dBuV/m	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI 130- 120- 110- 100-	MaxPeak dBuV/m 78.8	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI 130- 120- 110- 100-	MaxPeak dBuV/m 78.8	MaxPeak dBuV/m	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI 130- 120- 110- 100-	MaxPeak dBuV/m 78.8	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI 130- 120- 110- 10	MaxPeak dBuV/m 78.8	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI 130- 120- 110- 100- 90- 90- 80- 70- 60- 00- 00- 00- 00- 00- 00- 0	MaxPeak dBuV/m 78.8 ot (Polarity: Y):	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m	dB
MHz 13.559 easurement Pl 130- 120- 110- 100- 90- 80- 60- 50- 50-	MaxPeak dBuV/m 78.8 ot (Polarity: Y):	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI 130- 120- 110- 10	MaxPeak dBuV/m 78.8 ot (Polarity: Y):	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m	dB
MHz 13.559 easurement PI 130- 120- 110- 100- 90- 90- 60- 50- 50-	MaxPeak dBuV/m 78.8 ot (Polarity: Y):	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m	dB 46.0
MHz 13.559 easurement PI 130- 120- 110- 10	MaxPeak dBuV/m 78.8 ot (Polarity: Y):	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m 124.0	dB
MHz 13.559 easurement PI 130- 120- 110- 10	MaxPeak dBuV/m 78.8 ot (Polarity: Y):	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m 124.0	dB
MHz 13.559 easurement PI 130- 120- 110- 100- 90- 80- 90- 60- 40- 30- 13.11 easurement Re	MaxPeak dBuV/m 78.8 ot (Polarity: Y):	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m 124.0	
MHz 13.559 easurement PI 130- 120- 110- 100- 90- 80- 70- 60- 70- 60- 40- 30- 13.11	MaxPeak dBuV/m 78.8 ot (Polarity: Y):	MaxPeak dBuV/m 78.0	MaxPeak dBuV/m 124.0	dB 46.0

Page 21 of 27

Measurement Plot (Polarity: Z):

TEK 1

Measurement Result:

Frequency MHz	Pre-scan Level MaxPeak dBuV/m	Final Test Level MaxPeak dBuV/m	Limit MaxPeak dBuV/m	Margin dB
13.560	77.3	76.8	124.0	47.2

Spurious emissions at 9KHz~13.110MHz & 14.010MHz~30MHz

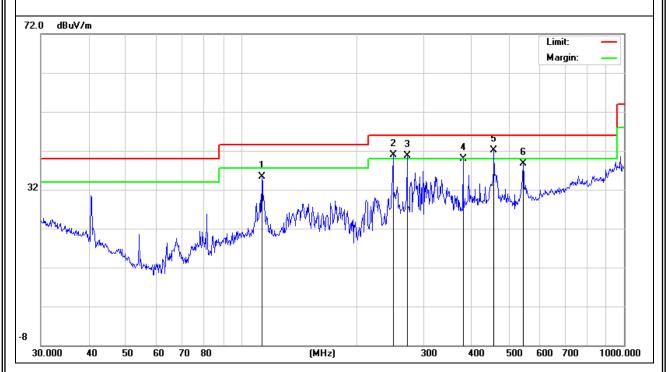
	Ant.Pol.	Emission			
Frequency	Ant.F0I.	Level	Limits	Margin	Detector
		(dBuV/m)			
(MHz)	dBµV	@3m	dBµV/m	(dP)	
	@3m	@SIII	@3m	(dB)	
0.061	Х	48.59	111.898	-63.31	QP
0.078	Х	45.36	109.762	-64.40	QP
0.111	Х	72.85	106.698	-33.85	QP
0.587	Х	45.32	72.231	-26.91	QP
1.367	Х	43.36	64.889	-21.53	QP
11.639	Х	40.58	69.542	-28.96	QP

Note:

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

Z: Field strength which this device generates since the position of the charging coil and loop antenna differ by 180 degrees


4.2.6 TEST RESULTS (BETWEEN 30 - 1000 MHZ)

EUT :	Access control management	Model Name :	ZFZA019C
Temperature :	20 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 12V
Test Mode :	ТХ	Polarization :	Horizontal

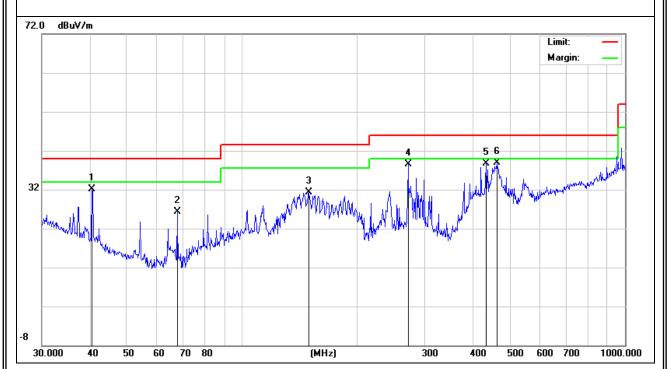
Freq.	Reading	Factor	Measurement	Limit	Over	Detector	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector	L
113.32	22.32	12.92	35.24	43.50	-8.26	QP	
249.43	26.15	14.83	40.98	46.00	-5.02	QP	
271.32	25.30	15.37	40.67	46.00	-5.33	QP	
379.91	21.33	18.64	39.97	46.00	-6.03	QP	
457.51	21.36	20.66	42.02	46.00	-3.98	QP	
545.18	14.55	24.10	38.65	46.00	-7.35	QP	

Remark:

Factor = Antenna Factor + Cable Loss.

Page 23 of 27

Report No.: S19030603101003


EUT :	Access control management	Model Name :	ZFZA019C
Temperature :	20 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 12V
Test Mode :	ТХ	Polarization :	Vertical

Freq.	Reading	Factor	Measurement	Limit	Over	Detector	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector	
40.56	18.08	14.07	32.15	40.00	-7.85	QP	l
67.68	19.79	6.49	26.28	40.00	-13.72	QP	l
149.49	18.49	12.81	31.30	43.50	-12.20	QP	I
271.32	23.12	15.37	38.49	46.00	-7.51	QP	l
434.06	18.65	20.15	38.80	46.00	-7.20	QP	l
462.35	18.19	20.79	38.98	46.00	-7.02	QP	l

Remark:

Factor = Antenna Factor + Cable Loss.

NTEK北测

5. BANDWIDTH TEST

5.1 TEST PROCEDURE

1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak mode.


2. 20dB Bandwidth the resolution bandwidth of 1 kHz and the video bandwidth of 1 kHz were used.

3. Measured the spectrum width with power higher than 20dB below carrier.

5.2 DEVIATION FROM STANDARD

FCC Part15.225

5.3 TEST SETUP

5.4 TEST RESULTS

EUT :	Access control management	Model Name :	ZFZA019C
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1020 hPa	Test Power :	DC 12V
Test Mode :	ТХ		

Test Channel	Frequency (MHz)	20 dBc Bandwidth (kHz)
CH01	13.56	26.85

Page 26 of 27

6. FREQUENCY TOLERANCE

6.1 Requirement:					
Test Requirement:	FCC Part15.225				
Test Method:	ANSI C63.4:2014				
Requirement:	The frequency tolerance of the carrier signal shall be maintained				
	within +/- 0.01% of the operating frequency over a temperature				
	variation of –20 degrees to +50 degrees C at normal supply				
	voltage, and for a variation in the primary supply voltage from				
	85% to 115% of the rated supply voltage at a temperature of 20				
	degrees C. For battery operated equipment, the equipment tests				
	shall be performed using a new battery.				
6.2 Test Procedure					

1. The EUT was placed on a turn table which is 0.8m above ground plane.

2.Set EUT as normal operation

3.Set SPA Center Frequency = fundamental frequency, RBW, VBW= 10kHz, Span =100kHz.

4.Set SPA Max hold. Mark peak.

Test Result

Power Supply	Temperature (℃)	Measured Frequency (MHz)	Frequency Error (MHz)	Result (%)	Part 15.225 Limit
DC 13.2V	-20	13.56013	0.00013	9.5870206	+/- 0.01%(100ppm)
	20	13.56014	0.00014	10.3244838	+/- 0.01%(100ppm)
	50	13.56068	0.00068	50.1474926	+/- 0.01%(100ppm)
DC 12V	-20	13.56071	0.00071	52.3598820	+/- 0.01%(100ppm)
	20	13.56031	0.00031	22.8613569	+/- 0.01%(100ppm)
	50	13.56023	0.00023	16.9616519	+/- 0.01%(100ppm)
DC 10.8V	-20	13.56043	0.00043	31.7109145	+/- 0.01%(100ppm)
	20	13.56041	0.00041	30.2359882	+/- 0.01%(100ppm)
	50	13.56047	0.00047	34.6607670	+/- 0.01%(100ppm)

END REPORT