

RADIO TEST REPORT

S T S

Report No:STS1904087W03

Issued for

People and Technology

Hayoung Building 3F, 24, Samsung-ro 104-gil, Gangnam-gu, Seoul, South Korea

Product Name:	BLE USB TYPE SCANNER
Brand Name:	N/A
Model Name:	IP-BS-US
Series Model:	N/A
FCC ID:	2AS6EIP-BS-US
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced with permission from STS, All Test Data Presented in this report is only applicable to presented Test Sample VAL

Page 2 of 43

TEST RESULT CERTIFICATION

Applicant's Name:	People and Technology
Address:	Hayoung Building 3F, 24, Samsung-ro 104-gil, Gangnam-gu, Seoul, South Korea
Manufacture's Name:	People and Technology
Address:	Hayoung Building 3F, 24, Samsung-ro 104-gil, Gangnam-gu, Seoul, South Korea
Product Description	
Product Name:	BLE USB TYPE SCANNER
Brand Name:	N/A
Model Name:	IP-BS-US
Series Model:	N/A
Test Standards:	FCC Part15.247
Test Procedure	. ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests.....: 22 Apr. 2019 ~ 24 Apr. 2019 25 Apr 2019 . Data of Issue

Date of issue	25 Apr. 2019

Test Result..... Pass

Testing Engineer :	Chins cher
	(Chris Chen)
Technical Manager :	Sunday Jue APPROVAL
	(Sunday Hu)
Authorized Signatory :	(Vito Li)
	(Vita Li)

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1904087W03

Table of Contents

Page 3 of 43

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.5 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 TEST PROCEDURE	15
3.3 TEST SETUP	15
3.4 EUT OPERATING CONDITIONS	15
3.5 TEST RESULTS	16
4. RADIATED EMISSION MEASUREMENT	18
4.1 RADIATED EMISSION LIMITS	18
4.2 TEST PROCEDURE	19
4.3 TEST SETUP	20
4.4 EUT OPERATING CONDITIONS	20
4.5 FIELD STRENGTH CALCULATION	21
4.6 TEST RESULTS	22
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	30
5.1 LIMIT	30
5.2 TEST PROCEDURE	30
5.3 TEST SETUP	30
5.4 EUT OPERATION CONDITIONS	30
5.5 TEST RESULTS	31
6. POWER SPECTRAL DENSITY TEST	34
6.1 LIMIT	34
6.2 TEST PROCEDURE	34
6.3 TEST SETUP	34
6.4 EUT OPERATION CONDITIONS	34

=#

Page 4 of 43

Report No.: STS1904087W03

Table of Contents

6.5 TEST RESULTS	35
7. BANDWIDTH TEST	37
7.1 LIMIT	37
7.2 TEST PROCEDURE	37
7.3 TEST SETUP	37
7.4 EUT OPERATION CONDITIONS	37
7.5 TEST RESULTS	38
8. PEAK OUTPUT POWER TEST	40
8.1 LIMIT	40
8.2 TEST PROCEDURE	40
8.3 TEST SETUP	40
8.4 EUT OPERATION CONDITIONS	40
8.5 TEST RESULTS	41
9. ANTENNA REQUIREMENT	42
9.1 STANDARD REQUIREMENT	42
9.2 EUT ANTENNA	42
10. EUT TEST PHOTO	43

Page 5 of 43

Report No.: STS1904087W03

Revision History

Rev.	Issue Date	Issue Date Report NO.		Contents
00	25 Apr. 2019	STS1904087W03	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

	FCC Part 15.247,Subpart C						
Standard Section	Lest Item						
15.207	Conducted Emission	PASS					
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b)(3)	Output Power	PASS					
15.247 (c)	Radiated Spurious Emission	PASS					
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS					
15.247 (e)	Power Spectral Density	PASS					
15.205	Restricted Band Edge Emission	PASS					
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS					
15.203							

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China FCC test Firm Registration Number: 625569

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

Page 7 of 43

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±0.63dB
3	All emissions, radiated 30-200MHz	±3.43dB
4	All emissions, radiated 200MHz-1GHz	±3.57dB
5	All emissions, radiated>1G	±4.13dB
6	Conducted Emission(9KHz-150KHz)	±3.18dB
7	Conducted Emission(150KHz-30MHz)	±2.70dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	BLE USB TYPE SCA	ANNER		
Trade Name	N/A			
Model Name	IP-BS-US			
Series Model	N/A			
Model Difference	N/A			
	The EUT is BLE US	B TYPE SCANNER		
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	GFSK		
	Radio Technology	BLE		
Product Description	Bluetooth Version:	4.0 LE		
	Number Of Channel	40		
	Antenna Designation:	Please see Note 3.		
	Antenna Gain (dBi)	3.8dBi		
Channel List	Please refer to the N	lote 2.		
Power Rating	DC 5V			
Hardware version number	0.4 3.06			
Software version number				
Connecting I/O Port(s)	Please refer to the U	Please refer to the User's Manual		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
37	2402	09	2422	18	2442	28	2462
00	2404	10	2424	19	2444	29	2464
01	2406	38	2426	20	2446	30	2466
02	2408	11	2428	21	2448	31	2468
03	2410	12	2430	22	2450	32	2470
04	2412	13	2432	23	2452	33	2472
05	2414	14	2434	24	2454	34	2474
06	2416	15	2436	25	2456	35	2476
07	2418	16	2438	26	2458	36	2478
08	2420	17	2440	27	2460	39	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	IP-BS-US	External	N/A	3.8dBi	BLE ANT.

Shenzhen STS Test Services Co., Ltd.

Page 10 of 43

Report No.: STS1904087W03

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH37(2402MHz)	1 MHz/GFSK
Mode 2	TX CH17(2440MHz)	1 MHz/GFSK
Mode 3	TX CH39(2480MHz)	1 MHz/GFSK

Note:

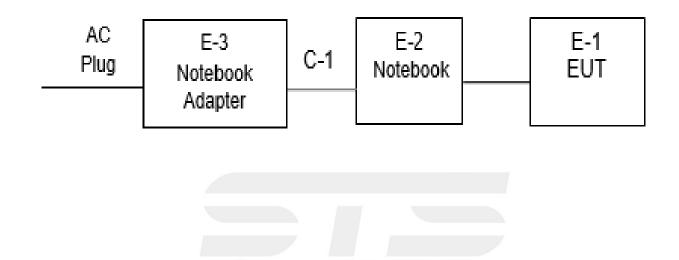
(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report

(3) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.

For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 4 : Keeping BT TX


Page 11 of 43

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

Shenzhen STS Test Services Co., Ltd.

Page 12 of 43

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Necessary accessories						
Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note		
N/A	N/A	N/A	N/A	N/A	N/A		

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	Notebook	HP	500-320cx	N/A	N/A
E-3	Notebook Adapter	HP	HSTNN-CA15	N/A	N/A
C-1	DC Cable	N/A	100cm	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.5 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY51110105	2019.03.02	2020.03.01
Active loop Antenna	ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.01
Horn Antenna	SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10
Pre-Amplifier(0.1M-3G Hz)	EM	EM330	060665	2018.10.13	2019.10.12
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK201808090 1	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10
turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2018.10.13	2019.10.12
LISN	R&S	ENV216	101242	2018.10.11	2019.10.10
LISN	EMCO	3810/2NM	23625	2018.10.11	2019.10.10
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY49100060	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10

Page 14 of 43

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

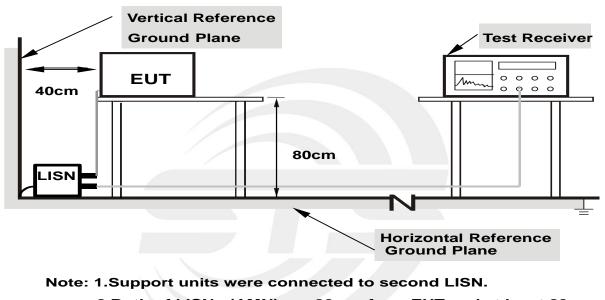
	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		



3.2 TEST PROCEDURE

a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Page 15 of 43

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

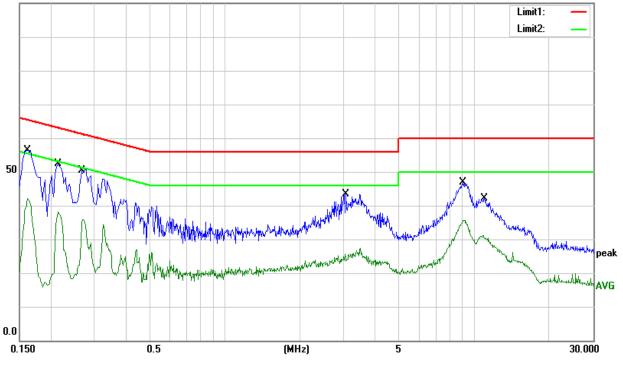
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Temperature:	25.9 ℃	Relative Humidity:	65%
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		


Frequency	Reading	Correct	Result	Limit	Margin	Domork
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1620	36.17	20.23	56.40	65.36	-8.96	QP
0.1620	21.82	20.23	42.05	55.36	-13.31	AVG
0.2140	32.05	20.30	52.35	63.05	-10.70	QP
0.2140	17.72	20.30	38.02	53.05	-15.03	AVG
0.2700	30.13	20.57	50.70	61.12	-10.42	QP
0.2700	15.33	20.57	35.90	51.12	-15.22	AVG
3.0700	23.47	19.98	43.45	56.00	-12.55	QP
3.0700	7.30	19.98	27.28	46.00	-18.72	AVG
9.0180	26.72	20.07	46.79	60.00	-13.21	QP
9.0180	15.61	20.07	35.68	50.00	-14.32	AVG
11.0180	22.02	20.10	42.12	60.00	-17.88	QP
11.0180	10.39	20.10	30.49	50.00	-19.51	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

100.0 dBu¥

Shenzhen STS Test Services Co., Ltd.

Page 17 of 43 R

Report No.: STS1904087W03

Temperature:	25.9 °C	Relative Humidity:	65%
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 4		


Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1660	36.91	20.23	57.14	65.16	-8.02	QP
0.1660	24.40	20.23	44.63	55.16	-10.53	AVG
0.2140	31.49	20.30	51.79	63.05	-11.26	QP
0.2140	16.85	20.30	37.15	53.05	-15.90	AVG
0.2820	30.57	20.63	51.20	60.76	-9.56	QP
0.2820	14.27	20.63	34.90	50.76	-15.86	AVG
3.1500	20.50	19.97	40.47	56.00	-15.53	QP
3.1500	6.92	19.97	26.89	46.00	-19.11	AVG
8.9420	25.42	20.06	45.48	60.00	-14.52	QP
8.9420	13.58	20.06	33.64	50.00	-16.36	AVG
10.7700	20.07	20.11	40.18	60.00	-19.82	QP
10.7700	8.92	20.11	29.03	50.00	-20.97	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

Page 18 of 43

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)			
PEAK A	VERAGE			
Above 1000 74	54			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	4 MUL / 2 MUL	
band)	1 MHz / 3 MHz	

For Band edge

0		
Spectrum Parameter	Setting	
Detector	Peak/AV	
Stort/Stop Fraguenay	Lower Band Edge: 2300 to 2403 MHz	
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz	
RB / VB (emission in restricted band)	1 MHz / 3 MHz	

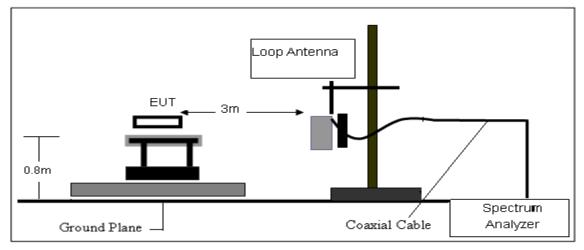
Shenzhen STS Test Services Co., Ltd.

Page 19 of 43

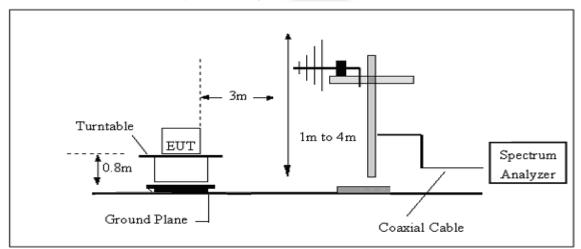
Report No.: STS1904087W03

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz/9kHz for PK & AV/QP
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

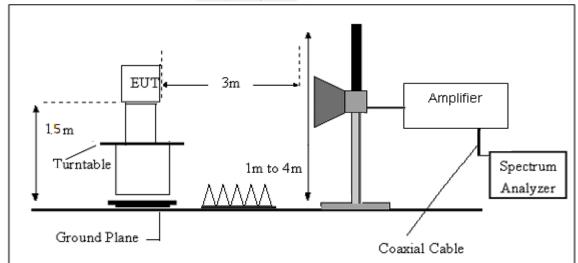
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1904087W03

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	24.6 ℃	Relative Humidtity:	70%
Test Voltage:	DC 5V	Polarization:	
Test Mode:	TX Mode		

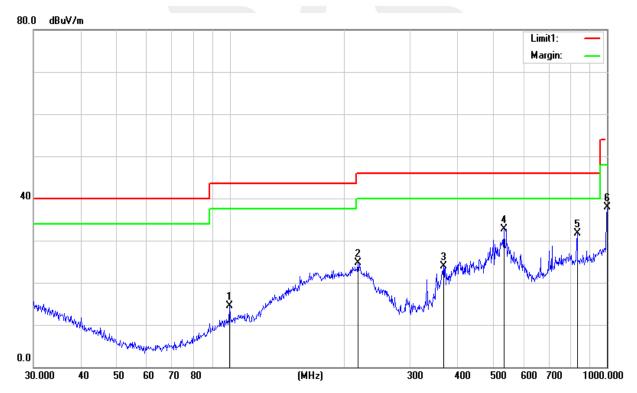
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dB)) + distance extrapolation factor

Limit line = specific limits(dBuv) + distance extrapolation factor.


(30MHz -1000MHz)

Temperature:	24.6 ℃	Relative Humidtity:	70%		
Test Voltage:	DC 5V	Phase:	Horizontal		
Test Mode:	Mode1/2/3(Mode 1 worst mode)				

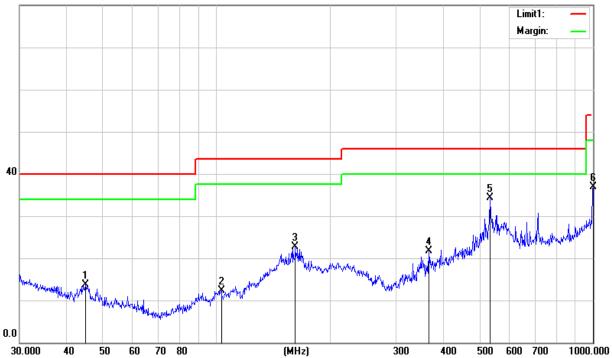
Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
99.5280	33.81	-19.23	14.58	43.50	-28.92	QP
218.3085	43.87	-19.22	24.65	46.00	-21.35	QP
368.1116	36.80	-12.94	23.86	46.00	-22.14	QP
533.8321	40.25	-7.58	32.67	46.00	-13.33	QP
833.3170	34.71	-3.01	31.70	46.00	-14.30	QP
1000.0000	37.99	-0.07	37.92	54.00	-16.08	QP

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

Page 24 of 43

Report No.: STS1904087W03


Temperature:	24.6 °C	Relative Humidtity:	70%		
Test Voltage:	DC 5V	Phase:	Vertical		
Test Mode:	Mode1/2/3(Mode 1 worst mode)				

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
44.9006	32.56	-18.86	13.70	40.00	-26.30	QP
103.0800	31.25	-18.93	12.32	43.50	-31.18	QP
162.0414	41.38	-18.67	22.71	43.50	-20.79	QP
366.8231	34.63	-12.96	21.67	46.00	-24.33	QP
531.9635	42.15	-7.75	34.40	46.00	-11.60	QP
1000.0000	36.88	-0.07	36.81	54.00	-17.19	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

80.0 dBuV/m

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 25 of 43

Report No.: STS1904087W03

(1GHz-25GHz)Restricted band and Spurious emission Requirements

Low Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Low	Channel (2402 I	MHz)				
3264.70	61.94	44.70	6.70	28.20	-9.80	52.14	74.00	-21.86	PK	Vertical
3264.70	50.70	44.70	6.70	28.20	-9.80	40.90	54.00	-13.10	AV	Vertical
3264.86	61.95	44.70	6.70	28.20	-9.80	52.15	74.00	-21.85	PK	Horizontal
3264.86	50.06	44.70	6.70	28.20	-9.80	40.26	54.00	-13.74	AV	Horizontal
4804.40	58.25	44.20	9.04	31.60	-3.56	54.69	74.00	-19.31	PK	Vertical
4804.40	50.51	44.20	9.04	31.60	-3.56	46.95	54.00	-7.05	AV	Vertical
4804.39	58.55	44.20	9.04	31.60	-3.56	54.99	74.00	-19.01	PK	Horizontal
4804.39	50.04	44.20	9.04	31.60	-3.56	46.48	54.00	-7.52	AV	Horizontal
5359.86	49.41	44.20	9.86	32.00	-2.34	47.07	74.00	-26.93	PK	Vertical
5359.86	39.75	44.20	9.86	32.00	-2.34	37.41	54.00	-16.59	AV	Vertical
5359.64	47.16	44.20	9.86	32.00	-2.34	44.82	74.00	-29.18	PK	Horizontal
5359.64	39.34	44.20	9.86	32.00	-2.34	37.00	54.00	-17.00	AV	Horizontal
7205.96	54.90	43.50	11.40	35.50	3.40	58.30	74.00	-15.70	PK	Vertical
7205.96	43.76	43.50	11.40	35.50	3.40	47.16	54.00	-6.84	AV	Vertical
7205.94	53.87	43.50	11.40	35.50	3.40	57.27	74.00	-16.73	PK	Horizontal
7205.94	44.05	43.50	11.40	35.50	3.40	47.45	54.00	-6.55	AV	Horizontal

Page 26 of 43

Report No.: STS1904087W03

Mid Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Mid	Channel (2440 M	MHz)				
3264.87	62.17	44.70	6.70	28.20	-9.80	52.37	74.00	-21.63	PK	Vertical
3264.87	50.67	44.70	6.70	28.20	-9.80	40.87	54.00	-13.13	AV	Vertical
3264.73	61.62	44.70	6.70	28.20	-9.80	51.82	74.00	-22.18	PK	Horizontal
3264.73	50.26	44.70	6.70	28.20	-9.80	40.46	54.00	-13.54	AV	Horizontal
4880.43	58.36	44.20	9.04	31.60	-3.56	54.80	74.00	-19.20	PK	Vertical
4880.43	50.01	44.20	9.04	31.60	-3.56	46.45	54.00	-7.55	AV	Vertical
4880.32	59.56	44.20	9.04	31.60	-3.56	56.00	74.00	-18.00	PK	Horizontal
4880.32	50.09	44.20	9.04	31.60	-3.56	46.53	54.00	-7.47	AV	Horizontal
5359.74	48.22	44.20	9.86	32.00	-2.34	45.88	74.00	-28.12	PK	Vertical
5359.74	39.22	44.20	9.86	32.00	-2.34	36.88	54.00	-17.12	AV	Vertical
5359.70	47.82	44.20	9.86	32.00	-2.34	45.48	74.00	-28.52	PK	Horizontal
5359.70	38.32	44.20	9.86	32.00	-2.34	35.98	54.00	-18.02	AV	Horizontal
7320.81	54.67	43.50	11.40	35.50	3.40	58.07	74.00	-15.93	PK	Vertical
7320.81	43.69	43.50	11.40	35.50	3.40	47.09	54.00	-6.91	AV	Vertical
7320.93	53.64	43.50	11.40	35.50	3.40	57.04	74.00	-16.96	PK	Horizontal
7320.93	44.80	43.50	11.40	35.50	3.40	48.20	54.00	-5.80	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Page 27 of 43

Report No.: STS1904087W03

High Channel

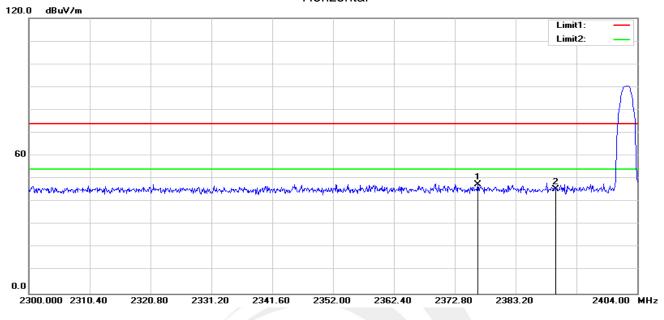
				Ū		-				
				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				High	Channel (2480	MHz)				
3264.74	62.26	44.70	6.70	28.20	-9.80	52.46	74.00	-21.54	PK	Vertical
3264.74	51.36	44.70	6.70	28.20	-9.80	41.56	54.00	-12.44	AV	Vertical
3264.61	61.90	44.70	6.70	28.20	-9.80	52.10	74.00	-21.90	PK	Horizontal
3264.61	50.76	44.70	6.70	28.20	-9.80	40.96	54.00	-13.04	AV	Horizontal
4960.32	58.27	44.20	9.04	31.60	-3.56	54.71	74.00	-19.29	PK	Vertical
4960.32	49.23	44.20	9.04	31.60	-3.56	45.67	54.00	-8.33	AV	Vertical
4960.46	59.07	44.20	9.04	31.60	-3.56	55.51	74.00	-18.49	PK	Horizontal
4960.46	50.36	44.20	9.04	31.60	-3.56	46.80	54.00	-7.20	AV	Horizontal
5359.72	48.22	44.20	9.86	32.00	-2.34	45.88	74.00	-28.12	PK	Vertical
5359.72	40.29	44.20	9.86	32.00	-2.34	37.95	54.00	-16.05	AV	Vertical
5359.67	47.27	44.20	9.86	32.00	-2.34	44.93	74.00	-29.07	PK	Horizontal
5359.67	38.17	44.20	9.86	32.00	-2.34	35.83	54.00	-18.17	AV	Horizontal
7439.81	54.73	43.50	11.40	35.50	3.40	58.13	74.00	-15.87	PK	Vertical
7439.81	44.41	43.50	11.40	35.50	3.40	47.81	54.00	-6.19	AV	Vertical
7439.89	54.36	43.50	11.40	35.50	3.40	57.76	74.00	-16.24	PK	Horizontal
7439.89	44.09	43.50	11.40	35.50	3.40	47.49	54.00	-6.51	AV	Horizontal
Noto	•						•			•

Note:

1) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

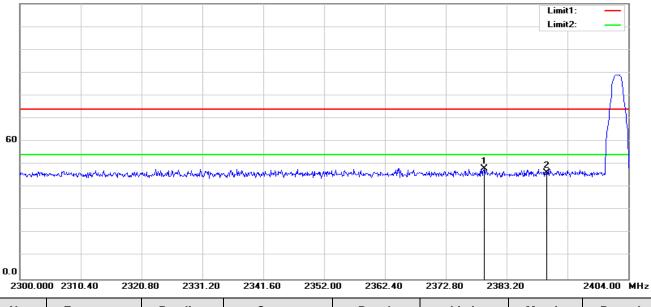
Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.


Shenzhen STS Test Services Co., Ltd.

Report No.: STS1904087W03

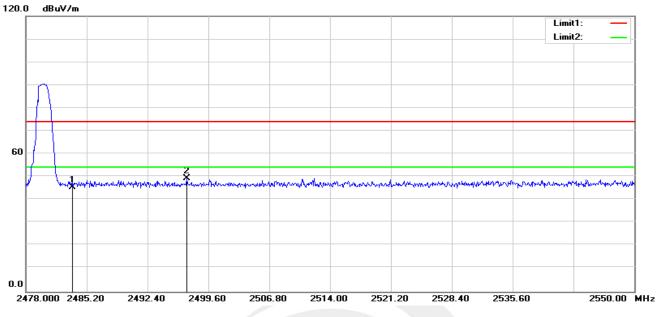
4.6 TEST RESULTS (Restricted Bands Requirements)


GFSK-Low Horizontal

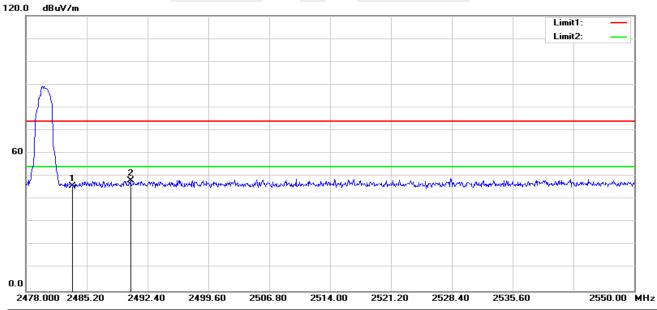
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2376.752	58.19	-10.56	47.63	74.00	-26.37	peak
2	2390.000	55.99	-10.48	45.51	74.00	-28.49	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2379.352	58.65	-10.54	48.11	74.00	-25.89	peak
2	2390.000	56.88	-10.48	46.40	74.00	-27.60	peak


Shenzhen STS Test Services Co., Ltd.

Page 29 of 43


Report No.: STS1904087W03

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	55.38	-9.99	45.39	74.00	-28.61	peak
2	2497.008	59.33	-9.92	49.41	74.00	-24.59	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	55.89	-9.99	45.90	74.00	-28.10	peak
2	2490.384	58.07	-9.95	48.12	74.00	-25.88	peak

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Stort/Stop Eroguppo/	Lower Band Edge: 2300 – 2403 MHz
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

5.3 TEST SETUP

The EUT which is powered by the PC, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 5V		TX Mode /CH37, CH17, CH39

37 CH

RL		RF	50 Ω	AC			SENS	SE:PULSE		AL	IGN AUTO				03:02	2:56 PM A	
enter	Fre	eq 1	2.5150	00000	I	PNO: Fast FGain:Lov	Ţ	Trig: Fre #Atten: 3			Avg T	「ype: I	.og-Pwr			TYPE	1234 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
dB/di			Offset 0.5 7.98 dE											N	lkr1 2. -	.401 2.021	
			1														
									_								
		_															-22.02 d
			_														4
		(⟩ ²		()	\$			_		and they be	And a state of the state of t	القرائد ومحافظ	أنجارهم والم	and the second second		A
.0		and the								<u>Adapted</u>		-	that has a second	1. Talan and a state			
.0																	
.0																	
art 30 les B			Hz				#VBV	/ 300 kł	łz				s	weep	Sto 2.387	op 25. s (400	00 GH)01 pf
R MODE	TRC	SCL		× 2.40	15 GHz		Y 2.021 d		UNCTION	FUNC	TION WIDTH	1		FUN	CTION VALU	1	
N	1	f		2.53	0 1 GHz 5 1 GHz	-5	3.525 d 3.314 d										
l N	1	f		24.15	0 4 GHz	-4	6.977 d	Bm									
; ,																	
}																	

Shenzhen STS Test Services Co., Ltd.

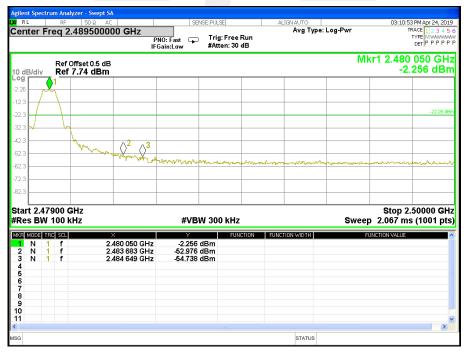
17 CH

ilent Spectrum Analyzer - Sv							
RL RF 50 G enter Freg 12.515		SENSE:PULSE		ALIGN AUTO Avg Type: L	.og-Pwr		Apr 24, 201 E 1 2 3 4 5
enter freq 12.515	PNO		Free Run n:30 dB			TYP	тем ининии Терере
	IFGa	in:Low #Atte	n: 30 dB				·
Ref Offset 0					P	/kr1 2.440	34 dBr
dB/div Ref 7.47 d	IBM					-2.00	- a Di
53							
.5							
.5							-22.53 d
5							
.5 2		3					
.5		Y[and the second	ياب مقدم من ا	New York
5 months in the second	Louis Landallinia and Land			and the second second			
5							
.5							
art 30 MHz tes BW 100 kHz		# (BW 000			•		5.00 GH
		#VBW 300				2.387 s (4	0001 pi
R MODE TRC SCL N 1 f	× 2.440 2 GHz	-2.534 dBm	FUNCTION	UNCTION WIDTH	FU	NCTION VALUE	
? N 1 f	2.568 2 GHz	-50.797 dBm					
N 1 f N 1 f	9.760 2 GHz 24.407 0 GHz	-51.630 dBm -47.954 dBm					
N 1 f							
							>
				STATUS			
1							

39 CH

RL RF	50Ω AC	l cr	NSE:PULSE	ALIGNAUTO	(13:09:58 PM Apr 24, 201
	2.515000000 GH			Avg Type: Lo		TRACE 1 2 3 4 5 TYPE MWWWW DET P P P P P
dB/div Ref	Dffset 0.5 dB 7.08 dBm				Mkr1	2.479 6 GH -2.918 dBr
2	1					
9						-22.92 dE
9						-22.82 00
)						
	n <mark>2</mark>	(3			(
, 	7				and the second second	and the second
(Inclusion all the second	a standard and a standard be	and the second second				
			and the second second			
urt 30 MHz es BW 100 k	Hz	#VB	W 300 kHz			Stop 25.00 GH 87 s (40001 pt
MODE TRC SCL	×	Ϋ́	FUNCTION	FUNCTION WIDTH	FUNCTION	ALUE
N 1 f N 1 f N 1 f N 1 f	2.479 6 2.608 2 9.919 4 24.652 3	GHz -53.181 GHz -48.805	dBm dBm			

П



or band euge

37 CH

	zer - Swept SA							
RL RF	50 Ω AC 351500000 GHz	SE	NSE:PULSE		IGN AUTO Avg Type:	Log-Pwr	TF	L PM Apr 24, 2019 RACE 1 2 3 4 5
		PNO: Fast 🖵 IFGain:Low	Trig: Free R #Atten: 30 d					
	fset 0.5 dB .19 dBm					M	kr1 2.402 -1.	073 GH: 808 dBn
og								
1.81								
11.8								-21.81 dB
21.8								-21.01 0
11.8								6
1.8								2
1.8		л.						
1.0	marsher and management	when when when	and restantioned and the	-mattery wydreffiad	and and a second se	hand from the second	beren and the second	and the second
1.8								
1.8								
	Hz						Stop 2.	40300 GH
tart 2.30000 GH Res BW 100 kH		#VB	W 300 kHz			Swee	Stop 2. p 9.867 ms	40300 GH s (1001 pt
tart 2.30000 GH Res BW 100 kH	łz ×	Y	FUNCT	TION FUNC	TION WIDTH			
tart 2.30000 GH Res BW 100 kH GE MODE TRE SOL 1 N 1 f	iz × 2.402 073 GH	r z -1.808	FUNCI	TION FUNC	TION WIDTH		p 9.867 ms	
cart 2.30000 GH Res BW 100 kH R MODE TRC SCL N 1 f 2 N 1 f 3 N 1 f	łz ×	z -1.808 z -53.846	dBm dBm	TION FUNC	TION WIDTH		p 9.867 ms	
tart 2.30000 GH Res BW 100 kH R MODE TRC SCL N 1 f 2 N 1 f 3 N 1 f 4 5	Iz 2.402 073 GH 2.396 717 GH	z -1.808 z -53.846	dBm dBm	tion Func:	TION WIDTH		p 9.867 ms	
tart 2.30000 GH Res BW 100 kH R M009 TRC SOL 1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	Iz 2.402 073 GH 2.396 717 GH	z -1.808 z -53.846	dBm dBm	'ION FUNC'	TION WIDTH		p 9.867 ms	
tart 2.30000 GH Res BW 100 kH GE MODE TRC SCL 1 N 1 f 2 N 1 f	Iz 2.402 073 GH 2.396 717 GH	z -1.808 z -53.846	dBm dBm	TION FUNC	rion width		p 9.867 ms	
tart 2.30000 GR Res BW 100 kH E MODE TRG SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 5 6 7 8 9 9 0	Iz 2.402 073 GH 2.396 717 GH	z -1.808 z -53.846	dBm dBm	ION FUNC	TION WIDTH		p 9.867 ms	
art 2.30000 GH Res BW 100 kH I N 1 f 2 N 1 f 3 N 1 f 3 N 1 f 4 1 f 5 5 5 7	Iz 2.402 073 GH 2.396 717 GH	z -1.808 z -53.846	dBm dBm	10N FUNC	TION WIDTH		p 9.867 ms	

39 CH

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 5V	Lest Mode.	TX Mode /CH37, CH17, CH39

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3KHz)	Result
2402 MHz	-15.338	≤8	PASS
2440 MHz	-14.706	≦8	PASS
2480 MHz	-15.135	≤8	PASS


TX CH37

RF 50 Ω AC	SENSE:PULSE	ALIGN AUTO	03:04:36 PM Apr 24, 21
r Freq 2.402000000 GHz	PNO: Wide Trig: Free IFGain:Low #Atten: 30		TRACE 1 2 3 4 TYPE M WWW DET P P P P
Ref Offset 0.5 dB /div Ref -5.34 dBm		IV	1kr1 2.401 923 2 G -15.338 dE
	↓ 1		
A MAR WWW	mar many phillips	am and marked and the	VMmmm
- Martin Martin			han han
N°			
er 2.4020000 GHz BW 3.0 kHz	#VBW 10 kHz	Sv	Span 1.200 M veep 126.5 ms (1001 p


Shenzhen STS Test Services Co., Ltd.

TX CH17

TX CH39

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: STS1904087W03

7.5 TEST RESULTS

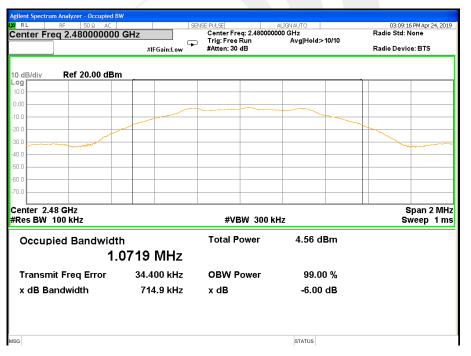
Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 5V		TX Mode /CH37, CH17, CH39

Frequency	6dB Bandwidth (MHz)	Limit	Result
2402 MHz	0.702	>=500KHz	PASS
2440 MHz	0.707	>=500KHz	PASS
2480 MHz	0.715	>=500KHz	PASS

TX CH 37

RL RF 50 Ω AC		Center Freq: 2.4020000		03:02:15 PM Apr 24, 2019 Radio Std: None
	#IFGain:Low	⊃ Trig: Free Run #Atten: 30 dB	Avg Hold≫10/10	Radio Device: BTS
0 dB/div Ref 20.00 dBn	'n			
og 10.0				
).00				
0.0				
0.0				
0.0				
0.0				
50.0				
60.0				
70.0				
center 2.402 GHz Res BW 100 kHz		#VBW 300 ki	Hz	Span 2 MH Sweep 1 m
Occupied Bandwidth		Total Power	4.95 dBm	
1.	0657 MHz			
Transmit Freq Error	31.468 kHz	OBW Power	99.00 %	
x dB Bandwidth	702.3 kHz	x dB	-6.00 dB	
SG			STATUS	

Shenzhen STS Test Services Co., Ltd.



TX CH 17

Agilent Spectrum Analyzer - Occupied BW					
LXIRL Constan Eng	RF 50 Ω AC		ENSE:PULSE Center Freg: 2.440000	ALIGN AUTO	03:06:38 PM Apr 24, 2019 Radio Std: None
Center Fre	q 2.440000000		Trig: Free Run	Avg Hold>10/10	
		#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
10 dB/div	Ref 20.00 dBm				
Log 10.0					
-10.0					~
-20.0					
-30.0					
-40.0					
-50.0					
-60.0					
-70.0					
Center 2.4			49 (DW) 000 I		Span 2 MHz
#Res BW 1	IUU KHZ		#VBW 300 k	HZ	Sweep 1 ms
Occupi	ed Bandwidth	•	Total Power	4.81 dBm	
1.0723 MHz					
Transmi	t Freq Error	34.232 kHz	OBW Power	99.00 %	
x dB Ba	ndwidth	706.8 kHz	x dB	-6.00 dB	

TX CH 39

STATUS

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C					
Section Test Item Limit		Frequency Range (MHz)	Result		
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS	

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&PC

8.3 TEST SETUP

EUT		Power sensor		PC
-----	--	--------------	--	----

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 5V		TX Mode /CH37, CH17, CH39

TX Mode					
Test Channel	Frequency	Conducted Output Power		LIMIT	
	(MHz)	Peak (dBm)	AVG (dBm)	dBm	
CH37	2402	-1.24	-1.56	30	
CH17	2440	-1.29	-1.62	30	
CH39	2480	-1.38	-1.70	30	

Shenzhen STS Test Services Co., Ltd.

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is External Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

Page 43 of 43

Report No.: STS1904087W03

10. EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.