

Report No.: EED32N80941101

Page 1 of 53

TEST REPORT

Lightweight TWS Earphones **Product**

Trade mark MINISO

Model/Type reference X16 **Serial Number** N/A

Report Number EED32N80941101

FCC ID 2AS5O-X16 Date of Issue Oct. 28 2021

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

China Etech Groups Ltd 16/F, Block C, 2nd Phase of Central Avenue, Haihong Industrial Area, Xixiang Road, Baoan District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

martin bee Martin Lee

David Wang

David Wang

Reviewed by:

Date:

Acron Ma

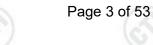
Aaron Ma

Oct. 28, 2021

Check No.: 8310260921

Contents

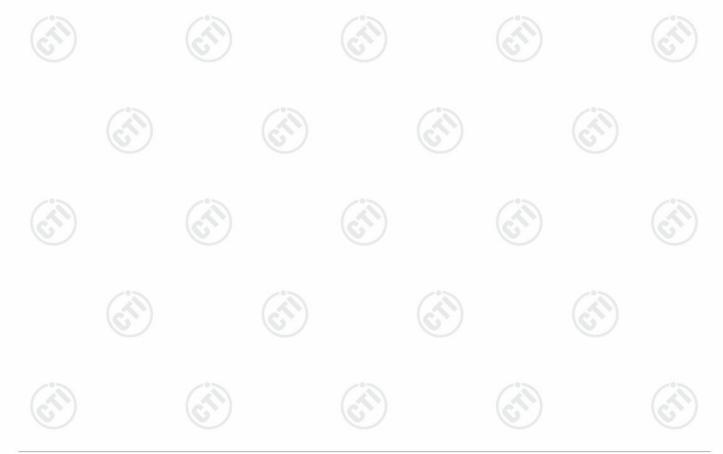
				Page
2 VERSION				3
3 TEST SUMMARY				4
4 GENERAL INFORMATION	ON			5
4.2 GENERAL DESCRIPTION 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUP 4.6 TEST LOCATION 4.7 MEASUREMENT UNCE	PORT UNITSRTAINTY (95% CONFIDENCE LEVELS,	K=2)		5 7 7 7 8
5 TEST RESULTS AND M	EASUREMENT DATA	•••••	•••••	11
5.2 MAXIMUM CONDUCTE 5.3 20DB EMISSION BAND 5.4 CARRIER FREQUENCY 5.5 NUMBER OF HOPPING 5.6 TIME OF OCCUPANCY 5.7 BAND EDGE MEASURE 5.8 CONDUCTED SPURIOU 5.9 PSEUDORANDOM FRE	ENTD OUTPUT POWER			12 13 14 15 16 17
6 APPENDIX A		•••••	•••••	43
	T SETUP			
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL DETAILS			45



Version 2

Version No.	Date	Description	
00	Oct. 28, 2021	Original	
	200	200	

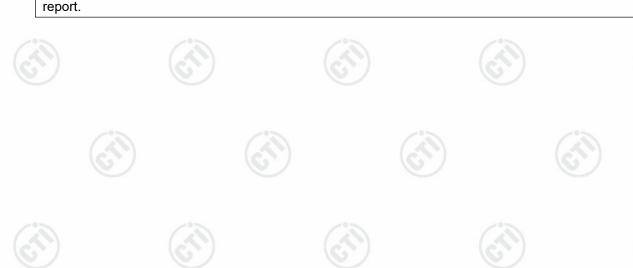
3



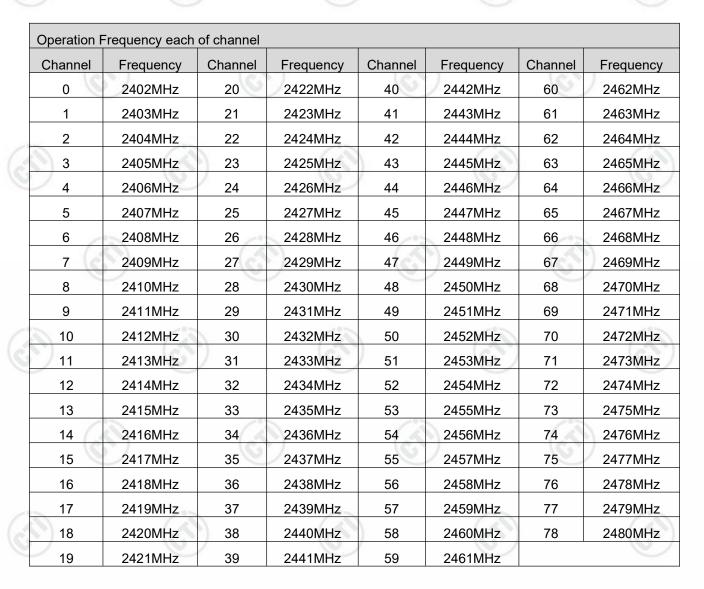
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

N/A: When the EUT charging, BT will not work, So Not Applicable.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.



4.1 **Client Information**


Applicant:	China Etech Groups Ltd
Address of Applicant:	16/F, Block C, 2nd Phase of Central Avenue, Haihong Industrial Area, Xixiang Road, Baoan District, Shenzhen, China
Manufacturer:	China Etech Groups Ltd
Address of Manufacturer:	16/F, Block C, 2nd Phase of Central Avenue, Haihong Industrial Area, Xixiang Road, Baoan District, Shenzhen, China
Factory:	Dongguan China ETECH GROUPS CO.,LTD.
Address of Factory:	Room 501,Building 6, No.2 Hong Jin Road, Li Zhou Jiao Village, Hongmei Town, Dongguan City

4.2 **General Description of EUT**

Product Name:	Lightweight TWS Earphones
Mode No.:	X16
Trade mark:	MINISO
Bluetooth Version:	V5.0
Operation Frequency:	2402MHz~2480MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Antenna Type:	PCB antenna
Antenna Gain:	0dBi
Power Supply:	lithium battery: DC 3.7V, Charge by DC 5.0V
Test Voltage:	DC 3.7V
Sample Received Date:	Sep. 27, 2021
Sample tested Date:	Sep. 27, 2021 to Oct. 12, 2021

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

2441

2480

EUT Test Software Settings	s:				
Software:	BT_Tool (manufacturer declare)				
EUT Power Grade:	Class2 (Power level is built-in set para selected)	meters and cannot be changed and			
Use test software to set the le transmitting of the EUT.	owest frequency, the middle frequency and	the highest frequency keep			
Mode	Channel	Frequency(MHz)			
	CH0	2402			
DH1/DH3/DH5	CH39	2441			
/07	CH78	2480			
	CH0	2402			
2DH1/2DH3/2DH5	CH39	2441			
	CH78	2480			
	CH0	2402			

CH39

CH78

4.4 Test Environment

3DH1/3DH3/3DH5

	/ 431	/ 46.00	/ 4 0		1 4 0	
	Operating Environment	:				
	Radiated Spurious Emi	ssions:				
	Temperature:	22~25.0 °C				
1	Humidity:	50~55 % RH				(3)
")	Atmospheric Pressure:	1010mbar		(6,7,2)		(6,7)
	RF Conducted:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	/*>		/ *>	
	Atmospheric Pressure:	1010mbar				

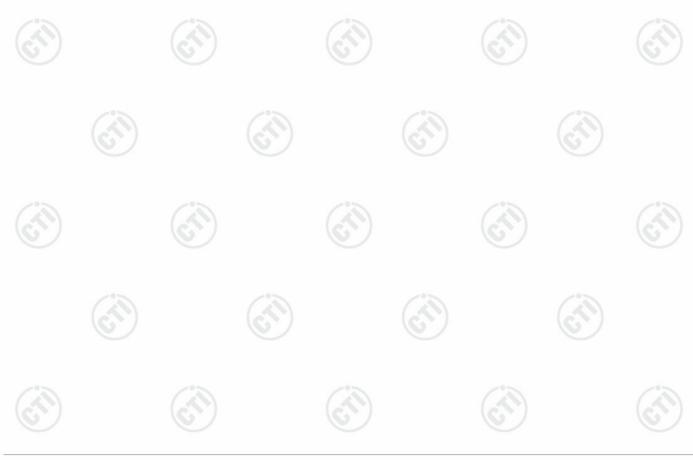
4.5 Description of Support Units

The EUT has been tested with associated equipment below. support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	FCC ID and DOC	СТІ

All tests were performed at:

Centre Testing International Group Co., Ltd


Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

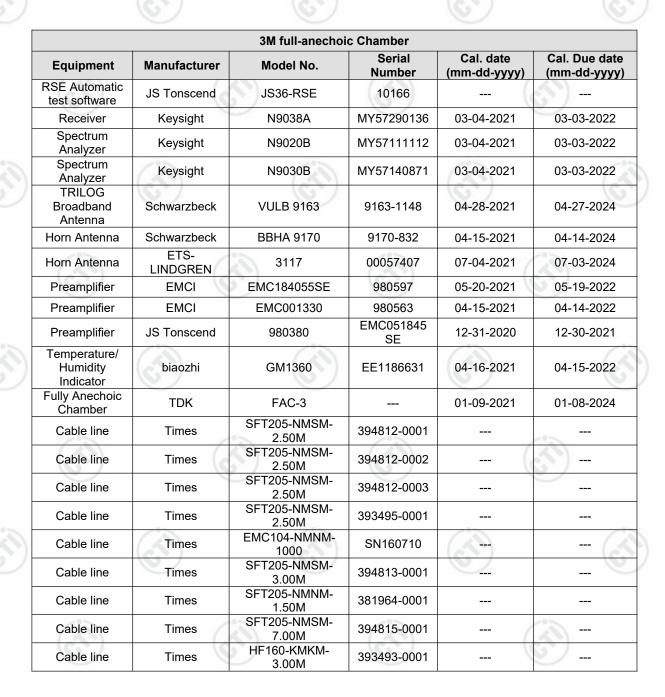
No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE pouer conducted	0.46dB (30MHz-1GHz)		
(2)	RF power, conducted	0.55dB (1GHz-18GHz)		
		3.3dB (9kHz-30MHz)		
2	Radiated Spurious emission test	4.3dB (30MHz-1GHz)		
3		4.5dB (1GHz-18GHz)		
		3.4dB (18GHz-40GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

		RF test s	ystem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		(<u> </u>
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
PC-1	Lenovo	R4960d			
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			

		3M Semi/full-anec	hoic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/10711 112	(4)	(<u>57)</u>
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A	(1)	(3
Cable line	Fulai(3M)	SF106	5216/6A	(6)-)	(6)
Cable line	Fulai(3M)	SF106	5217/6A		



5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

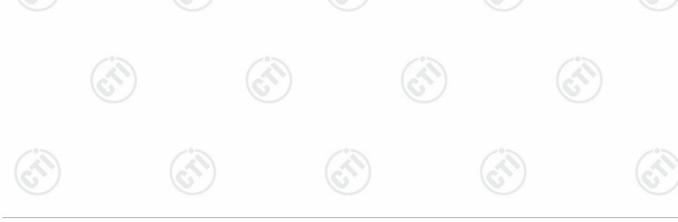
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

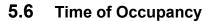
The antenna is PCB antenna. The best case gain of the antenna is 0dBi.

5.2 Maximum Conducted Output Power

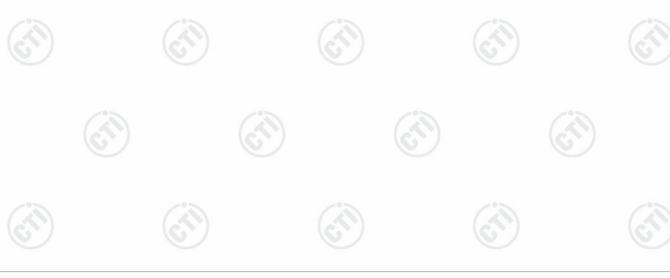

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	RF test System Fower port) Table Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Limit:	21dBm
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF					
rest riocedure.	cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.					
Limit:	NA					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Test Results:	Refer to Appendix A					

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1)
Test Method: ANSI C63.10:2013	(25)
Test Setup: Control Computer Penner poorte) Penner Supply Penner Supply Attenuator Table	RF test System Instrument
Remark: Offset=Cable loss+ attenuati	ion factor.
measurement. 2. Set to the maximum power setting a continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyze Span = wide enough to capture the persect to approximately 30% of the channels best identify the center of each individing VBW≥RBW; Sweep = auto; Detector function = peak; Trace = maximum 5. Use the marker-delta function to depeaks of the adjacent channels. Record the value in report.	and enable the EUT transmit er settings: eaks of two adjacent channels; RBW is nel spacing, adjust as necessary to dual channel; x hold. etermine the separation between the
have hopping channel carrier frequence	ng in the 2400-2483.5 MHz band may cies that are separated by 25 kHz or of the hopping channel, whichever is
Exploratory Test Mode: Hopping transmitting with all kind of m	nodulation and all kind of data type
modulation type, 2-DH5 of data ty	data type is the worst case of GFSK type is the worst case of $\pi/4DQPSK$ is the worst case of 8DPSK modulation
Test Results: Refer to Appendix A	



4101 000 40 0040
ANSI C63.10:2013
RF test System Fower port Table RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Hopping transmitting with all kind of modulation


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Supply Power Attenuator Temperature Cabnet Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Compouter Power Supply Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

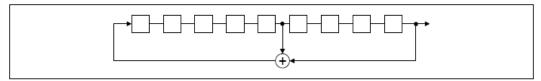
5.8 Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Poorte) Pomer Poorte Supply Pamer Poort Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

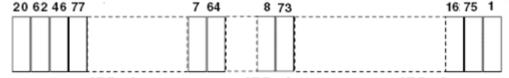
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage


outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

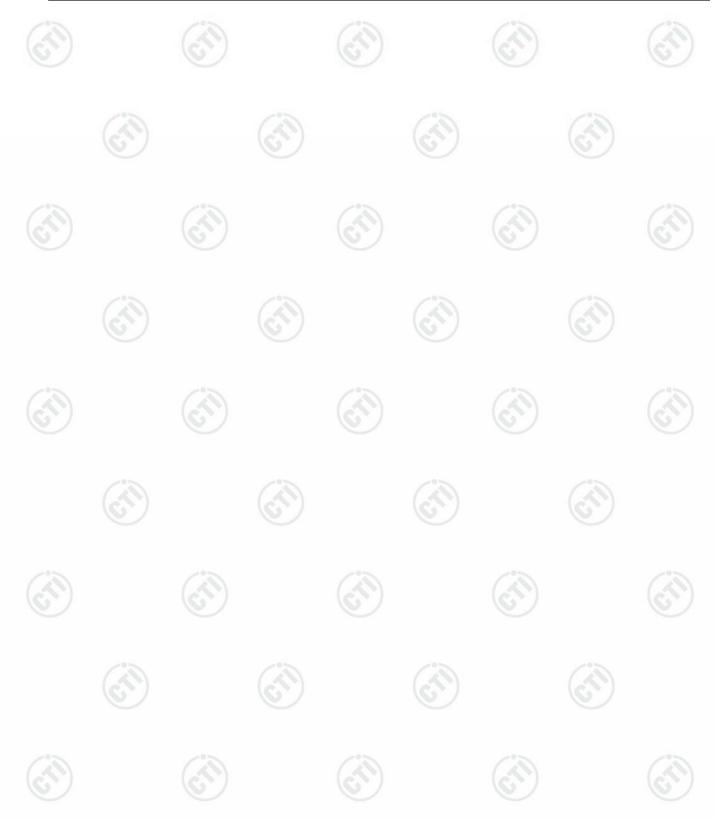
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

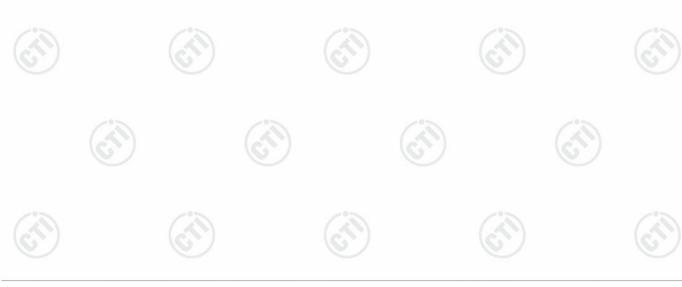
According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

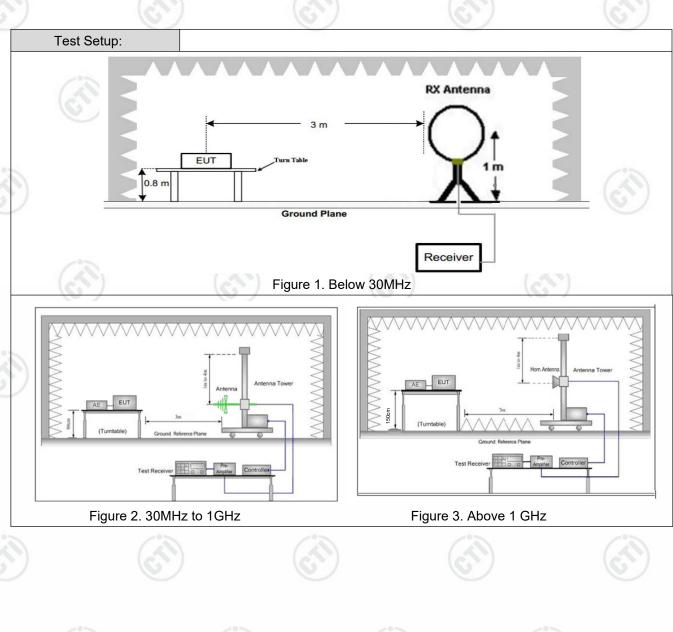
Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.



According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

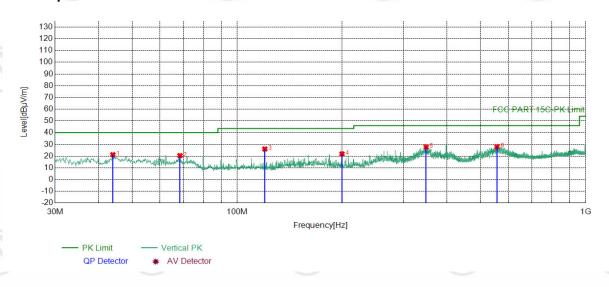

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

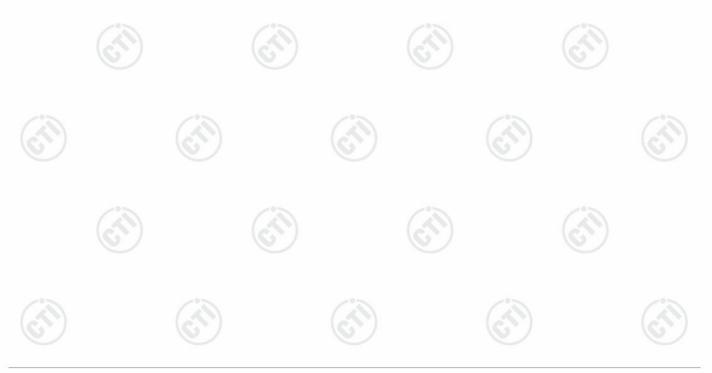


5.10 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013							
Test Site:	Measurement Distance	: 3m	(Semi-Anech	oic Cham	ber)	/			
	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak			
Deseiver Cetur	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak			
Receiver Setup:	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak			
	Ab 4011-		Peak	Peak 1MHz		Peak			
	Above 1GHz		Peak	1MHz	10kHz	Average			
	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	24	00/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	240	000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-00	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
Limit:	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz		500	54.0	Quasi-peak	3			
	Above 1GHz	·)	500 54.0		Average	3			
	Note: 15.35(b), Unless emissions is 20dE applicable to the epeak emission lev	3 abo equip	ve the maxin	num permi est. This p	itted average	emission limit			

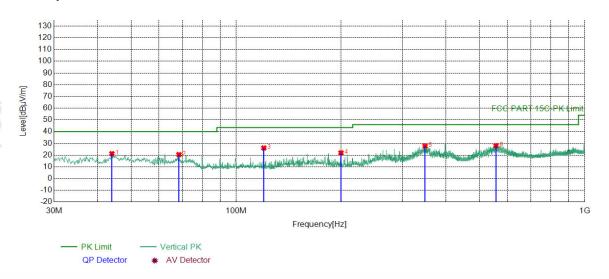
Test Procedure:	meters above was rotated 3 radiation. 2) Above 1G: meters above was rotated 3 radiation. Note: For the Place the meadetermined to distance, whill of emissions a oriented for m to be higher of the emission maximum sign which maximin for maximum 1 m to 4 m abb. The EUT was antenna, which tower. C. The antennal ground to detend horizontal and measurement d. For each suspand then the athe test frequence meter) and the degrees to fine. The test-receible Bandwidth with f. If the emission limit specified EUT would be margin would average meth g. Test the EUT (2441MHz),th h. The radiation	The EUT was placed on the at the ground at a 3 meter sem a 60 degrees to determine the practical and the analysis of the east report of the emission test above as a source of emissions at the each frequency of significant and the emissions. The meast or lower than the EUT, dependent and staying aimed at the emissions. The meast emissions shall be restricted as the emissions. The meast emissions shall be restricted as set 3 meters away from the interpretation of the emission	top of a rotating table 1.5 in-anechoic camber. The table position of the highest top of a rotating table 1.5 in-anechoic camber. The table position of the highest 1GHz: In each area of the EUT the specified measurement antenna aimed at the source internation into a range of the internation of the internation elevation shall be that surement antenna elevation to a range of heights of from ground plane. Interference-receiving a variable-height antenna Iter to four meters above the fithe field strength. Both antenna are set to make the s arranged to its worst case from 1 meter to 4 meters (for tenna was tuned to heights 1 from 0 degrees to 360 Detect Function and Specified Dede was 10dB lower than the ed and the peak values of the issions that did not have 10dB and peak, quasi-peak or orted in a data sheet. MHz),the middle channel (2) d in X, Y, Z axis positioning
Exploratory Tes	Non-honning trans	e procedures until all frequenc smitting mode with all kind of	cies measured was complete. modulation and all kind of
	Through Pre-scar	n, find the 3DH5 of data type	and 8DPSK modulation is the
	worst case.		
Final Test Mode	scan, the worst ca	at Transmitting mode, For base is the middle channel. se is recorded in the report.	elow 1GHz part, through pre-



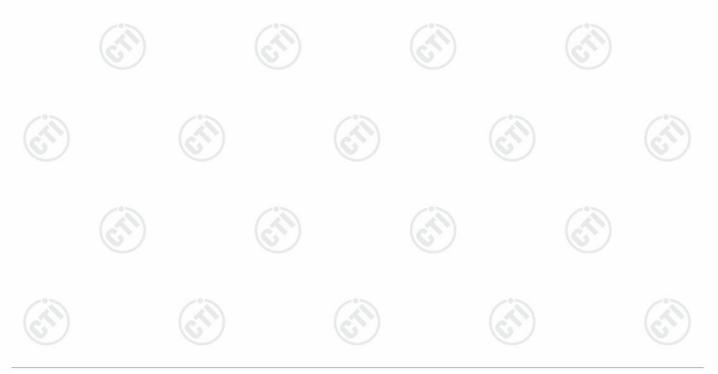


Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case middle channel of 3DH5 for 8DPSK was recorded in the report.



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	59.6850	-18.45	45.79	27.34	40.00	12.66	PASS	Horizontal	Peak
2	143.9864	-21.87	48.11	26.24	43.50	17.26	PASS	Horizontal	Peak
3	263.9874	-16.27	46.95	30.68	46.00	15.32	PASS	Horizontal	Peak
4	360.5121	-13.79	50.79	37.00	46.00	9.00	PASS	Horizontal	Peak
5	556.5687	-9.65	43.58	33.93	46.00	12.07	PASS	Horizontal	Peak
6	884.0734	-5.14	37.01	31.87	46.00	14.13	PASS	Horizontal	Peak

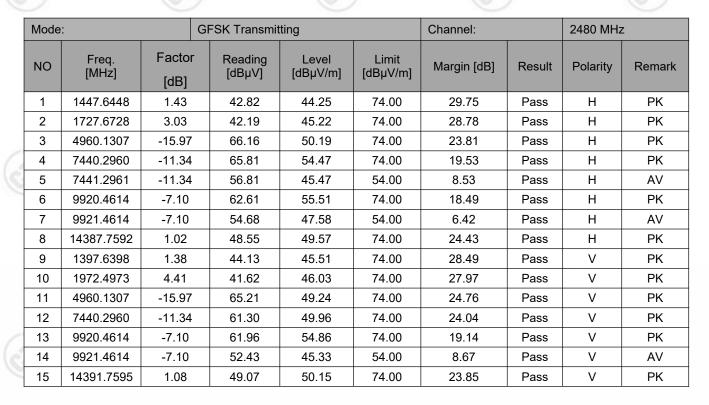


1 20	C 1	1.2	7.1	1.67				1 20	6.7.1
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	43.9694	-17.34	38.58	21.24	40.00	18.76	PASS	Vertical	Peak
2	68.5129	-20.46	40.92	20.46	40.00	19.54	PASS	Vertical	Peak
3	120.0250	-20.08	46.17	26.09	43.50	17.41	PASS	Vertical	Peak
4	199.8640	-17.85	39.76	21.91	43.50	21.59	PASS	Vertical	Peak
5	348.4828	-14.12	41.88	27.76	46.00	18.24	PASS	Vertical	Peak
6	556.6657	-9.64	37.69	28.05	46.00	17.95	PASS	Vertical	Peak

Radiated Spurious Emission above 1GHz:

Mode	Mode:		GFSK Transmitting			Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1294.8295	1.05	43.03	44.08	74.00	29.92	Pass	Н	PK
2	1810.4810	3.36	41.64	45.00	74.00	29.00	Pass	Н	PK
3	4804.1203	-16.23	62.17	45.94	74.00	28.06	Pass	Н	PK
4	7206.2804	-11.83	61.53	49.70	74.00	24.30	Pass	Н	PK
5	9607.4405	-7.37	59.20	51.83	74.00	22.17	Pass	Н	PK
6	13758.7172	-1.69	50.87	49.18	74.00	24.82	Pass	Н	PK
7	1400.0400	1.39	44.23	45.62	74.00	28.38	Pass	V	PK
8	1999.5000	4.55	43.57	48.12	74.00	25.88	Pass	V	PK
9	4804.1203	-16.23	61.43	45.20	74.00	28.80	Pass	V	PK
10	7206.2804	-11.83	55.44	43.61	74.00	30.39	Pass	V	PK
11	9608.4406	-7.37	61.78	54.41	74.00	19.59	Pass	V	PK
12	9609.4406	-7.37	52.62	45.25	54.00	8.75	Pass	V	AV
13	14490.7661	-0.08	49.83	49.75	74.00	24.25	Pass	V	PK

Mode	Mode:		GFSK Transmit	tting		Channel:		2441 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1263.8264	0.97	42.82	43.79	74.00	30.21	Pass	Н	PK
2	1981.6982	4.45	41.83	46.28	74.00	27.72	Pass	Н	PK
3	4882.1255	-16.21	60.82	44.61	74.00	29.39	Pass	Н	PK
4	7323.2882	-11.65	61.32	49.67	74.00	24.33	Pass	Н	PK
5	9764.4510	-7.50	61.34	53.84	74.00	20.16	Pass	Н	PK
6	15513.8343	0.38	51.10	51.48	74.00	22.52	Pass	Н	PK
7	1394.2394	1.37	44.49	45.86	74.00	28.14	Pass	V	PK
8	1990.6991	4.50	43.11	47.61	74.00	26.39	Pass	V	PK
9	4882.1255	-16.21	60.95	44.74	74.00	29.26	Pass	V	PK
10	7323.2882	-11.65	56.93	45.28	74.00	28.72	Pass	V	PK
11	9763.4509	-7.50	63.81	56.31	74.00	17.69	Pass	V	PK
12	9765.4510	-7.49	53.90	46.41	54.00	7.59	Pass	V	AV
13	14340.7561	0.24	49.05	49.29	74.00	24.71	Pass	V	PK



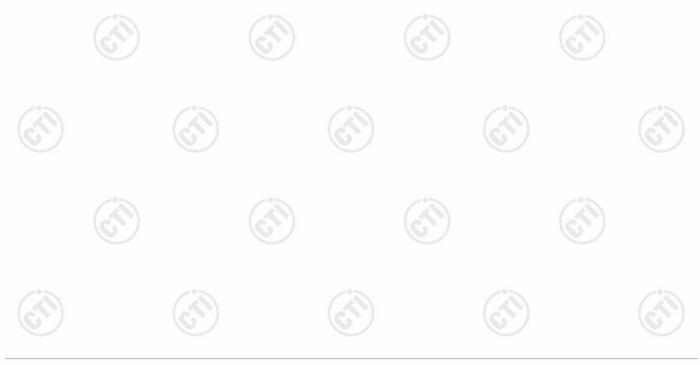
	Mode	:		π/4DQPSK Tra	ansmitting		Channel:		2402 MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1150.4150	0.82	44.41	45.23	74.00	28.77	Pass	Н	PK
ppt 1	2	1797.6798	3.27	42.71	45.98	74.00	28.02	Pass	Н	PK
4	3	4803.1202	-16.23	62.48	46.25	74.00	27.75	Pass	Н	PK
ĕ	4	7206.2804	-11.83	59.10	47.27	74.00	26.73	Pass	Н	PK
	5	9608.4406	-7.37	58.25	50.88	74.00	23.12	Pass	Н	PK
	6	14531.7688	0.03	49.53	49.56	74.00	24.44	Pass	Н	PK
	7	1207.4207	0.82	43.59	44.41	74.00	29.59	Pass	V	PK
	8	1992.0992	4.51	44.05	48.56	74.00	25.44	Pass	V	PK
	9	4804.1203	-16.23	59.78	43.55	74.00	30.45	Pass	V	PK
	10	7035.2690	-11.74	54.82	43.08	74.00	30.92	Pass	V	PK
	11	9608.4406	-7.37	61.73	54.36	74.00	19.64	Pass	V	PK
	12	9609.4406	-7.37	52.95	45.58	54.00	8.42	Pass	V	AV
	13	13834.7223	-1.75	50.60	48.85	74.00	25.15	Pass	V	PK

Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2441 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1358.0358	1.25	43.31	44.56	74.00	29.44	Pass	Н	PK
2	1937.2937	4.22	41.57	45.79	74.00	28.21	Pass	Н	PK
3	4882.1255	-16.21	62.18	45.97	74.00	28.03	Pass	Н	PK
4	7323.2882	-11.65	59.66	48.01	74.00	25.99	Pass	Н	PK
5	9764.4510	-7.50	59.92	52.42	74.00	21.58	Pass	Н	PK
6	13682.7122	-1.75	50.81	49.06	74.00	24.94	Pass	Н	PK
7	1454.6455	1.43	43.65	45.08	74.00	28.92	Pass	V	PK
8	1795.0795	3.26	41.97	45.23	74.00	28.77	Pass	V	PK
9	4882.1255	-16.21	60.83	44.62	74.00	29.38	Pass	V	PK
10	7403.2936	-11.50	55.64	44.14	74.00	29.86	Pass	V	PK
11	9764.4510	-7.50	61.88	54.38	74.00	19.62	Pass	V	PK
12	9765.4510	-7.49	53.00	45.51	54.00	8.49	Pass	V	AV
13	13683.7122	-1.75	50.79	49.04	74.00	24.96	Pass	V	PK

Mode	Mode:		π/4DQPSK Tra	nsmitting		Channel:		2480 MHz	
NO	Freq. [MHz]	Facto	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1232.4232	0.88	43.40	44.28	74.00	29.72	Pass	Н	PK
2	1807.8808	3.34	41.59	44.93	74.00	29.07	Pass	Н	PK
3	4960.1307	-15.97	66.09	50.12	74.00	23.88	Pass	Н	PK
4	7439.2960	-11.34	64.67	53.33	74.00	20.67	Pass	Н	PK
5	9920.4614	-7.10	60.59	53.49	74.00	20.51	Pass	Н	PK
6	12399.6266	-4.69	52.93	48.24	74.00	25.76	Pass	Н	PK
7	1268.0268	0.98	43.25	44.23	74.00	29.77	Pass	V	PK
8	1794.6795	3.26	43.38	46.64	74.00	27.36	Pass	V	PK
9	4960.1307	-15.97	63.40	47.43	74.00	26.57	Pass	V	PK
10	7440.2960	-11.34	60.34	49.00	74.00	25.00	Pass	V	PK
11	9920.4614	-7.10	60.72	53.62	74.00	20.38	Pass	V	PK
12	13744.7163	-1.71	51.18	49.47	74.00	24.53	Pass	V	PK

Mode	:		8DPSK Transm	nitting		Channel:		2402 MHz	2
NO	Freq. [MHz]	Facto [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1265.2265	0.97	42.99	43.96	74.00	30.04	Pass	Н	PK
2	1867.4867	3.79	42.20	45.99	74.00	28.01	Pass	Н	PK
3	4804.1203	-16.23	61.77	45.54	74.00	28.46	Pass	Н	PK
4	7206.2804	-11.83	59.36	47.53	74.00	26.47	Pass	Н	PK
5	9608.4406	-7.37	58.69	51.32	74.00	22.68	Pass	Н	PK
6	15174.8117	1.70	48.32	50.02	74.00	23.98	Pass	Н	PK
7	1383.0383	1.33	42.75	44.08	74.00	29.92	Pass	V	PK
8	1997.6998	4.54	45.17	49.71	74.00	24.29	Pass	V	PK
9	4804.1203	-16.23	61.01	44.78	74.00	29.22	Pass	V	PK
10	7206.2804	-11.83	55.81	43.98	74.00	30.02	Pass	V	PK
11	9607.4405	-7.37	64.59	57.22	74.00	16.78	Pass	V	PK
12	9609.4406	-7.37	53.00	45.63	54.00	8.37	Pass	V	AV
13	14353.7569	0.45	48.88	49.33	74.00	24.67	Pass	V	PK

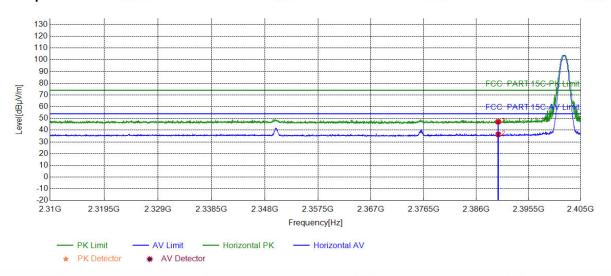
Mode	:		8DPSK Transm	nitting		Channel:		2441 MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.0250	0.93	42.89	43.82	74.00	30.18	Pass	Н	PK
2	1779.2779	3.21	42.06	45.27	74.00	28.73	Pass	Н	PK
3	4882.1255	-16.21	62.04	45.83	74.00	28.17	Pass	Н	PK
4	7323.2882	-11.65	58.35	46.70	74.00	27.30	Pass	Н	PK
5	9763.4509	-7.50	61.99	54.49	74.00	19.51	Pass	Н	PK
6	9765.4510	-7.49	51.84	44.35	54.00	9.65	Pass	Н	AV
7	13757.7172	-1.69	50.94	49.25	74.00	24.75	Pass	Н	PK
8	1396.8397	1.38	43.11	44.49	74.00	29.51	Pass	V	PK
9	1794.4794	3.26	43.46	46.72	74.00	27.28	Pass	V	PK
10	4882.1255	-16.21	58.19	41.98	74.00	32.02	Pass	V	PK
11	7323.2882	-11.65	55.48	43.83	74.00	30.17	Pass	V	PK
12	9764.4510	-7.50	63.38	55.88	74.00	18.12	Pass	V	PK
13	9765.4510	-7.49	54.23	46.74	54.00	7.26	Pass	V	AV
14	14411.7608	1.05	48.79	49.84	74.00	24.16	Pass	V	PK

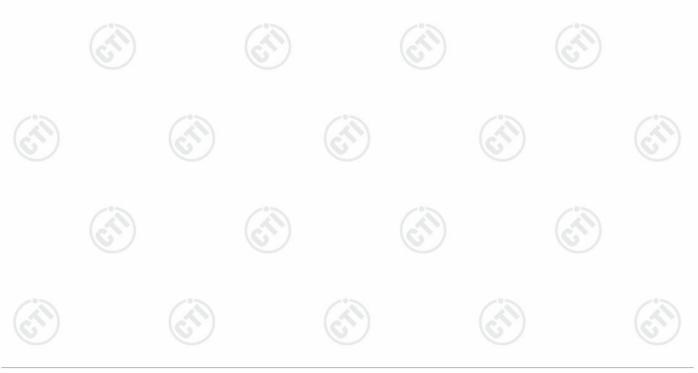


Mode):		8DPSK Transm	nitting		Channel:		2480 MHz	<u>z</u>
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1383.4383	1.34	42.71	44.05	74.00	29.95	Pass	Н	PK
2	1794.8795	3.26	42.81	46.07	74.00	27.93	Pass	Н	PK
3	4960.1307	-15.97	62.33	46.36	74.00	27.64	Pass	Н	PK
4	7440.2960	-11.34	61.60	50.26	74.00	23.74	Pass	Н	PK
5	9920.4614	-7.10	61.94	54.84	74.00	19.16	Pass	Н	PK
6	9921.4614	-7.10	52.46	45.36	54.00	8.64	Pass	Н	AV
7	13748.7166	-1.70	51.14	49.44	74.00	24.56	Pass	Н	PK
8	1396.6397	1.38	43.99	45.37	74.00	28.63	Pass	V	PK
9	1996.8997	4.53	44.14	48.67	74.00	25.33	Pass	V	PK
10	4960.1307	-15.97	59.04	43.07	74.00	30.93	Pass	V	PK
11	7440.2960	-11.34	57.07	45.73	74.00	28.27	Pass	V	PK
12	9920.4614	-7.10	59.27	52.17	74.00	21.83	Pass	V	PK
13	14335.7557	0.15	50.12	50.27	74.00	23.73	Pass	V	PK

Remark:

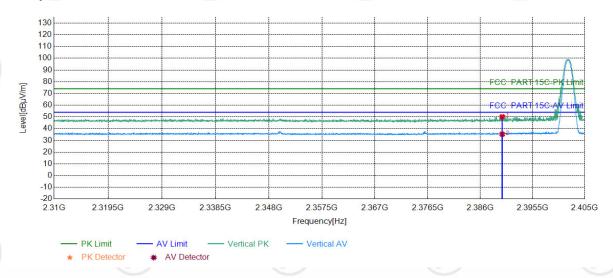
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



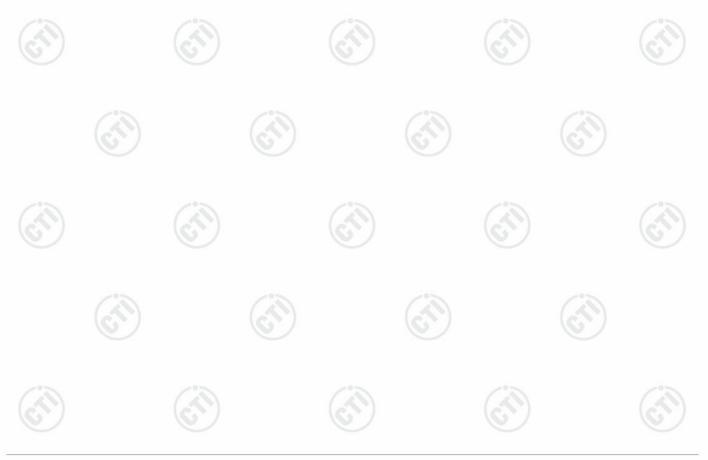

Restricted bands:

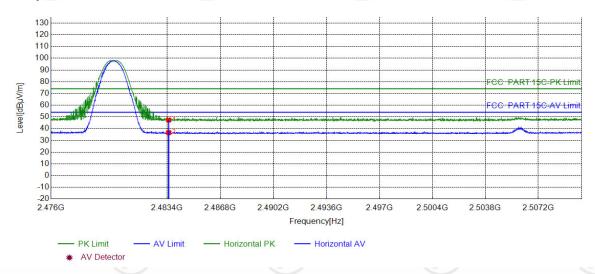
Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402 MHz
Remark:			

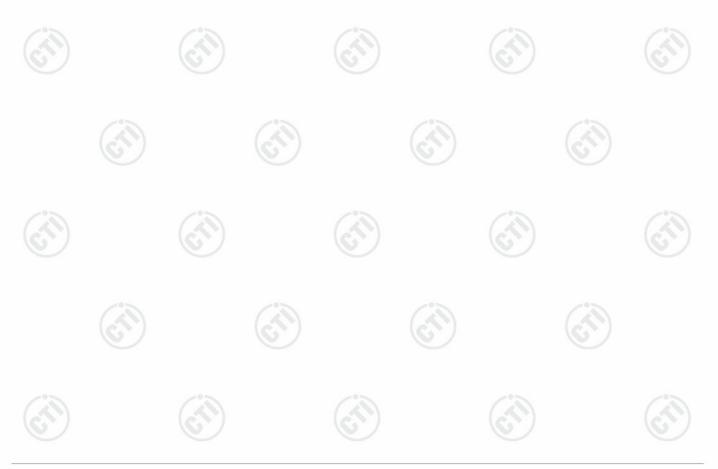


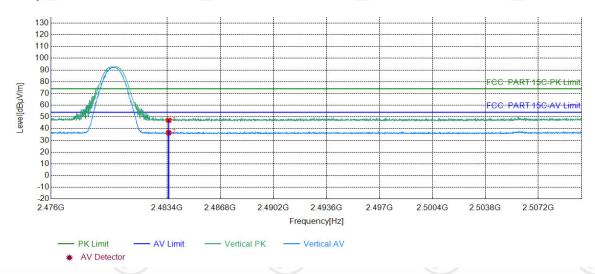
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	41.36	47.13	74.00	26.87	PASS	Horizontal	PK
e 1	2	2390.0000	5.77	30.62	36.39	54.00	17.61	PASS	Horizontal	AV



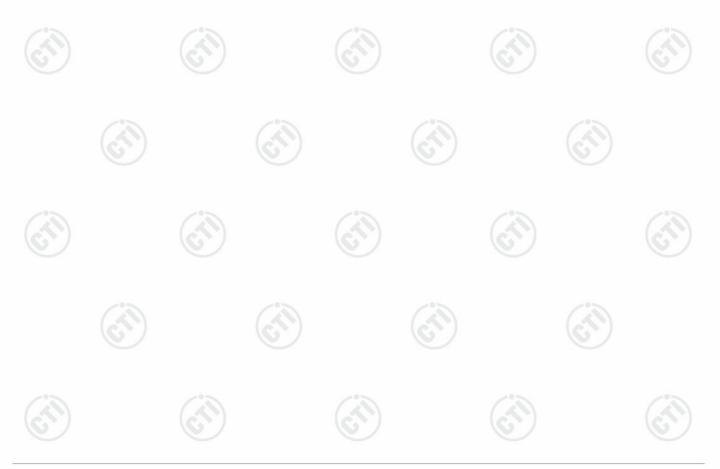


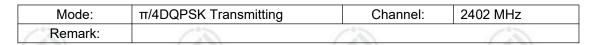
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	44.38	50.15	74.00	23.85	PASS	Vertical	PK
2	2390.0000	5.77	29.52	35.29	54.00	18.71	PASS	Vertical	AV

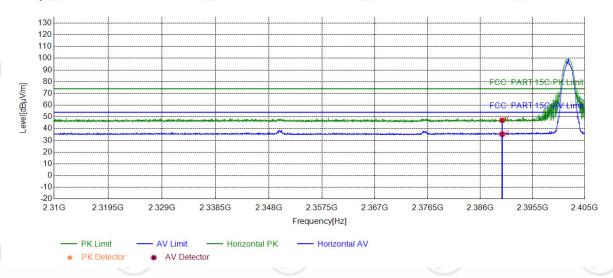




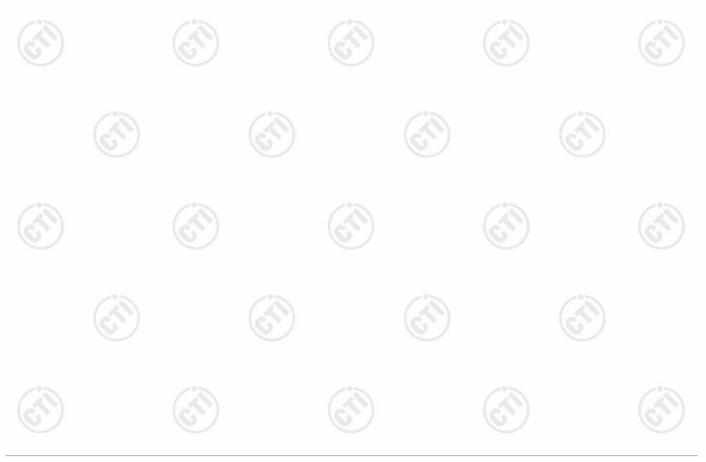
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.82	47.39	74.00	26.61	PASS	Horizontal	PK
2	2483.5000	6.57	30.07	36.64	54.00	17.36	PASS	Horizontal	AV

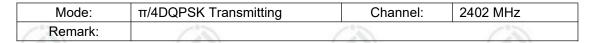


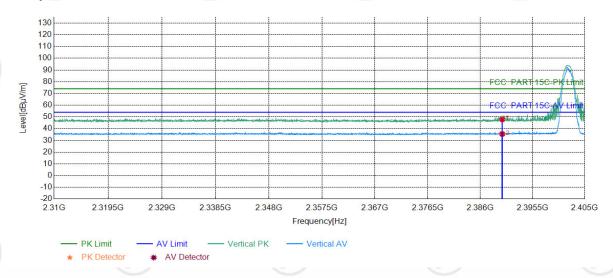




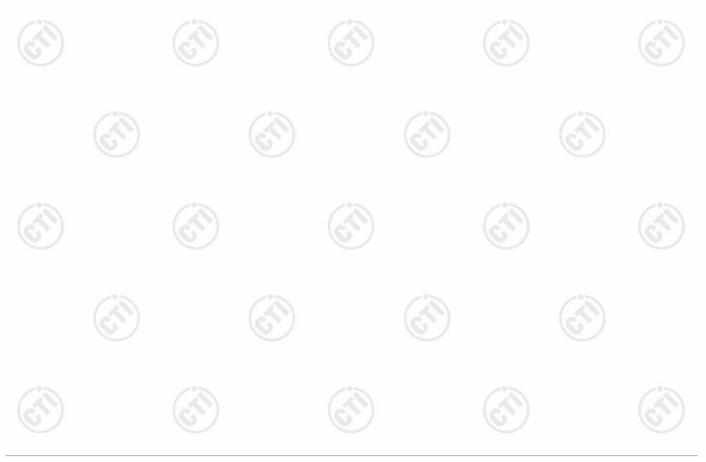
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.59	47.16	74.00	26.84	PASS	Vertical	PK
2	2483.5000	6.57	29.96	36.53	54.00	17.47	PASS	Vertical	AV

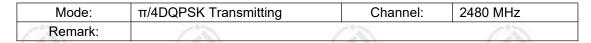


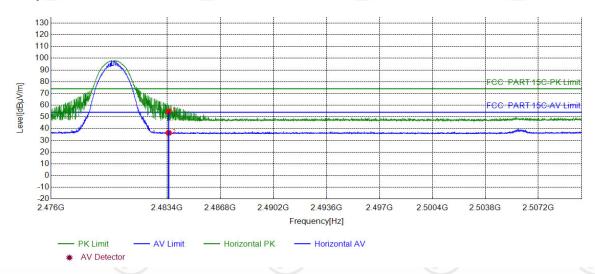




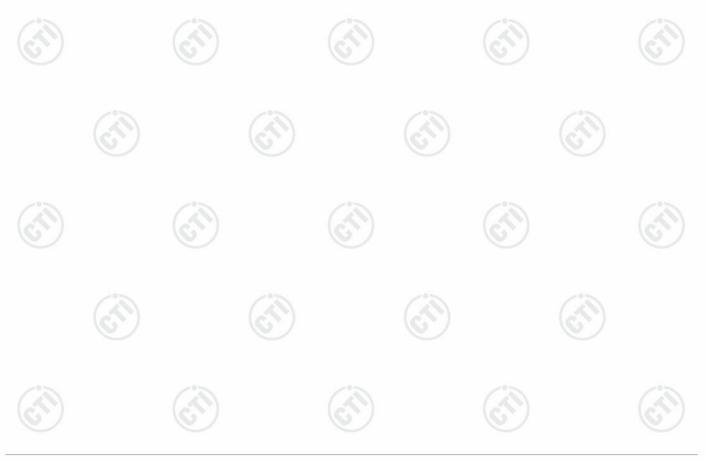
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	41.44	47.21	74.00	26.79	PASS	Horizontal	PK
Γ	2	2390.0000	5.77	29.50	35.27	54.00	18.73	PASS	Horizontal	AV

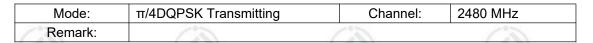


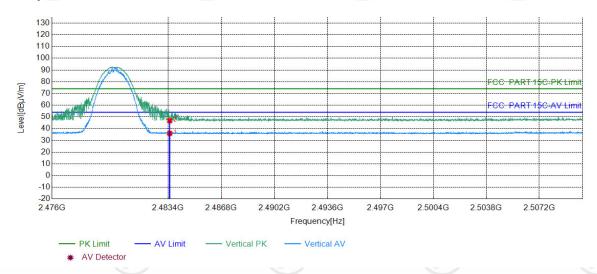




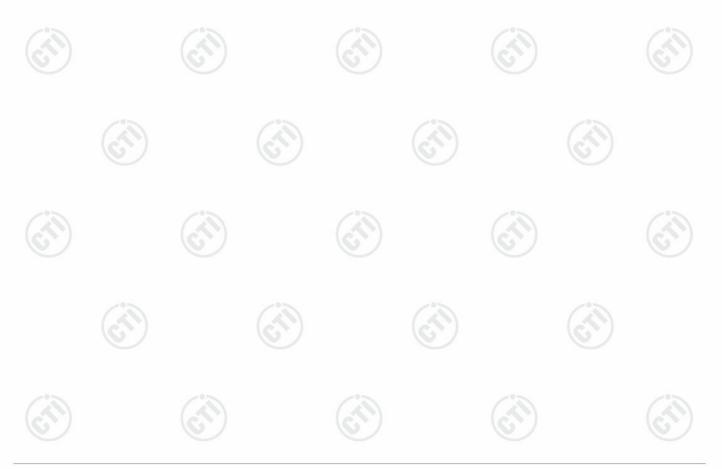
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	42.13	47.90	74.00	26.10	PASS	Vertical	PK
2	2390.0000	5.77	29.69	35.46	54.00	18.54	PASS	Vertical	AV

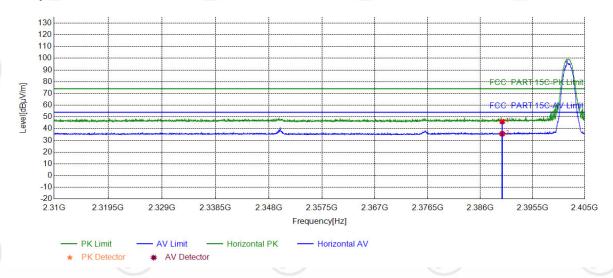




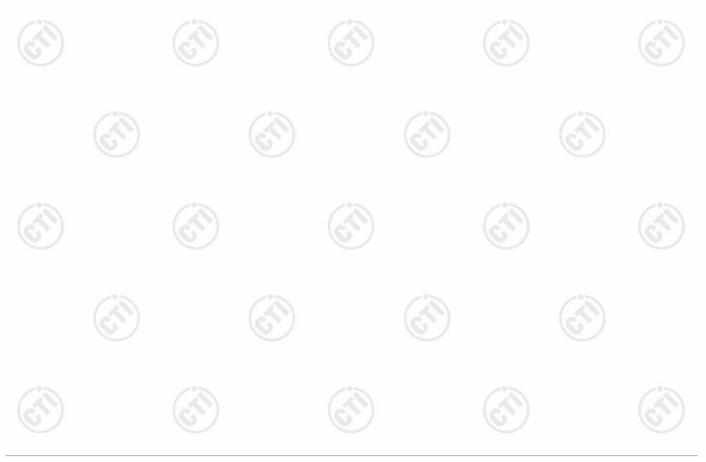


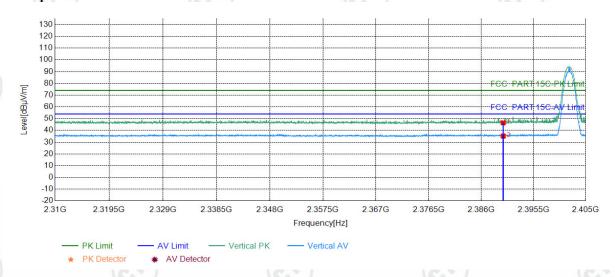
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	48.17	54.74	74.00	19.26	PASS	Horizontal	PK
2	2483.5000	6.57	29.84	36.41	54.00	17.59	PASS	Horizontal	AV



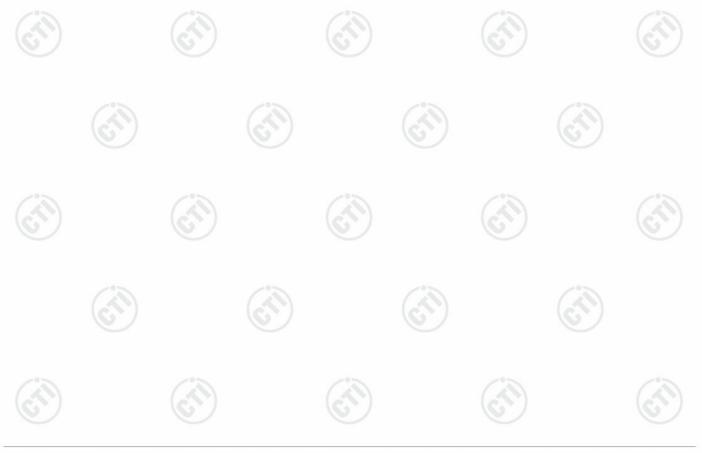


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.16	46.73	74.00	27.27	PASS	Vertical	PK
2	2483.5000	6.57	29.41	35.98	54.00	18.02	PASS	Vertical	AV

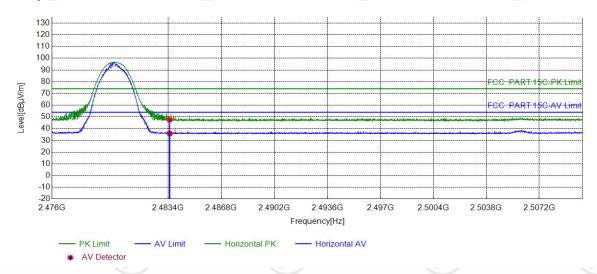




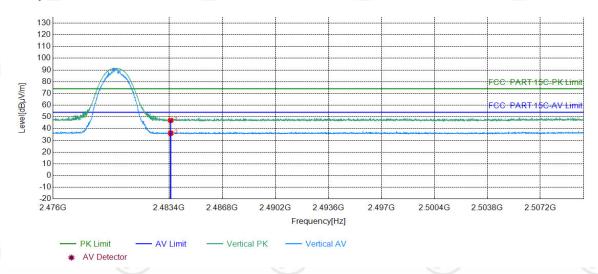
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.28	46.05	74.00	27.95	PASS	Horizontal	PK
2	2390.0000	5.77	29.89	35.66	54.00	18.34	PASS	Horizontal	AV



Mode:	8DPSK Transmitting	Channel:	2402 MHz
Remark:			



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.72	46.49	74.00	27.51	PASS	Vertical	PK
2	2390.0000	5.77	29.42	35.19	54.00	18.81	PASS	Vertical	AV



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.06	47.63	74.00	26.37	PASS	Horizontal	PK
2	2483.5000	6.57	29.34	35.91	54.00	18.09	PASS	Horizontal	AV

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.51	47.08	74.00	26.92	PASS	Vertical	PK
2	2483.5000	6.57	29.56	36.13	54.00	17.87	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

6 Appendix A

Refer to Appendix: Bluetooth Classic of EEED32N80941101.

