

Page 1 of 50

CTI华测检测 Report No.: EED32N81177001

Contents 1

2 VERSION	
3 TEST SUMMARY	
GENERAL INFORMATION	
 4.1 CLIENT INFORMATION	
4.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
5 EQUIPMENT LIST	
6 TEST RESULTS AND MEASUREMENT DATA	
 6.1 ANTENNA REQUIREMENT 6.2 AC POWER LINE CONDUCTED EMISSIONS 6.3 MAXIMUM CONDUCTED OUTPUT POWER 6.4 20DB EMISSION BANDWIDTH 	~
6.5 CARRIER FREQUENCY SEPARATION	
6.6 NUMBER OF HOPPING CHANNEL 6.7 TIME OF OCCUPANCY	
6.8 BAND EDGE MEASUREMENTS	
6.9 CONDUCTED SPURIOUS EMISSIONS	
6.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
7 APPENDIX A	
PHOTOGRAPHS OF TEST SETUP	\leq



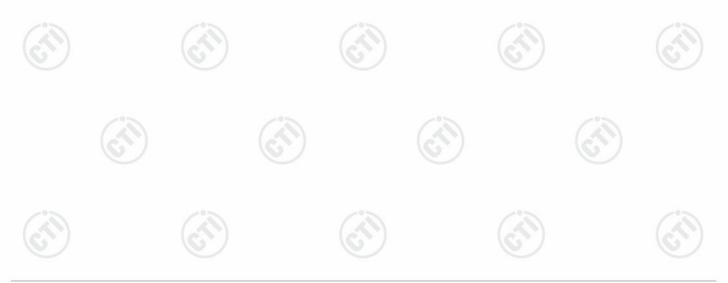
2 Version

V	ersion No.	Date	e	Description	/	
	00	Dec. 08, 2021	Original			
5					13	
	(c	N)	$(c^{(n)})$	(63)	6	

Test Item	Test Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS		
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS		
Maximum Conducted Output Power	ed Output 47 CFR Part 15, Subpart C Section 15.247 (b)(1)			
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS		
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS		
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS		
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS		
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS		
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS		
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS		
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS		
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS		

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

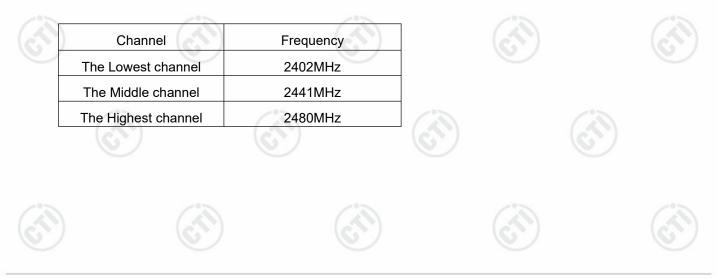

4 General Information

4.1 Client Information

Applicant:	China ETECH Groups Ltd.
Address of Applicant:	16/F, Block C, 2nd Phase of Central Avenue, Haihong Industrial Area, Xixiang Road, Baoan District, Shenzhen, China
Manufacturer:	China ETECH Groups Ltd.
Address of Manufacturer:	16/F, Block C, 2nd Phase of Central Avenue, Haihong Industrial Area, Xixiang Road, Baoan District, Shenzhen, China
Factory:	Dongguan China ETECH GROUPS CO., LTD.
Address of Factory:	Room 501, Building 6, No.2 Hong Jin Road, Li Zhou Jiao Village, Hongmei Town, Dongguan City

4.2 General Description of EUT

Product Name:	Fashion Speaker	
Mode No.:	1158B	
Trade mark:	MINISO	J
Bluetooth Version:	V5.1	
Operation Frequency:	2402MHz~2480MHz	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK	
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Product Type:	☐ Mobile	
Antenna Type:	PCB antenna	(67)
Antenna Gain:	-0.58dBi	\smile
Power Supply:	lithium battery: DC 3.7V, Charge by DC 5.0V	
Test Voltage:	DC 3.7V	
Sample Received Date:	Nov. 11, 2021	
Sample tested Date:	Nov. 11, 2021 to Nov. 19, 2021	



Operation F	requency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

4.3 Test Configuration

Software:	FCC Assist 1.0	0.2.2 (manufacturer	⁻ declare)	
EUT Power Grade:	Class2 (Power selected)	level is built-in set	parameters and ca	annot be changed and
Use test software to set th transmitting of the EUT.	e lowest frequency, th	ne middle frequency	y and the highest fr	equency keep
Mode	/	Channel	Fr	equency(MHz)
		CH0		2402
DH1/DH3/DH5	(3)	СН39	8	2441
(J)		СН78	°)	2480
		CH0		2402
2DH1/2DH3/2DH5		СН39		2441
		CH78		2480
.4 Test Environme	ent	(C)	C	C
Operating Enviro	nment:			
Radiated Spuriou	s Emissions:			
Temperature:	22~25.0 °C			
Humidity:	50~55 % RH	0)	O
Atmospheric Press	sure: 1010mbar			
RF Conducted:				
Temperature:	22~25.0 °C			
Humidity:	50~55 % RH	(C)	(S)	G
Atmospheric Press	sure: 1010mbar	\smile		<u> </u>
Conducted Emiss	sions:			
Temperature:	22~25.0 °C	13	S	
Humidity:	50~55 % RH	(~	*)	(25)

4.5 Description of Support Units

Atmospheric Pressure:

The EUT has been tested with associated equipment below. 1) support equipment

1010mbar

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	FCC ID and DOC	СТІ
Adapter	HUAWEI	HW-090200CH0	DOC	СТІ

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty		
1	Radio Frequency	lio Frequency 7.9 x 10 ⁻⁸		
	DE nower, conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
		3.3dB (9kHz-30MHz)		
3	Padiated Spurious omission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)		
		3.4dB (18GHz-40GHz)		
4	Conduction omission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611 879	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(<u></u>

		3M Semi/full-aneo	choic Chamber		
Equipment	Equipment Manufacturer Mo	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	ток	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024
Receiver	R&S	ESCI7	100938-003	10-14-2021	10-13-2022
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022
Cable line	Fulai(7M)	SF106	5219/6A	(A)	/
Cable line	Fulai(6M)	SF106	5220/6A	(<u>C)</u>	(0
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A		

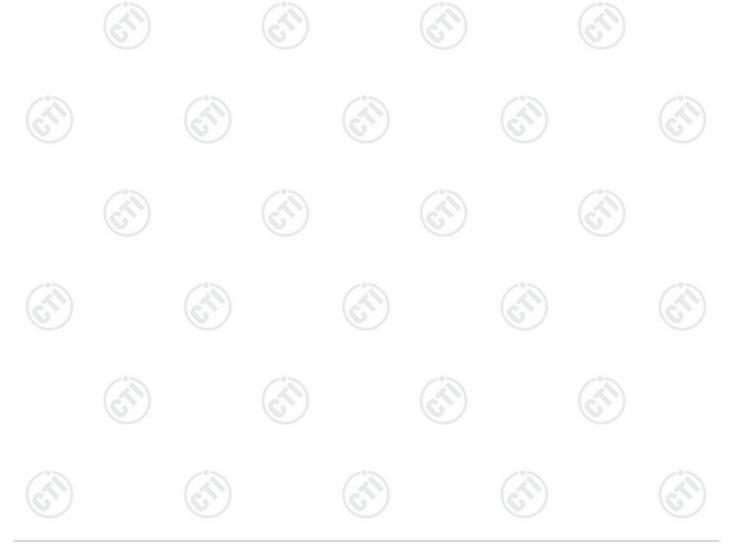
Page 9 of 50

Et	N	Madal Na	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		(
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	(s)
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		/
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	\odot	(
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		- 6



Page 11 of 50

		Conducted dist	urbance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022
Temperature/	Defu	TH128	/		(
Humidity Indicator	9	0		6	
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022
Barometer	changchun	DYM3	1188		

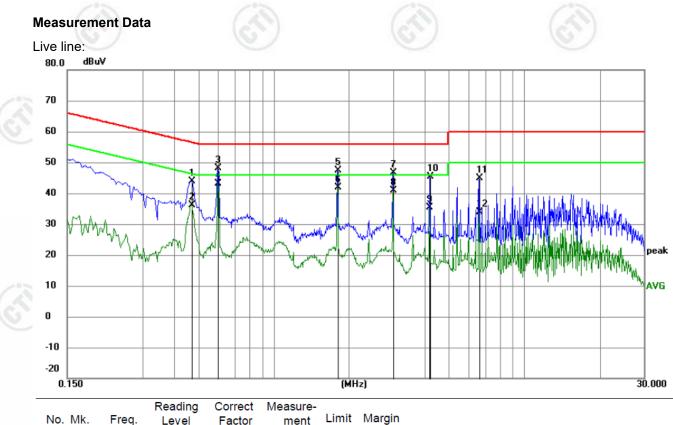


6 Test results and Measurement Data

6.1 Antenna Requirement

	Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
	15.203 requirement:	
	responsible party shall be u antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or bited.
	antennas with directional ga section, if transmitting anter power from the intentional r	er limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this mas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
/	EUT Antenna:	Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is -0.58dBi.

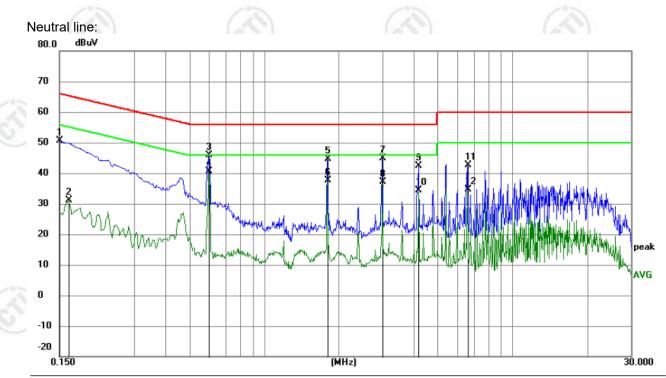

6.2 AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15.2	207	(G [*])
	Test Method:	ANSI C63.10: 2013		
	Test Frequency Range:	150kHz to 30MHz		
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	•	
- 0 -		Frequency range (MHz)	Limit (d	
			Quasi-peak	Average
9	Limit:	0.15-0.5	66 to 56*	56 to 46*
	Linne.	0.5-5	56	46
		5-30	60	50
		* Decreases with the logarithm	n of the frequency.	
	Test Setup:	C Mains	AE USN2 + AC Ground Reference Plane	Test Receiver
2		(2) The LOT was connected to		
3 	Test Procedure:	 Impedance Stabilization Neimpedance. The power cable connected to a second LIS reference plane in the sam measured. A multiple socker power cables to a single LI exceeded. 3) The tabletop EUT was place ground reference plane. Ar placed on the horizontal grief the EUT shall be 0.4 m f vertical ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated ects 5) In order to find the maximuted on the maximuted on the maximum for the first of the first of the first of the first of the ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the first of find the maximum for the first of the fi	etwork) which provides oles of all other units of N 2, which was bonded e way as the LISN 1 fo et outlet strip was used SN provided the rating and for floor-standing arr ound reference plane, th a vertical ground refe rom the vertical ground lane was bonded to the 1 was placed 0.8 m fro to a ground reference and reference plane. The of the LISN 1 and the quipment was at least 0 m emission, the relative	the EUT were d to the ground r the unit being I to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT wa erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. e positions of
	Test Procedure: Exploratory Test Mode:	 impedance. The power cab connected to a second LIS reference plane in the sam measured. A multiple socke power cables to a single LI exceeded. 3) The tabletop EUT was place ground reference plane. Ar placed on the horizontal ground of the EUT shall be 0.4 m f vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated ections the EUT and associated ections the EUT and all of the international ANSI C63.10: 2013 on con Non-hopping transmitting mod data type at the lowest, middle Through Pre-scan, find the 2D the lowest channel is the wors 	etwork) which provides oles of all other units of N 2, which was bonded e way as the LISN 1 fo et outlet strip was used SN provided the rating and for floor-standing arr ound reference plane, th a vertical ground reference lane was bonded to the 1 was placed 0.8 m from to a ground reference and reference plane. The of the LISN 1 and the guipment was at least 0 m emission, the relative terface cables must be ducted measurement. e with all kind of modu a, high channel. H5 of data type and π/t t case.	a $50\Omega/50\mu$ H + 5Ω linea the EUT were d to the ground r the unit being l to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. e positions of changed according to lation and all kind of
	Exploratory Test Mode:	 impedance. The power cab connected to a second LIS reference plane in the sam measured. A multiple socke power cables to a single LI exceeded. 3) The tabletop EUT was place ground reference plane. Ar placed on the horizontal gr 4) The test was performed wit of the EUT shall be 0.4 m f vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the grou between the closest points the EUT and associated ec 5) In order to find the maximu equipment and all of the int ANSI C63.10: 2013 on con Non-hopping transmitting mod data type at the lowest, middle 	etwork) which provides oles of all other units of N 2, which was bonded e way as the LISN 1 fo et outlet strip was used SN provided the rating and for floor-standing arr ound reference plane, th a vertical ground reference lane was bonded to the 1 was placed 0.8 m from to a ground reference and reference plane. The of the LISN 1 and the guipment was at least 0 m emission, the relative terface cables must be ducted measurement. e with all kind of modu a, high channel. H5 of data type and π/t t case.	a $50\Omega/50\mu$ H + 5Ω linea the EUT were d to the ground r the unit being l to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. e positions of changed according to lation and all kind of

Page 14 of 50

	No. Mk.	Freq.	Level	Factor	ment	Limit	Margin		
-		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment
	1	0.4695	33.99	9.96	43.95	56.52	-12.57	peak	
3	2	0.4695	26.07	9.96	36.03	46.52	-10.49	AVG	
3	3	0.6000	37.97	10.07	48.04	56.00	-7.96	peak	
-	4 *	0.6000	32.97	10.07	43.04	46.00	-2.96	AVG	
-	5	1.8015	37.47	9.80	47.27	56.00	-8.73	peak	
-	6	1.8015	31.99	9.80	41.79	46.00	-4.21	AVG	
-	7	2.9985	36.84	9.79	46.63	56.00	-9.37	peak	
-	8	2.9985	31.15	9.79	40.94	46.00	-5.06	AVG	
-	9	4.1955	25.55	9.78	35.33	46.00	-10.67	AVG	
-	10	4.2045	35.72	9.78	45.50	56.00	-10.50	peak	
3	11	6.6075	35.08	9.79	44.87	60.00	-15.13	peak	
\sim	12	6.6075	24.18	9.79	33.97	50.00	-16.03	AVG	
-									

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 50

	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBuV	dBu∨	dB	Detector	Comment
-	1	0.1500	40.73	9.87	50.60	66.00	-15.40	peak	
-	2	0.1635	21.36	9.87	31.23	55.28	-24.05	AVG	
1	3	0.6000	35.78	10.07	45.85	56.00	-10.15	peak	
1	4 *	0.6000	30.51	10.07	40.58	46.00	-5.42	AVG	
1	5	1.8015	34.71	9.80	44.51	56.00	-11.49	peak	
	6	1.8015	27.95	9.80	37.75	46.00	-8.25	AVG	
-	7	3.0030	35.15	9.79	44.94	56.00	-11.06	peak	
-	8	3.0030	27.43	9.79	37.22	46.00	-8.78	AVG	
-	9	4.2000	32.48	9.78	42.26	56.00	-13.74	peak	
	10	4.2000	24.61	9.78	34.39	46.00	-11.61	AVG	
-	11	6.6030	32.75	9.79	42.54	60.00	-17.46	peak	
	12	6.6030	24.88	9.79	34.67	50.00	-15.33	AVG	
_			-				_	-	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Maximum Conducted Output Power

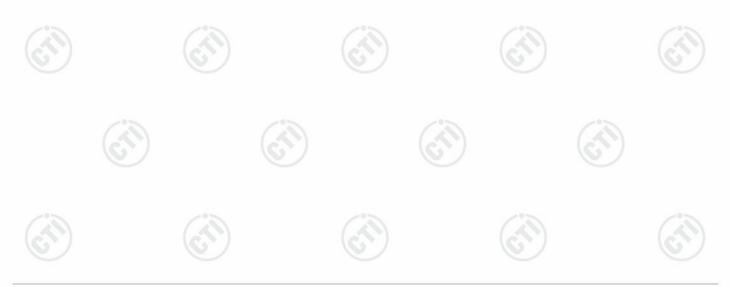
6.3	Maximum Conduct	ted Output Power
	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
12	Test Setup:	RF test
		Control Computer Porter Supply Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
8	Exploratory Test Mode:	
2	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFS modulation type, 2-DH5 of data type is the worst case of π /4DQPS modulation type.
	Test Results:	Refer to Appendix A

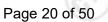
6.4 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Control Control Power Suppy TemPERATURE CABRET Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
Ś	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
	Limit:	NA
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
<u>ି</u>	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type.
	Test Results:	Refer to Appendix A
	(ct)	

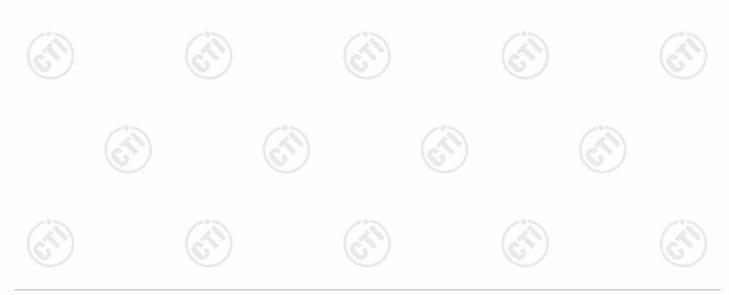
6.5 Carrier Frequency Separation

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Doctor RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type.
	Test Results:	Refer to Appendix A
S	(C)	



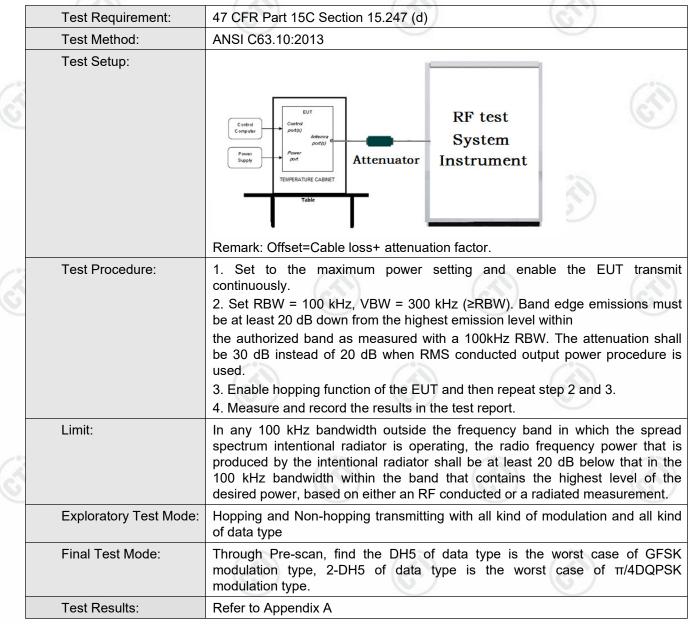

6.6 Number of Hopping Channel

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Computer Control Pomer Sophy Teber Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold.
2	5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Mode:	Hopping transmitting with all kind of modulation
Test Results:	Refer to Appendix A
(G ^r)	T (T) (T) (T)



6.7 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
(CX)	Test Setup:	Control Computer Computer Computer Control Power Supply Telemerature Cabinet Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
ି	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
	Test Results:	Refer to Appendix A
	G	



6.8 Band edge Measurements

6.9 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Power Supply Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Ś	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type.
/*>	Test Results:	Refer to Appendix A
\bigcirc	C.	

Page 23 of 50

	Test Requirement:	47 CFR Part 15C Section	1 15.247 (a)(1), (h) rec	quirement:
	rate from a Pseudorand on the average by each	channel frequencies that are se om ordered list of hopping frequ transmitter. The system receive idths of their corresponding tran	elected at the system h lencies. Each frequenc ers shall have input bal	nopping by must be used equally ndwidths that match the
	channels during each tr receiver, must be desig transmitter be presente employing short transm	ead spectrum systems are not r ansmission. However, the syste ned to comply with all of the reg d with a continuous data (or info ission bursts must comply with t ransmissions over the minimum	em, consisting of both t julations in this section ormation) stream. In ad the definition of a frequ	he transmitter and the should the ldition, a system uency hopping system
	the system to recognize independently chooses The coordination of free	elligence within a frequency hop other users within the spectrun and adapts its hopsets to avoid quency hopping systems in any ous occupancy of individual hop	n band so that it individ hopping on occupied other manner for the e	dually and channels is permitted. xpress purpose of
	Compliance for sectio	n 15.247(a)(1)		
	stage. The sequence be with nine ones. • Number of shift registe • Length of pseudo-rand	nodulo-two addition stage. And egins with the first ONE of 9 con		
			-[]-[]-[]-++	
		Ū.		
	Linear Feedba	ck Shift Register for Generat	ion of the PRBS sec	quence 💙
		ck Shift Register for Generat andom Frequency Hopping Seq 7 64 8 73	uence as follow:	quence 7
	An example of Pseudora	andom Frequency Hopping Seq	uence as follow:	
)	An example of Pseudora 20 62 46 77 Each frequency used each According to Bluetooth bandwidths that match frequencies in synchron	andom Frequency Hopping Seq 7 64 8 73 qually on the average by each tr Core Specification, Bluetooth the hopping channel bandwi ization with the transmitted sign	uence as follow: 16 ansmitter. receivers are designe dths of any Bluetootl	ed to have input and IF
)	An example of Pseudora 20 62 46 77 Each frequency used each According to Bluetooth bandwidths that match frequencies in synchrom Compliance for sectio According to Bluetooth pseudorandom hopping	andom Frequency Hopping Seq 7 64 8 73 qually on the average by each tr Core Specification, Bluetooth the hopping channel bandwi ization with the transmitted sign n 15.247(g) n Core Specification, the Blue frequency with a continuous do so transmitted under the frequency	uence as follow: ansmitter. receivers are designed dths of any Bluetooth als. tooth system transm lata and the short burs	ed to have input and IF th transmitters and shift its the packet with the st transmission from the

Page 24 of 50

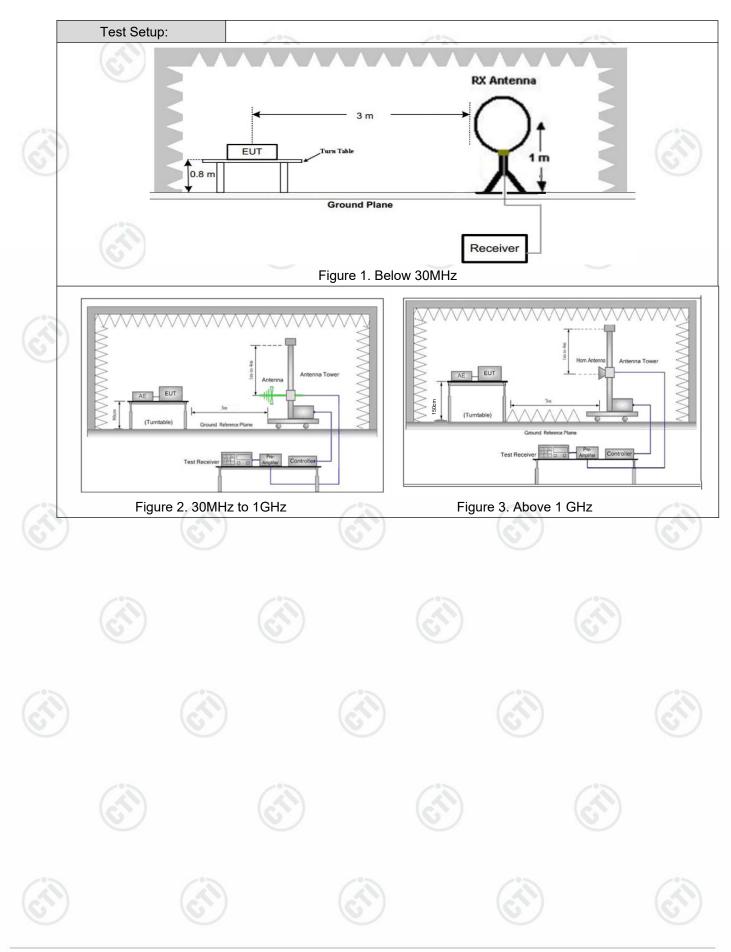
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

6.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
	Frequency		Detector	RBW	VBW	Remark	
Receiver Setup:	0.009MHz-0.090MHz		Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz		Average 10		30kHz	Average	
	0.090MHz-0.110MHz		Quasi-peak	10kHz	: 30kHz	Quasi-peak	
	0.110MHz-0.490MHz		Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	: 30kHz	Quasi-peak	
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak	
	Above 1GHz		Peak	1MHz	3MHz	Peak	
			Peak	1MHz	10kHz	Average	
	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measuremer distance (m	
	0.009MHz-0.490MHz	240	0/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	2400	0/F(kHz)	-	- (3)	30	
	1.705MHz-30MHz	30		-	0	30	
	30MHz-88MHz	100		40.0	Quasi-peak	3	
Limit:	88MHz-216MHz		150	43.5	Quasi-peak	3	
	216MHz-960MHz	200		46.0	Quasi-peak	3	
	960MHz-1GHz	500		54.0	Quasi-peak	3	
	Above 1GHz	500		54.0	Average	3	
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						



Page 26 of 50

Report No.: EED32N81177001

× (C*)	Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emission source for receiving the maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tured to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was stured from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak
3	Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type.
	Final Test Mode: Test Results:	Through Pre-scan, find the 2DH5 of data type and π /4DQPSK modulation is the worst case. Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Pass
	root noouno.	. 400

