FCC RADIO TEST REPORT

FCC ID: 2AS5A-SG7100

 Product :
 PDA

 Trade Name :
 THCAN

 Model Name :
 SG7100

 Serial Model :
 SG6900, SG7108, SG7200, SG8100, SG8108, LF-R1102, QSM5100, QSTAB-03

 Report No. :
 UNIA190041609FR-02

Prepared for

ShenZhen THCAN Technology Co.,Ltd 1012, Jinhua Building, Longfeng Three Road, Dalang Street, Longhua New District, Shenzhen, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULT CERTIFICATION

Applicant's name:	ShenZhen THCAN Technology Co.,Ltd
Address:	1012, Jinhua Building, Longfeng Three Road, Dalang Street, Longhua New District, Shenzhen, China
Manufacture's Name:	ShenZhen THCAN Technology Co.,Ltd
Address:	1012, Jinhua Building, Longfeng Three Road, Dalang Street, Longhua New District, Shenzhen, China
Product description	
Product name:	PDA
Trade Mark:	THCAN
Model and/or type reference :	SG7100, SG6900, SG7108, SG7200, SG8100, SG8108, LF-R1102, QSM5100, QSTAB-03
Standards:	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Feb. 20 ~ Mar. 04, 2019
Mar. 05, 2019
Pass

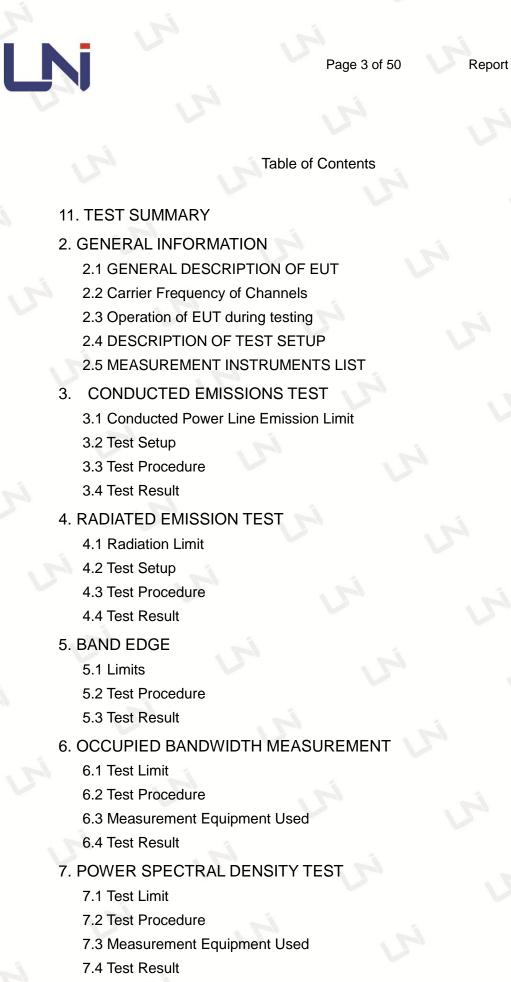
Prepared by:

Reviewer:

Approved & Authorized Signer:

ahn Ya

Kahn yang/Editor


Sherwin Qian/Supervisor

Liuze/Manager

pute

Page

- 8. PEAK OUTPUT POWER TEST
 - 8.1 Test Limit

N	Page 4 of 50	Report No.: UNIA	A19041609FR-02
	Table of Contents		Page
8.2 Test Procedure			41
8.3 Measurement Equipme	ent Used		41
8.4 Test Result			41
9. OUT OF BAND EMISSIC	ONS TEST		42
9.1 Test Limit			42
9.2 Test Procedure			42
9.3 Test Setup			42
9.4 Test Result			42
10. SPURIOUS RF CONDU	JCTED EMISSION		45
10.1 Test Limit			45
10.2 Test Procedure			45
10.3 Test Setup			45
10.4 Test Result			45
11. ANTENNA REQUIREM	ENT		49
12.PHOTOGRAPH OF TES	it is a set of the set		50

Report No.: UNIA19041609FR-02

11. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST CONDUCTED EMISSIONS TEST RADIATED EMISSION TEST BAND EDGE OCCUPIED BANDWIDTH MEASUREMENT POWER SPECTRAL DENSITY PEAK OUTPUT POWER OUT OF BAND EMISSIONS ANTENNA REQUIREMENT RESULT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT

1.2 1.1 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address

Community, Xixiang Str, Bao'an District, Shenzhen, China

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

1.3 1.2 MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	= 1	2.23dB,
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB,
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB,
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB,

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

k=2 k=2 k=2 k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	PDA
Trade Mark	THCAN
Model Name	SG7100
Serial No.	SG6900, SG7108, SG7200, SG8100, SG8108, LF-R1102, QSM5100, QSTAB-03
Model Difference	The only difference between models is the color of the product.
FCC ID	2AS5A-SG7100
Antenna Type	Internal Antenna
Antenna Gain	3.0dBi
Frequency Range	802.11b/g/n20: 2412~2462 MHz 802.11n40:2422-2452 MHz
Number of Channels	802.11b/g/n20: 11CH 802.11n40:7CH
Modulation Type	DSSS, OFDM
Power Source	DC 3.7V from battery DC 5V from USB
Adapter	Manufacturer: Jimi Model: GME-050200FCu Input: AC 100-240V, 50/60Hz, 0.25A Output: DC 5V/2A

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.2 Carrier Frequency of Channels

	Channel List for 802.11b/g/n(20MHz/40MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		1

Page 7 of 50

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode for 802.11b/g/n (20MHz)/ n(40MHz) Low Channel: 2412MHz/2422MHz Middle Channel: 2437MHz High Channel: 2462MHz/2452MHz Test SW Version: Realtek MPtool

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

EUT

AC 16V

Operation of EUT during Radiation and Above1GHz Radiation testing:

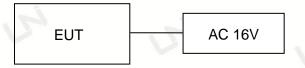


Table for auxiliary equipment:

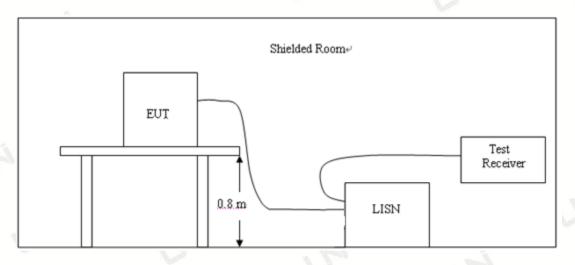
Equipment Description	Manufacturer	Model	Calibration Due Date
Adapter	HONGGUANGDE	HA-19050100UU	N/A

2.5 MEASUREMENT INSTRUMENTS LIST

2.0 10	ILASURE MENTINS				
Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated unti
			EMISSIONS TEST		
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.9.9
2	AMN	ETS	3810/2	00020199	2019.9.9
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.9.9
4	AAN	TESEQ	T8-Cat6	38888	2019.9.9
4		RADIATED	EMISSION TEST		5
1	Horn Antenna	Sunol	DRH-118	A101415	2019.9.29
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.9.29
3	PREAMP	HP	8449B	3008A00160	2019.9.9
4	PREAMP	HP	8447D	2944A07999	2019.9.9
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.9.9
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.9.28
7	Signal Generator	Agilent	E4421B	MY4335105	2019.9.28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.9.28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.9.9
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.9.28
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.9.9
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.9.9
13	RF Power sensor	DARE	RPR3006W	15100041SNO88	2020.3.14
14	RF Power sensor	DARE	RPR3006W	15100041SNO89	2020.3.14
15	RF power divider	Anritsu	K241B	992289	2019.9.28
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.9.28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.9.8
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.9.8
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.9.8
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2019.9.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.9.8
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2020.03.14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.9.8
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2019.05.10
26	Frequency Meter	VICTOR	VC2000	997406086	2019.05.10
27	DC Power Source	HYELEC	HY5020E	055161818	2019.05.10
			software	-	
1	E3	XINHUA	6.101223a	N/A	N/A

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. CONDUCTED EMISSIONS TEST


3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

Frequency (MHz)	Maximum RF Line Voltage(dBµV)				
	CLASS A		CLASS B		
	Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

* Decreasing linearly with the logarithm of the frequency For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

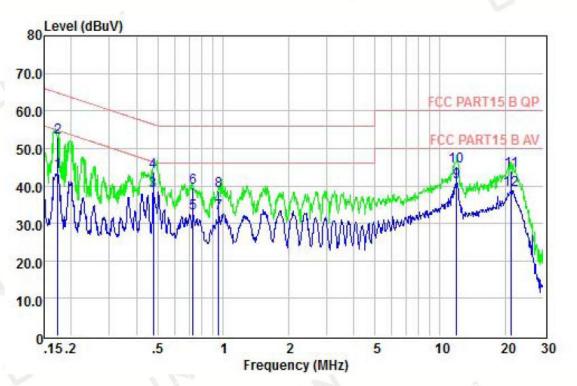
3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. A wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

Pass

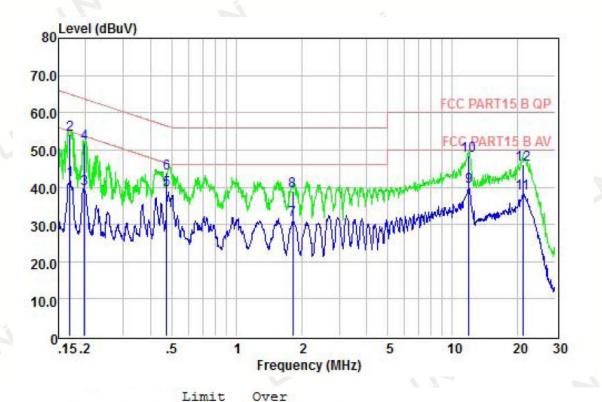

Remark:

All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.
 All modes were tested at Low, Middle, and High channel, only the worst result of 802.11b Low Channel was reported as below:

深圳市优耐检测技术有限公司	
Shenzhen United Testing Technology Co., Ltd.	2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China
United Testing Technology(Hong Kong) Limited	深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

Page 10 of 50

Temperature:	24°C	Relative Humidity:	48%		
Test Date:	Feb. 20, 2019	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60HZ	Phase:	Line		
Test Mode: Transmitting mode of 802.11b 2412MHz					


			Limit	Over	
	Freq	Level	Line	Limit	Remark
-	MHz	dBuV	dBuV	dB	-
1	0.17	43.81	54.81	-11.00	Average
2	0.17	52.93	64.81	-11.88	QP
3	0.48	38.77	46.36	-7.59	Average
4	0.48	43.61	56.36	-12.75	QP
5	0.73	32.85	46.00	-13.15	Average
6	0.73	39.52	56.00	-16.48	QP
7	0.96	32.65	46.00	-13.35	Average
8	0.96	38.54	56.00	-17.46	QP
9	11.93	41.09	50.00	-8.91	Average
10	11.93	45.10	60.00	-14.90	QP
11	21.37	43.96	60.00	-16.04	QP
12	21.37	38.89	50.00	-11.11	Average

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 11 of 50

				6
Temperature:	24°C	Relative Humidity:	48%	4.
Test Date:	Feb. 20, 2019	Pressure:	1010hPa	
Test Voltage:	AC 120V, 60HZ	Phase:	Neutral	
Test Mode:	Transmitting mode of 802	2.11b 2412MHz	V	1

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Freq	Level	Line	Limit	Remark	
-	MHz	dBuV	dBuV	dB	9 <mark>79</mark>	-
1	0.17	41.81	54.99	-13.18	Average	
2	0.17	54.00	64.99	-10.99	QP	
3	0.20	39.54	53.71	-14.17	Average	
4	0.20	51.61	63.71	-12.10	QP	
5	0.48	39.20	46.41	-7.21	Average	
6	0.48	43.84	56.41	-12.57	QP	
7	1.83	31.23	46.00	-14.77	Average	
8	1.83	38.97	56.00	-17.03	QP	
9	11.93	40.27	50.00	-9.73	Average	
.0	11.93	48.41	60.00	-11.59	QP	
1	21.26	38.24	50.00	-11.76	Average	
.2	21.26	46.20	60.00	-13.80	QP	

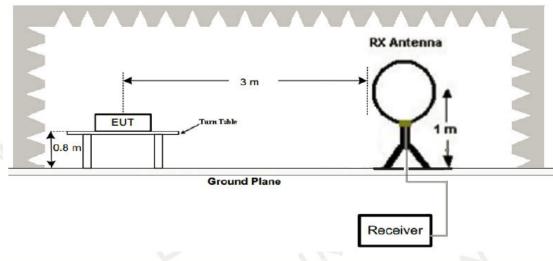
Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

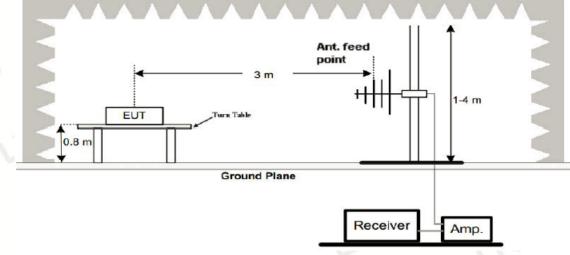
111

4. RADIATED EMISSION TEST

4.1 Radiation Limit

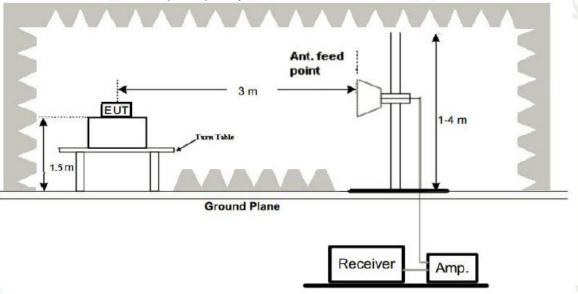

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Distance	Radiated	Radiated
(MHz)	(Meters)	(dBµV/m)	(µV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz


2. Radiated Emission Test-Up Frequency 30MHz~1GHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. Radiated Emission Test-Up Frequency Above 1GHz

- 4.3 Test Procedure
 - 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
 - 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
 - 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
 - 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
 - 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
 - 6. Repeat above procedures until the measurements for all frequencies are complete.
 - 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).
 - 8. The distance between test antenna and EUT as following table states:

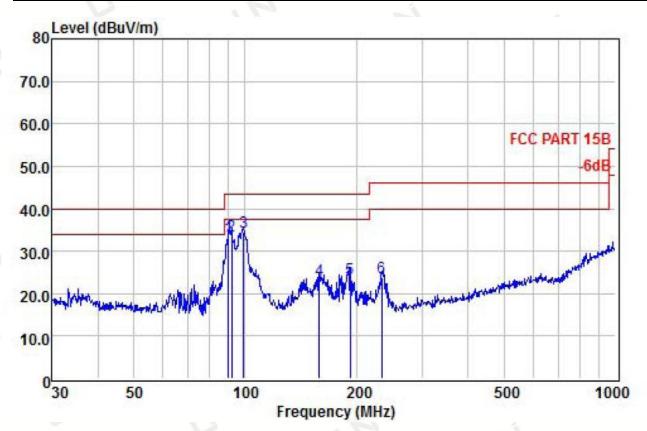
Т	est Frequency range	Test Antenna Type	Test Distance
	9KHz-30MHz	Active Loop Antenna	3
ê,	30MHz-1GHz	Bilog Antenna	3
	1GHz-18GHz	Horn Antenna	3
	18GHz-25GHz	Horn Anternna	1

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

PASS

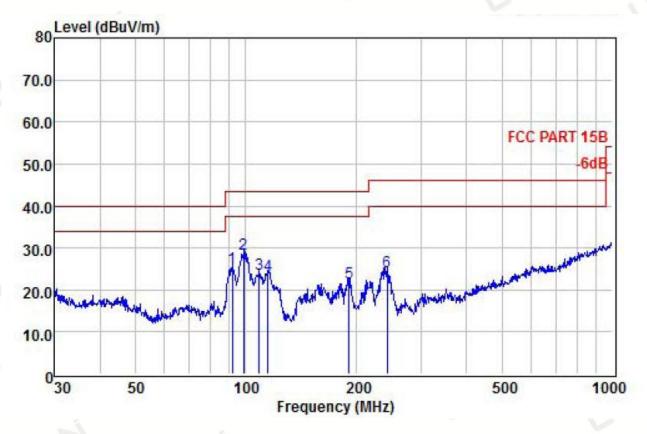

Remark:

1. All modes of 802.11b/g/n20 were test at Low, Middle, and High channel, only the worst result of 802.11b Low Channel was reported for below 1GHz test.

2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

Below 1GHz Test Results:

Temperature:	22°C	Relative Humidity:	48%
Test Date:	Feb. 20, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60HZ	Polarization:	Horizontal
Test Mode:	Transmitting mode of 802	2.11b 2412MHz	



		Read	Antenna	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
7	MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
1	90.22	24.06	9.11	0.16	33.33	43.50	-10.17	QP
2	91.82	24.36	9.19	0.16	33.71	43.50	-9.79	QP
3	99.18	24.66	9.56	0.17	34.39	43.50	-9.11	QP
4	158.67	13.81	9.17	0.23	23.21	43.50	-20.29	QP
5	192.42	12.83	10.32	0.29	23.44	43.50	-20.06	QP
6	234.17	10.79	12.46	0.40	23.65	46.00	-22.35	QP

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited Page 15 of 50

Temperature:	22°C	Relative Humidity:	48%					
Test Date:	Feb. 20, 2019	Pressure:	1010hPa					
Test Voltage:	AC 120V, 60HZ	Polarization:	Vertical					
Test Mode:	st Mode: Transmitting mode of 802.11b 2412MHz							

		Read	Antenna	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	-
1	91.82	15.82	9.19	0.16	25.17	43.50	-18.33	QP
2	98.83	18.70	9.54	0.17	28.41	43.50	-15.09	QP
3	108.65	14.16	9.34	0.19	23.69	43.50	-19.81	QP
4	114.92	14.47	8.91	0.20	23.58	43.50	-19.92	QP
5	191.07	11.22	10.20	0.28	21.70	43.50	-21.80	QP
6	243.38	11.17	12.71	0.40	24.28	46.00	-21.72	QP

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology (

Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Above 1 GHz Test Results:

CH Low of 802.11b Mode (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.42	-3.64	56.78	74	-17.22	PK
4824	49.66	-3.64	46.02	54	-7.98	AV
7236	57.29	-0.95	56.34	74	-17.66	РК
7236	44.22	-0.95	43.27	54	-10.73	AV
Remark: Fact	or = Antenna I		I e Loss – Pre-ampli	ifier. Margin =	Absolute Le	L evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.61	-3.64	55.97	74	-18.03	PK
4824	45.85	-3.64	42.21	54	-11.79	AV
7236	56.47	-0.95	55.52	74	-18.48	РК
7236	43.18	-0.95	42.23	54	-11.77	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH Middle of 802.11b Mode (2437MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.82	-3.51	55.31	74	-18.69	PK
4874	45.80	-3.51	42.29	54	-11.71	AV
7311	59.51	-0.82	58.69	74	-15.31	PK
7311	46.90	-0.82	46.08	54	-7.92	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	ifier. Margin =	Absolute Le	evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.20	-3.51	55.69	74	-18.31	РК
4874	48.85	-3.51	45.34	54	-8.66	AV
7311	55.30	-0.82	54.48	74	-19.52	РК
7311	48.30	-0.82	47.48	54	-6.52	AV
	-	-		-		-

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH High of 802.11b Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
4924	59.84	-3.43	56.41	74	-17.59	PK			
4924	49.73	-3.43	46.30	54	-7.70	AV			
7386	54.30	-0.75	53.55	74	-20.45	PK			
7386	47.38	-0.75	46.63	54	-7.37	AV			
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit								

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	57.58	-3.43	54.15	74	-19.85	PK
4924	48.43	-3.43	45.00	54	-9.00	AV
7386	57.32	-0.75	56.57	74	-17.43	РК
7386	45.47	-0.75	44.72	54	-9.28	AV
Remark: Fact	or = Antenna I	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Page 19 of 50

CH Low of 802.11g Mode (2412MHz)

Horizontal:

	Destine					-
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.82	-3.64	55.18	74	-18.82	PK
4824	50.92	-3.64	47.28	54	-6.72	AV
7236	55.41	-0.95	54.46	74	-19.54	PK
7236	46.27	-0.95	45.32	54	-8.68	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.63	-3.64	54.99	74	-19.01	РК
4824	49.87	-3.64	46.23	54	-7.77	AV
7236	56.47	-0.95	55.52	74	-18.48	РК
7236	46.20	-0.95	45.25	54	-8.75	AV
		10 m				

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH Middle of 802.11g Mode (2437MHz)

Horizontal:

R

Reading					
Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
58.54	-3.51	55.03	74	-18.97	PK
47.89	-3.51	44.38	54	-9.62	AV
55.40	-0.82	54.58	74	-19.42	PK
48.02	-0.82	47.20	54	-6.80	AV
	(dBµV) 58.54 47.89 55.40	Result (dBµV) (dB) 58.54 -3.51 47.89 -3.51 55.40 -0.82	Result (dB) (dBµV/m) (dBµV) (dB) (dBµV/m) 58.54 -3.51 55.03 47.89 -3.51 44.38 55.40 -0.82 54.58	Result (dB) (dBµV/m) (dBµV/m) (dBµV) (dB) (dBµV/m) (dBµV/m) 58.54 -3.51 55.03 74 47.89 -3.51 44.38 54 55.40 -0.82 54.58 74	Result General Constraint General Constraint<

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.78	-3.51	55.27	74	-18.73	РК
4874	47.78	-3.51	44.27	54	-9.73	AV
7311	54.92	-0.82	54.10	74	-19.90	PK
7311	46.20	-0.82	45.38	54	-8.62	AV
			•			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH High of 802.11g Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	57.78	-3.43	54.35	74	-19.65	РК
4924	48.88	-3.43	45.45	54	-8.55	AV
7386	55.22	-0.75	54.47	74	-19.53	PK
7386	49.30	-0.75	48.55	54	-5.45	AV
Remark: Fact	tor = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	61.73	-3.43	58.30	74	-15.70	PK
4924	50.75	-3.43	47.32	54	-6.68	AV
7386	58.21	-0.75	57.46	74	-16.54	РК
7386	45.93	-0.75	45.18	54	-8.82	AV
Remark: Fact	or = Antenna I	actor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	evel – Limit

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Page 22 of 50

CH Low of 802.11n/H20 Mode (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.84	-3.64	55.20	74	-18.80	PK
4824	50.82	-3.64	47.18	54	-6.82	AV
7236	57.31	-0.95	56.36	74	-17.64	РК
7236	46.19	-0.95	45.24	54	-8.76	AV
Remark: Fact	or = Antenna I	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.67	-3.64	55.03	74	-18.97	PK
4824	49.84	-3.64	46.20	54	-7.80	AV
7236	57.31	-0.95	56.36	74	-17.64	PK
7236	47.37	-0.95	46.42	54	-7.58	AV
		1				

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH Middle of 802.11n/H20 Mode (2437MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	57.77	-3.51	54.26	74	-19.74	PK
4874	48.44	-3.51	44.93	54	-9.07	AV
7311	56.51	-0.82	55.69	74	-18.31	PK
7311	46.39	-0.82	45.57	54	-8.43	AV

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.76	-3.51	56.25	74	-17.75	РК
4874	50.13	-3.51	46.62	54	-7.38	AV
7311	58.23	-0.82	57.41	74	-16.59	PK
7311	47.20	-0.82	46.38	54	-7.62	AV
	•	•				

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH High of 802.11n/H20 Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.37	-3.43	56.94	74	-17.06	PK
4924	50.94	-3.43	47.51	54	-6.49	AV
7386	56.38	-0.75	55.63	74	-18.37	PK
7386	47.76	-0.75	47.01	54	-6.99	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	ifier. Margin =	Absolute Le	evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.95	-3.43	56.52	74	-17.48	PK
4924	49.34	-3.43	45.91	54	-8.09	AV
7386	58.51	-0.75	57.76	74	-16.24	РК
7386	47.00	-0.75	46.25	54	-7.75	AV
Remark: Fact	or = Antenna I	actor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Page 25 of 50

CH Low of 802.11n/H40 Mode (2422MHz)

Horizontal:

N

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4844	59.14	-3.64	55.5	74	-18.5	РК
4844	49.42	-3.64	45.78	54	-8.22	AV
7266	56.24	-0.95	55.29	74	-18.71	PK
7266	48.36	-0.95	47.41	54	-6.59	AV
Remark: Fact	or = Antenna	Factor + Cable	e Loss – Pre-ampli	fier. Margin =	Absolute Le	evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4844	60.29	-3.64	56.65	74	-17.35	PK
4844	50.04	-3.64	46.4	54	-7.6	AV
7266	58.44	-0.95	57.49	74	-16.51	PK
7266	46.92	-0.95	45.97	54	-8.03	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH Middle of 802.11n/H40 Mode (2437MHz)

Horizontal:

N

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.38	-3.51	55.87	74	-18.13	PK
4874	48.34	-3.51	44.83	54	-9.17	AV
7311	56.25	-0.82	55.43	74	-18.57	PK
7311	46.31	-0.82	45.49	54	-8.51	AV

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	60.01	-3.51	56.5	74	-17.5	PK
4874	49.16	-3.51	45.65	54	-8.35	AV
7311	57.34	-0.82	56.52	74	-17.48	PK
7311	46.15	-0.82	45.33	54	-8.67	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH High of 802.11n/H40 Mode (2452MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4904	59.02	-3.43	55.59	74	-18.41	РК
4904	50.41	-3.43	46.98	54	-7.02	AV
7356	56.83	-0.75	56.08	74	-17.92	PK
7356	45.43	-0.75	44.68	54	-9.32	AV

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4904	59.87	-3.43	56.44	74	-17.56	PK
4904	48.42	-3.43	44.99	54	-9.01	AV
7356	58.47	-0.75	57.72	74	-16.28	PK
7356	45.05	-0.75	44.3	54	-9.7	AV
Remark: Fact	or = Antenna I	actor + Cabl	e Loss – Pre-ampli	ifier. Margin =	Absolute Le	evel – Limit

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5. BAND EDGE

5.1 Limits

FCC PART 15.247 Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10kHz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

We tested at 802.11b/802.11g/802.11n HT20/802.11n HT40 mode at the antenna single and recored the worst data 802.11b mode in report.

Horizontal:						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.34	-5.81	50.53	74	-23.47	PK
2310	49.36	-5.81	43.55	54	-10.45	AV
2390	61.02	-5.84	55.18	74	-18.82	PK
2390	50.33	-5.84	44.49	54	-9.51	AV
2400	65.33	-5.84	59.49	74	-14.51	PK
2400	48.49	-5.84	42.65	54	-11.35	AV

Vertical:	1					V
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	55.18	-5.81	49.37	74	-24.63	PK
2310	50.34	-5.81	44.53	54	-9.47	AV
2390	62.34	-5.84	56.5	74	-17.5	РК
2390	51.26	-5.84	45.42	54	-8.58	AV
2400	63.26	-5.84	57.42	74	-16.58	PK
2400	50.27	-5.84	44.43	54	-9.57	AV
			_			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Page 30 of 50

Report No.: UNIA19041609FR-02

Horizontal :						1
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	54.27	-5.54	48.73	74	-25.27	PK
2483.5	49.87	-5.54	44.33	54	-9.67	AV
2500	55.34	-5.72	49.62	74	-24.38	PK
2500	50.34	-5.72	44.62	54	-9.38	AV
Remark: Fact	tor = Antenna Facto	or + Cable Lo	oss – Pre-amplifier			

Vertical[.]

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	55.36	-5.54	49.82	74	-24.18	PK
2483.5	50.16	-5.54	44.62	54	-9.38	AV
2500	54.92	-5.72	49.2	74	-24.8	PK
2500	49.26	-5.72	43.54	54	-10.46	AV

in M.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

6. OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Limit

FCC Part15(15.247), Subpart C					
Section Test Item		Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

6.2 Test Procedure

1. The EUT was placed on a turn table which is 0.8m above ground plane.

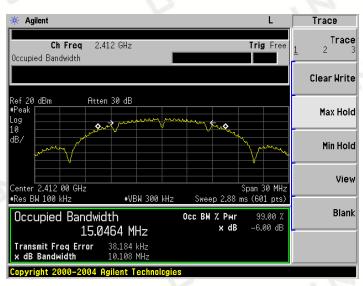
2. Set EUT as normal operation.

- 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

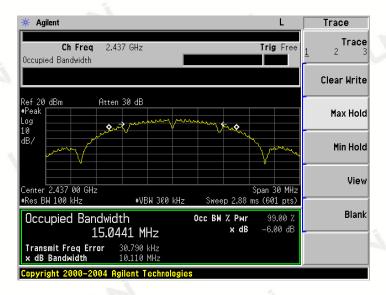
6.3 Measurement Equipment Used

Same as Radiated Emission Measurement

6.4 Test Result


PASS

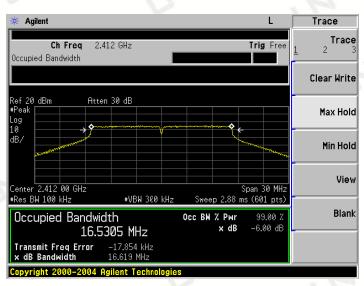
Mode	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result	
2	2412	10.108	500	Pass	
802.11b	2437	10.110	500	Pass	
	2462	10.109	500	Pass	
'n,	2412	16.619	500	Pass	
802.11g	2437	16.629	500	Pass	
1	2462	16.627	500	Pass	
U.	2412	17.871	500	Pass	
802.11n/HT20	2437	17.842	500	Pass	
	2462	17.846	500	Pass	
	2422	36.550	500	Pass	
802.11n/HT40	2437	36.552	500	Pass	
	2452	36.536	500	Pass	


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

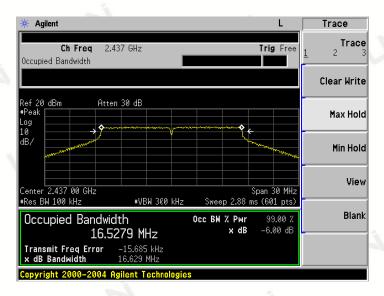
Page 32 of 50

802.11b CH: 2412MHz

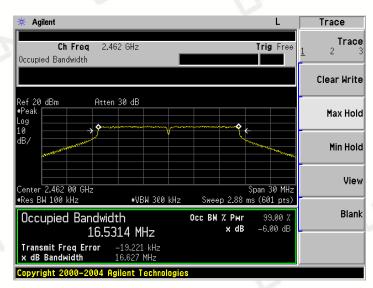
802.11b CH: 2437MHz


802.11b CH: 2462MHz

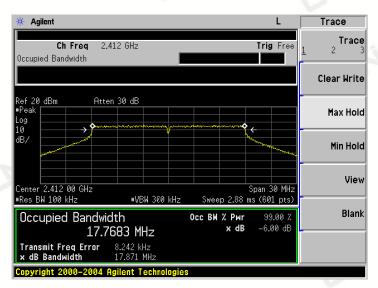
* Agilent	L Trace
Ch Freq 2.462 GHz Occupied Bandwidth	Trig Free 1 2 3
Center 2.462000000 GHz	Clear Write
Ref 20 dBm Atten 30 dB #Peak Log 10	Max Hold
dB/	Min Hold
Center 2.462 00 GHz	Span 30 MHz
Occupied Bandwidth Occ BW 2	2.88 ms (601 pts) 2.9wr 99.00 % x dB -6.00 dB
Transmit Freq Error 29.505 kHz x dB Bandwidth 10.109 MHz	
Copyright 2000–2004 Agilent Technologies	


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

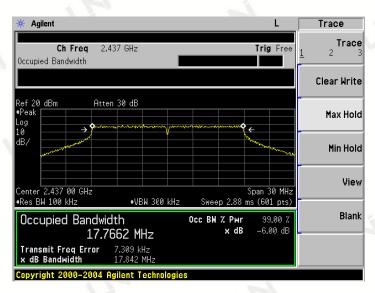
Page 33 of 50


802.11g CH: 2412MHz

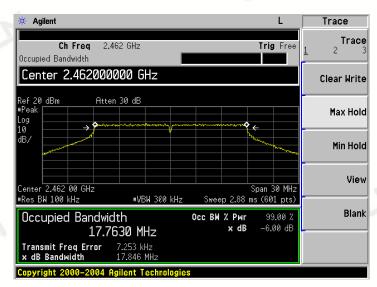
802.11g CH: 2437MHz



802.11g CH: 2462MHz

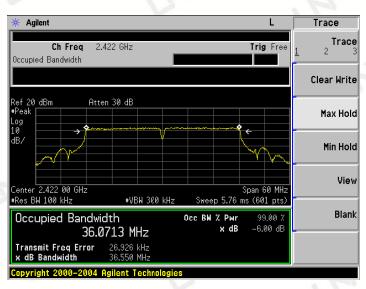


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

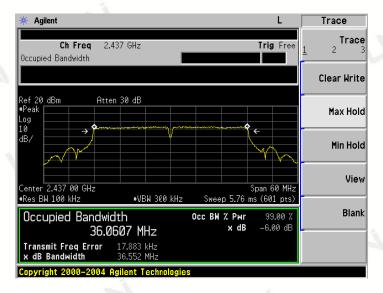

802.11n/HT20 CH: 2412MHz

802.11n/HT20 CH: 2437MHz

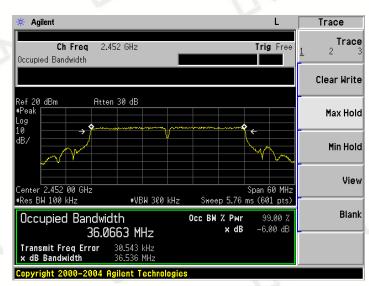
802.11n/HT20 CH: 2462MHz



深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited



Page 35 of 50


802.11n/HT40 CH: 2422MHz

802.11n/HT40 CH: 2437MHz

802.11n/HT40 CH: 2452MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

7. POWER SPECTRAL DENSITY TEST

7.1 Test Limit

FCC Part15(15.247), Subpart C					
Section Test Item		Limit	Frequency Range (MHz)	Result	
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS	

7.2 Test Procedure

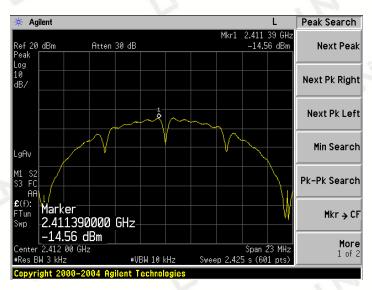
1. The EUT was placed on a turn table which is 0.8m above ground plane.

2. Set EUT as normal operation.

- 3. Based on FCC Part15 C Section 15.247: RBW=3KHz, VBW=10KHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

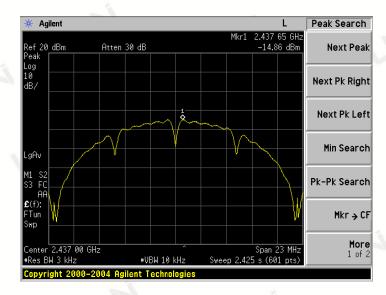
7.3 Measurement Equipment Used

Same as Radiated Emission Measurement

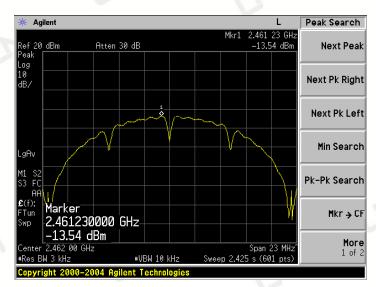

7.4 Test Result

PASS

Mode	Frequency	Reading(dBm)	Cable Loss (dB)	Power Spectral Density(dBm)	Limit (dBm)	Result
802.11b	2412 MHz	-14.56	0.5	-14.06	8	PASS
	2437 MHz	-14.86	0.5	-14.36	8	PASS
	2462 MHz	-13.54	0.5	-13.04	8	PASS
802.11g	2412 MHz	-17.35	0.5	-16.85	8	PASS
	2437 MHz	-16.95	0.5	-16.45	8	PASS
	2462 MHz	-16.72	0.5	-16.22	8	PASS
802.11n/HT20	2412 MHz	-16.31	0.5	-15.81	8	PASS
	2437 MHz	-16.14	0.5	-15.64	8	PASS
	2462 MHz	-16.36	0.5	-15.86	8	PASS
802.11n/HT40	2422 MHz	-16.76	0.5	-16.26	8	PASS
	2437 MHz	-18.57	0.5	-18.07	8	PASS
	2452 MHz	-18.59	0.5	-18.09	8	PASS

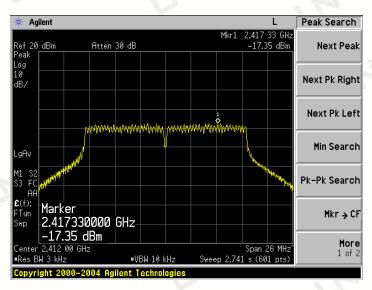

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

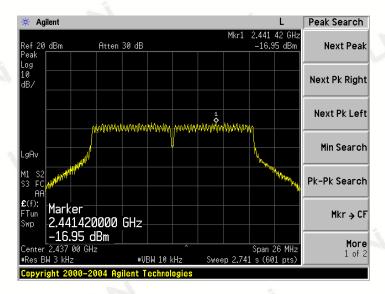
802.11b CH: 2412MHz



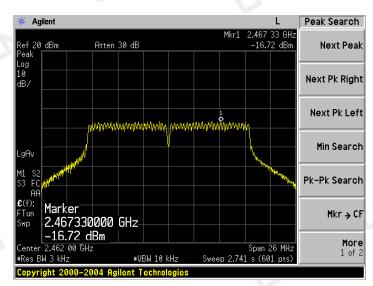
Page 37 of 50

802.11b CH: 2437MHz

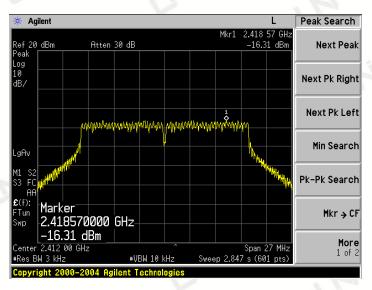

^{802.11}b CH: 2462MHz


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

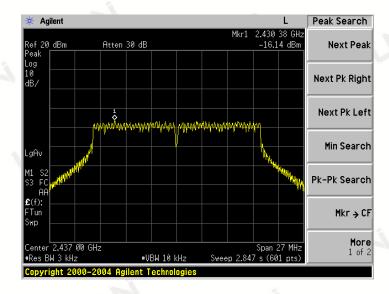
Page 38 of 50


802.11g CH: 2412MHz

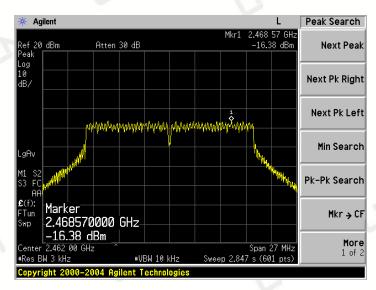
802.11g CH: 2437MHz



^{802.11}g CH: 2462MHz

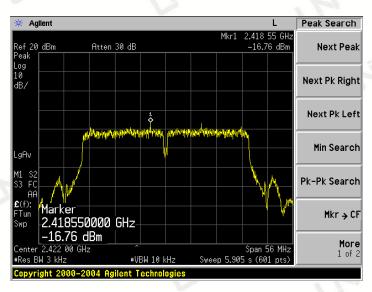

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

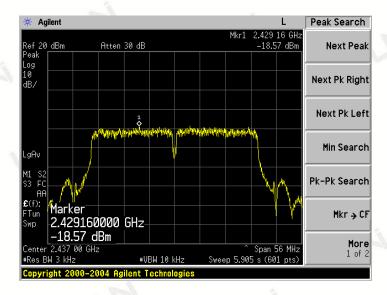
802.11n/HT20 CH: 2412MHz



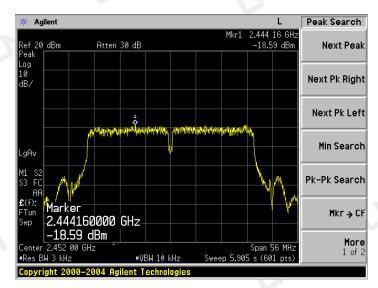
Page 39 of 50

802.11n/HT20 CH: 2437MHz


802.11n/HT20 CH: 2462MHz


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 40 of 50


802.11n/HT40 CH: 2422MHz

802.11n/HT40 CH: 2437MHz

^{802.11}n/HT40 CH: 2452MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

8. PEAK OUTPUT POWER TEST

8.1 Test Limit

FCC Part15(15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS	

8.2 Test Procedure

1. The EUT was directly connected to the Power meter.

8.3 Measurement Equipment Used

Same as Radiated Emission Measurement

8.4 Test Result

PASS

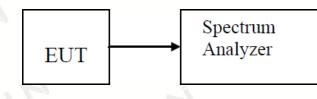
All the test modes completed for test.

0	i.	TX 802.11b Mode	
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	(dBm)
CH01	2412	8.587	30
CH06	2437	8.768	30
CH11	2462	8.035	30
		TX 802.11g Mode	Ń
CH01	2412	7.368	30
CH06	2437	7.487	30
CH11	2462	7.348	30
	4.	TX 802.11n20 Mode	
CH01	2412	7.264	30
CH06	2437	7.248	30
CH11	2462	7.269	30
		TX 802.11n40 Mode	15
CH03	2422	7.521	30
CH06	2437	7.389	30
CH09	2452	7.489	30

Note:

1) Measured output power at difference data rate for each mode and recorded worst case for each mode. 2). Test results including cable loss.

9. OUT OF BAND EMISSIONS TEST

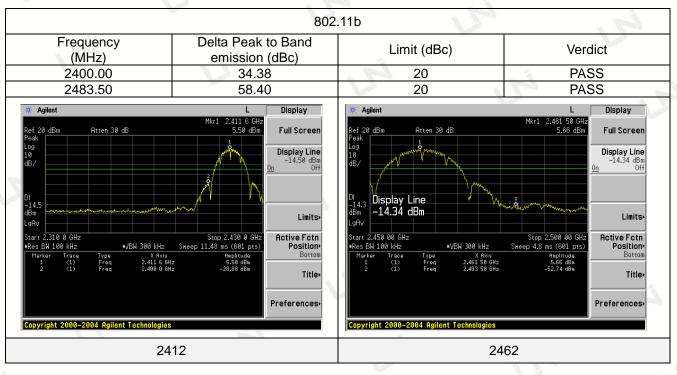

9.1 Test Limit

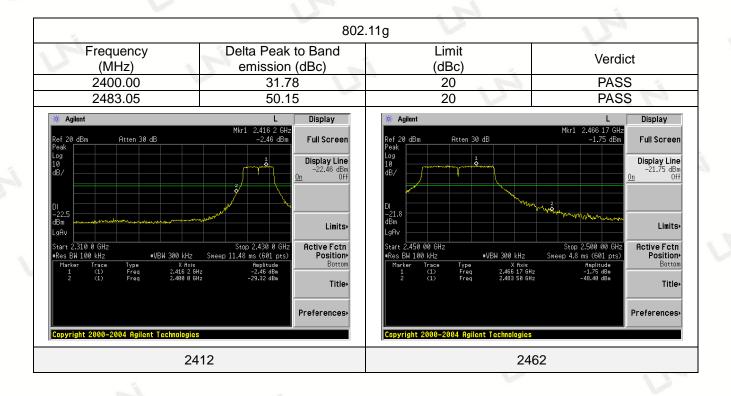
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

9.2 Test Procedure

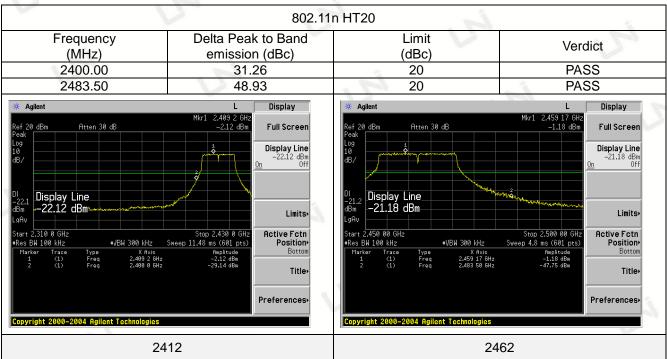
- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as TX operation and connect directly to the spectrum analyzer.
- 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.
- 4. Set detected by the spectrum analyzer with peak detector.

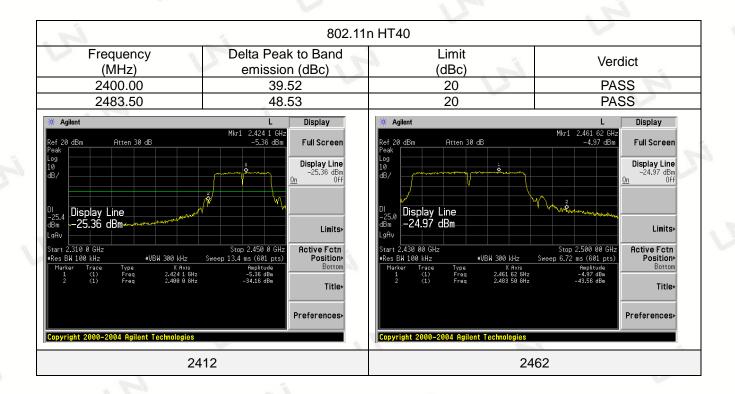
9.3 Test Setup




9.4 Test Result

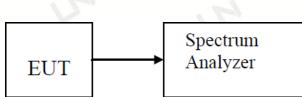
PASS


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited



10. SPURIOUS RF CONDUCTED EMISSION

- 10.1 Test Limit
 - 1. Below -20dB of the highest emission level in operating band.


2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

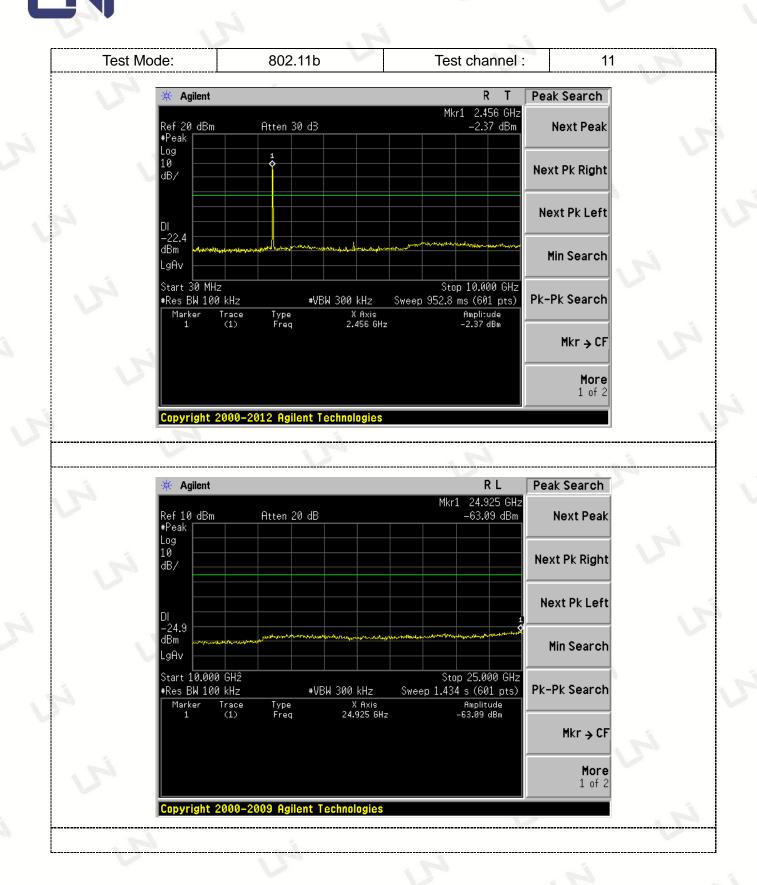
3.For below 30MHz,For 9KHz-150kHz,150K-10MHz,We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz,RBW 1KHz, The Limit= the highest emission level-20-10log(100/1)= the highest emission level-40.

10.2 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013, For 9KHz-150kHz, Set RBW=1kHz and VBW= 3KHz; For 150KHz-10MHz, Set RBW=10kHz and VBW= 30KHz:For 10MHz-25GHz, Set RBW=100kHz and VBW= 300KHz in order to measure the peak field strength, and mwasure frequeny range from 9KHz to 25GHz.

10.3 Test Setup




10.4 Test Result

PASS

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data. and record the worstest data for 802.11b in report.

11. ANTENNA REQUIREMENT

Standard Applicable:

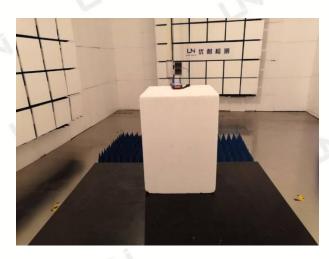
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used

with the device.

Antenna Connected Construction

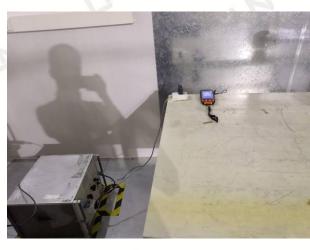
The antenna used in this product is an Internal Antenna, The directional gains of antenna used for transmitting is 3.93dBi.

ANTENNA:


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA19041609FR-02

12.PHOTOGRAPH OF TEST



Radiated Emission (Below 1G)

Radiated Emission (Above 1G)

Conducted Emission

End of Report

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited