Ossia, Inc.

REVISED EMC TEST REPORT TO 103895-4A

Cota WPT Source
Model: Cota Tx203

Tested to The Following Standards:

FCC Part 18 Subpart C Section 18.305 \& 18.307

Report No.: 103895-4B

Date of issue: October 28, 2020

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 6
Equipment Under Test 7
FCC Part 18 8
18.305 Radiated Emissions 8
18.307 AC Conducted Emissions 36
Appendix A: Test Setup Block Diagrams 58
Supplemental Information 60
Measurement Uncertainty 60
Emissions Test Details 60

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Ossa, Inc.
1100 112th Ave NE Suite 301
Bellevue, WA 98004

Representative: Bob McDonald

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Kim Romero
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338
Project Number: 103895

June 12, 2020
June 12,14, and 26, 2020

Revision History

Original: Testing of the Cota WPT Source, Model: Cola Tx203 to FCC Part 18 Subpart C Section 18.305 \& 18.307.
Revision A: To replace Seq. 57 conducted emissions datasheet with the correct spec limit reference.
Revision B: To add an Engineers Statement to the Conditions Under Test Section.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
Canyon Park
22116 23rd Drive S.E., Suite A
Bothell,WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .12
EMITest Immunity	5.03 .10

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Japan
Canyon Park, Bothell, WA	US0081	US1022	A-0136
Brea, CA	US0060	US1025	A-0136
Fremont, CA	US0082	US1023	A-0136
Mariposa, CA	US0103	US1024	A-0136

[^0]
SUMMARY OF RESULTS

Standard / Specification: FCC Part 18 Subpart C

Test Procedure	Description	Modifications	Results
FCC Part 18.305 (b)	Radiated Emissions	NA	PASS
FCC Part 18.307 (b)	Conducted Emissions	NA	PASS

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specifications) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
 No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

Note: The production power setting for the device will limit the output power to 13 dBm . To verify compliance with the radiated field strength limits in Part 18 the output power was set to 20 dBm for the tests documented in this report. Additionally, an investigation was performed to check the worst-case harmonic emissions at both the 13 dBm and 20 dBm power settings, 20 dBm was found to be worst-case.

Investigation of worst-case Radiated Emissions

Based on historical test data and the procedure established from CKC report 102580-4: the $2^{\text {nd }}, 3^{\text {rd }}$, and $4^{\text {th }}$ Harmonics of the fundamental frequency were identified as the worst-case emissions. The worst-case frequencies were maximized with the following boundary conditions established by the manufacturer:
-The minimum separation distance between the tile and client is 0.3 m
-The maximum separation distance between the tile and client is 1.0 m
-The maximum angle between the tile and client is 60 degrees
The following measurements were collected to narrow down the worst-case conditions, where \mathbf{r} is the separation distance between the tile and client, φ is the azimuth angle, and θ is the altitude angle.
$r=0.3 \mathrm{~m}, \varphi=0$ degrees, $\theta=0$ degrees
$r=1.0 \mathrm{~m}, \varphi=0$ degrees, $\theta=0$ degrees
$r=0.4 \mathrm{~m}, \varphi=0$ degrees, $\theta=0$ degrees
$r=0.6 \mathrm{~m}, \varphi=0$ degrees, $\theta=0$ degrees
The configuration with $r=0.4 \mathrm{~m}$ was found to be worst case among these configurations. Finer distance adjustments were made at this point, as well as varying the azimuth and altitude angles no more than 60 degrees. The 0.4 m boresight configuration verified to be the worst-case.

Note: r is measured from the center of the front face on each device. The angles are measured from the tile's boresight line to a line connecting the center front face of each device. For the angle variation, the client was rotated to always be pointed at the center of the front face of the tile.

All Radiated Emissions measurements included in the report were taken in the following configuration as worstcase as determined above:
$r=0.4 \mathrm{~m}, \varphi=0$ degrees, $\theta=0$ degrees
EUT settings from manufacturer: 20 dBm , dynamic tuning

EQUIPMENT UNDER TEST (EXT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standards) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Cora WPT Source	Usia, Inc.	Cota Tx203	OR-001

Support Equipment:

Device	Manufacturer	Model \#	S/N
USB 2.0 Extension Cable	Blue Rigger	$32 \mathrm{ft}(10 \mathrm{~m})$	NA
AC Adapter (for PoE Injector)	GlobTek, Inc.	GTM961808P18054-T3	NA
PoE Injector	Usia, Inc.	OL-10282	NA
Laptop	Apple	MacBook Pro A1398	NA
USB Hub	AmazonBasics	B00DQFGJR4	NA
Thunderbolt to Ethernet adapter	Apple	A1433	NA
Cora WPT Client	Usia, Inc.	VenusRx	NA

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Cora WPT Source	Usia, Inc.	Cota Tx203	OR-001

Support Equipment:

Device	Manufacturer	Model \#	S/N
USB 2.0 Extension Cable	Blue Rigger	$32 \mathrm{ft}(10 \mathrm{~m})$	NA
AC/DC Switching Adapter	Mean Well	GST220A12	NA
Laptop	Apple	MacBook Pro A1398	NA
USB Hub	AmazonBasics	B00DQFGJR4	NA
Thunderbolt to Ethernet adapter	Apple	A1433	NA
Cora WPT Client	Usia, Inc.	VenusRx	NA

FCC PART 18

18.305 Radiated Emissions

Test Notes: Radiated disturbances emanating from enclosure.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#: Test Type:
Tested By:
Software:

Ossia, Inc.
18.305(b) ISM Frequencies <500W

102119
Maximized Emissions
Michael Atkinson
EMITest 5.03.12

Date: 6/12/2020
Time: 14:31:42
Sequence\#: 18

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$

Method: FCC/OET MP-5 (February 1986)
Frequency: $9 \mathrm{kHz}-30 \mathrm{MHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, boresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

Investigated power source for the EUT:
Configuration 1: EUT connected to support PoE box with $2 \times$ Ethernet cables for power. Support laptop connected to PoE box with $1 \times$ Ethernet cable. PoE box and support Laptop are located remotely.

3 orthogonal axes investigated, worst case reported.

Ossia, Inc. WO\#: 102119 Sequence\#: 18 Date: 6/12/2020 18.305(b) ISM Frequencies <500W Test Distance: 3 Meters Para

- Readings
\times QP Readings
$\times \quad$ Ambient
$1-18.305(\mathrm{~b})$ ISM Frequencies $<500 \mathrm{~W}$

O Peak Readings

* Average Readings

Software Version: 5.03.12
1-18.305(b) ISM Frequencies <500W

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T2	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T3	AN00052	Loop Antenna	6502	$5 / 4 / 2020$	$5 / 4 / 2022$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	$P^{9.182 k}$	45.7	+0.0	+0.0	+16.0		-40.0	21.7	28.0	-6.3	Para
2	$250.461 \mathrm{k}$	50.3	+0.0	+0.0	+9.5		-40.0	19.8	28.0	-8.2	Para
\wedge	250.353k	51.5	+0.0	+0.0	+9.5		-40.0	21.0	28.0	-7.0	Para
	$\mathrm{P}^{14.096 \mathrm{k}}$	42.9	+0.0	+0.0	+14.2		-40.0	17.1	28.0	-10.9	Perp
\wedge	14.096k	48.6	+0.0	+0.0	+14.2		-40.0	22.8	28.0	-5.2	Perp
6	251.800k	47.1	+0.0	+0.0	+9.5		-40.0	16.6	28.0	-11.4	Perp
	$10.630 \mathrm{k}$ P	40.5	+0.0	+0.0	+15.4		-40.0	15.9	28.0	-12.1	Para
	$\begin{aligned} & 152.091 \mathrm{k} \\ & \mathrm{P} \end{aligned}$	44.5	+0.0	+0.0	+9.5		-40.0	14.0	28.0	-14.0	Para
\wedge	152.090k	53.8	+0.0	+0.0	+9.5		-40.0	23.3	28.0	-4.7	Para
10	30.000 M	27.4	+0.1	+0.3	+4.2		-40.0	-8.0	28.0	-36.0	Perp
11	18.020M	22.5	+0.1	+0.2	+8.0		-40.0	-9.2	28.0	-37.2	Groun

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossa, Inc.
18.305(b) ISM Frequencies <500W

Work Order \#:
Test Type:
Tested By:
102119
Maximized Emissions
Michael Atkinson
Date: 6/12/2020
Time: 17:12:30

Software:
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$

Method: FCC/OET MP-5 (February 1986)
Frequency: $9 \mathrm{kHz}-30 \mathrm{MHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, boresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

Investigated power source for the EUT:
Configuration 2: EUT connected to AC adapter for power. EUT connected to support Laptop via Ethernet cable. Laptop is located remotely.

3 orthogonal axes investigated, worst case reported.

Dssia, Inc. WO\#: 102119 Sequence\#: 24 Date: 6/12/2020 18.305(b) ISM Frequencies < 500 W Test Distance: 3 Meters Para


```
-_ Readings
\(\times\) QP Readings
- Ambient
1-18.305(b) ISM Frequencies <500W
```

O Peak Readings

* Average Readings

Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T2	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T3	AN00052	Loop Antenna	6502	$5 / 4 / 2020$	$5 / 4 / 2022$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters
$\left.\begin{array}{|ccccccccccc|}\hline \# & \begin{array}{l}\text { Freq } \\ \text { MHz }\end{array} & \begin{array}{c}\text { Rdng } \\ \mathrm{dB} \mu \mathrm{V}\end{array} & \begin{array}{c}\mathrm{T} 1 \\ \mathrm{~dB}\end{array} & \begin{array}{c}\mathrm{T} 2 \\ \mathrm{~dB}\end{array} & \begin{array}{c}\mathrm{T} 3 \\ \mathrm{~dB}\end{array} & \mathrm{~dB} & \begin{array}{c}\text { Dist } \\ \text { Table }\end{array} & \begin{array}{c}\text { Corr } \\ \mathrm{dB} \mu \mathrm{V} / \mathrm{m}\end{array} & \begin{array}{c}\text { Spec } \\ \mathrm{dB} \mu \mathrm{V} / \mathrm{m}\end{array} & \begin{array}{c}\text { Margin } \\ \mathrm{dB}\end{array}\end{array} \begin{array}{c}\text { Polar } \\ \text { Ant }\end{array}\right]$

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossa, Inc.
18.305(b) ISM Frequencies <500W

Work Order \#:
Test Type:
Tested By: 102119
Maximized Emissions
Michael Atkinson
Date: 6/12/2020
Time: 13:41:43

Software:
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$

Method: FCC/OET MP-5 (February 1986)
Frequency: $30-1000 \mathrm{MHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, boresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

Investigated power source for the EUT:
Configuration 1: EUT connected to support PoE box with $2 \times$ Ethernet cables for power. Support laptop connected to PoE box with $1 \times$ Ethernet cable. PoE box and support Laptop are located remotely.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Psia, Inc. WO\#: 102119 Sequence\#: 17 Date: 6/12/2020 18.305(b) ISM Frequencies <500W Test Distance: 3 Meters Horiz

- Readings	O	Peak Readings \times QP Readings
Ambient		Average Readings
-		Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T2	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T3	AN03628	Biconilog Antenna	3142 E	$6 / 11 / 2019$	$6 / 11 / 2021$
T4	ANP06123	Attenuator	18N-6	$4 / 5 / 2019$	$4 / 5 / 2021$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{aligned} & 1489.306 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	31.0	+0.3	+1.1	+18.4	+5.8	-40.0	16.6	28.0	-11.4	Horiz
2488.800 M	29.6	+0.3	+1.1	+18.4	+5.8	-40.0	15.2	28.0	-12.8	Horiz
$\begin{aligned} & 3997.081 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	19.6	+0.4	+1.8	+25.1	+5.9	-40.0	12.8	28.0	-15.2	Vert
$\wedge 997.081 \mathrm{M}$	26.1	+0.4	+1.8	+25.1	+5.9	-40.0	19.3	28.0	-8.7	Vert
$\begin{aligned} & 597.310 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	32.3	+0.1	$+0.5$	+7.8	+5.8	-40.0	6.5	28.0	-21.5	Vert
$\wedge 97.280 \mathrm{M}$	33.7	+0.1	+0.5	+7.8	+5.8	-40.0	7.9	28.0	-20.1	Vert
$\begin{aligned} & 7153.131 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	28.0	+0.2	+0.6	+9.4	+5.8	-40.0	4.0	28.0	-24.0	Horiz
$\wedge 153.200 \mathrm{M}$	28.6	+0.2	+0.6	+9.4	+5.8	-40.0	4.6	28.0	-23.4	Horiz
$\begin{aligned} & 942.400 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	23.5	+0.1	+0.3	+11.0	+5.8	-40.0	0.7	28.0	-27.3	Vert
$\wedge 42.400 \mathrm{M}$	28.7	+0.1	+0.3	+11.0	+5.8	-40.0	5.9	28.0	-22.1	Vert
$\begin{aligned} & 11{ }^{45.440 \mathrm{M}} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	23.8	+0.1	+0.3	+9.5	+5.8	-40.0	-0.5	28.0	-28.5	Vert
$\wedge \quad 45.440 \mathrm{M}$	29.5	+0.1	+0.3	+9.5	+5.8	-40.0	5.2	28.0	-22.8	Vert

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossa, Inc.
18.305(b) ISM Frequencies <500W

Work Order \#:
Test Type:
Tested By:
102119
Maximized Emissions
Michael Atkinson
Date: 6/12/2020
Time: 17:33:20

Software:
EMIT est 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$

Method: FCC/OET MP-5 (February 1986)
Frequency: $30-1000 \mathrm{MHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, boresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

Investigated power source for the EUT:
Configuration 2: EUT connected to AC adapter for power. EUT connected to support Laptop via Ethernet cable. Laptop is located remotely.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Ossia, Inc. WO\#: 102119 Sequence\#: 22 Date: 6/12/2020 18.305(b) ISM Frequencies <500W Test Distance: 3 Meters Horiz

- Readings	O	Peak Readings \times QP Readings
Ambient		Average Readings
-		Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T2	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T3	AN03628	Biconilog Antenna	3142 E	$6 / 11 / 2019$	$6 / 11 / 2021$
T4	ANP06123	Attenuator	18N-6	$4 / 5 / 2019$	$4 / 5 / 2021$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	489.800M	38.1	+0.3	+1.1	+18.4	+5.8	-40.0	23.7	28.0	-4.3	Horiz
2	489.800M	29.1	+0.3	+1.1	+18.4	+5.8	-40.0	14.7	28.0	-13.3	Horiz
3	459.382M	27.0	+0.2	+1.1	+18.1	+5.8	-40.0	12.2	28.0	-15.8	Vert
4	989.491M	16.6	+0.4	+1.8	+25.0	+5.9	-40.0	9.7	28.0	-18.3	Vert
5	992.410M	16.2	+0.4	+1.8	+25.0	+5.9	-40.0	9.3	28.0	-18.7	Vert
6	994.746M	16.2	+0.4	+1.8	+25.0	+5.9	-40.0	9.3	28.0	-18.7	Vert
7	965.555M	16.5	+0.4	+1.7	+24.7	+5.9	-40.0	9.2	28.0	-18.8	Vert
8	981.318M	16.0	+0.4	+1.8	+24.9	+5.9	-40.0	9.0	28.0	-19.0	Vert
9	997.665M	15.5	+0.4	+1.8	+25.1	+5.9	-40.0	8.7	28.0	-19.3	Vert
10	854.045M	17.0	+0.3	+1.5	+23.8	+5.8	-40.0	8.4	28.0	-19.6	Vert
11	861.634M	17.0	+0.3	+1.5	+23.8	+5.8	-40.0	8.4	28.0	-19.6	Vert
	$\begin{aligned} & \text { 489.306M } \\ & \text { QP } \\ & \hline \end{aligned}$	20.8	+0.3	+1.1	+18.4	+5.8	-40.0	6.4	28.0	-21.6	Horiz
13	153.200 M	27.4	+0.2	+0.6	+9.4	+5.8	-40.0	3.4	28.0	-24.6	Horiz
	$\begin{aligned} & \text { 489.157M } \\ & \text { QP } \end{aligned}$	15.8	+0.3	+1.1	+18.4	+5.8	-40.0	1.4	28.0	-26.6	Vert
\wedge	489.157 M	30.8	+0.3	+1.1	+18.4	+5.8	-40.0	16.4	28.0	-11.6	Vert
	$\begin{aligned} & \text { 43.600M } \\ & \hline \end{aligned}$	18.3	+0.1	+0.3	+10.4	+5.8	-40.0	-5.1	28.0	-33.1	Vert
\wedge	43.600 M	26.9	+0.1	+0.3	+10.4	+5.8	-40.0	3.5	28.0	-24.5	Vert

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Usia, Inc.
18.305(b) ISM Frequencies <500W

Work Order \#:
Test Type:
Tested By:
102119
Maximized Emissions
Date: 6/12/2020

Michael Atkinson
Time: 12:53:15

Software:
EMIT est 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$
Method: FCC/OET MP-5 (February 1986)

Frequency: $1-3 \mathrm{GHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, boresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

Investigated power source for the EUT:
Configuration 1: EUT connected to support PoE box with 2 x Ethernet cables for power. Support laptop connected to PoE box with $1 \times$ Ethernet cable. PoE box and support Laptop are located remotely.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Ossia, Inc. WO\#: 102119 Sequence\#: 16 Date: 6/12/2020 18.305(b) ISM Frequencies <500W Test Distance: 3 Meters Vert


```
-_ Readings
\(\times\) QP Readings Ambient
1-18.305(b) ISM Frequencies <500W
```

O Peak Readings

* Average Readings

Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T4	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	$7 / 5 / 2019$	$7 / 5 / 2021$
		Cable	Heliax 1/4	$1 / 8 / 2019$	$1 / 8 / 2021$
T5	ANP05960	Band Reject Filter	3TNF- $1500 / 3000-N / N$	$6 / 12 / 2020$	$6 / 12 / 2022$
T6	AN03417				

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

$\#$ Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	T3 dB	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 12677.200 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.7 \\ & +0.2 \end{aligned}$	+2.6	+28.2	-40.0	14.6	28.0	-13.4	Horiz
$\wedge 2677.200 \mathrm{M}$	39.6	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.7 \\ & +0.2 \end{aligned}$	+2.6	+28.2	-40.0	31.8	28.0	+3.8	Horiz
$\begin{aligned} & 32652.600 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.5	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.7 \\ & +0.2 \end{aligned}$	+2.6	+28.1	-40.0	14.6	28.0	-13.4	Horiz
$\wedge 2652.600 \mathrm{M}$	38.6	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.2 \end{aligned}$	+2.6	+28.1	-40.0	30.7	28.0	+2.7	Horiz
$\begin{aligned} & 52321.100 \mathrm{M} \\ & \text { Ave } \end{aligned}$	23.2	$\begin{aligned} & \hline+0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.5	+27.7	-40.0	14.5	28.0	-13.5	Vert
$\wedge 2321.100 \mathrm{M}$	53.8	$\begin{aligned} & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.5	+27.7	-40.0	45.1	28.0	+17.1	Vert
$\begin{aligned} & 7 \text { 2619.600M } \\ & \text { Ave } \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \end{aligned}$	+2.7	+28.0	-40.0	14.3	28.0	-13.7	Horiz
$\wedge 2619.600 \mathrm{M}$	44.1	$\begin{aligned} & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.7	+28.0	-40.0	36.0	28.0	+8.0	Horiz
$\begin{aligned} & 9 \text { 2575.200M } \\ & \text { Ave } \end{aligned}$	22.5	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.8	-40.0	14.2	28.0	-13.8	Horiz
$\wedge 2575.200 \mathrm{M}$	45.7	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.8	-40.0	37.4	28.0	+9.4	Horiz
$\begin{aligned} & 112601.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.9	-40.0	14.2	28.0	-13.8	Horiz
$\wedge 2601.000 \mathrm{M}$	51.1	$\begin{array}{r} +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.7	+27.9	-40.0	42.9	28.0	+14.9	Horiz
$\begin{aligned} & 13 \text { 2553.000M } \\ & \text { Ave } \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.7	+27.8	-40.0	14.1	28.0	-13.9	Horiz
$\wedge 2553.000 \mathrm{M}$	46.1	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.8	-40.0	37.8	28.0	+9.8	Horiz
$\begin{aligned} & 152529.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.5	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.7	-40.0	14.1	28.0	-13.9	Vert
$\wedge 2529.000 \mathrm{M}$	53.2	$\begin{aligned} & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.7	+27.7	-40.0	44.8	28.0	+16.8	Vert
$\begin{aligned} & 17 \text { 2396.535M } \\ & \text { Ave } \end{aligned}$	22.5	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.6	+27.7	-40.0	14.0	28.0	-14.0	Horiz
$\wedge 2396.535 \mathrm{M}$	57.6	$\begin{aligned} & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.6	+27.7	-40.0	49.1	28.0	+21.1	Horiz
$\begin{aligned} & 192544.600 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.7	-40.0	14.0	28.0	-14.0	Horiz
$\wedge 2544.600 \mathrm{M}$	45.7	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.7	-40.0	37.3	28.0	+9.3	Horiz
$\begin{aligned} & 21 \begin{array}{l} 2534.400 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	22.3	$\begin{aligned} & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.7	+27.7	-40.0	13.9	28.0	-14.1	Horiz
$\wedge 2534.400 \mathrm{M}$	50.1	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.7	+27.7	-40.0	41.7	28.0	+13.7	Horiz

Page 22 of 61

$\begin{aligned} & 23 \text { 2529.000M } \\ & \text { Ave } \end{aligned}$	22.3	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.7	-40.0	13.9	28.0	-14.1	Horiz
$\begin{aligned} & 242379.057 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.6	+27.7	-40.0	13.9	28.0	-14.1	Horiz
$\wedge 2379.057 \mathrm{M}$	59.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.6	+27.7	-40.0	50.9	28.0	+22.9	Horiz
$\begin{gathered} 262374.457 \mathrm{M} \\ \text { Ave } \end{gathered}$	22.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.6	+27.7	-40.0	13.9	28.0	-14.1	Horiz
$\wedge 2374.457 \mathrm{M}$	63.5	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.6	+27.7	-40.0	55.0	28.0	+27.0	Horiz
$\begin{aligned} & 28 \text { 2502.325M } \\ & \text { Ave } \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.6	-40.0	13.9	28.0	-14.1	Horiz
$\wedge 2502.325 \mathrm{M}$	59.6	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.6	-40.0	51.1	28.0	+23.1	Horiz
$\begin{gathered} 302511.525 \mathrm{M} \\ \text { Ave } \end{gathered}$	22.3	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.6	-40.0	13.8	28.0	-14.2	Horiz
$\wedge 2511.525 \mathrm{M}$	56.9	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.7	+27.6	-40.0	48.4	28.0	+20.4	Horiz
$\begin{aligned} & 322515.204 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	22.3	$\begin{aligned} & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.7	+27.6	-40.0	13.8	28.0	-14.2	Horiz
$\wedge 2515.204 \mathrm{M}$	59.3	$\begin{aligned} & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.7	+27.6	-40.0	50.8	28.0	+22.8	Horiz
$\begin{aligned} & 34 \text { 2325.000M } \\ & \text { Ave } \end{aligned}$	22.5	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.5	+27.7	-40.0	13.8	28.0	-14.2	Horiz
$\wedge 2325.000 \mathrm{M}$	52.1	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \end{aligned}$	+2.5	+27.7	-40.0	43.4	28.0	+15.4	Horiz
$\begin{gathered} 362321.100 \mathrm{M} \\ \text { Ave } \end{gathered}$	22.5	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.5	+27.7	-40.0	13.8	28.0	-14.2	Horiz
$\begin{aligned} & 372348.500 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	22.4	$\begin{array}{r} +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.5	+27.7	-40.0	13.7	28.0	-14.3	Horiz
$\wedge 2348.500 \mathrm{M}$	51.9	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.5	+27.7	-40.0	43.2	28.0	+15.2	Horiz
$\begin{aligned} & 392349.619 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.5	+27.7	-40.0	13.7	28.0	-14.3	Horiz
$\wedge 2349.619 \mathrm{M}$	58.0	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.5	+27.7	-40.0	49.3	28.0	+21.3	Horiz
$\begin{aligned} & \hline 412353.299 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.5	+27.7	-40.0	13.7	28.0	-14.3	Horiz
\wedge 2353.299M	59.0	$\begin{array}{r} +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.5	+27.7	-40.0	50.3	28.0	+22.3	Horiz
$\begin{aligned} & 43 \text { 2358.818M } \\ & \text { Ave } \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.5	+27.7	-40.0	13.7	28.0	-14.3	Horiz
^ 2358.818M	63.3	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \end{aligned}$	+2.5	+27.7	-40.0	54.6	28.0	+26.6	Horiz
$\begin{aligned} & 452361.578 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.1 \end{aligned}$	+2.5	+27.7	-40.0	13.7	28.0	-14.3	Horiz
$\wedge 2361.578 \mathrm{M}$	57.5	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.5	+27.7	-40.0	48.8	28.0	+20.8	Horiz
$\begin{aligned} & \hline 47 \begin{array}{l} 2284.000 \mathrm{M} \\ \text { Ave } \end{array} \\ & \hline \end{aligned}$	22.4	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	+2.4	+27.7	-40.0	13.6	28.0	-14.4	Horiz
$\wedge 2284.000 \mathrm{M}$	47.8	$\begin{array}{r} +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +0.6 \\ +0.1 \\ \hline \end{array}$	+2.4	+27.7	-40.0	39.0	28.0	+11.0	Horiz

Page 23 of 61

	$\begin{aligned} & 92256.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.3	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \\ & \hline \end{aligned}$	+2.4	+27.7	-40.0	13.5	28.0	-14.5	Horiz	
	^ 2256.000M	50.1	+0.0	+0.6	+2.4	+27.7	-40.0	41.3	28.0	+13.3	Horiz	
			+0.4	+0.1								
51	12209.500 M	22.2	+0.0	+0.6	+2.4	+27.8	-40.0	13.5	28.0	-14.5	Horiz	
	Ave		+0.4	+0.1								
$\wedge 2209.500 \mathrm{M}$		46.0	+0.0	+0.6	+2.4	+27.8	-40.0	37.3	28.0	+9.3	Horiz	
			+0.4	+0.1								
$\begin{aligned} & 53 \text { 2151.000M } \\ & \text { Ave } \end{aligned}$		22.1	+0.0	+0.6	+2.4	+27.8	-40.0	13.4	28.0	-14.6	Horiz	
			+0.4	+0.1								
$\wedge 2151.000 \mathrm{M}$		41.2	+0.0	+0.6	+2.4	+27.8	-40.0	32.5	28.0	+4.5	Horiz	
			+0.4	+0.1								
$\begin{aligned} & 552141.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$		22.0	+0.0	+0.6	+2.4	+27.8	-40.0	13.3	28.0	-14.7	Horiz	
			+0.4	+0.1								
$\wedge 2141.400 \mathrm{M}$		41.0	+0.0	+0.6	+2.4	+27.8	-40.0	32.3	28.0	+4.3	Horiz	
			+0.4	+0.1								
$\begin{aligned} & 57 \text { 2123.400M } \\ & \text { Ave } \end{aligned}$		22.0	+0.0	+0.6	+2.4	+27.8	-40.0	13.3	28.0	-14.7	Horiz	
			+0.4	+0.1								
$\begin{gathered} 582123.400 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$		22.0	+0.0	+0.6	+2.4	+27.8	-40.0	13.3	28.0	-14.7	Horiz	
			+0.4	+0.1								
$\wedge 2123.400 \mathrm{M}$		37.6	+0.0	+0.6	+2.4	+27.8	-40.0	28.9	28.0	+0.9	Horiz	
			+0.4	+0.1								
$\begin{gathered} 601832.500 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$		21.7	+0.0	+0.5	+2.3	+26.3	-40.0	11.3	28.0	-16.7	Horiz	
			+0.4	+0.1								
	^ 1832.500M	40.1	+0.0	+0.5	+2.3	+26.3	-40.0	29.7	28.0	+1.7	Horiz	
			+0.4	+0.1								
	$\begin{aligned} & 21803.000 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	21.7	+0.0	+0.5	+2.2	+26.0	-40.0	10.9	28.0	-17.1	Horiz	
			+0.4	+0.1								
	^ 1803.000M	40.2	+0.0	+0.5	+2.2	+26.0	-40.0	29.4	28.0	+1.4	Horiz	
			+0.4	+0.1								
$\begin{aligned} & 64 \text { 1790.000M } \\ & \text { Ave } \end{aligned}$		21.7	+0.0	+0.5	+2.2	+25.9	-40.0	10.8	28.0	-17.2	Vert	
			+0.4	+0.1								
	^ 1790.000M	37.7	+0.0	+0.5	+2.2	+25.9	-40.0	26.8	28.0	-1.2	Vert	
			+0.4	+0.1								
	$\wedge 1790.000 \mathrm{M}$	37.7	+0.0	+0.5	+2.2	+25.9	-40.0	26.8	28.0	-1.2	Vert	
			+0.4	+0.1								
$\begin{aligned} & 67 \text { 1794.000M } \\ & \text { Ave } \\ & \hline \end{aligned}$		21.7	+0.0	+0.5	+2.2	+25.9	-40.0	10.8	28.0	-17.2	Horiz	
			+0.4	+0.1								
$\wedge 1794.000 \mathrm{M}$		42.3	+0.0	+0.5	+2.2	+25.9	-40.0	31.4	28.0	+3.4	Horiz	
			+0.4	+0.1								
$\begin{aligned} & 691787.000 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$		21.7	+0.0	+0.5	+2.2	+25.9	-40.0	10.8	28.0	-17.2	Horiz	
			+0.4	+0.1								
$\begin{aligned} & 701787.000 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$		21.6	+0.0	+0.5	+2.2	+25.9	-40.0	10.7	28.0	-17.3	Horiz	
			+0.4	+0.1								
	$\wedge 1787.000 \mathrm{M}$	40.7	+0.0	+0.5	+2.2	+25.9	-40.0	29.8	28.0	+1.8	Horiz	
			+0.4	+0.1								
	2 1755.000M	21.7	+0.0	+0.5	+2.2	+25.6	-40.0	10.5	28.0	-17.5	Horiz	
	1755.000M			+0.4	+0.1							
			36.3	+0.0	+0.5	+2.2	+25.6	-40.0	25.1	28.0	-2.9	Horiz
				+0.4	+0.1							

Page 24 of 61

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Usia, Inc.
18.305(b) ISM Frequencies <500W

Work Order \#:
Test Type:
Tested By: 102119
Maximized Emissions
Michael Atkinson
Date: 6/12/2020
Time: 10:36:24

Software:
EMIT est 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$
Method: FCC/OET MP-5 (February 1986)

Frequency: $3-10 \mathrm{GHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, boresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

Investigated power source for the EUT:
Configuration 1: EUT connected to support PoE box with $2 \times$ Ethernet cables for power. Support laptop connected to PoE box with $1 \times$ Ethernet cable. PoE box and support Laptop are located remotely.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Ossia, Inc. WO\#: 102119 Sequence\#: 14 Date: 6/12/2020 18.305(b) ISM Frequencies <500W Test Distance: 3 Meters Vert


```
-_ Readings
\(\times\) QP Readings
Ambient
1-18.305(b) ISM Frequencies <500W
```

O Peak Readings

- Average Readings

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T4	AN03116	High Pass Filter	11SH10-00313	$1 / 22 / 2019$	$1 / 22 / 2021$
T5	AN01467	Horn Antenna-	3115	$7 / 5 / 2019$	$7 / 5 / 2021$
		ANSI C63.5			
	Calibration			$5 / 13 / 2021$	
T6	AN03540	Preamp	$83017 A$	$5 / 13 / 2019$	$3 / 15 / 2021$
T7	ANP07563	High Pass Filter	VHF-2700A+	$3 / 15 / 2019$	

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~T} 7 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{aligned} & 19800.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.5	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	$\begin{array}{r} +1.3 \\ -33.9 \end{array}$	$\begin{aligned} & +6.3 \\ & +0.0 \end{aligned}$	+0.7	-40.0	23.4	28.0	-4.6	Vert
$\begin{aligned} & 23708.892 \mathrm{M} \\ & \text { Ave } \end{aligned}$	60.1	$\begin{array}{r} +0.0 \\ +30.6 \end{array}$	$\begin{array}{r} +0.9 \\ -33.7 \end{array}$	$\begin{aligned} & +3.8 \\ & +0.5 \end{aligned}$	+0.7	-40.0	22.9	28.0	-5.1	Horiz
$\wedge 3708.892 \mathrm{M}$	74.3	$\begin{array}{r} +0.0 \\ +30.6 \end{array}$	$\begin{array}{r} +0.9 \\ -33.7 \end{array}$	$\begin{aligned} & +3.8 \\ & +0.5 \end{aligned}$	+0.7	-40.0	37.1	28.0	+9.1	Horiz
$\begin{aligned} & 43708.739 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	58.9	$\begin{array}{r} +0.0 \\ +30.6 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.9 \\ -33.7 \\ \hline \end{array}$	$\begin{aligned} & +3.8 \\ & +0.5 \\ & \hline \end{aligned}$	+0.7	-40.0	21.7	28.0	-6.3	Vert
^ 3708.739M	69.1	$\begin{array}{r} +0.0 \\ +30.6 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ -33.7 \\ \hline \end{array}$	$\begin{aligned} & +3.8 \\ & +0.5 \end{aligned}$	+0.7	-40.0	31.9	28.0	+3.9	Vert
$\begin{aligned} & 6 \text { 3710.100M } \\ & \text { Ave } \end{aligned}$	58.8	$\begin{array}{r} +0.0 \\ +30.6 \end{array}$	$\begin{array}{r} +0.9 \\ -33.7 \end{array}$	$\begin{aligned} & +3.8 \\ & +0.5 \end{aligned}$	+0.7	-40.0	21.6	28.0	-6.4	Horiz
^ 3710.100M	69.7	$\begin{array}{r} +0.0 \\ +30.6 \end{array}$	$\begin{array}{r} +0.9 \\ -33.7 \end{array}$	$\begin{aligned} & +3.8 \\ & +0.5 \end{aligned}$	+0.7	-40.0	32.5	28.0	+4.5	Horiz
$\begin{aligned} & 84900.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	55.5	$\begin{array}{r} +0.0 \\ +32.5 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ -33.6 \end{array}$	$\begin{aligned} & \hline+4.2 \\ & +0.3 \end{aligned}$	$+0.5$	-40.0	20.3	28.0	-7.7	Horiz
$\begin{aligned} & 97350.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.6	$\begin{array}{r} +0.0 \\ +36.9 \end{array}$	$\begin{array}{r} +1.3 \\ -34.6 \end{array}$	$\begin{aligned} & \hline+5.4 \\ & +1.0 \\ & \hline \end{aligned}$	+0.6	-40.0	20.2	28.0	-7.8	Vert
103082.000 M	56.4	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$\begin{array}{r} +0.8 \\ -34.0 \end{array}$	$\begin{aligned} & +3.0 \\ & +1.0 \end{aligned}$	+1.1	-40.0	17.6	28.0	-10.4	Vert
11 3021.000M	52.7	$\begin{array}{r} +0.0 \\ +29.1 \end{array}$	$\begin{gathered} +0.8 \\ -34.0 \end{gathered}$	$\begin{aligned} & +2.9 \\ & +1.0 \end{aligned}$	+1.2	-40.0	13.7	28.0	-14.3	Vert
$\begin{aligned} & 123573.409 \mathrm{M} \\ & \text { Ave } \end{aligned}$	50.9	$\begin{array}{r} +0.0 \\ +30.2 \end{array}$	$\begin{gathered} +0.8 \\ -33.8 \end{gathered}$	$\begin{aligned} & +3.6 \\ & +0.6 \end{aligned}$	+1.0	-40.0	13.3	28.0	-14.7	Vert
^ 3573.400M	65.4	$\begin{array}{r} +0.0 \\ +30.2 \end{array}$	$\begin{gathered} +0.8 \\ -33.8 \end{gathered}$	$\begin{aligned} & +3.6 \\ & +0.6 \end{aligned}$	+1.0	-40.0	27.8	28.0	-0.2	Vert
145751.000 M	44.7	$\begin{array}{r} +0.0 \\ +34.2 \end{array}$	$\begin{array}{r} \hline+1.0 \\ -33.7 \\ \hline \end{array}$	$\begin{aligned} & +4.6 \\ & +0.2 \end{aligned}$	+0.5	-40.0	11.5	28.0	-16.5	Horiz
$\begin{aligned} & 153007.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	33.1	$\begin{array}{r} +0.0 \\ +29.1 \end{array}$	$\begin{array}{r} +0.8 \\ -34.0 \\ \hline \end{array}$	$\begin{aligned} & +2.9 \\ & +1.0 \\ & \hline \end{aligned}$	+1.2	-40.0	-5.9	28.0	-33.9	Horiz
^ 3007.000M	61.2	$\begin{array}{r} +0.0 \\ +29.1 \end{array}$	$\begin{gathered} \hline+0.8 \\ -34.0 \end{gathered}$	$\begin{aligned} & \hline+2.9 \\ & +1.0 \end{aligned}$	+1.2	-40.0	22.2	28.0	-5.8	Horiz

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Usia, Inc.
18.305(b) ISM Frequencies <500W

Work Order \#:
Test Type:
Tested By:
102119
Maximized Emissions
Michael Atkinson
Date: 6/12/2020
Time: 11:51:26

Software:
EMIT est 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$

Method: FCC/OET MP-5 (February 1986)
Frequency: $10-18 \mathrm{GHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, foresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

Investigated power sources for the EUT:
Configuration 1: EUT connected to support PoE box with $2 \times$ Ethernet cables for power. Support laptop connected to PoE box with $1 \times$ Ethernet cable. PoE box and support Laptop are located remotely.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Dssia, Inc. WO\#: 102119 Sequence\#\#: 15 Date: 6/12/2020 18.305(b) ISM Frequencies <500W Test Distance: 3 Meters Horiz

- Readings	O	Peak Readings \times QP Readings
Ambient		Average Readings
-		Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T4	AN02741	Active Horn	AMFW-5F-	$4 / 26 / 2019$	$4 / 26 / 2021$
		Antenna	$12001800-20-$		
			10P		

Measurement Data:

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
	$\begin{aligned} & \hline 12250.041 \\ & \mathrm{M} \\ & \text { Ave } \end{aligned}$	63.3	+0.0	+1.4	+6.9	-12.9	-40.0	18.7	28.0	-9.3	Vert
	$\begin{gathered} 12250.000 \\ \mathrm{M} \end{gathered}$	67.1	+0.0	+1.4	+6.9	-12.9	-40.0	22.5	28.0	-5.5	Vert
	$\begin{gathered} 12250.010 \\ \mathrm{M} \end{gathered}$	63.8	+0.0	+1.4	+6.9	-12.9	-40.0	19.2	28.0	-8.8	Vert
	$\begin{gathered} 12248.000 \\ \mathrm{M} \end{gathered}$	63.0	+0.0	+1.4	+6.9	-12.8	-40.0	18.5	28.0	-9.5	Horiz
	$\begin{gathered} 17150.200 \\ M \end{gathered}$	59.3	+0.0	+1.9	+8.9	-11.7	-40.0	18.4	28.0	-9.6	Horiz
	$\begin{gathered} 14700.000 \\ \text { M } \end{gathered}$	61.2	+0.0	+1.5	+8.3	-14.6	-40.0	16.4	28.0	-11.6	Vert
	$\begin{gathered} 14700.100 \\ \mathrm{M} \end{gathered}$	60.7	+0.0	+1.5	+8.3	-14.6	-40.0	15.9	28.0	-12.1	Horiz
	$\begin{aligned} & 17149.989 \\ & \text { M } \\ & \hline \end{aligned}$	56.2	+0.0	+1.9	+8.9	-11.7	-40.0	15.3	28.0	-12.7	Horiz
	$\begin{gathered} 17150.010 \\ M \end{gathered}$	54.0	+0.0	+1.9	+8.9	-11.7	-40.0	13.1	28.0	-14.9	Vert
	$\begin{gathered} 17150.028 \\ M \\ \text { Ave } \end{gathered}$	51.5	+0.0	+1.9	+8.9	-11.7	-40.0	10.6	28.0	-17.4	Horiz
	$\begin{gathered} 10312.000 \\ \mathrm{M} \end{gathered}$	43.0	+0.0	+1.3	+6.2	-12.1	-40.0	-1.6	28.0	-29.6	Vert

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossa, Inc.
18.305(b) ISM Frequencies <500W

Work Order \#:
Test Type:
Tested By: 102119
Maximized Emissions
Michael Atkinson
Date: 6/12/2020
Time: 14:49:01

Software:
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$

Method: FCC/OET MP-5 (February 1986)
Frequency: $18 \mathrm{GHz}-25 \mathrm{GHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, boresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

Investigated power source for the EUT:
Configuration 1: EUT connected to support PoE box with $2 \times$ Ethernet cables for power. Support laptop connected to PoE box with $1 \times$ Ethernet cable. PoE box and support Laptop are located remotely.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Ossia, Inc. WO\#: 102119 Sequence\#: 19 Date: 6/12/2020 18.305(b) ISM Frequencies <500W Test Distance: 3 Meters Horiz

- Readings	O	Peak Readings \times QP Readings
Ambient	$*$	Average Readings
Software Version: 5.03 .12		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T2	ANP06678	Cable	$32026-29801-$	$2 / 20 / 2020$	$2 / 20 / 2022$
			$29801-144$		
T3	AN02742	Active Horn	AMFW-5F-	$10 / 16 / 2018$	$10 / 16 / 2020$
		Antenna	$18002650-20-$		
			$10 P$		

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
	$\begin{gathered} 19600.000 \\ \text { M } \end{gathered}$	60.9	+0.0	+9.0	-13.0		-40.0	16.9	28.0	-11.1	Horiz
2	$\begin{gathered} 22050.000 \\ \mathrm{M} \end{gathered}$	61.5	+0.0	+9.2	-16.1		-40.0	14.6	28.0	-13.4	Vert
3	$\begin{gathered} 19600.000 \\ \mathrm{M} \end{gathered}$	58.2	+0.0	+9.0	-13.0		-40.0	14.2	28.0	-13.8	Vert
	$\begin{aligned} & 22050.000 \\ & \mathrm{M} \\ & \text { Ave } \end{aligned}$	60.9	+0.0	+9.2	-16.1		-40.0	14.0	28.0	-14.0	Horiz
	$\begin{gathered} 22050.000 \\ \mathrm{M} \end{gathered}$	65.8	+0.0	+9.2	-16.1		-40.0	18.9	28.0	-9.1	Horiz
6	$\begin{gathered} 24500.000 \\ \mathrm{M} \end{gathered}$	52.8	+0.0	+10.0	-12.5		-40.0	10.3	28.0	-17.7	Horiz
7	$\begin{gathered} 24500.000 \\ \mathrm{M} \end{gathered}$	51.9	+0.0	+10.0	-12.5		-40.0	9.4	28.0	-18.6	Vert

Test Setup Photos)

Configuration 1

Configuration 2

18.307 AC Conducted Emissions

Test Notes: Conducted Disturbances at Mains Terminals, LISN method.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 2211623 rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Usia, Inc.
18.307(b) AC Mains - Average

102119
Conducted Emissions
Michael Atkinson
EMITest 5.03.19

Date: 6/26/2020
Time: 08:56:42
Sequence\#: 57
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Temperature: $23^{\circ} \mathrm{C}$
Humidity: 34%
Pressure: 101.6 kPa
Method: FCC/OET MP-5 (February 1986)
Frequency: $0.15-30 \mathrm{MHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, boresight configuration. 20 dBm setting.
The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

EUT connected to support PoE box with 2 x Ethernet cables for power. Support laptop connected to PoE box with 1 x Ethernet cable. Support Laptop located remotely.

Ossia, Inc. WO\#: 102119 Sequence\#: 57 Date: 6/26/2020 18.307(b) AC Mains - Average Test Lead: 115 VAC 60 Hz Line

	Sweep Data
	Peak Readings
* Rerage Readings	\times QP Readings
	Software Version: 5.03 .19
	2-18.307(b) AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K- $50-720 B$	$1 / 10 / 2020$	$1 / 10 / 2022$
			Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T2	ANP06540	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T3	ANP06515	Cable	$768-10$	$4 / 7 / 2020$	$4 / 7 / 2022$
T4	ANP06219	Attenuator	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$
T5	AN01311	50uH LISN-Line1 (L)	$2 / 24 / 2020$	$2 / 24 / 2022$	
	AN01311	50uH LISN-Line2 (N)	$3816 / 2$		

Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	T3 dB	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	156.077k	45.3	$\begin{array}{r} \hline+0.8 \\ -1.7 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	53.5	55.7	-2.2	Line
2	1.304M	34.7	$\begin{gathered} \hline+0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	43.7	46.0	-2.3	Line
3	445.207 k	35.8	$\begin{array}{r} \hline+0.2 \\ -0.5 \end{array}$	+0.0	+0.1	+9.1	+0.0	44.7	47.0	-2.3	Line
4	435.531k	35.7	$\begin{array}{r} \hline+0.2 \\ -0.5 \end{array}$	+0.0	+0.1	+9.1	+0.0	44.6	47.1	-2.5	Line
5	780.904k	34.5	$\begin{array}{r} \hline+0.2 \\ -0.3 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	43.5	46.0	-2.5	Line
	$260.849 \mathrm{k}$ Ave	28.1	$\begin{gathered} \hline+0.2 \\ -0.8 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	36.6	51.4	-14.8	Line
\wedge	260.849k	40.9	$\begin{array}{r} \hline+0.2 \\ -0.8 \end{array}$	+0.0	+0.0	+9.1	+0.0	49.4	51.4	-2.0	Line
	$181.858 \mathrm{k}$	27.5	$\begin{array}{r} \hline+0.4 \\ -1.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	35.6	54.4	-18.8	Line
	$250.919 \mathrm{k}$	24.5	$\begin{array}{r} +0.2 \\ -0.9 \end{array}$	+0.0	+0.0	+9.1	+0.0	32.9	51.7	-18.8	Line
\wedge	250.919k	41.3	$\begin{array}{r} \hline+0.2 \\ -0.9 \end{array}$	+0.0	+0.0	+9.1	+0.0	49.7	51.7	-2.0	Line
	$186.050 \mathrm{k}$	27.1	$\begin{array}{r} \hline+0.3 \\ -1.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	35.2	54.2	-19.0	Line
\wedge	181.857k	45.6	$\begin{gathered} \hline+0.4 \\ -1.4 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	53.7	54.4	-0.7	Line
\wedge	186.049k	44.4	$\begin{gathered} \hline+0.3 \\ -1.3 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	52.5	54.2	-1.7	Line
\wedge	188.040k	43.6	$\begin{array}{r} \hline+0.3 \\ -1.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	51.7	54.1	-2.4	Line
	$615.751 \mathrm{k}$	15.7	$\begin{array}{r} +0.3 \\ -0.4 \\ \hline \end{array}$	+0.0	+0.0	+9.1	$+0.0$	24.7	46.0	-21.3	Line
\wedge	615.751k	36.0	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	$+0.0$	45.0	46.0	-1.0	Line
	$\begin{aligned} & \text { 173.893k } \\ & \text { Ave } \end{aligned}$	25.2	$\begin{array}{r} \hline+0.4 \\ -1.5 \end{array}$	+0.0	+0.0	+9.1	+0.0	33.2	54.8	-21.6	Line
\wedge	173.892k	45.4	$\begin{array}{r} \hline+0.4 \\ -1.5 \end{array}$	+0.0	+0.0	+9.1	+0.0	53.4	54.8	-1.4	Line
	$193.490 \mathrm{k}$	23.4	$\begin{gathered} +0.3 \\ -1.3 \end{gathered}$	+0.0	+0.0	+9.1	$+0.0$	31.5	53.9	-22.4	Line
\wedge	189.717k	43.7	$\begin{array}{r} \hline+0.3 \\ -1.3 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	51.8	54.0	-2.2	Line
	$240.440 \mathrm{k}$	20.6	$\begin{array}{r} \hline+0.2 \\ -0.9 \end{array}$	+0.0	+0.0	+9.1	+0.0	29.0	52.1	-23.1	Line
\wedge	240.439k	41.8	$\begin{array}{r} \hline+0.2 \\ -0.9 \end{array}$	+0.0	+0.0	+9.1	+0.0	50.2	52.1	-1.9	Line

	$198.311 \mathrm{k}$	22.5	$\begin{array}{r} \hline+0.2 \\ -1.2 \end{array}$	+0.0	+0.0	+9.1	$+0.0$	30.6	53.7	-23.1	Line
\wedge	193.490k	44.4	$\begin{array}{r} \hline+0.3 \\ -1.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	52.5	53.9	-1.4	Line
\wedge	198.310k	44.0	$\begin{aligned} & \hline+0.2 \\ & -1.2 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	52.1	53.7	-1.6	Line
	$208.057 \mathrm{k}$	21.7	$\begin{array}{r} \hline+0.2 \\ -1.1 \end{array}$	+0.0	+0.0	+9.1	+0.0	29.9	53.3	-23.4	Line
\wedge	208.057 k	43.6	$\begin{gathered} \hline+0.2 \\ -1.1 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	51.8	53.3	-1.5	Line
	$162.365 \mathrm{k}$	20.5	$\begin{gathered} +0.6 \\ -1.6 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	28.6	55.3	-26.7	Line
\wedge	162.365k	46.5	$\begin{array}{r} +0.6 \\ -1.6 \\ \hline \end{array}$	+0.0	+0.0	+9.1	$+0.0$	54.6	55.3	-0.7	Line
	$815.319 \mathrm{k}$	7.8	$\begin{gathered} +0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	$+0.0$	16.8	46.0	-29.2	Line
\wedge	815.318k	35.0	$\begin{gathered} +0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	44.0	46.0	-2.0	Line
	$634.499 \mathrm{k}$ Ave	7.1	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	16.1	46.0	-29.9	Line
\wedge	634.498k	37.5	$\begin{array}{r} +0.3 \\ -0.4 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	46.5	46.0	+0.5	Line

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossa, Inc.
18.307(b) AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions
Date: 6/26/2020
Michael Atkinson
Time: 09:05:23

Software:
EMITest 5.03.12

Sequence\#: 58
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $23^{\circ} \mathrm{C}$
Humidity: 34%
Pressure: 101.6 kPa

Method: FCC/OET MP-5 (February 1986)
Frequency: $0.15-30 \mathrm{MHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, boresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

EUT connected to support PoE box with 2 x Ethernet cables for power. Support laptop connected to PoE box with 1 x Ethernet cable. Support Laptop located remotely.

> | Ossia, Inc. WO\#: 102119 Sequence\#f: 58 Date: $6 / 26 / 2020$ |
| :--- |
| 18.307 (b) AC Mains - Average Test Lead: 115 VAC 60 Hz Neutral |

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K- 50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
			Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T2	ANP06540	Cable	Cable	Heliax	$6 / 29 / 2018$
T3	ANP06515	Attenuator	$768-10$	$4 / 7 / 2020$	$4 / 29 / 2020$
T4	ANP06219	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$
	AN01311	50uH LISN-Line2	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$
T5	AN01311	(N)			

	$796.828 \mathrm{k}$ ve	10.8	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	19.8	46.0	-26.2	Neutr
\wedge	796.827k	36.2	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	45.2	46.0	-0.8	Neutr
26	$\mathrm{ve}^{1.362 \mathrm{M}}$	10.2	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.1	+9.1	+0.0	19.3	46.0	-26.7	Neutr
\wedge	1.362 M	35.8	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.1	+9.1	+0.0	44.9	46.0	-1.1	Neutr
	$827.646 \mathrm{k}$ ve	9.4	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	18.4	46.0	-27.6	Neutr
\wedge	827.646k	35.8	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	44.8	46.0	-1.2	Neutr
	$1.069 \mathrm{M}$ ve	9.3	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	18.3	46.0	-27.7	Neutr
\wedge	1.069 M	35.6	$\begin{gathered} \hline+0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	44.6	46.0	-1.4	Neutr
32	$\begin{aligned} & 161.632 \mathrm{k} \\ & \mathrm{ve} \end{aligned}$	18.5	$\begin{array}{r} \hline+0.6 \\ -1.6 \end{array}$	+0.0	+0.0	+9.1	+0.0	26.6	55.4	-28.8	Neutr
\wedge	161.631k	46.2	$\begin{gathered} \hline+0.6 \\ -1.6 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	54.3	55.4	-1.1	Neutr

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossa, Inc.
18.307(b) AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions
Date: 6/14/2020
Michael Atkinson
Time: 14:56:26

Software:
EMIT est 5.03.12

Sequence\#: 34
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$

Method: FCC/OET MP-5 (February 1986)
Frequency: $0.15-30 \mathrm{MHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, foresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

EUT connected to AC adapter for power. EUT connected to support Laptop via Ethernet cable. Laptop is located remotely.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K- 50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
			Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T2	ANP06540	Cable	Cable	Heliax	$6 / 29 / 2018$
T3	ANP06515	Attenuator	$768-10$	$4 / 7 / 2020$	$4 / 29 / 2020$
T4	ANP06219	50uH LISN-Line (L1)	3816/2NM	$10 / 14 / 2019$	$10 / 14 / 2021$
T5	AN01492	50uH LISN-Neutral	3816/2NM	$10 / 14 / 2019$	$10 / 14 / 2021$
	AN01492				

Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{array}{r} \mathrm{T} 2 \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{gathered} \mathrm{T} 3 \\ \text { dB } \end{gathered}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
	$\begin{aligned} & \text { 4.693M } \\ & \hline \text { ve } \end{aligned}$	24.8	$\begin{aligned} & \hline+0.1 \\ & +0.6 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	34.7	46.0	-11.3	Line
2	4.464M	24.5	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	34.3	46.0	-11.7	Line
\wedge	4.464M	42.5	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	52.3	46.0	+6.3	Line
4	$4.482 \mathrm{M}$	24.5	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	34.3	46.0	-11.7	Line
\wedge	4.482 M	42.2	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	52.0	46.0	+6.0	Line
	$\begin{aligned} & 4.714 \mathrm{M} \\ & \hline \end{aligned}$	24.3	$\begin{array}{r} +0.1 \\ +0.6 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	34.2	46.0	-11.8	Line
\wedge	4.714 M	41.4	$\begin{aligned} & +0.1 \\ & +0.6 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.3	46.0	+5.3	Line
	$\begin{aligned} & 4.573 \mathrm{M} \\ & \hline \end{aligned}$	24.3	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	34.1	46.0	-11.9	Line
\wedge	4.573 M	42.4	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	52.2	46.0	+6.2	Line
	$\begin{aligned} & \text { 14.363M } \\ & \hline \text { e } \end{aligned}$	27.9	$\begin{aligned} & +0.2 \\ & +0.6 \\ & \hline \end{aligned}$	+0.0	+0.2	+9.1	+0.0	38.0	50.0	-12.0	Line
\wedge	14.363 M	44.2	$\begin{aligned} & +0.2 \\ & +0.6 \\ & \hline \end{aligned}$	$+0.0$	+0.2	+9.1	+0.0	54.3	50.0	+4.3	Line
	$\begin{aligned} & 16.107 \mathrm{M} \\ & \text { e } \end{aligned}$	27.7	$\begin{array}{r} +0.2 \\ +0.6 \\ \hline \end{array}$	+0.1	+0.2	+9.1	+0.0	37.9	50.0	-12.1	Line
\wedge	16.107 M	45.0	$\begin{aligned} & +0.2 \\ & +0.6 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	55.2	50.0	+5.2	Line
	$4.248 \mathrm{M}$	24.1	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	33.9	46.0	-12.1	Line
\wedge	4.248 M	41.5	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.3	46.0	+5.3	Line
	$\begin{aligned} & \text { 4.693M } \\ & \hline \end{aligned}$	23.7	$\begin{array}{r} +0.1 \\ +0.6 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	33.6	46.0	-12.4	Line
\wedge	4.693 M	41.8	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.7	46.0	+5.7	Line
	$\begin{aligned} & \text { 4.890M } \\ & \hline \text { e } \end{aligned}$	23.4	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Line
\wedge	4.890 M	41.4	$\begin{array}{r} +0.1 \\ +0.5 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	51.2	46.0	+5.2	Line
	8.385M	27.3	$\begin{aligned} & +0.1 \\ & +0.6 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	37.2	50.0	-12.8	Line
\wedge	8.385M	44.6	$\begin{aligned} & +0.1 \\ & +0.6 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	54.5	50.0	+4.5	Line
	$12.377 \mathrm{M}$ e	27.0	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	37.0	50.0	-13.0	Line
\wedge	12.377 M	42.4	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	$+0.0$	+0.2	+9.1	+0.0	52.4	50.0	+2.4	Line

	$9.310 \mathrm{M}$ e	26.9	$\begin{aligned} & \hline+0.1 \\ & +0.7 \end{aligned}$	+0.0	+0.2	+9.1	$+0.0$	37.0	50.0	-13.0	Line
\wedge	9.310 M	44.1	$\begin{aligned} & +0.1 \\ & +0.7 \\ & \hline \end{aligned}$	+0.0	+0.2	+9.1	+0.0	54.2	50.0	+4.2	Line
	$4.369 \mathrm{M}$	23.2	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	33.0	46.0	-13.0	Line
\wedge	4.369M	41.3	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.1	46.0	+5.1	Line
	$10.879 \mathrm{M}$	26.9	$\begin{aligned} & \hline+0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	36.9	50.0	-13.1	Line
\wedge	10.879M	42.5	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	52.5	50.0	+2.5	Line
	3.794M	23.2	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	32.9	46.0	-13.1	Line
	$\begin{aligned} & 9.818 \mathrm{M} \\ & \hline \end{aligned}$	26.9	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.2	+9.1	$+0.0$	36.8	50.0	-13.2	Line
	3.794M	23.1	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	32.8	46.0	-13.2	Line
	$\begin{aligned} & \text { 9.818M } \\ & \text { ye } \end{aligned}$	26.8	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	36.7	50.0	-13.3	Line
\wedge	9.818 M	42.9	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	52.8	50.0	+2.8	Line
	$\begin{aligned} & 10.193 \mathrm{M} \\ & \hline \end{aligned}$	26.8	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	36.7	50.0	-13.3	Line
\wedge	10.193 M	42.4	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	+0.0	+0.2	+9.1	+0.0	52.3	50.0	+2.3	Line
	$\mathrm{e}^{3.879 \mathrm{M}}$	22.9	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	32.6	46.0	-13.4	Line
\wedge	3.879 M	41.4	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.1	46.0	+5.1	Line
	$\begin{aligned} & \text { 4.097M } \\ & \text { pe } \end{aligned}$	22.8	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	32.6	46.0	-13.4	Line
\wedge	4.097 M	41.4	$\begin{array}{r} +0.1 \\ +0.5 \\ \hline \end{array}$	+0.0	+0.1	+9.1	$+0.0$	51.2	46.0	+5.2	Line
	$\begin{aligned} & 3.794 \mathrm{M} \\ & \hline \end{aligned}$	22.9	$\begin{array}{r} +0.1 \\ +0.4 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	32.6	46.0	-13.4	Line
\wedge	3.794 M	40.6	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.3	46.0	+4.3	Line
	${ }^{8.420 \mathrm{M}}$	26.4	$\begin{array}{r} +0.1 \\ +0.6 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	36.4	50.0	-13.6	Line
\wedge	8.420 M	44.0	$\begin{aligned} & \hline+0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	54.0	50.0	+4.0	Line
	7.940M e	26.6	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	36.4	50.0	-13.6	Line
\wedge	7.940M	44.2	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	54.0	50.0	+4.0	Line
	$11.680 \mathrm{M}$ e	26.3	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.2	+9.1	$+0.0$	36.2	50.0	-13.8	Line
\wedge	11.680M	42.7	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	52.6	50.0	+2.6	Line

	$7.200 \mathrm{M}$ ve	26.4	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	36.2	50.0	-13.8	Line
\wedge	7.200M	43.0	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	52.8	50.0	+2.8	Line
51	$3.628 \mathrm{M}$	22.1	$\begin{array}{r} +0.1 \\ +0.4 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	31.8	46.0	-14.2	Line
\wedge	3.628 M	40.8	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.5	46.0	+4.5	Line
53	$2.296 \mathrm{M}$ ve	21.6	$\begin{aligned} & \hline+0.2 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	31.4	46.0	-14.6	Line
\wedge	2.296 M	38.5	$\begin{aligned} & +0.2 \\ & +0.4 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	48.3	46.0	+2.3	Line
	$3.378 \mathrm{M}$ ve	21.6	$\begin{array}{r} +0.1 \\ +0.4 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	31.3	46.0	-14.7	Line
\wedge	3.378 M	41.3	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.0	46.0	+5.0	Line
	$19.043 \mathrm{M}$	24.9	$\begin{aligned} & +0.2 \\ & +0.7 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	35.2	50.0	-14.8	Line
\wedge	19.043M	41.3	$\begin{aligned} & +0.2 \\ & +0.7 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	51.6	50.0	+1.6	Line
	${ }^{6.715 \mathrm{M}}$	25.3	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	35.2	50.0	-14.8	Line
\wedge	6.715 M	42.5	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	52.4	50.0	+2.4	Line
	$6.285 \mathrm{M}$ ve	25.3	$\begin{aligned} & +0.1 \\ & +0.6 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	35.2	50.0	-14.8	Line
\wedge	6.285 M	42.9	$\begin{aligned} & +0.1 \\ & +0.6 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	52.8	50.0	+2.8	Line
	$22.840 \mathrm{M}$ ve	24.3	$\begin{aligned} & +0.2 \\ & +1.0 \\ & \hline \end{aligned}$	+0.1	+0.3	+9.1	+0.0	35.0	50.0	-15.0	Line
	$\begin{aligned} & 22.840 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	24.0	$\begin{array}{r} +0.2 \\ +1.0 \\ \hline \end{array}$	+0.1	+0.3	+9.1	+0.0	34.7	50.0	-15.3	Line
\wedge	22.840M	40.7	$\begin{aligned} & +0.2 \\ & +1.0 \\ & \hline \end{aligned}$	$+0.1$	+0.3	+9.1	+0.0	51.4	50.0	+1.4	Line
	$\begin{aligned} & 1.896 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	20.9	$\begin{aligned} & +0.2 \\ & +0.4 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	30.7	46.0	-15.3	Line
\wedge	1.896M	37.2	$\begin{array}{r} +0.2 \\ +0.4 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	47.0	46.0	+1.0	Line
	$\begin{aligned} & 2.060 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$		$\begin{array}{r} +0.2 \\ +0.4 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	30.6	46.0	-15.4	Line
\wedge	2.060 M	37.4	$\begin{array}{r} +0.2 \\ +0.4 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	47.2	46.0	+1.2	Line
	$5.465 \mathrm{M}$ ve	24.6	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	34.4	50.0	-15.6	Line
\wedge	5.465 M	41.5	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	51.3	50.0	+1.3	Line
	$26.960 \mathrm{M}$	24.3	$\begin{aligned} & +0.2 \\ & +0.4 \end{aligned}$	+0.1	+0.3	+9.1	+0.0	34.4	50.0	-15.6	Line
\wedge	26.960M	40.5	$\begin{aligned} & +0.2 \\ & +0.4 \end{aligned}$	+0.1	+0.3	+9.1	+0.0	50.6	50.0	+0.6	Line

	$25.380 \mathrm{M}$	24.2	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	+0.1	+0.3	+9.1	$+0.0$	34.4	50.0	-15.6	Line
\wedge	25.380 M	42.0	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	+0.1	+0.3	+9.1	+0.0	52.2	50.0	+2.2	Line
	$\begin{aligned} & \text { 21.860M } \\ & \text { ve } \end{aligned}$	23.8	$\begin{aligned} & +0.2 \\ & +0.8 \\ & \hline \end{aligned}$	+0.1	+0.3	+9.1	+0.0	34.3	50.0	-15.7	Line
77	$28.940 \mathrm{M}$	24.1	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	+0.1	+0.3	+9.1	$+0.0$	34.3	50.0	-15.7	Line
	$2.598 \mathrm{M}$	20.5	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	30.2	46.0	-15.8	Line
\wedge	2.598 M	38.2	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.9	46.0	+1.9	Line
	$\begin{aligned} & 21.860 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	23.7	$\begin{array}{r} +0.2 \\ +0.8 \\ \hline \end{array}$	+0.1	+0.3	+9.1	$+0.0$	34.2	50.0	-15.8	Line
\wedge	21.860 M	41.6	$\begin{aligned} & +0.2 \\ & +0.8 \end{aligned}$	+0.1	+0.3	+9.1	$+0.0$	52.1	50.0	+2.1	Line
	$28.940 \mathrm{M}$	23.8	$\begin{aligned} & +0.2 \\ & +0.5 \\ & \hline \end{aligned}$	+0.1	+0.3	+9.1	+0.0	34.0	50.0	-16.0	Line
\wedge	28.940 M	43.1	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	+0.1	+0.3	+9.1	+0.0	53.3	50.0	+3.3	Line
	$2.138 \mathrm{M}$ ve	20.2	$\begin{array}{r} +0.2 \\ +0.4 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	30.0	46.0	-16.0	Line
\wedge	2.138 M	38.5	$\begin{array}{r} +0.2 \\ +0.4 \\ \hline \end{array}$	+0.0	+0.1	+9.1	$+0.0$	48.3	46.0	+2.3	Line
	5.955M	24.2	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	34.0	50.0	-16.0	Line
\wedge	5.955 M	40.9	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.7	50.0	+0.7	Line
	$2.940 \mathrm{M}$	19.9	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	29.7	46.0	-16.3	Line
\wedge	2.940M	38.1	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.9	46.0	+1.9	Line
	$1.984 \mathrm{M}$	19.0	$\begin{array}{r} +0.2 \\ +0.5 \\ \hline \end{array}$	+0.0	+0.1	+9.1	$+0.0$	28.9	46.0	-17.1	Line
\wedge	1.984 M	36.8	$\begin{array}{r} +0.2 \\ +0.5 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	46.7	46.0	+0.7	Line

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Usia, Inc.
18.307(b) AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions
Date: 6/14/2020
Michael Atkinson
Time: 15:19:46

Software:
EMITest 5.03.12

Sequence\#: 35
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$
Method: FCC/OET MP-5 (February 1986)
Frequency: $0.15-30 \mathrm{MHz}$
Client is charging with 12 dBi gain antenna, client is 0.4 m away from tile, foresight configuration. 20 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

EUT connected to support laptop via USB cable, client is charging with external load attached that is remotely located via another USB cable, nominal charging conditions verified on the client during each test.

EUT connected to AC adapter for power. EUT connected to support Laptop via Ethernet cable. Laptop is located remotely.

> | Ossia, Inc. WO\#: 102119 Sequence\#f: 35 Date: $6 / 14 / 2020$ |
| :--- |
| 18.307 (b) AC Mains - Average Test Lead: 115 VAC 60 Hz Neutral |

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K- 50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
			Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T2	ANP06540	Cable	Cable	Heliax	$6 / 29 / 2018$
T3	ANP06515	Attenuator	$768-10$	$4 / 7 / 2020$	$4 / 29 / 2020$
T4	ANP06219	50uH LISN-Line (L1)	3816/2NM	$10 / 14 / 2019$	$10 / 14 / 2021$
	AN01492	50uH LISN-Neutral	3816/2NM	$10 / 14 / 2019$	$10 / 14 / 2021$
T5	AN01492				

	$2.206 \mathrm{M}$	19.8	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	29.7	46.0	-16.3	Neutr
\wedge	2.206M	36.3	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	46.2	46.0	+0.2	Neutr
26	$3.679 \mathrm{M}$	19.7	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	29.4	46.0	-16.6	Neutr
\wedge	3.679 M	37.3	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.0	46.0	+1.0	Neutr
28	$\mathrm{e}^{3.549 \mathrm{M}}$	19.5	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	29.2	46.0	-16.8	Neutr
\wedge	3.549 M	37.3	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	$+0.0$	$+0.1$	+9.1	+0.0	47.0	46.0	+1.0	Neutr
	$3.437 \mathrm{M}$	19.3	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	29.1	46.0	-16.9	Neutr
\wedge	3.437 M	37.2	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	47.0	46.0	+1.0	Neutr
	$3.196 \mathrm{M}$	19.2	$\begin{aligned} & \hline+0.1 \\ & +0.3 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	28.8	46.0	-17.2	Neutr
\wedge	3.196M	37.2	$\begin{aligned} & +0.1 \\ & +0.3 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	46.8	46.0	$+0.8$	Neutr
	$\mathrm{e}^{2.344 \mathrm{M}}$	19.0	$\begin{array}{r} +0.1 \\ +0.4 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	28.7	46.0	-17.3	Neutr
\wedge	2.344 M	37.0	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	46.7	46.0	+0.7	Neutr
	$\mathrm{e}^{1.889 \mathrm{M}}$	18.5	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	28.4	46.0	-17.6	Neutr
\wedge	1.889 M	36.2	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	46.1	46.0	+0.1	Neutr
	$4.034 \mathrm{M}$	18.4	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	28.2	46.0	-17.8	Neutr
\wedge	4.034 M	37.4	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	$+0.0$	$+0.1$	+9.1	+0.0	47.2	46.0	+1.2	Neutr
	$2.317 \mathrm{M}$	18.3	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	28.0	46.0	-18.0	Neutr
\wedge	2.317 M	36.7	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	46.4	46.0	+0.4	Neutr
	$2.097 \mathrm{M}$	18.2	$\begin{aligned} & +0.2 \\ & +0.4 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	28.0	46.0	-18.0	Neutr
\wedge	2.097 M	36.5	$\begin{array}{r} +0.2 \\ +0.4 \\ \hline \end{array}$	$+0.0$	$+0.1$	+9.1	+0.0	46.3	46.0	+0.3	Neutr
	$4.253 \mathrm{M}$	18.3	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	28.0	46.0	-18.0	Neutr
\wedge	4.253 M	37.0	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	46.7	46.0	+0.7	Neutr
	$4.711 \mathrm{M}$		$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	27.8	46.0	-18.2	Neutr
\wedge	4.711 M	36.8	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	$+0.1$	+9.1	+0.0	46.6	46.0	+0.6	Neutr
	$2.498 \mathrm{M}$	17.9	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	$+0.0$	$+0.1$	+9.1	+0.0	27.6	46.0	-18.4	Neutr
\wedge	2.498 M	37.2	$\begin{array}{r} +0.1 \\ +0.4 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	46.9	46.0	+0.9	Neutr

50	$3.308 \mathrm{M}$	17.8	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	27.5	46.0	-18.5	Neutr
\wedge	3.308 M	37.0	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	46.7	46.0	+0.7	Neutr
52	$4.505 \mathrm{M}$	17.1	$\begin{aligned} & +0.1 \\ & +0.6 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	27.0	46.0	-19.0	Neutr
\wedge	4.505 M	36.9	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	46.8	46.0	+0.8	Neutr
54	$2.953 \mathrm{M}$	16.7	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	26.5	46.0	-19.5	Neutr
\wedge	2.953 M	36.2	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	46.0	46.0	+0.0	Neutr
56	$e^{3.366 \mathrm{M}}$	16.7	$\begin{array}{r} +0.1 \\ +0.3 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	26.3	46.0	-19.7	Neutr
\wedge	3.366M	37.0	$\begin{aligned} & +0.1 \\ & +0.3 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	46.6	46.0	+0.6	Neutr
	$4.925 \mathrm{M}$	16.4	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	26.3	46.0	-19.7	Neutr
	4.925 M	36.4	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	46.3	46.0	+0.3	Neutr
	$2.163 \mathrm{M}$ e	16.4	$\begin{aligned} & +0.2 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	26.2	46.0	-19.8	Neutr
\wedge	2.163 M	37.9	$\begin{aligned} & +0.2 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.7	46.0	+1.7	Neutr
	$3.933 \mathrm{M}$	15.3	$\begin{array}{r} +0.1 \\ +0.4 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	25.0	46.0	-21.0	Neutr
\wedge	3.933 M	37.9	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	47.6	46.0	+1.6	Neutr
64	$4.172 \mathrm{M}$	15.0	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	24.8	46.0	-21.2	Neutr
\wedge	4.172 M	37.3	$\begin{aligned} & +0.1 \\ & +0.5 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.1	46.0	+1.1	Neutr
66	$\begin{aligned} & 3.717 \mathrm{M} \\ & \mathrm{ve}^{2} \\ & \hline \end{aligned}$	14.8	$\begin{array}{r} +0.1 \\ +0.4 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	24.5	46.0	-21.5	Neutr
	3.717 M	36.2	$\begin{array}{r} +0.1 \\ +0.4 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	45.9	46.0	-0.1	Neutr
	$\begin{aligned} & \mathrm{ve}^{3.258 \mathrm{M}} \\ & \hline \end{aligned}$		$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	23.9	46.0	-22.1	Neutr
\wedge	3.258 M	36.6	$\begin{aligned} & \hline+0.1 \\ & +0.4 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	46.3	46.0	+0.3	Neutr
70	$3.270 \mathrm{M}$ e	13.8	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	23.5	46.0	-22.5	Neutr
\wedge	3.270 M	36.2	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	45.9	46.0	-0.1	Neutr
72	$170.610 \mathrm{k}$	19.8	$\begin{aligned} & +0.4 \\ & +1.6 \\ & \hline \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	30.9	54.9	-24.0	Neutr
\wedge	170.610 k	51.2	$\begin{aligned} & +0.4 \\ & +1.6 \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	62.3	54.9	+7.4	Neutr
74	$514.756 \mathrm{k}$	9.7	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	19.5	46.0	-26.5	Neutr

	$\begin{aligned} & \text { 510.522k } \\ & \text { ave } \end{aligned}$	9.7	$\begin{aligned} & +0.2 \\ & +0.5 \\ & \hline \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	19.5	46.0	-26.5	Neutr
\wedge	514.755k	37.8	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	47.6	46.0	+1.6	Neutr
\wedge	510.522k	36.9	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	46.7	46.0	+0.7	Neutr
	$590.049 \mathrm{k}$ Ave	9.0	$\begin{aligned} & +0.3 \\ & +0.5 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	18.9	46.0	-27.1	Neutr
\wedge	590.048k	36.3	$\begin{aligned} & +0.3 \\ & +0.5 \end{aligned}$	$+0.0$	$+0.0$	+9.1	+0.0	46.2	46.0	+0.2	Neutr
	$581.280 \mathrm{k}$ Ave	8.2	$\begin{aligned} & +0.3 \\ & +0.5 \end{aligned}$	$+0.0$	$+0.0$	+9.1	+0.0	18.1	46.0	-27.9	Neutr
	581.279k	36.3	$\begin{aligned} & +0.3 \\ & +0.5 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	46.2	46.0	+0.2	Neutr
	$200.730 \mathrm{k}$ Ave	14.7	$\begin{aligned} & +0.2 \\ & +1.3 \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	25.3	53.6	-28.3	Neutr
	200.730k	41.9	$\begin{aligned} & +0.2 \\ & +1.3 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	52.5	53.6	-1.1	Neutr
	$491.472 \mathrm{k}$	7.4	$\begin{aligned} & +0.2 \\ & +0.6 \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	17.3	46.1	-28.8	Neutr
\wedge	491.472k	37.1	$\begin{aligned} & +0.2 \\ & +0.6 \\ & \hline \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	47.0	46.1	+0.9	Neutr
	496.007k	36.7	$\begin{aligned} & +0.2 \\ & +0.6 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	46.6	46.1	$+0.5$	Neutr
	$207.850 \mathrm{k}$ Ave	13.7	$\begin{aligned} & +0.2 \\ & +1.3 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	24.3	53.3	-29.0	Neutr
\wedge	207.850k	40.8	$\begin{aligned} & +0.2 \\ & +1.3 \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	51.4	53.3	-1.9	Neutr
	$\begin{aligned} & 479.982 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	7.3	$\begin{array}{r} +0.2 \\ +0.5 \\ \hline \end{array}$	$+0.0$	$+0.0$	+9.1	+0.0	17.1	46.3	-29.2	Neutr
	479.981k	37.7	$\begin{aligned} & +0.2 \\ & +0.5 \end{aligned}$	$+0.0$	$+0.0$	+9.1	+0.0	47.5	46.3	+1.2	Neutr
	$\begin{aligned} & 617.263 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	6.6	$\begin{array}{r} +0.3 \\ +0.5 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	16.5	46.0	-29.5	Neutr
	617.263 k	37.6	$\begin{array}{r} +0.3 \\ +0.5 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	47.5	46.0	+1.5	Neutr
	$432.633 \mathrm{k}$ Ave	7.6	$\begin{aligned} & \hline+0.2 \\ & +0.6 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	17.6	47.2	-29.6	Neutr
	432.632k	38.8	$\begin{aligned} & +0.2 \\ & +0.6 \\ & \hline \end{aligned}$	$+0.0$	$+0.1$	+9.1	+0.0	48.8	47.2	+1.6	Neutr
	$600.934 \mathrm{k}$ Ave	6.2	$\begin{aligned} & +0.3 \\ & +0.5 \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	16.1	46.0	-29.9	Neutr
	600.934k	36.1	$\begin{aligned} & +0.3 \\ & +0.5 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	46.0	46.0	+0.0	Neutr
	$559.810 \mathrm{k}$		$\begin{aligned} & +0.3 \\ & +0.6 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	14.5	46.0	-31.5	Neutr
	559.810k	36.1	$\begin{aligned} & +0.3 \\ & +0.6 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	46.1	46.0	+0.1	Neutr
	$643.873 \mathrm{k}$ Ave	3.8	$\begin{array}{r} +0.3 \\ +0.6 \\ \hline \end{array}$	$+0.0$	$+0.0$	+9.1	+0.0	13.8	46.0	-32.2	Neutr
	643.872k	36.0	$\begin{array}{r} +0.3 \\ +0.6 \\ \hline \end{array}$	$+0.0$	+0.0	+9.1	+0.0	46.0	46.0	$+0.0$	Neutr

101	$359.647 \mathrm{k}$ Ave	6.3	$\begin{aligned} & \hline+0.1 \\ & +0.7 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	16.2	48.7	-32.5	Neutr
\wedge	359.647 k	39.0	$\begin{aligned} & \hline+0.1 \\ & +0.7 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	48.9	48.7	+0.2	Neutr
103	$216.170 \mathrm{k}$ Ave	9.5	$\begin{aligned} & +0.3 \\ & +1.2 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	20.1	53.0	-32.9	Neutr
\wedge	216.170k	42.5	$\begin{aligned} & +0.3 \\ & +1.2 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	53.1	53.0	+0.1	Neutr
	$270.462 \mathrm{k}$	7.1	$\begin{array}{r} +0.1 \\ +0.9 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	17.2	51.1	-33.9	Neutr
\wedge	270.462k	42.2	$\begin{aligned} & \hline+0.1 \\ & +0.9 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	52.3	51.1	+1.2	Neutr
\wedge	268.860k	41.0	$\begin{aligned} & +0.2 \\ & +1.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	51.3	51.2	+0.1	Neutr

Test Setup Photo(s)

Configuration 2

Appendix A: Test Setup Block Diagrams

Test Setup Block Diagram

Configuration 1

Test Setup Block Diagram

Configuration 2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

[^0]: *CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

