Ossia, Inc.

TEST REPORT FOR
Cota WPT Source
Model: Cota Tx203

Tested to The Following Standards:
 FCC Part 15 Subpart C Section(s)

15.207 \& 15.247
(DTS 2400-2483.5 MHz)

Report No.: 103895-3

Date of issue: July 8, 2020

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 6
FCC Part 15 Subpart C 9
15.247(a)(2) 6dB Bandwidth 9
15.247(b)(3) Output Power 12
15.247(e) Power Spectral Density 15
15.247(d) RF Conducted Emissions \& Band Edge 18
15.247(d) Radiated Emissions \& Band Edge 31
15.207 AC Conducted Emissions 57
Appendix A: Co-Location Testing 71
Supplemental Information 109
Measurement Uncertainty 109
Emissions Test Details 109

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Ossa, Inc.
1100 112th Ave NE Suite 301
Bellevue, WA 98004

Representative: Bob McDonald
Customer Reference Number: 13172

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Darcy Thompson
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 103895

June 13, 2020
June 13-29, 2020

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .12

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Japan
Canyon Park, Bothell, WA	US0081	US1022	A-0136
Brea, CA	US0060	US1025	A-0136
Fremont, CA	US0082	US1023	A-0136
Mariposa, CA	US0103	US1024	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(2)$	6dB Bandwidth	NA	Pass
$15.247(\mathrm{~b})(3)$	Output Power	NA	Pass
$15.247(\mathrm{e})$	Power Spectral Density	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	Pass
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

LABORATORIES, INC.

EQUIPMENT UNDER TEST (EXT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standards) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Cora WPT Source	Usia, Inc.	Cota Tx203	OR-001

Support Equipment:

Device	Manufacturer	Model \#	S/N
USB 2.0 Extension Cable	Blue Rigger	$32 \mathrm{ft}(10 \mathrm{~m})$	NA
AC Adapter (for PoE Injector)	GlobTek, Inc.	GTM961808P18054-T3	NA
PoE Injector	Usia, Inc.	OL-10282	NA
Laptop	Apple	MacBook Pro A1398	NA
USB Hub	AmazonBasics	B00DQFGJR4	NA
Thunderbolt to Ethernet adapter	Apple	A1433	NA

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Cora WPT Source	Usia, Inc.	Cota Tx203	OR-001

Support Equipment:

Device	Manufacturer	Model \#	S/N
USB 2.0 Extension Cable	Blue Rigger	$32 \mathrm{ft}(10 \mathrm{~m})$	NA
AC/DC Switching Adapter	Mean Well	GST220A12	NA
Laptop	Apple	MacBook Pro A1398	NA
USB Hub	AmazonBasics	BOODQFGJR4	NA
Thunderbolt to Ethernet adapter	Apple	A1433	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	Zigbee 802.15.4
Operating Frequency Range:	$2405-2480 \mathrm{MHz}$
Modulation Types):	OQPSK
Maximum Duty Cycle:	100% tested as worst case
Number of TX Chains:	1
Antenna Types) and Gain:	External Dipole 2dBi
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	$120 \mathrm{VAC}, 60 \mathrm{~Hz}$
Firmware / Software used for Test:	0x2524CF1

Block Diagram of Test Setup(s)

Configuration 1
Test Setup Block Diagram

Configuration 2

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions			
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford
Test Method:	ANSI C63.10 (2013) KDB 558074 (April 2, 2019)	Test Date(s):	$6 / 13 / 2020$
Configuration:	2	Test Mode: Continuously Modulated. The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.	
Test Setup:			

Environmental Conditions				
Temperature (ㅇ)	22	Relative Humidity (\%):	38	

Test Equipment					
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due
P06243	Attenuator	Weinschel	$54 A-10$	$1 / 27 / 2020$	$1 / 27 / 2022$
P06678	Cable	Astrolab	$32026-29801-29801-144$	$2 / 20 / 2020$	$2 / 20 / 2022$
02673	Spectrum Analyzer	Agilent	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$

Test Data Summary					
Frequency $(\mathbf{M H z})$	Antenna Port	Modulation	Measured $\mathbf{(k H z)}$	Limit $\mathbf{(k H z)}$	Results
2405	1	OQPSK	1612	≥ 500	Pass
2440	1	OQPSK	1505	≥ 500	Pass
2480	1	OQPSK	1599	≥ 500	Pass

LABORATORIES, INC.

Plot (s)

Agilent
Ref 10 dBm Peak Log 10 dB

Low Channel

Middle Channel

High Channel

Test Setup Photo(s)

LABORATORIES, INC.

15.247(b)(3) Output Power

Test Setup / Conditions			
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford
Test Method:	ANSI C63.10 (2013) KDB 558074 (April 2, 2019)	Test Date(s):	$6 / 13 / 2020$
Configuration:	2	Test Mode: Continuously Modulated. The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator. Test Setup: System losses are corrected for internal to the spectrum analyzer. No change in power observed at extreme voltages.	

Environmental Conditions				
Temperature (ㅇ)	22	Relative Humidity (\%):	38	

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
P06243	Attenuator	Weinschel	$54 A-10$	$1 / 27 / 2020$	$1 / 27 / 2022$	
P06678	Cable	Astrolab	$32026-29801-29801-144$	$2 / 20 / 2020$	$2 / 20 / 2022$	
02673	Spectrum Analyzer	Agilent	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$	

Test Data Summary - Voltage Variations					
Frequency $(\mathbf{M H z})$	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Nominal }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Maximum }}$ (dBm)	Max Deviation from $\mathbf{V}_{\text {Nominal }}(\mathbf{d B})$
2405	OQPSK	3.69	3.69	3.69	0.00
2440	OQPSK	3.42	3.42	3.42	0.00
2480	OQPSK	2.91	2.91	2.91	0.00

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal $\pm 15 \%$.

Parameter	Value
$\mathrm{V}_{\text {Nominal }}:$	85 Vrms
$\mathrm{V}_{\text {Minimum: }}:$	120 Vrms
$\mathrm{V}_{\text {Maximum: }}:$	276 Vrms

Power Output Test Data Summary - RF Conducted Measurement

Measurement Option: RBW > DTS Bandwidth

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type / Gain $(\mathbf{d B i})$	Measured $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Results
2405	OQPSK	Dipole 2dBi	3.69	≤ 30	Pass
2440	OQPSK	Dipole 2 dBi	3.42	≤ 30	Pass
2480	OQPSK	Dipole 2dBi	2.91	≤ 30	Pass

Plots

Low Channel

Agilent
Ref 10 dBm Peak Log 10 dB 7

Middle Channel

Agilent
Ref 10 dBm FPeak Log 10 dB7

High Channel

Test Setup Photo(s)

LABORATORIES, INC.

15.247(e) Power Spectral Density

Test Setup / Conditions / Data			
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford
Test Method:	ANSI C63.10 (2013) KDB 558074 (April 2, 2019)	Test Dates):	$6 / 13 / 2020$
Configuration:	2	Test Mode: Continuously Modulated. The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.	
Test Setup:	System losses are corrected for internal to the spectrum analyzer.		

Environmental Conditions				
Temperature (ㅇ)	22	Relative Humidity (\%):	38	

Test Equipment					
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due
P06243	Attenuator	Weinschel	$54 A-10$	$1 / 27 / 2020$	$1 / 27 / 2022$
P06678	Cable	Astrolab	$32026-29801-29801-144$	$2 / 20 / 2020$	$2 / 20 / 2022$
02673	Spectrum Analyzer	Agilent	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$

PSD Test Data Summary - RF Conducted Measurement

Measurement Method: PKPSD

Frequency $(\mathbf{M H z})$	Modulation	Measured $(\mathbf{d B m} / \mathbf{3 k H z})$	Limit $(\mathbf{d B m} / \mathbf{3 k H z})$	Results
2405	OQPSK	-6.61	≤ 8	Pass
2440	OQPSK	-6.73	≤ 8	Pass
2480	OQPSK	-7.23	≤ 8	Pass

LABORATORIES, INC.

Plots

Low Channel

Middle Channel

Agilent
Ref 10 dBm FPeak Log 10 dB7

High Channel

Test Setup Photo(s)

LABORATORIES, INC.

15.247(d) RF Conducted Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification: Work Order \#: Test Type: Tested By: Software:

Usia, Inc.
15.247(d) Conducted Spurious Emissions 102446
Conducted Emissions
Steven Pittsford
EMITest 5.03.19

Date: 6/13/2020
Time: 09:00:20
Sequence\#: 1
115 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Mode: Continuously Modulated
EUT is transmitting on Low channel
The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.

Ossia, Inc. WO\#: 102446 Sequence\#: 1 Date: 6/13/2020
15.247 (d) Conducted Spurious Emissions High Test Lead: 115 V 60 Hz Antenna

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06243	Attenuator	$54 A-10$	$1 / 27 / 2020$	$1 / 27 / 2022$
T2	ANP06678	Cable	$32026-29801-$	$2 / 20 / 2020$	$2 / 20 / 2022$
			$29801-144$		
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$

Measurement Data:	Reading listed by margin.					Test Lead: Antenna				
\#Freq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
$\begin{array}{cc} 1 & 24973.811 \\ & M \end{array}$	44.8	+10.0	+10.0			+0.0	64.8	85.5	-20.7	Anten
$\begin{array}{cc} 2 & 23598.910 \\ M \end{array}$	43.0	+10.2	+9.7			+0.0	62.9	85.5	-22.6	Anten
$\begin{array}{cc} 3 & 23520.345 \\ M \end{array}$	42.6	+10.2	+9.7			+0.0	62.5	85.5	-23.0	Anten
$\begin{array}{cc} \hline 4 & 23206.082 \\ M \end{array}$	42.4	+10.1	+9.6			+0.0	62.1	85.5	-23.4	Anten
$\begin{array}{cc} 5 & 23376.307 \\ M \end{array}$	42.2	+10.2	+9.7			+0.0	62.1	85.5	-23.4	Anten
$\begin{array}{cc} \hline 6 & 24253.625 \\ M \end{array}$	41.8	+10.0	+9.9			+0.0	61.7	85.5	-23.8	Anten
$\begin{array}{cc} \hline 7 & 24109.588 \\ M \end{array}$	41.9	+10.0	+9.8			+0.0	61.7	85.5	-23.8	Anten
84808.955 M	48.0	+9.8	+3.8			+0.0	61.6	85.5	-23.9	Anten
$\begin{array}{cc} \hline 9 & 24607.171 \\ M \end{array}$	41.1	+10.0	+10.0			+0.0	61.1	85.5	-24.4	Anten
$\begin{array}{cc} \hline 10 & 24384.568 \\ & M \end{array}$	41.2	+10.0	+9.9			+0.0	61.1	85.5	-24.4	Anten
$\begin{array}{cc} \hline 11 & 23886.985 \\ & M \end{array}$	41.1	+10.0	+9.7			+0.0	60.8	85.5	-24.7	Anten
$\begin{array}{cc} 12 & 21516.918 \\ & M \end{array}$	41.2	+10.2	+9.2			+0.0	60.6	85.5	-24.9	Anten

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Usia, Inc.
15.247(d) Conducted Spurious Emissions

102446
Conducted Emissions
Steven Pittsford
EMIT est 5.03.19

Date: 6/13/2020
Time: 09:24:57
Sequence\#: 3
115 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Mode: Continuously Modulated
EUT is transmitting on Mid channel
The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.

Ossia, Inc. WO\#: 102446 Sequence\#: 3 Date: 6/13/2020
15.247 (d) Conducted Spurious Emissions High Test Lead: 115 V 60 Hz Antenna

	Sweep Data	- Readings
-	Peak Readings	\times
QP Readings		
* Average Readings	Ambient	
Software Version: 5.03 .19		$1-15.247$ (d) Conducted Spurious Emissions

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06243	Attenuator	$54 A-10$	$1 / 27 / 2020$	$1 / 27 / 2022$
T2	ANP06678	Cable	$32026-29801-$	$2 / 20 / 2020$	$2 / 20 / 2022$
			$29801-144$		
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$

Measu	rement Data:	Reading listed by margin.				Test Lead: Antenna					
\#	Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
	$\begin{gathered} 24895.246 \\ \text { M } \end{gathered}$	44.9	+10.0	+10.0			+0.0	64.9	85.5	-20.6	Anten
	$\begin{gathered} 23677.476 \\ \mathrm{M} \end{gathered}$	43.8	+10.1	+9.7			+0.0	63.6	85.5	-21.9	Anten
	$\begin{gathered} 23546.533 \\ \mathrm{M} \end{gathered}$	43.3	+10.2	+9.7			+0.0	63.2	85.5	-22.3	Anten
	$\begin{gathered} 23926.268 \\ \text { M } \end{gathered}$	43.5	+10.0	+9.7			+0.0	63.2	85.5	-22.3	Anten
	$\begin{gathered} 23271.553 \\ \mathrm{M} \end{gathered}$	43.3	+10.1	+9.6			+0.0	63.0	85.5	-22.5	Anten
	$\begin{gathered} 23454.873 \\ \mathrm{M} \end{gathered}$	43.0	+10.2	+9.7			+0.0	62.9	85.5	-22.6	Anten
	$\begin{gathered} 23402.496 \\ \mathrm{M} \end{gathered}$	42.8	+10.2	+9.7			$+0.0$	62.7	85.5	-22.8	Anten
	$\begin{gathered} 24135.777 \\ \mathrm{M} \end{gathered}$	42.4	+10.0	+9.8			+0.0	62.2	85.5	-23.3	Anten
9	4878.960M	47.3	+9.8	+3.9			+0.0	61.0	85.5	-24.5	Anten

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Usia, Inc.
15.247(d) Conducted Spurious Emissions

102446
Conducted Emissions
Steven Pittsford
EMIT est 5.03.19

Date: 6/13/2020
Time: 09:15:30
Sequence\#: 2
115 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Mode: Continuously Modulated
EUT is transmitting on High channel
The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.

Ossia, Inc. WO\#: 102446 Sequence\#: 2 Date: 6/13/2020
15.247 (d) Conducted Spurious Emissions High Test Lead: 115 V 60 Hz Antenna

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06243	Attenuator	$54 A-10$	$1 / 27 / 2020$	$1 / 27 / 2022$
T2	ANP06678	Cable	$32026-29801-$	$2 / 20 / 2020$	$2 / 20 / 2022$
			$29801-144$		
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$

Measurement Data:	Reading listed by margin.					Test Lead: Antenna				
\# \quadFreq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
$\begin{array}{cc} 1 & 24986.906 \\ \text { M } \end{array}$	44.9	+10.0	+10.0			+0.0	64.9	85.5	-20.6	Anten
$\begin{array}{cc} 2 & 24842.868 \\ & M \end{array}$	44.0	+10.0	+10.0			+0.0	64.0	85.5	-21.5	Anten
3 2483.754M	51.2	+9.8	+2.7			+0.0	63.7	85.5	-21.8	Anten
$\begin{array}{cc} 4 & 23598.910 \\ M \end{array}$	43.5	+10.2	+9.7			+0.0	63.4	85.5	-22.1	Anten
$\begin{array}{cc} 5 & 24109.588 \\ M \end{array}$	42.6	+10.0	+9.8			+0.0	62.4	85.5	-23.1	Anten
$\begin{array}{cc} \hline 6 & 24371.474 \\ M \end{array}$	41.9	+10.0	+9.9			+0.0	61.8	85.5	-23.7	Anten
$\begin{array}{cc} \hline 7 & 21516.918 \\ M \end{array}$	41.3	+10.2	+9.2			$+0.0$	60.7	85.5	-24.8	Anten
$\begin{array}{cc} 8 & 14406.716 \\ M \end{array}$	43.2	+10.0	+7.3			+0.0	60.5	85.5	-25.0	Anten
$\begin{array}{cc} \hline 9 & 21372.880 \\ & M \end{array}$	41.2	+10.1	+9.2			+0.0	60.5	85.5	-25.0	Anten
$10 \quad 4958.955 \mathrm{M}$	46.4	+9.8	+4.0			+0.0	60.2	85.5	-25.3	Anten
$\begin{array}{cc} 11 & 22590.650 \\ & M \end{array}$	40.8	+10.0	+9.3			+0.0	60.1	85.5	-25.4	Anten
$\begin{array}{cc} 12 & 20822.920 \\ & M \end{array}$	40.7	+10.0	+9.3			$+0.0$	60.0	85.5	-25.5	Anten

Band Edge

Band Edge Summary					
Limit applied: Max Power/100kHz - 20dB.					
Frequency (MHz)	Modulation	Measured $(\mathrm{dB} \mu \mathrm{V})$	Limit $(\mathrm{dB} \mu \mathrm{V})$	Results	
2400.0		56.8	<85.5	Pass	
2483.5	OQPSK	57.9	<85.5	Pass	

Band Edge Plots

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Usia, Inc.
15.247(d) Conducted Spurious Emissions High

102446
Conducted Emissions
Steven Pittsford
EMIT est 5.03.12

Date: 6/13/2020
Time: 09:08:11
Sequence\#: 2
115 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Mode: Continuously Modulated
EUT is transmitting on Low channel.
The EUT's antenna port is connected directly to the spectrum analyzer through a RF cable and an attenuator.
Test Location: Bothell Lab C3
Test Method: ANSI C63.10 (2013) KDB 558074 (April 2, 2019)
Temperature $\left({ }^{\circ} \mathrm{C}\right) 22$
Relative Humidity (\%): 38

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06243	Attenuator	54 A-10	$1 / 27 / 2020$	$1 / 27 / 2022$
T2	ANP06678	Cable	$32026-29801-29801-144$	$2 / 20 / 2020$	$2 / 20 / 2022$
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$

Test Setup Photo(s)

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order \#: Test Type: Tested By: Software:

CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) Usia, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions 103895 Date: 6/15/2020
Maximized Emissions
S. Pittsford/M. Atkinson

EMIT est 5.03.12

Time: 09:05:56
Sequence\#: 4

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Frequency range tested: $9 \mathrm{kHz}-25 \mathrm{GHz}$
Test Mode: Continuously Modulated
EUT is on a 0.8 m test bench below 1 GHz and a 1.5 m high Styrofoam test bench above 1 GHz .

EUT is investigated in Low, Middle, and High Channels, X, Y, \& Z Axis with only the worst case reported.
Vertical and Horizontal polarities investigated
EUT connected to support Laptop via USB cable.

No emissions observed within 20dB of limit from $18-25 \mathrm{GHz}$, values provided are noise floor.
EUT connected to AC adapter for power.
EUT connected to support Laptop via Ethernet cable.
Laptop is located remotely.

Test Location: Bothell Lab C3
Test Method: ANSI C63.10 (2013) KDB 558074 (April 2, 2019)
Temperature $\left({ }^{\circ} \mathrm{C}\right) 23$
Relative Humidity (\%): 33

Ossia, Inc. WO\#: 103895 Sequence\#\#: 4 Date: 6/15/2020
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Ground Para

[^0]O Peak Readings

* Average Readings

Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	AN02307	Preamp	$8447 D$	$1 / 10 / 2020$	$1 / 10 / 2022$
T5	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T6	ANP06123	Attenuator	18N-6	$4 / 5 / 2019$	$4 / 5 / 2021$
T7	AN03628	Biconilog Antenna	$3142 E$	$6 / 11 / 2019$	$6 / 11 / 2021$
T8	AN03540	Preamp	$83017 A$	$5 / 13 / 2019$	$5 / 13 / 2021$
T9	AN01467	Horn Antenna-ANSI C63.5	3115	$7 / 5 / 2019$	$7 / 5 / 2021$
T10	ANP06515	Calibration	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T11	ANP07504	Cable	CLU40-KMKM-02.00F	$1 / 17 / 2019$	$1 / 17 / 2021$
T12	AN03116	High Pass Filter	11SH10-00313	$1 / 22 / 2019$	$1 / 22 / 2021$
T13	AN02741	Active Horn Antenna	AMFW-5F-12001800-20-10P	$4 / 26 / 2019$	$4 / 26 / 2021$
T14	AN02742	Active Horn Antenna	AMFW-5F-18002650-20-10P	$10 / 16 / 2018$	$10 / 16 / 2020$
T15	ANP06678	Cable	$32026-29801-29801-144$	$2 / 20 / 2020$	$2 / 20 / 2022$
T16	AN02763-69	Waveguide	Multiple	$4 / 28 / 2020$	$4 / 28 / 2022$
T17	ANP07212	Cable	$32026-29801-29801-18$	$8 / 7 / 2019$	$8 / 7 / 2021$
T18	ANP07211	Cable	$32026-29801-29801-18$	$8 / 7 / 2019$	$8 / 7 / 2021$
T19	AN00052	Loop Antenna	6502	$5 / 4 / 2020$	$5 / 4 / 2022$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

4 4961.090M	44.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -3.6 \\ +0.5 \\ +0.0 \end{array}$	+0.0		$\begin{array}{r} 54.0 \\ \operatorname{High} \text { Z } \end{array}$	-4.7	Horiz
$\begin{array}{cc} 5 & 12202.620 \\ \mathrm{M} \end{array}$	53.7	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.0 \\ -12.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	49.2	54.0 Mid Y	-4.8	Horiz
6 4958.950M	44.2	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.5 \\ +0.0 \end{array}$	+0.0	49.2	$\begin{gathered} 54.0 \\ \text { High Y } \end{gathered}$	-4.8	Horiz
$\begin{gathered} 7 \text { 4878.970M } \\ \text { Ave } \end{gathered}$	43.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \\ +0.0 \end{array}$	+0.0	48.8	$\begin{gathered} 54.0 \\ \operatorname{Mid} Z \end{gathered}$	-5.2	Horiz
$\begin{aligned} & \hline 8 \text { 4878.886M } \\ & \text { Ave } \end{aligned}$	44.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.0 \\ +0.0 \end{array}$	+0.0	48.8	$\begin{gathered} \quad 54.0 \\ \operatorname{Mid} X \end{gathered}$	-5.2	$\begin{gathered} \hline \text { Vert } \\ 201 \end{gathered}$
^ 4878.860M	50.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.0 \\ +0.0 \end{array}$	+0.0	55.4	$\begin{gathered} 54.0 \\ \operatorname{Mid} X \end{gathered}$	+1.4	$\begin{gathered} \hline \text { Vert } \\ 201 \end{gathered}$
10 4880.890M	43.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.5 \\ +0.0 \end{array}$	+0.0	48.5	$\begin{gathered} \quad 54.0 \\ \operatorname{Mid} \mathrm{Y} \end{gathered}$	-5.5	Vert
11 4808.930M	43.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline+0.0 \\ -33.6 \\ +0.6 \\ +0.0 \end{gathered}$	+0.0	48.3	$\begin{gathered} \quad 54.0 \\ \text { Low } \mathrm{Z} \end{gathered}$	-5.7	Vert
$\begin{aligned} & 12 \text { 4879.016M } \\ & \text { Ave } \end{aligned}$	42.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \\ +0.0 \end{array}$	+0.0	47.4	$\begin{gathered} 54.0 \\ \operatorname{Mid} Y \end{gathered}$	-6.6	Horiz
^ 4879.010M	49.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & \hline+0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \\ +0.0 \end{array}$	+0.0	54.5	$\begin{gathered} \quad 54.0 \\ \operatorname{Mid} \mathrm{Z} \end{gathered}$	+0.5	Horiz

Page 34 of 110

\wedge	4879.054M	48.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \\ +0.0 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \operatorname{Mid} \mathrm{Y} \end{gathered}$	-0.1	Horiz
\wedge	4879.040M	41.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \\ +0.0 \end{array}$	+0.0	46.4	$\begin{gathered} \quad 54.0 \\ \operatorname{Mid} Z \end{gathered}$	-7.6	Horiz
16	4958.980M	41.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.5 \\ +0.0 \end{array}$	+0.0	46.3	$\begin{gathered} 54.0 \\ \text { High Y } \end{gathered}$	-7.7	Vert
17	4809.080M	40.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \\ +0.0 \end{array}$	+0.0	45.9	$\begin{gathered} 54.0 \\ \text { Low } \mathrm{Y} \end{gathered}$	-8.1	Vert
18	4958.940M	40.3	$\begin{array}{r} +0.0 \\ +3.0 \\ +32.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ -3.6 \\ +0.5 \\ +0.0 \end{array}$	+0.0	45.3	$\begin{gathered} 54.0 \\ \operatorname{High} Z \end{gathered}$	-8.7	Vert
19	$\begin{aligned} & \hline 4810.952 \mathrm{M} \\ & \text { Ave } \end{aligned}$	40.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.0 \\ +0.0 \end{array}$	+0.0	45.2	$\begin{gathered} 54.0 \\ \text { Low X } \end{gathered}$	-8.8	$\begin{gathered} \hline \text { Vert } \\ 223 \end{gathered}$
\wedge	4810.952M	48.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.0 \\ +0.0 \end{array}$	+0.0	53.0	$\begin{gathered} 54.0 \\ \text { Low X } \end{gathered}$	-1.0	$\begin{gathered} \hline \text { Vert } \\ 223 \end{gathered}$
21	$\begin{aligned} & \hline 12022.420 \\ & \text { M } \\ & \text { Ave } \end{aligned}$	48.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +13.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +6.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	44.0	54.0 Low Y	-10.0	Horiz
22	$\begin{gathered} 12397.400 \\ \mathrm{M} \end{gathered}$	48.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +13.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +7.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	43.7	$\begin{array}{r} \hline 54.0 \\ \text { High Z } \end{array}$	-10.3	Vert
23	$\begin{aligned} & \hline 12397.480 \\ & \text { M } \\ & \text { Ave } \end{aligned}$	48.0	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +7.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	43.5	$\begin{array}{r} \hline 54.0 \\ \text { High Z } \end{array}$	-10.5	Horiz

	$\begin{aligned} & \hline 12202.427 \\ & \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.8	$\begin{gathered} +0.0 \\ +0.0 \\ +0.0 \\ -12.8 \\ +0.0 \end{gathered}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	42.3	54.0 id Z	-11.7	Horiz
25	1378.000M	50.1	$\begin{array}{r} +0.0 \\ +0.0 \\ +25.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline+0.0 \\ -35.6 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	42.3	54.0	-11.7	Horiz
26	$\begin{aligned} & \hline 12397.480 \\ & \text { M } \\ & \text { Ave } \end{aligned}$	46.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & -13.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +7.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	42.2	$\begin{array}{r} \hline 54.0 \\ \text { igh Y } \end{array}$	-11.8	Horiz
\wedge	$\begin{gathered} \hline 12397.480 \\ \mathrm{M} \end{gathered}$	54.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & -13.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +7.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.4	$\begin{gathered} \hline 54.0 \\ \text { igh Z } \end{gathered}$	-3.6	Horiz
	$\begin{gathered} 12397.480 \\ \mathrm{M} \end{gathered}$	53.8	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +7.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	49.3	$\begin{array}{r} \hline 54.0 \\ \text { igh Y } \end{array}$	-4.7	Horiz
29	1375.000M	49.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +25.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -35.7 \\ +0.0 \\ +0.0 \end{array}$	+0.0	42.0	54.0	-12.0	Horiz
30	$\begin{aligned} & \text { 4960.852M } \\ & \text { Ave } \end{aligned}$	37.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +3.6 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -3.6 \\ +0.0 \\ +0.0 \end{array}$	+0.0	41.8	$\begin{gathered} 54.0 \\ \text { igh } X \end{gathered}$	-12.2	$\begin{array}{r} \hline \text { Vert } \\ 181 \end{array}$
\wedge	4960.852M	47.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.0 \\ +0.0 \end{array}$	+0.0	52.0	$\begin{gathered} 54.0 \\ \text { igh X } \end{gathered}$	-2.0	$\begin{array}{r} \hline \text { Vert } \\ 181 \end{array}$
32	1525.000M	48.2	$\begin{array}{r} +0.0 \\ +0.0 \\ +25.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -35.3 \\ +0.0 \\ +0.0 \end{array}$	+0.0	40.9	54.0	-13.1	Horiz
33	$\begin{gathered} 12022.351 \\ \mathrm{M} \end{gathered}$	45.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +13.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +6.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	40.7	$\begin{gathered} 54.0 \\ \text { ow Z } \end{gathered}$	-13.3	Vert

34	240.000 M	40.0	$\begin{aligned} & +0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.8 \\ +11.8 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{gathered} -27.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	32.4	46.0	-13.6	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
35	$\begin{aligned} & 12202.440 \\ & \mathrm{M} \\ & \text { Ave } \end{aligned}$	44.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -12.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	40.2	$\begin{aligned} & 54.0 \\ & \text { id Y } \end{aligned}$	-13.8	Horiz
\wedge	$\begin{gathered} 12202.480 \\ \mathrm{M} \end{gathered}$	43.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -12.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$			$\begin{aligned} & 54.0 \\ & \text { id Y } \end{aligned}$	-14.6	Horiz
37	$\begin{gathered} 12202.427 \\ \mathrm{M} \end{gathered}$	44.7	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.0 \\ -12.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$			$\begin{aligned} & 54.0 \\ & i d Z \end{aligned}$	-13.8	Vert
38	1223.000M	48.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +25.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +1.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	39.8	54.0	-14.2	Vert
39	$\begin{gathered} 12397.580 \\ \text { M } \end{gathered}$	43.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +7.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$		39.2	54.0 gh Y	-14.8	Vert
40	$\begin{gathered} 12202.423 \\ \mathrm{M} \end{gathered}$	43.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -12.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$			$\begin{aligned} & \hline 54.0 \\ & \text { id X } \end{aligned}$	-14.9	Vert
41	$\begin{gathered} 12022.420 \\ \mathrm{M} \end{gathered}$	43.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0		$\begin{aligned} & \hline 54.0 \\ & \text { w Y } \end{aligned}$	-14.9	Vert
42	$\begin{gathered} 12022.430 \\ \mathrm{M} \end{gathered}$	43.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$			$\begin{aligned} & 54.0 \\ & \text { w X } \end{aligned}$	-14.9	Vert
43	$\begin{aligned} & 12022.400 \\ & \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	39.1	$\begin{aligned} & 54.0 \\ & \mathrm{w} \mathrm{Z} \end{aligned}$	-14.9	Horiz

	$\begin{gathered} 12022.460 \\ \mathrm{M} \end{gathered}$	55.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +6.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$		54.0 Low Y	-3.0	Horiz
\wedge	$\begin{gathered} 12022.400 \\ \mathrm{M} \end{gathered}$	51.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +6.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$			54.0 Low Z	-6.9	Horiz
46	1225.000M	47.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +25.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +1.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	38.9	54.0	-15.1	Horiz
	$Q^{38.250 \mathrm{M}}$	33.5	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +12.9 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -28.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	24.9	40.0	-15.1	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
\wedge	38.250M	44.0	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +12.9 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{gathered} -28.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{gathered}$	$+0.0$	35.4	40.0	-4.6	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
	$\begin{gathered} 12397.100 \\ \mathrm{M} \end{gathered}$	42.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +7.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$		38.1	54.0 High X	-15.9	Vert
50	1073.000M	47.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +24.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +1.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.8 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	38.0	54.0	-16.0	Vert
	$\begin{gathered} \hline 19517.180 \\ \mathrm{M} \end{gathered}$	37.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -12.9 \\ +1.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$+0.0$	37.8	54.0	-16.2	Vert
	$7289.690 \mathrm{M}$ Ave	27.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +36.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +5.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{gathered} +0.0 \\ -34.6 \\ +0.0 \\ +0.0 \end{gathered}$	$+0.0$	36.6	$\begin{gathered} \quad 54.0 \\ \operatorname{Mid} X \end{gathered}$	-17.4	$\begin{array}{r} \hline \text { Vert } \\ 201 \end{array}$
\wedge	7289.690M	42.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +36.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +5.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.6 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	51.8	$\begin{aligned} & \hline 54.0 \\ & \operatorname{Mid} X \end{aligned}$	-2.2	$\begin{array}{r} \hline \text { Vert } \\ 201 \end{array}$

Page 38 of 110

	$7451.190 \mathrm{M}$ Ave	23.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +37.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +1.6 \\ & +0.0 \\ & +5.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +0.0 \\ +0.0 \end{array}$	+0.0	33.8	$\begin{gathered} 54.0 \\ \text { High X } \end{gathered}$	-20.2	$\begin{array}{r} \hline \text { Vert } \\ 201 \end{array}$
\wedge	7451.190M	38.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +37.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +5.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +0.0 \\ +0.0 \end{array}$	+0.0	48.7	$\begin{gathered} 54.0 \\ \operatorname{High} X \end{gathered}$	-5.3	$\begin{array}{r} \hline \text { Vert } \\ 201 \end{array}$
	$\begin{aligned} & 459.388 \mathrm{M} \\ & \text { QP } \end{aligned}$	52.3	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +1.0 \\ +18.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} -27.9 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	50.9	73.7	-22.8	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
\wedge	459.388M	54.0	$\begin{aligned} & +0.0 \\ & +1.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +1.0 \\ +18.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} -27.9 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	52.6	73.7	-21.1	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
	$\begin{aligned} & 153.126 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	58.8	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +9.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -27.5 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	48.0	73.7	-25.7	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
\wedge	153.080 M	57.9	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +9.3 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -27.5 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	47.0	73.7	-26.7	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
60	9926.390M	35.2	$\begin{array}{r} +0.0 \\ +0.0 \\ +37.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +6.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.9 \\ +0.0 \\ +0.0 \end{array}$	+0.0		$\begin{gathered} 73.7 \\ \text { High X } \end{gathered}$	-26.8	$\begin{array}{r} \hline \text { Vert } \\ 201 \end{array}$
61	$\begin{gathered} 14882.780 \\ \mathrm{M} \end{gathered}$	51.1	$\begin{gathered} +0.0 \\ +0.0 \\ +0.0 \\ -14.4 \\ +0.0 \end{gathered}$	$\begin{aligned} & +1.7 \\ & +0.0 \\ & +8.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$		46.9	High Z	-26.8	Horiz
62	$\begin{gathered} 14876.920 \\ \mathrm{M} \end{gathered}$	47.4	$\begin{gathered} +0.0 \\ +0.0 \\ +0.0 \\ -14.4 \\ +0.0 \end{gathered}$	$\begin{aligned} & +1.7 \\ & +0.0 \\ & +8.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$		43.2	$\begin{array}{r} 73.7 \\ \text { High Y } \end{array}$	-30.5	Horiz
63	$\begin{aligned} & 19520.000 \\ & \text { M } \\ & \text { Ave } \end{aligned}$	23.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -12.9 \\ +1.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	+0.0	23.4	54.0	-30.6	Vert

	$\begin{gathered} 14426.660 \\ \mathrm{M} \end{gathered}$	47.2	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -14.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +8.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$			73.7 Low Z	-31.8	Horiz
65	$\begin{gathered} 14636.880 \\ \text { M } \end{gathered}$	46.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -14.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +8.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$			73.7 Mid Y	-32.1	Horiz
66	306.400M	46.8	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.9 \\ +13.4 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -27.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	41.1	73.7	-32.6	Horiz 141
67	$\begin{gathered} 14426.820 \\ \text { M } \end{gathered}$	46.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -14.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +8.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$		41.0	73.7 Low Y	-32.7	Horiz
68	$\begin{gathered} 14642.950 \\ \mathrm{M} \end{gathered}$	45.0	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.0 \\ -14.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +8.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	40.0	Mid Z	-33.7	Horiz
69	88.480M	51.2	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +7.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} -27.8 \\ +0.0 \\ +0.0 \\ +0.0 \end{gathered}$	$+0.0$	37.2	73.7	-36.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
70	624.800M	35.0	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +1.2 \\ +21.4 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} -28.2 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	37.2	73.7	-36.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
	$\begin{gathered} 21644.540 \\ \mathrm{M} \end{gathered}$	38.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +1.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -15.6 \\ +0.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +2.0 \end{aligned}$	+0.0	36.3	73.7	-37.4	Horiz
	$7215.505 \mathrm{M}$ Ave	27.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +36.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +1.1 \\ & +0.0 \\ & +5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	36.3	$\begin{aligned} & 73.7 \\ & \text { Low X } \end{aligned}$	-37.4	$\begin{array}{r} \hline \text { Vert } \\ 223 \end{array}$
\wedge	7215.505M	42.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +36.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \\ & +5.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	51.2	$\begin{aligned} & 73.7 \\ & \text { Low X } \end{aligned}$	-22.5	$\begin{array}{r} \hline \text { Vert } \\ 201 \end{array}$

	$\begin{aligned} & \text { QP } \\ & \hline 41.900 \mathrm{M} \\ & \hline \end{aligned}$	45.3	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +11.2 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{gathered} -28.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	35.0	73.7	-38.7	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
\wedge	41.900 M	52.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	52.7	73.7	-21.0	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
76	$\begin{gathered} 14636.898 \\ \text { M } \end{gathered}$	39.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -14.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +8.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	34.6	$\begin{aligned} & \hline 73.7 \\ & \text { d X } \end{aligned}$	-39.1	Vert
77	28.057 M	37.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +5.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	2.7	73.7	-71.0	Groun
78	2.008 M	32.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	1.9	73.7	-71.8	Para
79	28.415 M	35.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +4.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	0.7	73.7	-73.0	Groun
80	2.305 M	30.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	0.4	73.7	-73.3	Para
81	28.326M	34.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +4.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-0.2	73.7	-73.9	Groun
82	28.620 M	33.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +4.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-1.2	73.7	-74.9	Groun
83	2.062 M	28.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-2.1	73.7	-75.8	Perp

84	27.880M	32.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +5.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-2.4	73.7	-76.1	Perp
85	26.780M	31.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +5.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-2.6	73.7	-76.3	Para
86	18.728M	24.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +7.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-7.6	73.7	-81.3	Groun
87	18.788M	22.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline+0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +7.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-9.9	73.7	-83.6	Groun
88	18.820M	21.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +7.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-10.8	73.7	-84.5	Groun
89	18.420M	18.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline+0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +7.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-13.4	73.7	-87.1	Para

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Ossia, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#:
Test Type:
Tested By: 103895

Date: 6/16/2020
Maximized Emissions
Time: 09:56:49
S. Pittsford/M. Atkinson

Sequence\#: 5
Software:
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Frequency range tested: $9 \mathrm{kHz}-25 \mathrm{GHz}$
Test Mode: Continuously Modulated
EUT is on a 0.8 m test bench below 1 GHz and a 1.5 m high Styrofoam test bench above 1 GHz .

EUT is investigated in Low, Middle, and High Channels, X, Y, \& Z Axis with only the worst case reported.
Vertical and Horizontal polarities investigated
EUT connected to support Laptop via USB cable.
EUT connected to support PoE box with 2 x Ethernet cables for power.
Support laptop connected to PoE box with 1 x Ethernet cable.
PoE box and support
Laptop are located remotely.
No emissions observed within 20 dB of limit from $18-25 \mathrm{GHz}$, values provided are noise floor.
Test Location: Bothell Lab C3
Test Method: ANSI C63.10 (2013) KDB 558074 (April 2, 2019)
Temperature $\left({ }^{\circ} \mathrm{C}\right) 23$
Relative Humidity (\%): 33

Ossia, Inc. WO\#: 103895 Sequence\#: 5 Date: 6/16/2020
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

[^1]O Peak Readings

* Average Readings

Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	AN02307	Preamp	$8447 D$	$1 / 10 / 2020$	$1 / 10 / 2022$
T5	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T6	ANP06123	Attenuator	18N-6	$4 / 5 / 2019$	$4 / 5 / 2021$
T7	AN03628	Biconilog Antenna	$3142 E$	$6 / 11 / 2019$	$6 / 11 / 2021$
T8	AN03540	Preamp	$83017 A$	$5 / 13 / 2019$	$5 / 13 / 2021$
T9	AN01467	Horn Antenna-ANSI	3115	$7 / 5 / 2019$	$7 / 5 / 2021$
T10	ANP06515	Cable			
T11	ANP07504	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T12	AN03116	High Pass Filter	CLU40-KMKM-02.00F	$1 / 17 / 2019$	$1 / 17 / 2021$
	AN02741	Active Horn Antenna	AMFW-5F-12001800-20-10P	$4 / 26 / 2019$	$4 / 26 / 2021$
	AN02742	Active Horn Antenna	AMFW-5F-18002650-20-10P	$10 / 16 / 2018$	$10 / 16 / 2020$
	ANP06678	Cable	$32026-29801-29801-144$	$2 / 20 / 2020$	$2 / 20 / 2022$
	AN02763-69	Waveguide	Multiple	$4 / 28 / 2020$	$4 / 28 / 2022$
	ANP07212	Cable	$32026-29801-29801-18$	$8 / 7 / 2019$	$8 / 7 / 2021$
	ANP07211	Cable	$32026-29801-29801-18$	$8 / 7 / 2019$	$8 / 7 / 2021$
T13	AN00052	Loop Antenna	6502	$5 / 4 / 2020$	$5 / 4 / 2022$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

$\begin{aligned} & 4 \text { 4878.947M } \\ & \text { Ave } \end{aligned}$		$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \end{array}$	+0.0	49.2	54.0	-4.8	Vert
^ 4878.947M	50.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \end{array}$	+0.0	55.4	54.0	+1.4	Vert
^ 4878.962M	46.2	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \end{array}$	+0.0	51.3	54.0	-2.7	Vert
$\begin{aligned} & \hline 7878.920 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \end{array}$	+0.0	48.4	54.0	-5.6	Horiz
^ 4878.950M	49.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \end{array}$	+0.0	54.6	54.0	+0.6	Horiz
9120.200 M	47.1	$\begin{aligned} & +0.0 \\ & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +8.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \end{array}$	+0.0	34.5	43.5	-9.0	Vert
$\begin{aligned} & 104810.954 \mathrm{M} \\ & \text { Ave } \end{aligned}$	39.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{gathered} +0.0 \\ -33.6 \\ +0.6 \end{gathered}$	+0.0	44.5	54.0	-9.5	Horiz
^ 4810.970M	45.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +4.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.6 \\ +0.6 \end{array}$	+0.0	50.7	54.0	-3.3	Horiz
^ 4810.980M	44.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +4.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +0.6 \end{array}$	+0.0	49.4	54.0	-4.6	Horiz
$\begin{gathered} 13120.023 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	45.3	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +8.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} -27.6 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	32.7	43.5	-10.8	Vert
14 35.800M	56.3	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +13.9 \\ +0.0 \end{array}$	$\begin{array}{r} \hline-27.9 \\ +0.0 \\ +0.0 \end{array}$	+0.0	48.8	73.7	-24.9	Vert
15 451.000M	48.5	$\begin{aligned} & +0.0 \\ & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +5.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +1.0 \\ +18.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline-27.9 \\ +0.0 \\ +0.0 \end{array}$	+0.0	47.0	73.7	-26.7	Horiz
16 451.000M	47.9	$\begin{aligned} & +0.0 \\ & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +5.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +1.0 \\ +18.0 \\ +0.0 \end{array}$	$\begin{array}{r} -27.9 \\ +0.0 \\ +0.0 \end{array}$	+0.0	46.4	73.7	-27.3	Vert

Page 46 of 110

17	63.000M	54.9	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +5.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +7.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \end{array}$	+0.0	41.5	73.7	-32.2	Vert
18	359.800 M	39.3	$\begin{aligned} & +0.0 \\ & +1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +5.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.9 \\ +15.9 \\ +0.0 \end{array}$	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \end{array}$	+0.0	36.0	73.7	-37.7	Vert
	$\mathrm{QP}^{68.800 \mathrm{M}}$	47.8	$\begin{aligned} & \hline+0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +7.4 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline-27.8 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	34.2	73.7	-39.5	Vert
\wedge	68.800 M	54.9	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +7.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \end{array}$	+0.0	41.3	73.7	-32.4	Vert
21	30.000 M	29.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	33.7	73.7	-40.0	Perp
22	2.014 M	33.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	3.1	73.7	-70.6	Para
23	28.266 M	36.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +5.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	2.0	73.7	-71.7	Groun
24	28.445 M	35.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +4.9 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	0.3	73.7	-73.4	Groun
25	18.728 M	26.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +7.8 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-5.1	73.7	-78.8	Groun

Band Edge					
Band Edge Summary Frequency (MHz) Modulation Ant. Type Field Strength (dBuV/m @sm) 2390.0 OQPSK Dipole 42.2 (dBuV/m @sm)	Results				
2400.0	OQPSK	Dipole	52.7	<54	Pass
2483.5	OQPSK	Dipole	59.0	<74 (PEAK)	Pass
2483.5	OQPSK	Dipole	52.4	<54 (AVE)	Pass

Band Edge Plots

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 2211623 rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Usia, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

102119 Date: 6/13/2020
Maximized Emissions Time: 16:27:01
Steven Pittsford
EMIT est 5.03.12
Sequence\#: 5

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

Frequency range tested: Band Edge
Test Mode: Continuously Modulated
EUT is on a 0.8 m test bench below 1 GHz and a 1.5 m high Styrofoam test bench above 1 GHz .
EUT is investigated in Low, Middle, and High Channels, X, Y, \& Z Axis with only the worst case reported.
Vertical and Horizontal polarities investigated
EUT connected to support Laptop via USB cable.
EUT connected to AC adapter for power.
EUT connected to support Laptop via Ethernet cable.
Laptop is located remotely. (Configuration 2)
Also investigated EUT connected to support Laptop via USB cable.
EUT connected to support PoE box with 2 x Ethernet cables for power.
Support laptop connected to PoE box with 1 x Ethernet cable.
PoE box and support Laptop are located remotely. (Configuration 1)
Data collected is representative of worst case.
Test Location: Bothell Lab C3
Test Method: ANSI C63.10 (2013) KDB 558074 (April 2, 2019)
Temperature (${ }^{\circ} \mathrm{C}$) 23
Relative Humidity (\%): 33

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
	AN02307	Preamp	$8447 D$	$1 / 10 / 2020$	$1 / 10 / 2022$
	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
	ANP06123	Attenuator	$18 N-6$	$4 / 5 / 2019$	$4 / 5 / 2021$
	AN03628	Biconilog Antenna	$3142 E$	$6 / 11 / 2019$	$6 / 11 / 2021$
T2	AN03540	Preamp	$83017 A$	$5 / 13 / 2019$	$5 / 13 / 2021$
T3	AN01467	Horn Antenna-ANSI C63.5	3115	$7 / 5 / 2019$	$7 / 5 / 2021$
		Calibration			
T4	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T5	ANP07504	Cable	CLU40-KMKM-	$1 / 17 / 2019$	$1 / 17 / 2021$
			$02.00 F$		

Test Setup Photo(s)

Configuration 1 - Below 1GHz

Configuration 1 - Above 1GHz

Configuration 2 - Below 1GHz

Configuration 2 - Above 1GHz

68.13.2020 15: 7

LABORATORIES, INC.

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: Customer:
Specification: Work Order \#: Test Type: Tested By: Software:

CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) Ossia, Inc.
15.207 AC Mains - Average

102119
Conducted Emissions
Michael Atkinson
EMITest 5.03.12

Date: 6/26/2020
Time: 09:26:08
Sequence\#: 60
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Temperature: $23^{\circ} \mathrm{C}$
Humidity: 34\%
Pressure: 101.6 kPa

Method: ANSI C63.10 (2013)
Frequency: $0.15-30 \mathrm{MHz}$

EUT connected to support Laptop via USB cable.
EUT connected to support laptop via USB cable.
EUT connected to support PoE box with 2 x Ethernet cables for power.
Support laptop connected to PoE box with 1 x Ethernet cable.
Support Laptop is located remotely.

Zigbee is continuously transmitting on mid-channel as representative of worst case.

Ossia. Inc. WO\#: 102119 Sequence\#: 60 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Line

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	Heliax	$8 / 23 / 2019$
T3	ANP06515	Cable	$768-10$	$6 / 29 / 2018$	$8 / 23 / 2021$
T4	ANP06219	Attenuator	$4 / 29 / 2020$		
T5	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 24 / 2020$	$4 / 7 / 2022$
	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2022$	

Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	T2 dB	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	$\begin{array}{r} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{array}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	669.575 k	34.9	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	43.9	46.0	-2.1	Line
2	1.159M	34.7	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	43.7	46.0	-2.3	Line
3	208.372k	42.7	$\begin{gathered} \hline+0.2 \\ -1.1 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	50.9	53.3	-2.4	Line
4	990.470k	34.6	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	43.6	46.0	-2.4	Line
5	499.938k	34.5	$\begin{array}{r} \hline+0.2 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	43.4	46.0	-2.6	Line
6	1.055 M	33.8	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	42.8	46.0	-3.2	Line
7	995.092k	33.8	$\begin{gathered} \hline+0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	42.8	46.0	-3.2	Line
8	523.826k	33.8	$\begin{array}{r} \hline+0.2 \\ -0.4 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	42.7	46.0	-3.3	Line
9	1.012 M	33.7	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	42.7	46.0	-3.3	Line
10	1.135 M	33.6	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	42.6	46.0	-3.4	Line
11	1.125 M	33.5	$\begin{gathered} \hline+0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	42.5	46.0	-3.5	Line
12	1.683 M	32.9	$\begin{array}{r} +0.2 \\ -0.3 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	42.0	46.0	-4.0	Line
13	$640.546 \mathrm{k}$	29.4	$\begin{array}{r} +0.3 \\ -0.4 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	38.4	46.0	-7.6	Line
\wedge	640.546k	37.1	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	46.1	46.0	+0.1	Line
15	1.356 M Ave	28.1	$\begin{gathered} \hline+0.2 \\ -0.3 \end{gathered}$	+0.0	+0.1	+9.1	+0.0	37.2	46.0	-8.8	Line
\wedge	1.356 M	35.5	$\begin{gathered} \hline+0.2 \\ -0.3 \end{gathered}$	+0.0	+0.1	+9.1	+0.0	44.6	46.0	-1.4	Line
	$\begin{aligned} & \text { 937.565k } \\ & \text { Ave } \end{aligned}$	27.8	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	36.8	46.0	-9.2	Line
\wedge	937.565k	35.3	$\begin{array}{r} +0.2 \\ -0.3 \\ \hline \end{array}$	+0.0	$+0.0$	+9.1	+0.0	44.3	46.0	-1.7	Line
	$794.260 \mathrm{k}$	27.8	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	$+0.0$	+9.1	$+0.0$	36.8	46.0	-9.2	Line
\wedge	794.259k	35.1	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	$+0.0$	44.1	46.0	-1.9	Line
	$\begin{aligned} & 830.728 \mathrm{k} \\ & \text { Ave } \end{aligned}$	26.2	$\begin{gathered} +0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	35.2	46.0	-10.8	Line
\wedge	830.728k	35.8	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	$+0.0$	+9.1	$+0.0$	44.8	46.0	-1.2	Line

	$\begin{aligned} & 978.143 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	26.1	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	35.1	46.0	-10.9	Line
\wedge	978.142k	35.2	$\begin{gathered} +0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	44.2	46.0	-1.8	Line
	$678.042 \mathrm{k}$ Ave	25.3	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	34.3	46.0	-11.7	Line
\wedge	678.041k	35.3	$\begin{array}{r} +0.3 \\ -0.4 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	44.3	46.0	-1.7	Line
	$462.443 \mathrm{k}$	23.2	$\begin{array}{r} +0.2 \\ -0.5 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	+0.0	32.1	46.6	-14.5	Line
\wedge	462.443k	36.3	$\begin{array}{r} +0.2 \\ -0.5 \end{array}$	+0.0	+0.1	+9.1	+0.0	45.2	46.6	-1.4	Line

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Ossia, Inc.
15.207 AC Mains - Average

102119
Conducted Emissions
Michael Atkinson
EMITest 5.03.12

Date: 6/26/2020
Time: 09:15:32
Sequence\#: 59
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $23^{\circ} \mathrm{C}$
Humidity: 34%
Pressure: 101.6 kPa
Method: ANSI C63.10 (2013)

Frequency: $0.15-30 \mathrm{MHz}$
EUT connected to support Laptop via USB cable.
EUT connected to support laptop via USB cable.
EUT connected to support PoE box with 2 x Ethernet cables for power.
Support laptop connected to PoE box with 1 x Ethernet cable.
Support Laptop is located remotely.
Zigbee is continuously transmitting on mid-channel as representative of worst case.

Ossia, Inc. WO\#: 102119 Sequence\#: 59 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Neutral

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T4	ANP06219	Attenuator	$768-10$	$4 / 7 / 2020$	$4 / 7 / 2022$
	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$
T5	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Ossa, Inc.
15.207 AC Mains - Average

102119
Conducted Emissions
Michael Atkinson
EMITest 5.03.12

Date: 6/14/2020
Time: 15:40:00
Sequence\#: 37
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$

Method: ANSI C63.10 (2013)
Frequency: $0.15-30 \mathrm{MHz}$
EUT connected to support Laptop via USB cable.
EUT connected to AC adapter for power.
EUT connected to support Laptop via Ethernet cable.
Laptop is located remotely.
Zigbee is continuously transmitting on mid-channel as representative of worst case.

Ossia, Inc. WO\#: 102119 Sequence\#: 37 Date: 6/14/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Line

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	Heliax	$8 / 23 / 2019$
T3	ANP06515	Cable	$768-10$	$6 / 29 / 2018$	$8 / 23 / 2021$
T4	ANP06219	Attenuator	$3816 / 2 N M$	$4 / 7 / 2020$	$4 / 7 / 2022$
T5	AN01492	50uH LISN-Line (L1)	30.2020		
	AN01492	50uH LISN-Neutral (L2)	$3816 / 2 N M$	$10 / 14 / 2019$	$10 / 14 / 2021$

Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	T2 dB	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	7.049M	38.0	$\begin{aligned} & \hline+0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.9	50.0	-2.1	Line
2	10.337M	37.9	$\begin{array}{r} +0.1 \\ +0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	47.8	50.0	-2.2	Line
3	8.939M	37.8	$\begin{aligned} & \hline+0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	47.8	50.0	-2.2	Line
4	4.651 M	33.9	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	43.7	46.0	-2.3	Line
5	10.034 M	37.8	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	47.7	50.0	-2.3	Line
6	8.242M	37.7	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.6	50.0	-2.4	Line
7	4.691 M	33.6	$\begin{aligned} & \hline+0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	43.5	46.0	-2.5	Line
8	8.404M	37.5	$\begin{aligned} & +0.1 \\ & +0.6 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.4	50.0	-2.6	Line
9	8.610M	37.4	$\begin{aligned} & +0.1 \\ & +0.6 \end{aligned}$	+0.0	+0.2	+9.1	+0.0	47.4	50.0	-2.6	Line
10	8.075M	37.6	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.4	50.0	-2.6	Line
11	14.923M	37.2	$\begin{aligned} & \hline+0.2 \\ & +0.5 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	47.3	50.0	-2.7	Line
12	4.935M	20.2	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	30.0	46.0	-16.0	Line
\wedge	4.935 M	34.9	$\begin{array}{r} +0.1 \\ +0.5 \\ \hline \end{array}$	+0.0	+0.1	+9.1	$+0.0$	44.7	46.0	-1.3	Line
14	$4.832 \mathrm{M}$	19.6	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	29.4	46.0	-16.6	Line
\wedge	4.832 M	34.3	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	44.1	46.0	-1.9	Line
16	$4.902 \mathrm{M}$	19.5	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	29.3	46.0	-16.7	Line
\wedge	4.902 M	34.8	$\begin{aligned} & \hline+0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	44.6	46.0	-1.4	Line
	$\begin{aligned} & \text { ve } \\ & \text { ve } \end{aligned}$	20.8	$\begin{array}{r} +0.1 \\ +0.5 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	30.6	50.0	-19.4	Line
\wedge	6.976M	38.2	$\begin{aligned} & +0.1 \\ & +0.5 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	48.0	50.0	-2.0	Line

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Ossa, Inc.
15.207 AC Mains - Average

102119
Conducted Emissions
Michael Atkinson
EMITest 5.03.12

Date: 6/14/2020
Time: 15:34:45
Sequence\#: 36
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $19-21^{\circ} \mathrm{C}$
Humidity: 29-32\%
Pressure: $102-103 \mathrm{kPa}$
Method: ANSI C63.10 (2013)

Frequency: $0.15-30 \mathrm{MHz}$
EUT connected to support Laptop via USB cable.
EUT connected to AC adapter for power.
EUT connected to support Laptop via Ethernet cable.
Laptop is located remotely.
Zigbee is continuously transmitting on mid-channel as representative of worst case.

Ossia, Inc. WO\#: 102119 Sequence\#: 36 Date: 6/14/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Neutral

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	Heliax	$8 / 23 / 2019$
T3	ANP06515	Cable	$768-10$	$6 / 29 / 2018$	$8 / 23 / 2021$
T4	ANP06219	Attenuator	$3816 / 2 N M$	$4 / 7 / 2020$	$4 / 7 / 2022$
	AN01492	50uH LISN-Line (L1)	30uH LISN-Neutral (L2)	$3816 / 2 N M$	$10 / 14 / 2019$
T5	AN01492	50u	$10 / 14 / 2021$		

Measu	ment Data	Reading listed by margin.				Test Lead: Neutral					
\#	Freq	Rdng		T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	dB	Ant
1	15.547M	37.5	+0.2	+0.1	+0.2	+9.1	+0.0	47.7	50.0	-2.3	Neutr
			+0.6								
2	13.993M	37.5	+0.2	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Neutr
			+0.5								
3	14.218M	37.3	+0.2	+0.0	+0.2	+9.1	+0.0	47.4	50.0	-2.6	Neutr
			+0.6								
4	16.281M	37.0	+0.2	+0.1	+0.2	+9.1	+0.0	47.1	50.0	-2.9	Neutr
			+0.5								
5	16.005M	36.4	+0.2	+0.1	+0.2	+9.1	+0.0	46.5	50.0	-3.5	Neutr
			+0.5								
6	16.092M	36.2	+0.2	+0.1	+0.2	+9.1	+0.0	46.3	50.0	-3.7	Neutr
			+0.5								
7	15.700M	36.1	+0.2	+0.1	+0.2	+9.1	+0.0	46.3	50.0	-3.7	Neutr
			+0.6								
8	16.034M	35.9	+0.2	+0.1	+0.2	+9.1	+0.0	46.0	50.0	-4.0	Neutr
			+0.5								
9	14.930M	35.5	+0.2	+0.1	+0.2	+9.1	+0.0	45.6	50.0	-4.4	Neutr
	Ave		+0.5								
\wedge	14.930M	39.3	+0.2	+0.1	+0.2	+9.1	+0.0	49.4	50.0	-0.6	Neutr
			+0.5								
11	14.944M	21.8	+0.2	+0.1	+0.2	+9.1	+0.0	31.9	50.0	-18.1	Neutr
	Ave		+0.5								
\wedge	14.944M	39.0	+0.2	+0.1	+0.2	+9.1	+0.0	49.1	50.0	-0.9	Neutr
			+0.5								
13	14.785M	21.6	+0.2	+0.1	+0.2	+9.1	+0.0	31.7	50.0	-18.3	Neutr
	ve		+0.5								
\wedge	14.785M	38.1	+0.2	+0.1	+0.2	+9.1	+0.0	48.2	50.0	-1.8	Neutr
			+0.5								
15	15.119M	21.4	+0.2	+0.1	+0.2	+9.1	+0.0	31.6	50.0	-18.4	Neutr
	ve		+0.6								
\wedge	15.119M	38.8	+0.2	+0.1	+0.2	+9.1	+0.0	49.0	50.0	-1.0	Neutr
			+0.6								
17	14.647M	21.4	+0.2	+0.1	+0.2	+9.1	+0.0	31.5	50.0	-18.5	Neutr
	ve		+0.5								
\wedge	14.647M	38.3	+0.2	+0.1	+0.2	+9.1	+0.0	48.4	50.0	-1.6	Neutr
			+0.5								
19	14.465M	21.3	+0.2	+0.0	+0.2	+9.1	+0.0	31.3	50.0	-18.7	Neutr
	ve		+0.5								
\wedge	14.465M	39.2	+0.2	+0.0	+0.2	+9.1	+0.0	49.2	50.0	-0.8	Neutr
			+0.5								
21	14.327M	20.8	+0.2	+0.0	+0.2	+9.1	+0.0	30.9	50.0	-19.1	Neutr
	ve		+0.6								
\wedge	14.327M	39.5	+0.2	+0.0	+0.2	+9.1	+0.0	49.6	50.0	-0.4	Neutr
			+0.6								

Test Setup Photo(s)

Configuration 1

Configuration 2

Appendix A: Co-Location Testing

Co-Location testing was performed and no mixing products were observed within 15 dB of 15.209 limit.

The following configurations were tested as representative of worst case with channels available at time of test:

WPT $2.45 \mathrm{GHz}+$ Pi Wi-Fi 2.452 GHz
WPT $2.45 \mathrm{GHz}+$ Pi Wi-Fi $2.452 \mathrm{GHz}+$ Zigbee 2.455 GHz
Pi Wi-Fi $2.452 \mathrm{GHz}+$ Zigbee 2.45 GHz
Pi Wi-Fi 5.180GHz + Zigbee 2.480 GHz Zigbee
Pi Wi-Fi $5.180 \mathrm{GHz}+$ WPT 2.46 GHz

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossia, Inc.
15.207 AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions

Software:
Michael Atkinson
Date: 6/26/2020
Time: 09:50:06
Sequence\#: 61
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$

Method: ANSI C63.10 (2013)
Frequency range tested: $0.15-30 \mathrm{MHz}$
XYZ EUT orientations investigated, worst case reported.
Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the $2.4 \mathrm{GHz} \mathrm{Wi-Fi}$ radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 $(2412 \mathrm{MHz})$ at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.
EUT connected to support PoE box with 2 x Ethernet cables for power.
Support laptop connected to PoE box with $1 \times$ Ethernet cable.
PoE box and support Laptop are located remotely. (Configuration 1)
Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Ossia. Inc. WO\#: 102119 Sequence\#: 61 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Line

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	Heliax	$8 / 23 / 2019$
T3	ANP06515	Cable	$768-10$	$6 / 29 / 2018$	$8 / 23 / 2021$
T4	ANP06219	Attenuator	$4 / 29 / 2020$		
T5	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$4 / 7 / 2020$	$4 / 7 / 2022$
	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$

Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{gathered} \mathrm{T} 1 \\ \mathrm{~T} 5 \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	830.728k	34.9	$\begin{gathered} \hline+0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	43.9	46.0	-2.1	Line
2	675.320k	34.8	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	43.8	46.0	-2.2	Line
3	680.460k	34.8	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	43.8	46.0	-2.2	Line
4	1.358M	34.5	$\begin{array}{r} +0.2 \\ -0.3 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	43.6	46.0	-2.4	Line
5	296.986k	39.2	$\begin{array}{r} \hline+0.1 \\ -0.7 \end{array}$	+0.0	$+0.0$	+9.1	+0.0	47.7	50.3	-2.6	Line
6	411.983 k	36.2	$\begin{array}{r} \hline+0.2 \\ -0.5 \end{array}$	+0.0	+0.0	+9.1	+0.0	45.0	47.6	-2.6	Line
7	256.755 k	40.4	$\begin{array}{r} \hline+0.2 \\ -0.9 \end{array}$	+0.0	+0.0	+9.1	+0.0	48.8	51.5	-2.7	Line
8	792.718k	34.2	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	43.2	46.0	-2.8	Line
9	227.550 k	41.2	$\begin{array}{r} \hline+0.3 \\ -1.0 \end{array}$	+0.0	+0.0	+9.1	+0.0	49.6	52.5	-2.9	Line
10	261.561 k	40.0	$\begin{array}{r} \hline+0.2 \\ -0.8 \end{array}$	+0.0	+0.0	+9.1	$+0.0$	48.5	51.4	-2.9	Line
11	254.693 k	40.1	$\begin{array}{r} \hline+0.2 \\ -0.9 \end{array}$	+0.0	$+0.0$	+9.1	$+0.0$	48.5	51.6	-3.1	Line
12	252.806k	40.1	$\begin{array}{r} \hline+0.2 \\ -0.9 \end{array}$	+0.0	+0.0	+9.1	+0.0	48.5	51.7	-3.2	Line
13	263.341k	39.6	$\begin{array}{r} +0.2 \\ -0.8 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	48.1	51.3	-3.2	Line
14	266.545k	39.4	$\begin{array}{r} +0.2 \\ -0.8 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	47.9	51.2	-3.3	Line
15	250.606k	39.9	$\begin{array}{r} \hline+0.2 \\ -0.9 \end{array}$	+0.0	+0.0	+9.1	+0.0	48.3	51.7	-3.4	Line
16	978.142k	33.5	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	42.5	46.0	-3.5	Line
17	$\begin{aligned} & \text { 451.558k } \\ & \text { Ave } \end{aligned}$	32.6	$\begin{array}{r} \hline+0.2 \\ -0.5 \end{array}$	+0.0	+0.1	+9.1	+0.0	41.5	46.8	-5.3	Line
\wedge	451.557k	36.8	$\begin{array}{r} \hline+0.2 \\ -0.5 \end{array}$	+0.0	+0.1	+9.1	+0.0	45.7	46.8	-1.1	Line
	$\begin{aligned} & \text { 638.430k } \\ & \text { Ave } \end{aligned}$	31.6	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	40.6	46.0	-5.4	Line
\wedge	638.429k	35.7	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	+0.0	44.7	46.0	-1.3	Line
	$\begin{aligned} & \text { 938.079k } \\ & \text { Ave } \end{aligned}$	28.2	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	37.2	46.0	-8.8	Line
\wedge	938.078k	35.2	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.0	+9.1	+0.0	44.2	46.0	-1.8	Line
23	$\begin{aligned} & \text { 208.268k } \\ & \text { Ave } \end{aligned}$	34.1	$\begin{array}{r} +0.2 \\ -1.1 \end{array}$	+0.0	+0.0	+9.1	+0.0	42.3	53.3	-11.0	Line
\wedge	208.267k	44.0	$\begin{array}{r} \hline+0.2 \\ -1.1 \\ \hline \end{array}$	+0.0	$+0.0$	+9.1	$+0.0$	52.2	53.3	-1.1	Line

Page 74 of 110

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossia, Inc.
15.207 AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions

Software:
Michael Atkinson
Date: 6/26/2020
Time: 09:53:53
Sequence\#: 62
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$
Method: ANSI C63.10 (2013)

Frequency range tested: $0.15-30 \mathrm{MHz}$
XYZ EUT orientations investigated, worst case reported.
Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the $2.4 \mathrm{GHz} \mathrm{Wi}-\mathrm{Fi}$ radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 $(2412 \mathrm{MHz})$ at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.
EUT connected to support PoE box with 2 x Ethernet cables for power.
Support laptop connected to PoE box with $1 \times$ Ethernet cable.
PoE box and support Laptop are located remotely. (Configuration 1)
Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Ossia, Inc. WO\#: 102119 Sequence\#: 62 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Neutral

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	Heliax	$8 / 23 / 2019$
T3	ANP06515	Cable	$768-10$	$6 / 29 / 2018$	$8 / 23 / 2021$
T4	ANP06219	Attenuator	$4 / 7 / 2020$	$4 / 2020$	
	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$
T5	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$

Page 77 of 110

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossia, Inc.
15.207 AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions
Michael Atkinson
Date: 6/26/2020
Time: 10:12:07

Software:
EMITest 5.03.12

Sequence\#: 64
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$
Method: ANSI C63.10 (2013)

Frequency range tested: $0.15-30 \mathrm{MHz}$
XYZ EUT orientations investigated, worst case reported.
Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 5 GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180 MHz) at worst case data rate for spurious emissions. Also investigated Channel $140(5700 \mathrm{MHz})$ but no emissions observed within 20 dB of 15.209 limit.

EUT connected to support laptop via USB cable.
EUT connected to support PoE box with 2 x Ethernet cables for power.
Support laptop connected to PoE box with $1 \times$ Ethernet cable.
PoE box and support Laptop are located remotely. (Configuration 1)
Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Ossia, Inc. WO\#: 102119 Sequence\#: 64 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Line

	Sweep Data	Readings	Peak Readings
\times	Q Readings	Average Readings	Ambient
Software Version: 5.03 .12		-15.207 AC Mains - Average	$2-15.207$ AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T4	ANP06219	Attenuator	$768-10$	$4 / 7 / 2020$	$4 / 7 / 2022$
T5	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$
	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$

Measurement Data: \quad Reading listed by margin.
Test Lead: Line

$\#$	Freq	Rdng	T 1	T 2	T 3	T 4	Dist	Corr	Spec	Margin	Polar
			T 5								
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	dB	Ant
1	825.078 k	34.7	+0.2	+0.0	+0.0	+9.1	+0.0	43.7	46.0	-2.3	Line
2	266.545 k	40.2	+0.2	+0.0	+0.0	+9.1	+0.0	48.7	51.2	-2.5	Line

3	1.357 M	34.4	$\begin{array}{r} \hline+0.2 \\ -0.3 \end{array}$	+0.0	+0.1	+9.1	$+0.0$	43.5	46.0	-2.5	Line
4	260.137k	40.2	$\begin{gathered} \hline+0.2 \\ -0.8 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	48.7	51.4	-2.7	Line
5	681.065 k	34.3	$\begin{gathered} \hline+0.3 \\ -0.4 \end{gathered}$	+0.0	+0.0	+9.1	$+0.0$	43.3	46.0	-2.7	Line
6	793.232k	34.3	$\begin{gathered} \hline+0.2 \\ -0.3 \end{gathered}$	+0.0	+0.0	+9.1	$+0.0$	43.3	46.0	-2.7	Line
7	296.808k	39.0	$\begin{gathered} \hline+0.1 \\ -0.7 \end{gathered}$	+0.0	+0.0	+9.1	$+0.0$	47.5	50.3	-2.8	Line
8	227.864k	41.3	$\begin{gathered} +0.3 \\ -1.0 \end{gathered}$	+0.0	+0.0	+9.1	+0.0	49.7	52.5	-2.8	Line
9	252.492k	40.1	$\begin{array}{r} +0.2 \\ -0.9 \\ \hline \end{array}$	+0.0	+0.0	+9.1	$+0.0$	48.5	51.7	-3.2	Line
10	255.509k	39.9	$\begin{array}{r} +0.2 \\ -0.9 \end{array}$	+0.0	+0.0	+9.1	$+0.0$	48.3	51.6	-3.3	Line
11	416.077k	35.3	$\begin{array}{r} \hline+0.2 \\ -0.5 \end{array}$	+0.0	+0.0	+9.1	+0.0	44.1	47.5	-3.4	Line
12	171.693 k	43.3	$\begin{gathered} \hline+0.4 \\ -1.5 \end{gathered}$	+0.0	+0.0	+9.1	$+0.0$	51.3	54.9	-3.6	Line
13	186.469k	42.4	$\begin{gathered} \hline+0.3 \\ -1.3 \end{gathered}$	+0.0	+0.0	+9.1	$+0.0$	50.5	54.2	-3.7	Line
14	520.500k	33.4	$\begin{array}{r} \hline+0.2 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	$+0.0$	42.3	46.0	-3.7	Line
15	1.050M	33.2	$\begin{array}{r} \hline+0.2 \\ -0.3 \\ \hline \end{array}$	+0.0	+0.0	+9.1	$+0.0$	42.2	46.0	-3.8	Line
	$\begin{aligned} & \text { 451.860k } \\ & \text { Ave } \end{aligned}$	32.5	$\begin{array}{r} \hline+0.2 \\ -0.5 \end{array}$	+0.0	+0.1	+9.1	$+0.0$	41.4	46.8	-5.4	Line
\wedge	451.860k	36.7	$\begin{array}{r} \hline+0.2 \\ -0.5 \end{array}$	+0.0	+0.1	+9.1	+0.0	45.6	46.8	-1.2	Line
	$\begin{aligned} & \text { 639.337k } \\ & \text { Ave } \end{aligned}$	31.5	$\begin{array}{r} \hline+0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	$+0.0$	40.5	46.0	-5.5	Line
\wedge	639.336k	35.9	$\begin{array}{r} +0.3 \\ -0.4 \\ \hline \end{array}$	+0.0	+0.0	+9.1	$+0.0$	44.9	46.0	-1.1	Line
	$\begin{aligned} & \text { 207.325k } \\ & \text { Ave } \end{aligned}$	34.0	$\begin{array}{r} \hline+0.2 \\ -1.2 \end{array}$	+0.0	+0.0	+9.1	$+0.0$	42.1	53.3	-11.2	Line
\wedge	207.324k	44.2	$\begin{gathered} \hline+0.2 \\ -1.2 \end{gathered}$	+0.0	+0.0	+9.1	$+0.0$	52.3	53.3	-1.0	Line
	$\begin{aligned} & \text { 673.808k } \\ & \text { Ave } \end{aligned}$	25.6	$\begin{array}{r} \hline+0.3 \\ -0.4 \\ \hline \end{array}$	+0.0	+0.0	+9.1	$+0.0$	34.6	46.0	-11.4	Line
\wedge	673.808k	35.2	$\begin{array}{r} +0.3 \\ -0.4 \end{array}$	+0.0	+0.0	+9.1	$+0.0$	44.2	46.0	-1.8	Line
	$944.756 \mathrm{k}$	23.5	$\begin{array}{r} +0.2 \\ -0.3 \end{array}$	$+0.0$	+0.0	+9.1	$+0.0$	32.5	46.0	-13.5	Line
\wedge	944.756k	35.2	$\begin{array}{r} +0.2 \\ -0.3 \\ \hline \end{array}$	+0.0	+0.0	+9.1	$+0.0$	44.2	46.0	-1.8	Line

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossia, Inc.
15.207 AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions
Michael Atkinson
Date: 6/26/2020
Time: 10:04:41

Software:
EMITest 5.03.12

Sequence\#: 63
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$
Method: ANSI C63.10 (2013)

Frequency range tested: $0.15-30 \mathrm{MHz}$
XYZ EUT orientations investigated, worst case reported.
Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 5 GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180 MHz) at worst case data rate for spurious emissions. Also investigated Channel $140(5700 \mathrm{MHz})$ but no emissions observed within 20 dB of 15.209 limit.

EUT connected to support laptop via USB cable.
EUT connected to support PoE box with 2 x Ethernet cables for power.
Support laptop connected to PoE box with $1 \times$ Ethernet cable.
PoE box and support Laptop are located remotely. (Configuration 1)

Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Ossia, Inc. WO\#: 102119 Sequence\#: 63 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Neutral

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	Heliax	$8 / 23 / 2019$
T3	ANP06515	Cable	$768-10$	$6 / 29 / 2018$	$8 / 23 / 2021$
T4	ANP06219	Attenuator	$4 / 7 / 2020$	$4 / 2020$	
	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$
T5	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossia, Inc.
15.207 AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions
Date: 6/26/2020
Michael Atkinson
Time: 14:13:25

Software:
EMITest 5.03.12

Sequence\#: 78
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$

Method: ANSI C63.10 (2013)
Frequency range tested: $0.15-30 \mathrm{MHz}$
XYZ EUT orientations investigated, worst case reported.
Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the $2.4 \mathrm{GHz} \mathrm{Wi}-\mathrm{Fi}$ radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 $(2412 \mathrm{MHz})$ at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.
EUT connected to AC adapter for power.
EUT connected to support Laptop via Ethernet cable.
Laptop is located remotely. (Configuration 2)
Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Ossia, Inc. WO\#: 102119 Sequence\#: 78 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Line

	Sweep Data	Readings	Peak Readings
\times	Q Readings	Average Readings	Ambient
Software Version: 5.03 .12		-15.207 AC Mains - Average	$2-15.207$ AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T4	ANP06219	Attenuator	$768-10$	$4 / 7 / 2020$	$4 / 7 / 2022$
T5	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$
	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$

Measurement Data: \quad Reading listed by margin.
Test Lead: Line

| $\#$ | Freq | Rdng | T 1 | T 2 | T 3 | T 4 | Dist | Corr | Spec | Margin | Polar |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | T 5 | | | | | | | | |
| | MHz | $\mathrm{dB} \mu \mathrm{V}$ | dB | dB | dB | dB | Table | $\mathrm{dB} \mu \mathrm{V}$ | $\mathrm{dB} \mu \mathrm{V}$ | dB | Ant |
| 1 | 9.050 M | 38.6 | +0.1 | +0.0 | +0.2 | +9.1 | +0.0 | 47.5 | 50.0 | -2.5 | Line |
| | | | -0.5 | | | | | | | | |
| 2 | 10.051 M | 38.6 | +0.1 | +0.0 | +0.2 | +9.1 | +0.0 | 47.5 | 50.0 | -2.5 | Line |

3	8.939M	38.3	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	$+0.0$	47.2	50.0	-2.8	Line
4	10.068 M	38.3	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.2	50.0	-2.8	Line
5	9.273 M	38.2	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.1	50.0	-2.9	Line
6	9.798 M	38.2	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	47.1	50.0	-2.9	Line
7	17.029 M	38.0	$\begin{array}{r} \hline+0.2 \\ -0.7 \\ \hline \end{array}$	+0.1	+0.2	+9.1	$+0.0$	46.9	50.0	-3.1	Line
8	8.747M	38.0	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	$+0.0$	46.9	50.0	-3.1	Line
9	9.486 M	37.9	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	46.8	50.0	-3.2	Line
10	11.044 M	37.7	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	$+0.0$	46.6	50.0	-3.4	Line
11	8.439M	37.6	$\begin{array}{r} +0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	$+0.0$	46.5	50.0	-3.5	Line
12	8.156M	37.7	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.1	+9.1	$+0.0$	46.5	50.0	-3.5	Line
13	9.324 M	37.6	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	$+0.0$	46.5	50.0	-3.5	Line
14	8.849M	37.6	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	46.5	50.0	-3.5	Line
15	$9.516 \mathrm{M}$ ve	22.0	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	30.9	50.0	-19.1	Line
\wedge	9.516 M	39.4	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	$+0.0$	48.3	50.0	-1.7	Line
	$\begin{aligned} & \text { ve } \\ & \text { ve } \end{aligned}$	21.7	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	$+0.0$	30.6	50.0	-19.4	Line
\wedge	9.905 M	40.0	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	$+0.0$	48.9	50.0	-1.1	Line
	$9.610 \mathrm{M}$	21.1	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	30.0	50.0	-20.0	Line
\wedge	9.610 M	39.4	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	48.3	50.0	-1.7	Line
	$9.110 \mathrm{M}$ ve	20.6	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	$+0.0$	29.5	50.0	-20.5	Line
\wedge	9.110 M	39.1	$\begin{array}{r} +0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	$+0.0$	48.0	50.0	-2.0	Line
	$8.687 \mathrm{M}$	20.2	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	$+0.0$	+0.2	+9.1	$+0.0$	29.1	50.0	-20.9	Line
\wedge	8.687M	38.9	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.8	50.0	-2.2	Line
	$10.702 \mathrm{M}$	20.2	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	29.1	50.0	-20.9	Line
\wedge	10.702 M	39.2	$\begin{array}{r} +0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	48.1	50.0	-1.9	Line

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossia, Inc.
15.207 AC Mains - Average

Work Order \#:
Test Type:
Tested By:
102119
Conducted Emissions
Michael Atkinson
Date: 6/26/2020

Software:
EMITest 5.03.12

Time: 14:09:01
Sequence\#: 77
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$

Method: ANSI C63.10 (2013)
Frequency range tested: $0.15-30 \mathrm{MHz}$
XYZ EUT orientations investigated, worst case reported.
Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the $2.4 \mathrm{GHz} \mathrm{Wi}-\mathrm{Fi}$ radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 $(2412 \mathrm{MHz})$ at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.
EUT connected to AC adapter for power.
EUT connected to support Laptop via Ethernet cable.
Laptop is located remotely. (Configuration 2)
Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Ossia, Inc. WO\#: 102119 Sequence\#: 77 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Neutral

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	Heliax	$8 / 23 / 2019$
T3	ANP06515	Cable	$768-10$	$6 / 29 / 2018$	$8 / 23 / 2021$
T4	ANP06219	Attenuator	$4 / 29 / 2020$		
	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 24 / 2020$	$4 / 7 / 2022$
T5	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$

Measu	ment Data:	Reading listed by margin.				Test Lead: Neutral					
\#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	dB	Ant
1	4.895M	32.2	+0.1	+0.0	+0.1	+9.1	+0.0	41.1	46.0	-4.9	Neutr
			-0.4								
2	3.427 M	31.6	+0.1	+0.0	+0.1	+9.1	+0.0	40.6	46.0	-5.4	Neutr
			-0.3								
3	3.575 M	31.6	+0.1	+0.0	+0.1	+9.1	+0.0	40.6	46.0	-5.4	Neutr
			-0.3								
4	3.563 M	31.3	+0.1	+0.0	+0.1	+9.1	+0.0	40.3	46.0	-5.7	Neutr
			-0.3								
5	3.003 M	31.0	+0.1	+0.0	+0.1	+9.1	+0.0	40.0	46.0	-6.0	Neutr
			-0.3								
6	2.113 M	30.9	+0.2	+0.0	+0.1	+9.1	+0.0	40.0	46.0	-6.0	Neutr
			-0.3								
7	3.391 M	31.0	+0.1	+0.0	+0.1	+9.1	+0.0	40.0	46.0	-6.0	Neutr
			-0.3								
8	3.258M	31.0	+0.1	+0.0	+0.1	+9.1	+0.0	40.0	46.0	-6.0	Neutr
			-0.3								
9	2.403 M	30.9	+0.1	+0.0	+0.1	+9.1	+0.0	39.9	46.0	-6.1	Neutr
			-0.3								
10	153.981k	41.4	+0.8	+0.0	+0.0	+9.1	$+0.0$	49.6	55.8	-6.2	Neutr
			-1.7								
11	3.501 M	30.7	+0.1	+0.0	+0.1	+9.1	+0.0	39.7	46.0	-6.3	Neutr
			-0.3								
12	2.505 M	30.7	+0.1	+0.0	+0.1	+9.1	+0.0	39.7	46.0	-6.3	Neutr
			-0.3								
13	6.613 M	34.8	+0.1	+0.0	+0.1	+9.1	+0.0	43.7	50.0	-6.3	Neutr
			-0.4								
14	3.777 M	30.7	+0.1	+0.0	+0.1	+9.1	+0.0	39.7	46.0	-6.3	Neutr
			-0.3								
15	3.031 M	30.6	+0.1	+0.0	+0.1	+9.1	+0.0	39.6	46.0	-6.4	Neutr
			-0.3								
16	6.189M	34.7	+0.1	+0.0	+0.1	+9.1	+0.0	43.6	50.0	-6.4	Neutr
			-0.4								
17	155.762k	41.0	+0.8	+0.0	+0.0	+9.1	+0.0	49.2	55.7	-6.5	Neutr
			-1.7								
18	3.689M	30.5	+0.1	+0.0	+0.1	+9.1	+0.0	39.5	46.0	-6.5	Neutr
			-0.3								
19	3.458M	30.4	+0.1	$+0.0$	+0.1	+9.1	+0.0	39.4	46.0	-6.6	Neutr
			-0.3								
20	489.658k	18.0	+0.2	+0.0	+0.0	+9.1	+0.0	26.9	46.2	-19.3	Neutr
	Ave		-0.4								
\wedge	489.657k	32.8	+0.2	+0.0	+0.0	+9.1	+0.0	41.7	46.2	-4.5	Neutr
			-0.4								

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossia, Inc.
15.207 AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions
Michael Atkinson
EMITest 5.03.12

Date: 6/26/2020
Time: 14:20:34
Sequence\#: 79
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$
Method: ANSI C63.10 (2013)

Frequency range tested: $0.15-30 \mathrm{MHz}$
XYZ EUT orientations investigated, worst case reported.
Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the $5 \mathrm{GHz} \mathrm{Wi-Fi}$ radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180 MHz) at worst case data rate for spurious emissions. Also investigated Channel $140(5700 \mathrm{MHz})$ but no emissions observed within 20 dB of 15.209 limit.

EUT connected to support laptop via USB cable.
EUT connected to AC adapter for power.
EUT connected to support Laptop via Ethernet cable.
Laptop is located remotely. (Configuration 2)

Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Ossia, Inc. WO\#: 102119 Sequence\#: 79 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Line

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	Heliax	$8 / 23 / 2019$
T3	ANP06515	Cable	$768-10$	$6 / 29 / 2018$	$8 / 23 / 2021$
T4	ANP06219	Attenuator	$4 / 29 / 2020$		
T5	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 24 / 2020$	$4 / 7 / 2022$
	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2022$	

Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	10.312 M	38.9	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.8	50.0	-2.2	Line
2	10.935 M	38.8	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.7	50.0	-2.3	Line
3	8.952M	38.7	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.6	50.0	-2.4	Line
4	9.080M	38.7	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	47.6	50.0	-2.4	Line
5	10.492M	38.7	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.6	50.0	-2.4	Line
6	9.897 M	38.6	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Line
7	10.218M	38.6	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Line
8	10.688M	38.6	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	47.5	50.0	-2.5	Line
9	9.452 M	38.5	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.4	50.0	-2.6	Line
10	10.042M	38.5	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	$+0.0$	47.4	50.0	-2.6	Line
11	10.615M	38.5	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	$+0.0$	47.4	50.0	-2.6	Line
12	9.401 M	38.4	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.3	50.0	-2.7	Line
13	10.136M	38.3	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	47.2	50.0	-2.8	Line
14	10.333M	38.3	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	47.2	50.0	-2.8	Line
15	9.760 M	38.2	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	47.1	50.0	-2.9	Line
16	9.957 M	38.2	$\begin{array}{r} +0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	$+0.0$	47.1	50.0	-2.9	Line
17	$10.448 \mathrm{M}$ ve	22.4	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	31.3	50.0	-18.7	Line
\wedge	10.448M	39.6	$\begin{array}{r} +0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	48.5	50.0	-1.5	Line
	$\begin{aligned} & 9.743 \mathrm{M} \\ & \mathrm{ve} \end{aligned}$	22.1	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	31.0	50.0	-19.0	Line
\wedge	9.743 M	40.2	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	49.1	50.0	-0.9	Line
	${ }^{9.563 \mathrm{M}}$	22.0	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	30.9	50.0	-19.1	Line
\wedge	9.563 M	39.2	$\begin{array}{r} \hline+0.1 \\ -0.5 \end{array}$	+0.0	+0.2	+9.1	+0.0	48.1	50.0	-1.9	Line
23	$\begin{aligned} & 9.657 \mathrm{M} \\ & \hline \end{aligned}$	21.7	$\begin{array}{r} \hline+0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	+0.0	30.6	50.0	-19.4	Line
\wedge	9.657 M	39.0	$\begin{array}{r} +0.1 \\ -0.5 \\ \hline \end{array}$	+0.0	+0.2	+9.1	$+0.0$	47.9	50.0	-2.1	Line

Page 92 of 110

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossia, Inc.
15.207 AC Mains - Average

Work Order \#: 102119
Test Type:
Tested By:
Conducted Emissions
Date: 6/26/2020
Michael Atkinson
Time: 14:23:41

Software:
EMITest 5.03.12

Sequence\#: 80
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$
Method: ANSI C63.10 (2013)

Frequency range tested: $0.15-30 \mathrm{MHz}$
XYZ EUT orientations investigated, worst case reported.
Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 5 GHz Wi -Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180 MHz) at worst case data rate for spurious emissions. Also investigated Channel $140(5700 \mathrm{MHz})$ but no emissions observed within 20 dB of 15.209 limit.

EUT connected to support laptop via USB cable.
EUT connected to AC adapter for power.
EUT connected to support Laptop via Ethernet cable.
Laptop is located remotely. (Configuration 2)

Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Ossia, Inc. WO\#: 102119 Sequence\#: 80 Date: 6/26/2020 15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Neutral

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T1	AN02611	High Pass Filter	HE9615-150K-50-720B	$1 / 10 / 2020$	$1 / 10 / 2022$
T2	ANP06540	Cable	Heliax	Heliax	$8 / 23 / 2019$
T3	ANP06515	Cable	$768-10$	$6 / 29 / 2018$	$8 / 23 / 2021$
T4	ANP06219	Attenuator	$3 / 29 / 2020$		
T5	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$4 / 7 / 2020$	$4 / 7 / 2022$
	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 24 / 2020$	$2 / 24 / 2022$

Measu	ement Data	Reading listed by margin.				Test Lead: Neutral					
\#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	dB	Ant
1	150.000k	42.1	+2.5	+0.0	+0.0	+9.1	+0.0	51.9	56.0	-4.1	Neutr
			-1.8								
2	450.045k	32.9	+0.2	+0.0	+0.1	+9.1	+0.0	41.8	46.9	-5.1	Neutr
			-0.5								
3	4.771 M	31.8	+0.1	+0.0	+0.1	+9.1	+0.0	40.7	46.0	-5.3	Neutr
			-0.4								
4	435.833k	32.6	+0.2	+0.0	+0.1	+9.1	+0.0	41.5	47.1	-5.6	Neutr
			-0.5								
5	190.452k	40.1	+0.3	+0.0	+0.0	+9.1	+0.0	48.2	54.0	-5.8	Neutr
			-1.3								
6	212.459k	39.0	+0.3	+0.0	+0.0	+9.1	+0.0	47.3	53.1	-5.8	Neutr
			-1.1								
7	4.978M	31.3	+0.1	+0.0	+0.1	+9.1	+0.0	40.2	46.0	-5.8	Neutr
			-0.4								
8	173.684k	40.8	+0.4	+0.0	+0.0	+9.1	+0.0	48.8	54.8	-6.0	Neutr
			-1.5								
9	186.679k	40.0	+0.3	+0.0	+0.0	+9.1	+0.0	48.1	54.2	-6.1	Neutr
			-1.3								
10	197.368k	39.2	+0.2	+0.0	+0.0	+9.1	$+0.0$	47.3	53.7	-6.4	Neutr
			-1.2								
11	7.130M	34.5	+0.1	+0.0	+0.1	+9.1	+0.0	43.4	50.0	-6.6	Neutr
			-0.4								
12	192.443k	39.1	+0.3	+0.0	+0.0	+9.1	+0.0	47.2	53.9	-6.7	Neutr
			-1.3								
13	182.906k	39.6	+0.4	+0.0	+0.0	+9.1	+0.0	47.7	54.4	-6.7	Neutr
			-1.4								
14	3.295 M	30.3	+0.1	+0.0	+0.1	+9.1	+0.0	39.3	46.0	-6.7	Neutr
			-0.3								
15	3.439 M	30.3	+0.1	+0.0	+0.1	+9.1	+0.0	39.3	46.0	-6.7	Neutr
			-0.3								
16	3.400 M	30.3	+0.1	+0.0	+0.1	+9.1	+0.0	39.3	46.0	-6.7	Neutr
			-0.3								
17	1.940M	30.1	+0.2	+0.0	+0.1	+9.1	+0.0	39.2	46.0	-6.8	Neutr
			-0.3								
18	2.363 M	30.2	+0.1	+0.0	+0.1	+9.1	+0.0	39.2	46.0	-6.8	Neutr
			-0.3								
19	3.406M	30.1	+0.1	$+0.0$	+0.1	+9.1	+0.0	39.1	46.0	-6.9	Neutr
			-0.3								
20	155.030k	29.0	+0.8	+0.0	+0.0	+9.1	+0.0	37.2	55.7	-18.5	Neutr
	Ave		-1.7								
\wedge	155.030k	46.2	+0.8	+0.0	+0.0	+9.1	+0.0	54.4	55.7	-1.3	Neutr
			-1.7								

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Ossia, Inc.
15.209 Radiated Emissions

Work Order \#:
Test Type:
Tested By:
102119
Maximized Emissions
Date: 6/29/2020
Time: 11:03:14

Software:
Michael Atkinson
Sequence\#: 7
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$
Method: ANSI C63.10 (2013)

Frequency range tested: $9 \mathrm{kHz}-25 \mathrm{GHz}$
XYZ EUT orientations investigated, worst case reported.
Below 30MHz, 3 x orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the $2.4 \mathrm{GHz} \mathrm{Wi}-\mathrm{Fi}$ radio continuously. Customer was provided a worst case script of maximum power, running on Channel 1 $(2412 \mathrm{MHz})$ at worst case data rate for spurious emissions.

EUT connected to support laptop via USB cable.
EUT connected to support PoE box with $2 \times$ Ethernet cables for power.
Support laptop connected to PoE box with $1 \times$ Ethernet cable.
PoE box and support Laptop are located remotely.
The manufacturer declares the other power configuration is unlikely to affect the Radiated Spurious Emissions of the 2.4 GHz WiFi from the module, however, AC emissions will be run in both PoE and AC Adapter configurations.

No emissions observed above 18 GHz , values provided are noise floor.
Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

> Ossia, Inc. WO\#: 102119 Sequence\#: 7 Date: 6/29/2020 15.209 Radiated Emissions Test Distance: 3 Meters Various

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	AN02307	Preamp	$8447 D$	$1 / 10 / 2020$	$1 / 10 / 2022$
T5	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T6	ANP06123	Attenuator	18N-6	$4 / 5 / 2019$	$4 / 5 / 2021$
T7	AN03628	Biconilog Antenna	$3142 E$	$6 / 11 / 2019$	$6 / 11 / 2021$
T8	AN03540	Preamp	$83017 A$	$5 / 13 / 2019$	$5 / 13 / 2021$
T9	AN01467	Horn Antenna-ANSI C63.5	3115	$7 / 5 / 2019$	$7 / 5 / 2021$
		Calibration	Heliax		
T10	ANP06515	Cable	CLU40-KMKM-02.00F	$1 / 17 / 2019$	$1 / 17 / 2021$
T11	ANP07504	Cable	11 SH10-00313	$1 / 22 / 2019$	$1 / 22 / 2021$
T12	AN03116	High Pass Filter	AMFW-5F-12001800-20-	$4 / 26 / 2019$	$4 / 26 / 2021$
T13	AN02741	Active Horn Antenna	$10 P$		
T14	AN02742	Active Horn Antenna	AMFW-5F-18002650-20-	$10 / 16 / 2018$	$10 / 16 / 2020$
			$10 P$		
T15	ANP06678	Cable	$32026-29801-29801-144$	$2 / 20 / 2020$	$2 / 20 / 2022$
T16	AN02763-	Waveguide	Multiple	$4 / 28 / 2020$	$4 / 28 / 2022$
	69		$32026-29801-29801-18$	$8 / 7 / 2019$	$8 / 7 / 2021$
T17	ANP07212	Cable	$32026-29801-29801-18$	$8 / 7 / 2019$	$8 / 7 / 2021$
T18	ANP07211	Cable	5502	$10 / 2 / 2019$	$10 / 2 / 2021$
T19	AN00052	Loop Antenna	PE7004-6		
	ANP07226	Attenuator		$5 / 4 / 2022$	

$\begin{aligned} & 3454.728 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$		45.7	+0.0	+0.2	+1.0	-27.9	$+0.0$	44.3	46.0	-1.7	Vert	
			+1.4	+5.8	+18.1	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0							
	^ 454.728 M	48.1	+0.0	+0.2	+1.0	-27.9	+0.0	46.7	46.0	+0.7	Vert	
			+1.4	+5.8	+18.1	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0							
	$\begin{aligned} & 5{ }_{\mathrm{QP}}{ }^{42.543 \mathrm{M}} \\ & \hline \end{aligned}$	45.8	+0.0	+0.1	+0.3	-28.0	+0.0	35.2	40.0	-4.8	Vert	
			+0.3	+5.8	+10.9	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0							
	6333.600 M	45.1	+0.0	+0.2	+0.9	-27.1	+0.0	40.8	46.0	-5.2	Vert	
			+1.2	+5.8	+14.7	$+0.0$						
			+0.0	+0.0	+0.0	$+0.0$						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0							
$\begin{aligned} & 7333.346 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$		44.5	+0.0	+0.2	+0.9	-27.1	+0.0	40.2	46.0	-5.8	Vert	
		+1.2	+5.8	+14.7	+0.0							
		+0.0	+0.0	+0.0	+0.0							
		+0.0	+0.0	+0.0	+0.0							
		+0.0	+0.0	+0.0								
8	4897.000M		42.8	+0.0	+0.9	+0.0	+0.0	+0.0	47.8	54.0	-6.2	Vert
				+0.0	+0.0	+0.0	-33.6					
				+32.5	+4.2	+0.5	+0.5					
				+0.0	+0.0	+0.0	+0.0					
		+0.0		+0.0	+0.0							
9	451.000M	41.0	+0.0	+0.2	+1.0	-27.9	+0.0	39.5	46.0	-6.5	Vert	
			+1.4	+5.8	+18.0	$+0.0$						
			+0.0	+0.0	+0.0	$+0.0$						
			+0.0	+0.0	+0.0	$+0.0$						
			+0.0	+0.0	+0.0							
$\begin{gathered} 10 \quad 468.400 \mathrm{M} \\ \mathrm{QP} \end{gathered}$		39.2	+0.0	+0.3	+1.1	-28.0	+0.0	38.0	46.0	-8.0	Horiz	
		+1.4	+5.8	+18.2	$+0.0$							
		+0.0	+0.0	+0.0	+0.0							
		+0.0	+0.0	+0.0	+0.0							
		+0.0	+0.0	+0.0								
	^ 468.400 M		42.2	+0.0	+0.3	+1.1	-28.0	+0.0	41.0	46.0	-5.0	Horiz
				+1.4	+5.8	+18.2	+0.0					
				+0.0	+0.0	+0.0	$+0.0$					
				+0.0	+0.0	+0.0	$+0.0$					
			+0.0	+0.0	+0.0							

124900.000 MAve		40.8	+0.0	+0.9	+0.0	+0.0	+0.0	45.8	54.0	-8.2	Horiz
			+0.0	+0.0	+0.0	-33.6					
			+32.5	+4.2	+0.5	+0.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
\wedge	4900.000M	44.4	+0.0	+0.9	+0.0	+0.0	$+0.0$	49.4	54.0	-4.6	Horiz
			+0.0	+0.0	+0.0	-33.6					
			+32.5	+4.2	+0.5	+0.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
14	125.100M	47.5	+0.0	+0.1	+0.5	-27.6	+0.0	34.8	43.5	-8.7	Vert
			+0.7	+5.8	+7.8	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
15	$Q^{41.600 \mathrm{M}}$	41.3	+0.0	+0.1	+0.3	-28.0	+0.0	31.2	40.0	-8.8	Vert
			+0.3	+5.8	+11.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
\wedge	41.600M	50.0	+0.0	+0.1	+0.3	-28.0	$+0.0$	39.9	40.0	-0.1	Vert
			+0.3	+5.8	+11.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
17	30.000 M	26.2	+0.0	+0.1	+0.0	+0.0	+0.0	30.8	40.0	-9.2	Perp
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+4.2						
18	4823.970M	38.6	+0.0	+0.9	+0.0	+0.0	+0.0	43.5	54.0	-10.5	Vert
			+0.0	+0.0	+0.0	-33.6					
			+32.4	+4.1	+0.5	+0.6					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
19	1530.000M	47.7	+0.0	+0.5	+0.0	+0.0	+0.0	40.5	54.0	-13.5	Horiz
			+0.0	+0.0	+0.0	-35.3					
			+25.2	+2.2	+0.2	$+0.0$					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
20	240.500M	39.2	+0.0	+0.2	+0.8	-27.1	+0.0	31.6	46.0	-14.4	Vert
			+0.9	+5.8	+11.8	$+0.0$					
			+0.0	+0.0	+0.0	$+0.0$					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

$\begin{aligned} & 21 \text { 3619.430M } \\ & \text { Ave } \end{aligned}$	30.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +3.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +3.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{gathered} +0.0 \\ -33.8 \\ +0.8 \\ +0.0 \end{gathered}$	+0.0	32.7	54.0	-21.3	Vert
^ 3619.450M	42.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +30.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +3.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +0.8 \\ +0.0 \end{array}$	+0.0	44.9	54.0	-9.1	Vert
$\begin{array}{cc} 23 & \begin{array}{c} 12060.000 \\ M \end{array} \end{array}$	36.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	31.9	54.0	-22.1	Horiz
$\begin{aligned} & 24 \text { 4823.970M } \\ & \text { Ave } \end{aligned}$	24.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +32.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +4.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{gathered} +0.0 \\ -33.6 \\ +0.6 \\ +0.0 \end{gathered}$	+0.0	29.8	54.0	-24.2	Horiz
25 28.505M	38.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +4.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	3.3	29.5	-26.2	Groun
26 1.984M	32.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	2.4	29.5	-27.1	Para
$\begin{gathered} 27 \begin{array}{c} 24119.900 \\ \mathrm{M} \\ \text { Ave } \end{array} . \end{gathered}$	25.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +13.2 \\ +1.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +1.9 \end{aligned}$	$+0.0$	26.4	54.0	-27.6	Vert
28 27.907M	32.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +5.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-1.6	29.5	-31.1	Perp

$\left.\begin{array}{|cccccccccccc|}\hline 29 & 14472.000 & 26.8 & +0.0 & +1.3 & +0.0 & +0.0 & +0.0 & 21.4 & 54.0 & -32.6 & \text { Horiz } \\ & \text { M } & & +0.0 & +0.0 & +0.0 & +0.0 & & & & & \\ & \text { Ave } & & +0.0 & +8.1 & +0.0 & +0.0 & & & & \\ & & & -14.8 & +0.0 & +0.0 & +0.0 & & & & \\ & & & +0.0 & +0.0 & +0.0 & & & & & \\ \hline & & 14472.000 & 38.2 & +0.0 & +1.3 & +0.0 & +0.0 & +0.0 & 32.8 & 54.0 & -21.2\end{array}\right)$ Horiz 1

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Ossia, Inc.
15.209 Radiated Emissions

102119
Maximized Emissions
Michael Atkinson
EMITest 5.03.12

Date: 6/29/2020
Time: 10:26:37
Sequence\#: 8

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $20-25^{\circ} \mathrm{C}$
Humidity: 30-36\%
Pressure: $101-102 \mathrm{kPa}$
Method: ANSI C63.10 (2013)
Frequency range tested: $9 \mathrm{kHz}-40 \mathrm{GHz}$
XYZ EUT orientations investigated, worst case reported.
Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, above 30 MHz , Horizontal and Vertical Antenna polarities investigated, worst case reported.

Investigated Radiated Spurious Emissions of Integrated Raspberry Pi 4 module while running the 5 GHz Wi-Fi radio continuously. Customer was provided a worst case script of maximum power, running on Channel 36 (5180 MHz) at worst case data rate for spurious emissions. Also investigated Channel $140(5700 \mathrm{MHz})$ but no emissions observed within 20 dB of 15.209 limit.

EUT connected to support laptop via USB cable.
EUT connected to support PoE box with $2 \times$ Ethernet cables for power.
Support laptop connected to PoE box with $1 \times$ Ethernet cable.
PoE box and support Laptop are located remotely.
The manufacturer declares the other power configuration is unlikely to affect the Radiated Spurious Emissions of the 5 GHz WiFi from the module, however, AC emissions will be run in both PoE and AC Adapter configurations.

No emissions observed above 18 GHz , values provided are noise floor.
Integrated Module Info
Raspberry Pi 4B (FCC ID 2ABCB-RPI4B)

Ossia, Inc. WO\#: 102119 Sequence\#\#: 8 Date: 6/29/2020 15.209 Radiated Emissions Test Distance: 3 Meters Various

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$2 / 22 / 2019$	$2 / 22 / 2021$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	AN02307	Preamp	$8447 D$	$1 / 10 / 2020$	$1 / 10 / 2022$
T5	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T6	ANP06123	Attenuator	18N-6	$4 / 5 / 2019$	$4 / 5 / 2021$
T7	AN03628	Biconilog Antenna	$3142 E$	$6 / 11 / 2019$	$6 / 11 / 2021$
T8	AN03540	Preamp	$83017 A$	$5 / 13 / 2019$	$5 / 13 / 2021$
T9	AN01467	Horn Antenna-ANSI	3115	$7 / 5 / 2019$	$7 / 5 / 2021$
T10	ANP06515	C6able		$6 / 29 / 2018$	$6 / 29 / 2020$
T11	ANP07504	Cable	CLU40-KMKM-02.00F	$1 / 17 / 2019$	$1 / 17 / 2021$
	AN03116	High Pass Filter	$11 S H 10-00313$	$1 / 22 / 2019$	$1 / 22 / 2021$
T12	AN02741	Active Horn Antenna	AMFW-5F-12001800-20-10P	$4 / 26 / 2019$	$4 / 26 / 2021$
T13	AN02742	Active Horn Antenna	AMFW-5F-18002650-20-10P	$10 / 16 / 2018$	$10 / 16 / 2020$
T14	ANP06678	Cable	$32026-29801-29801-144$	$2 / 20 / 2020$	$2 / 20 / 2022$
T15	AN02763-69	Waveguide	Multiple	$4 / 28 / 2020$	$4 / 28 / 2022$
T16	ANP07212	Cable	$32026-29801-29801-18$	$8 / 7 / 2019$	$8 / 7 / 2021$
T17	ANP07211	Cable	$32026-29801-29801-18$	$8 / 7 / 2019$	$8 / 7 / 2021$
T18	AN00052	Loop Antenna	6502	$5 / 4 / 2020$	$5 / 4 / 2022$
T19	ANP07226	Attenuator	PE7004-6	$10 / 2 / 2019$	$10 / 2 / 2021$
T20	AN02743	Active Horn Antenna	AMFW-5F-260400-33-8P	$4 / 26 / 2019$	$4 / 26 / 2021$
T21	AN02764-70	Waveguide	Multiple	$4 / 28 / 2020$	$4 / 28 / 2022$

$\begin{aligned} & 3451.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	42.9	$\begin{aligned} & +0.0 \\ & +1.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +1.0 \\ +18.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} -27.9 \\ +0.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	41.4	46.0	-4.6	Vert
$\begin{array}{cc} 4 & 13472.000 \\ M \end{array}$	45.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +40.5 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +7.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.7 \\ -14.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	48.0	54.0	-6.0	Vert
$\begin{aligned} & 5 \mathrm{QP}^{45.500 \mathrm{M}} \\ & \mathrm{Q}^{2} \end{aligned}$	45.4	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +9.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.0 \\ +0.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	33.4	40.0	-6.6	Vert
6 3106.000M	41.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +29.3 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	47.2	54.0	-6.8	Vert
7 2161.000M	42.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +27.8 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +2.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.4 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	45.3	54.0	-8.7	Vert
$8 \quad 125.100 \mathrm{M}$	47.2	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +7.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -27.6 \\ +0.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	34.5	43.5	-9.0	Vert
9 1837.000M	44.0	$\begin{array}{r} +0.0 \\ +0.0 \\ +26.4 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.8 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	44.5	54.0	-9.5	Vert
$10 \quad 96.900 \mathrm{M}$	46.3	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +7.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	33.4	43.5	-10.1	Vert

$\begin{aligned} & 11 \mathrm{QP}^{44.500 \mathrm{M}} \\ & \\ & \hline \end{aligned}$	41.2	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.0 \\ +0.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	29.7	40.0	-10.3	Vert
12 1531.000M	44.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +25.2 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.3 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	43.2	54.0	-10.8	Vert
131108.000 M	46.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +24.7 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +1.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & +5.9 \end{aligned}$	$\begin{gathered} +0.0 \\ -36.7 \\ +0.0 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	42.6	54.0	-11.4	Horiz
$\begin{gathered} 14 \quad 13475.175 \\ \mathrm{M} \\ \text { Ave } \end{gathered}$	40.1	$\begin{array}{r} +0.0 \\ +0.0 \\ +40.5 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +7.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.7 \\ -14.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	42.2	54.0	-11.8	Vert
$15 \quad 120.200 \mathrm{M}$	43.7	$\begin{aligned} & \hline+0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +8.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} -27.6 \\ +0.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	31.1	43.5	-12.4	Vert
$\begin{gathered} 16{ }_{\mathrm{QP}}{ }^{62.000 \mathrm{M}} \\ \hline \end{gathered}$	39.5	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +7.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline-27.8 \\ +0.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	26.1	40.0	-13.9	Vert
$\begin{array}{cc} \hline 17 & 15541.110 \\ \mathrm{M} \end{array}$	36.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +39.0 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \\ & +8.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline+0.0 \\ -34.2 \\ -12.8 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	39.4	54.0	-14.6	Horiz
$\begin{array}{cc} \hline 18 & 10360.560 \\ M \end{array}$	40.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +36.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +6.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -34.1 \\ -12.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	38.8	54.0	-15.2	Vert

	$\begin{aligned} & \hline 28310.000 \\ & \text { M } \\ & \text { Ave } \end{aligned}$	19.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +1.1 \\ & +3.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +10.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +1.3 \\ & +2.2 \end{aligned}$	+0.0	38.6	54.0	-15.4	Vert
20	27.518M	46.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & +5.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	12.5	29.5	-17.0	Groun
21	2.014 M	39.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & +9.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	9.1	29.5	-20.4	Groun
	$\begin{aligned} & 15539.885 \\ & \text { M } \\ & \text { Ave } \end{aligned}$	25.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +39.0 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \\ & +8.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.2 \\ -12.8 \\ +0.0 \\ +0.0 \end{array}$	+0.0	28.1	54.0	-25.9	Horiz
	$\begin{aligned} & 20720.000 \\ & \text { M } \\ & \text { Ave } \end{aligned}$	25.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ -13.9 \\ +0.9 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +2.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +1.2 \\ & +0.0 \end{aligned}$		25.3	54.0	-28.7	Vert
	$\begin{aligned} & \hline 11398.750 \\ & \text { M } \\ & \text { Ave } \end{aligned}$	28.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +6.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -13.3 \\ +0.0 \\ +0.0 \end{array}$	+0.0	23.5	54.0	-30.5	Vert
\wedge	$\begin{gathered} 11398.750 \\ \mathrm{M} \end{gathered}$	42.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +6.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -13.3 \\ +0.0 \\ +0.0 \end{array}$	+0.0	36.8	54.0	-17.2	Vert

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

[^0]: - Readings
 \times QP Readings
 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

[^1]: - Readings
 \times QP Readings
 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

