Ossia, Inc.

REVISED EMC TEST REPORT TO 102580-4B

Cota WPT Source*
Model: Venus V2*
(*See Appendix A for Manufacturer Declaration)

Tested to The Following Standards:

FCC Part 18 Subpart C Section 18.305 \& 18.307

Report No.: 102580-4C

Date of issue: June 12, 2019

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 6
Equipment Under Test 7
FCC Part 18 8
18.305 Radiated Emissions 8
18.307 AC Conducted Emissions 29
Appendix A: Manufacturer Declaration 41
Supplemental Information 42
Measurement Uncertainty 42
Emissions Test Details 42

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Usia, Inc.
1100 112 $^{\text {th }}$ Ave NE Suite 301
Bellevue WA 98004

Representative: Robert McDonald
Customer Reference Number: 13042

DATE OF EQUIPMENT RECEIPT:
REPORT PREPARED BY:

Terri Rayle
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 102580

DATES) OF TESTING:
December 20, 2017
December 20, 2017 and April 29-30, 2019

Revision History

Original: Testing of the Cola WPT Source, Model: Venus V2 to FCC Part 18 Subpart C Section 18.305 \& 18.307. Revision A: To update the customer address.
Revision B: To replace radiated emissions datasheets, $9 \mathrm{kHz}-30 \mathrm{MHz}$ and $1-3 \mathrm{GHz}$.
Revision C: To add a statement in the Conditions During Test for Test Configuration notes.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .12
EMITest Immunity	5.03 .10

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	JAPAN
Canyon Park, Bothell, WA	USO081	US1022	A-0148

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 18 Subpart C

Test Procedure	Description	Modifications	Results
FCC Part 18.305 (b)	Radiated Emissions	NA	Pass
FCC Part 18.307 (b)	Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

The manufacturer declares the EUT has not been modified since the original collection of the data.

Modifications listed above must be incorporated into all production units.
L.ABORATORIES, INE.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

Investigation of worst-case Radiated Emissions

Based on historical test data, the $2^{\text {nd }}, 3^{\text {rd }}$, and $4^{\text {th }}$ Harmonics of the fundamental frequency were identified as the worst-case emissions. The worst-case frequencies were maximized with the following boundary conditions established by the manufacturer:
-The minimum separation distance between the tile and client is 0.3 m
-The maximum separation distance between the tile and client is 1.0 m
-The maximum angle between the tile and client is 60 degrees

The following measurements were collected to narrow down the worst-case conditions, where \mathbf{r} is the separation distance between the tile and client, φ is the azimuth angle, and θ is the altitude angle.
$r=1.0 \mathrm{~m}, \varphi=0$ degrees, $\theta=0$ degrees
$r=1.0 \mathrm{~m}, \varphi=30$ degrees, $\theta=0$ degrees
$r=1.0 \mathrm{~m}, \varphi=60$ degrees, $\theta=0$ degrees
$r=1.0 \mathrm{~m}, \varphi=0$ degrees, $\theta=30$ degrees
$r=1.0 \mathrm{~m}, \varphi=0$ degrees, $\theta=60$ degrees
Note: r is measured from the center of the front face on each device. The angles are measured from the tile's boresight line to a line connecting the center front face of each device. For the angle variation, the client was rotated to always be pointed at the center of the front face of the tile.

After these initial measurements at 1 m were collected, the worst-case margin was found to be the boresight condition ($\varphi=0 \quad \theta=0$). Further investigation was performed by varying the separation in 10 cm increments from 0.3 to 1 m . After the new maximum was found, the worst-case was investigated in small increments of roughly 1 cm , but the overall worst-case separation distance was identified at 40 cm . Once the 40 cm worst case separation distance was established, the azimuth and altitude angles were varied in 10 degree increments. The boresight condition was still found to be worst-case.

All Radiated Emissions measurements included in the report were taken in the following configuration as worstcase:
$r=0.4 \mathrm{~m}, \varphi=0$ degrees, $\varphi=0$ degrees

EUT settings from manufacturer: 13 dBm , dynamic tuning
The fundamental operating frequency is 2.45 GHz .
Test configuration notes: The original testing was performed using power setting of +16 dBm , however the equipment was later reduced to power setting of +13 dBm . All radiated emissions testing was performed at power setting of +13 dBm . The AC conducted emissions testing was performed only at the original power setting of +16 dBm since emissions with the higher power setting represents worst case emissions. The manufacturer declares that the maximum power setting is fixed at +13 dBm and cannot be altered by the end user.

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1: Radiated Emissions tested on 4/29/2019 (see Appendix A)

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Cota WPT Source	Ossia, Inc.	Venus v1	14

Support Equipment:

Device	Manufacturer	Model \#	S/N
Cota WPT Client	Ossia, Inc.	VenusRx	126
Laptop	Apple	MacBook Pro A1398	NA
Ethernet Switch	D-Link	DGS-1100-08	NA
USB 2.0 Extension Cable	Blue Rigger	$32 \mathrm{ft}(10 \mathrm{~m})$	NA

Configuration 2: Conducted Emissions tested on 12/20/2017 (see Appendix A)

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Venus Tile 14	Ossia, Inc.	OL-10212	NA

Support Equipment:			S/N
Device	Manufacturer	Model \#	NA
USB Active Extension Cable	Trip Litte	U026-20M	NA
Laptop	Apple	A1398	39
Venus B4 Client	Ossia, Inc.	OL-10210	

FCC PART 18

18.305 Radiated Emissions

Test Notes: Radiated disturbances emanating from enclosure.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Ossia, Inc.
18.305(b) ISM Frequencies <500W

100740
Maximized Emissions
Michael Atkinson
EMITest 5.03.12

Date: 4/29/2019
Time: 18:01:16
Sequence\#: 19

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes.

Temperature: $18-22^{\circ} \mathrm{C}$
Humidity: 25-45\%
Pressure: $102-103.5 \mathrm{kPa}$
Frequency: $9 \mathrm{kHz}-30 \mathrm{MHz}$

Method: FCC/OET MP-5 (February 1986)
Client is charging, client is 0.4 m away from tile, boresight configuration. 13 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

Ferrite (Fair-Rite Brand) PN 0475164181 installed on power cord.
The Ethernet cable was terminated into an Ethernet switch at time of testing. The EUT was connected to a laptop remotely via a USB extension cable.

3 orthogonal polarities investigated, worst case reported.
Manufacturer declares the lowest frequency used within the ISM device is 1 MHz . All frequencies reported below
1 MHz are related to other portions of the equipment governed under separate requirements.

Ossia, Inc. WO\#\#: 100740 Sequence\#: 19 Date: 4/29/2019 18.305(b) ISM Frequencies <500W Test Distance: 3 Meters Para+Perp+GrPara

- Readings
$\times \quad$ QP Readings
\times Ambient
$\times 1-18.305(\mathrm{~b})$ ISM Frequencies $<500 \mathrm{~W}$

O Peak Readings

* Average Readings

Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 3 / 2017$	$11 / 3 / 2019$
T2	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T3	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T4	AN00052	Loop Antenna	6502	$5 / 7 / 2018$	$5 / 7 / 2020$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
	$59.161 \mathrm{k}$ Ambient	75.3	+0.0	+0.0	+0.0	+9.7	Not Related to EUT ISM Device				
	$118.260 \mathrm{k}$ Ambient	59.1	+0.0	+0.0	+0.0	+9.5	Not Related to EUT ISM Device				
3	177.179k	52.0	+0.0	+0.0	+0.0	+9.7	-40.0	21.7	28.0	-6.3	Perp
4	292.167 k	49.1	+0.0	+0.0	+0.0	+9.6	-40.0	18.7	28.0	-9.3	Perp
5	356.979k	46.1	+0.0	+0.0	+0.0	+9.7	-40.0	15.8	28.0	-12.2	Perp
6	336.072k	43.0	+0.0	+0.0	+0.0	+9.6	-40.0	12.6	28.0	-15.4	Perp
7	402.974k	42.8	+0.0	+0.0	+0.0	+9.7	-40.0	12.5	28.0	-15.5	Perp
8	17.385M	33.1	+0.0	+0.0	+0.2	+8.5	-40.0	1.8	28.0	-26.2	Groun
9	19.705M	33.0	+0.0	+0.0	+0.2	+8.1	-40.0	1.3	28.0	-26.7	Perp
10	7.699 M	20.2	+0.0	+0.0	+0.1	+9.4	-40.0	-10.3	28.0	-38.3	Groun

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Ossia, Inc.
Specification: 18.305(b) ISM Frequencies <500W
Work Order \#: 102580
Test Type:
Tested By:
Maximized Emissions
Date: 4/30/2019
Time: 09:45:53

Software:
EMITest 5.03.12
Sequence\#: 21

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $18-22^{\circ} \mathrm{C}$
Humidity: 25-45\%
Pressure: $102-103.5 \mathrm{kPa}$

Frequency: $30-1000 \mathrm{MHz}$
Method: FCC/OET MP-5 (February 1986)
Client is charging, client is 0.4 m away from tile, boresight configuration. 13 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

Ferrite (Fair-Rite Brand) PN 0475164181 installed on power cord by the manufacturer prior to testing.
The manufacturer declares the power cord is permanently installed and that the ferrite bead will be installed at the time of manufacturing.

The Ethernet cable was terminated into an Ethernet switch at time of testing. The EUT was connected to a laptop remotely via a USB extension cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Ossia, Inc. WO\#: 100740 Sequence\#: 21 Date: 4/30/2019 18.305(b) ISM Frequencies $\mathbf{5 0 0 W}$ Test Distance: 3 Meters H+V

[^0]O Peak Readings

* Average Readings

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 3 / 2017$	$11 / 3 / 2019$
T1	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T2	ANP05305	Cable	ETSI-50T	$10 / 24 / 2017$	$10 / 24 / 2019$
T3	ANP05360	Cable	RG214	$1 / 31 / 2018$	$1 / 31 / 2020$
T4	ANP06123	Attenuator	18N-6	$4 / 5 / 2019$	$4 / 5 / 2021$
T5	AN03628	Biconilog Antenna	3142E	$6 / 7 / 2017$	$6 / 7 / 2019$

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \end{array}$	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	748.957 M	24.0	$\begin{array}{r} +0.3 \\ +22.5 \end{array}$	+1.4	+1.7	+5.8	-40.0	15.7	28.0	-12.3	Vert
2	762.385M	22.9	$\begin{array}{r} +0.3 \\ +22.6 \\ \hline \end{array}$	+1.4	+1.7	+5.8	-40.0	14.7	28.0	-13.3	Vert
3	759.466M	22.6	$\begin{array}{r} +0.3 \\ +22.6 \end{array}$	+1.4	+1.7	+5.8	-40.0	14.4	28.0	-13.6	Vert
4	590.158M	24.5	$\begin{array}{r} +0.3 \\ +20.4 \\ \hline \end{array}$	+1.3	+1.5	+5.8	-40.0	13.8	28.0	-14.2	Vert
5	546.955 M	24.1	$\begin{array}{r} +0.3 \\ +20.9 \\ \hline \end{array}$	+1.2	+1.4	+5.8	-40.0	13.7	28.0	-14.3	Vert
6	614.094M	22.9	$\begin{array}{r} +0.3 \\ +21.2 \end{array}$	+1.3	+1.5	+5.8	-40.0	13.0	28.0	-15.0	Vert
7	84.522M	39.5	$\begin{aligned} & +0.1 \\ & +6.6 \end{aligned}$	$+0.5$	+0.5	+5.8	-40.0	13.0	28.0	-15.0	Vert
8	528.273M	23.7	$\begin{array}{r} +0.3 \\ +20.3 \end{array}$	+1.2	+1.4	+5.8	-40.0	12.7	28.0	-15.3	Vert
9	84.300M	38.3	$\begin{aligned} & +0.1 \\ & +6.6 \end{aligned}$	+0.5	+0.5	+5.8	-40.0	11.8	28.0	-16.2	Horiz
	$153.130 \mathrm{M}$	34.4	$\begin{array}{r} +0.2 \\ +9.9 \\ \hline \end{array}$	+0.6	+0.7	+5.8	-40.0	11.6	28.0	-16.4	Vert
\wedge	153.082 M	34.7	$\begin{aligned} & \hline+0.2 \\ & +9.9 \end{aligned}$	+0.6	+0.7	+5.8	-40.0	11.9	28.0	-16.1	Vert
	$153.127 \mathrm{M}$	34.2	$\begin{array}{r} +0.2 \\ +9.9 \\ \hline \end{array}$	+0.6	+0.7	+5.8	-40.0	11.4	28.0	-16.6	Horiz
\wedge	153.200 M	35.0	$\begin{aligned} & +0.2 \\ & +9.9 \end{aligned}$	+0.6	+0.7	+5.8	-40.0	12.2	28.0	-15.8	Horiz
14	505.504 M	23.1	$\begin{array}{r} +0.3 \\ +19.0 \\ \hline \end{array}$	+1.2	+1.3	+5.8	-40.0	10.7	28.0	-17.3	Vert
15	460.550M	24.2	$\begin{array}{r} +0.2 \\ +17.8 \\ \hline \end{array}$	+1.1	+1.3	+5.8	-40.0	10.4	28.0	-17.6	Vert
16	66.900 M	35.9	$\begin{aligned} & +0.1 \\ & +7.0 \end{aligned}$	+0.4	+0.4	+5.8	-40.0	9.6	28.0	-18.4	Horiz
17	$85.151 \mathrm{M}$	35.1	$\begin{aligned} & +0.1 \\ & +6.6 \end{aligned}$	+0.5	+0.5	+5.8	-40.0	8.6	28.0	-19.4	Vert
	$\begin{aligned} & 202.700 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	27.1	$\begin{array}{r} +0.2 \\ +10.2 \end{array}$	+0.7	+0.8	+5.8	-40.0	4.8	28.0	-23.2	Horiz
\wedge	202.700 M	31.2	$\begin{array}{r} +0.2 \\ +10.2 \\ \hline \end{array}$	+0.7	+0.8	+5.8	-40.0	8.9	28.0	-19.1	Horiz

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Ossia, Inc.
18.305(b) ISM Frequencies <500W

100740
Maximized Emissions
Michael Atkinson
EMITest 5.03.12

Date: 4/30/2019
Time: 09:09:00
Sequence\#: 20

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $18-22^{\circ} \mathrm{C}$
Humidity: 25-45\%
Pressure: $102-103.5 \mathrm{kPa}$

Frequency: $1-3 \mathrm{GHz}$
Method: FCC/OET MP-5 (February 1986)
Client is charging, client is 0.4 m away from tile, boresight configuration. 13 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

Ferrite (Fair-Rite Brand) PN 0475164181 installed on power cord.
The Ethernet cable was terminated into an Ethernet switch at time of testing. The EUT was connected to a laptop remotely via a USB extension cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Ossia, Inc. WO\#: 100740 Sequence\#f: 20 Date: 4/30/2019 18.305(b) ISM Frequencies 500 W Test Distance: 3 Meters Vert

[^1]- Peak Readings
* Average Readings

Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 3 / 2017$	$11 / 3 / 2019$
T2	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T3	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T4	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	$7 / 21 / 2017$	$7 / 21 / 2019$
T5	AN03417	Band Reject Filter	3TNF- $1500 / 3000-N / N$	$11 / 15 / 2017$	$11 / 15 / 2019$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

$\begin{aligned} & 192552.900 \mathrm{M} \\ & \text { Ave } \end{aligned}$	20.9	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.3	-40.0	12.4	28.0	-15.6	Horiz
$\wedge 2552.900 \mathrm{M}$	42.5	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.3	-40.0	34.0	28.0	+6.0	Horiz
$\begin{aligned} & 212331.200 \mathrm{M} \\ & \text { Ave } \end{aligned}$	21.2	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.5	+28.1	-40.0	12.3	28.0	-15.7	Horiz
$\begin{gathered} 222542.000 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	20.9	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.2	-40.0	12.3	28.0	-15.7	Vert
$\wedge 2542.000 \mathrm{M}$	43.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.2	-40.0	35.0	28.0	+7.0	Vert
$\begin{aligned} & 242331.200 \mathrm{M} \\ & \text { Ave } \end{aligned}$	21.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.5	+28.1	-40.0	12.3	28.0	-15.7	Horiz
$\wedge 2331.200 \mathrm{M}$	40.4	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$+0.4$	+2.5	+28.1	-40.0	31.5	28.0	+3.5	Horiz
$\wedge 2331.200 \mathrm{M}$	40.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	$+0.4$	+2.5	+28.1	-40.0	31.5	28.0	+3.5	Horiz
$\begin{aligned} & 27 \text { 2501.405M } \\ & \text { Ave } \end{aligned}$	20.9	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.4	+2.7	+28.1	-40.0	12.2	28.0	-15.8	Horiz
$\wedge 2501.405 \mathrm{M}$	50.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.1	-40.0	41.7	28.0	+13.7	Horiz
$\begin{gathered} 292517.044 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	20.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.2	-40.0	12.2	28.0	-15.8	Horiz
^ 2517.044M	50.3	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.4	+2.7	+28.2	-40.0	41.7	28.0	+13.7	Horiz
$\begin{aligned} & 312512.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	20.9	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.1	-40.0	12.2	28.0	-15.8	Vert
^ 2512.000M	53.0	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.1	-40.0	44.3	28.0	+16.3	Vert
$\begin{aligned} & 332529.003 \mathrm{M} \\ & \text { Ave } \end{aligned}$	20.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	$+0.4$	+2.7	+28.2	-40.0	12.2	28.0	-15.8	Horiz
$\wedge 2529.003 \mathrm{M}$	52.0	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	$+0.4$	+2.7	+28.2	-40.0	43.4	28.0	+15.4	Horiz
$\begin{aligned} & 352522.564 \mathrm{M} \\ & \text { Ave } \end{aligned}$	20.8	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$+0.4$	+2.7	+28.2	-40.0	12.2	28.0	-15.8	Horiz
$\wedge 2522.564 \mathrm{M}$	52.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	$+0.4$	+2.7	+28.2	-40.0	43.6	28.0	+15.6	Horiz
$\begin{aligned} & 37 \text { 2518.884M } \\ & \text { Ave } \end{aligned}$	20.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.2	-40.0	12.2	28.0	-15.8	Horiz
$\wedge 2518.884 \mathrm{M}$	50.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.2	-40.0	42.0	28.0	+14.0	Horiz
$\begin{aligned} & 392537.300 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	20.8	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$+0.4$	+2.7	+28.2	-40.0	12.2	28.0	-15.8	Horiz
$\wedge 2537.300 \mathrm{M}$	46.8	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.7	+28.2	-40.0	38.2	28.0	+10.2	Horiz
$\begin{aligned} & 412366.000 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	20.8	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.4	+2.5	+28.1	-40.0	11.9	28.0	-16.1	Vert
$\wedge 2366.000 \mathrm{M}$	46.9	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.5	+28.1	-40.0	38.0	28.0	+10.0	Vert
$\begin{aligned} & 43 \text { 2377.200M } \\ & \text { Ave } \end{aligned}$	20.7	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$+0.4$	+2.6	+28.1	-40.0	11.9	28.0	-16.1	Horiz
$\wedge 2377.200 \mathrm{M}$	46.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	$+0.4$	+2.6	+28.1	-40.0	37.3	28.0	+9.3	Horiz

Page 17 of 43

$\begin{gathered} 452398.375 \mathrm{M} \\ \text { Ave } \end{gathered}$	20.7	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.6	+28.1	-40.0	11.9	28.0	-16.1	Horiz
^ 2398.375M	51.1	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.4	+2.6	+28.1	-40.0	42.3	28.0	+14.3	Horiz
$\begin{aligned} & \hline 47 \text { 2239.200M } \\ & \text { Ave } \end{aligned}$	20.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.4	+28.1	-40.0	11.8	28.0	-16.2	Horiz
2239.200M	35.7	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.4	+28.1	-40.0	26.7	28.0	-1.3	Horiz
$\begin{aligned} & \hline 49 \text { 2154.600M } \\ & \text { Ave } \\ & \hline \end{aligned}$	20.5	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.1 \end{aligned}$	+0.4	+2.4	+28.2	-40.0	11.6	28.0	-16.4	Horiz
2154.600 M	32.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.4	+28.2	-40.0	23.4	28.0	-4.6	Horiz
$\begin{aligned} & \hline 512227.500 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	20.5	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.4	+28.2	-40.0	11.6	28.0	-16.4	Horiz
^ 2227.500 M	38.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.4	+28.2	-40.0	29.3	28.0	+1.3	Horiz
$\begin{aligned} & 53 \text { 2256.000M } \\ & \text { Ave } \\ & \hline \end{aligned}$	20.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.4	+2.4	+28.1	-40.0	11.6	28.0	-16.4	Vert
2256.000 M	38.0	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.1 \end{aligned}$	+0.4	+2.4	+28.1	-40.0	29.0	28.0	+1.0	Vert

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Ossia, Inc.
Specification: 18.305(b) ISM Frequencies <500W
Work Order \#: 102580
Test Type:
Tested By:
Maximized Emissions
Date: 4/29/2019
Michael Atkinson
Time: 17:34:53

EMITest 5.03.12
Sequence\#: 18
Software:

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $18-22^{\circ} \mathrm{C}$
Humidity: 25-45\%
Pressure: $102-103.5 \mathrm{kPa}$

Frequency: $3-10 \mathrm{GHz}$
Method: FCC/OET MP-5 (February 1986)
Client is charging, client is 0.4 m away from tile, boresight configuration. 13 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

Ferrite (Fair-Rite Brand) PN 0475164181 installed on power cord by the manufacturer prior to testing.
The manufacturer declares the power cord is permanently installed and that the ferrite bead will be installed at the time of manufacturing.

The Ethernet cable was terminated into an Ethernet switch at time of testing. The EUT was connected to a laptop remotely via a USB extension cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Ossia, Inc. WO\#: 100740 Sequence\#f: 18 Date: 4/29/2019
18.305(b) ISM Frequencies $<500 \mathrm{~W}$ Test Distance: 3 Meters $\mathrm{H}+\mathrm{V}$

- Readings

\times QP Readings

- Ambient
- 1-18.305(b) ISM Frequencies <500W

O Peak Readings
* Average Readings
Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 3 / 2017$	$11 / 3 / 2019$
T2	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T3	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T4	AN03116	High Pass Filter	11SH10-00313	$1 / 22 / 2019$	$1 / 22 / 2021$
T5	AN01467	Horn Antenna-ANSI	3115	$7 / 21 / 2017$	$7 / 21 / 2019$

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
1 9799.990M	22.1	+0.0	+0.5	+6.3	+0.7	-40.0	27.2	28.0	-0.8	Horiz
Ave		+37.6								
27350.000 M	18.1	+0.0	+1.0	+5.4	+0.6	-40.0	21.7	28.0	-6.3	Vert
Ave		+36.6								
3 3674.968M	25.0	+0.0	+0.4	+3.8	+0.8	-40.0	20.8	28.0	-7.2	Horiz
		+30.8								
$\begin{aligned} & 44900.000 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	21.2	+0.0	+0.5	+4.2	+0.5	-40.0	18.9	28.0	-9.1	Vert
		+32.5								
$\begin{aligned} & 5 \text { 3675.099M } \\ & \text { Ave } \\ & \hline \end{aligned}$	14.1	+0.0	+0.4	+3.8	+0.8	-40.0	9.9	28.0	-18.1	Horiz
		+30.8								

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Ossia, Inc.
Specification: 18.305(b) ISM Frequencies <500W
Work Order \#: $\mathbf{1 0 2 5 8 0}$
Test Type:
Tested By:
Maximized Emissions
Date: 4/29/2019
Michael Atkinson
Time: 18:37:06

EMITest 5.03.12
Sequence\#: 19
Software:

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $18-22^{\circ} \mathrm{C}$
Humidity: 25-45\%
Pressure: $102-103.5 \mathrm{kPa}$

Frequency: $10-18 \mathrm{GHz}$
Method: FCC/OET MP-5 (February 1986)
Client is charging, client is 0.4 m away from tile, boresight configuration. 13 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

Ferrite (Fair-Rite Brand) PN 0475164181 installed on power cord by the manufacturer prior to testing.
The manufacturer declares the power cord is permanently installed and that the ferrite bead will be installed at the time of manufacturing.

The Ethernet cable was terminated into an Ethernet switch at time of testing. The EUT was connected to a laptop remotely via a USB extension cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Ossia, Inc. WO\#: 100740 Sequence\#f: 19 Date: 4/29/2019
18.305(b) ISM Frequencies $<500 \mathrm{~W}$ Test Distance: 3 Meters $\mathrm{H}+\mathrm{V}$

- Readings

\times QP Readings

- Ambient
- 1-18.305(b) ISM Frequencies <500W

O Peak Readings
* Average Readings
Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 3 / 2017$	$11 / 3 / 2019$
T1	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T2	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T3	AN03116	High Pass Filter	11 SH10-00313	$1 / 22 / 2019$	$1 / 22 / 2021$
T4	AN01467	Horn Antenna-ANSI 	3115	$7 / 21 / 2017$	$7 / 21 / 2019$
C63.5 Calibration					
T6	AN03540	Preamp	$83017 A$	$3 / 25 / 2019$	$3 / 25 / 2021$
T7	ANP06123	Attenuator	$18 N-6$	$4 / 5 / 2019$	$4 / 5 / 2021$

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Ossia, Inc.
18.305(b) ISM Frequencies <500W

102580
Maximized Emissions
Michael Atkinson
EMITest 5.03.12

Date: 4/30/2019
Time: 10:16:58
Sequence\#: 23

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $18-22^{\circ} \mathrm{C}$
Humidity: 25-45\%
Pressure: $102-103.5 \mathrm{kPa}$

Frequency: $18-25 \mathrm{GHz}$
Method: FCC/OET MP-5 (February 1986)
Client is charging, client is 0.4 m away from tile, boresight configuration. 13 dBm setting. The 0.4 m separation distance was determined to be worst case configuration for Radiated Emissions (see report summary of conditions for justification of worst case).

Ferrite (Fair-Rite Brand) PN 0475164181 installed on power cord by the manufacturer prior to testing.
The manufacturer declares the power cord is permanently installed and that the ferrite bead will be installed at the time of manufacturing.

The Ethernet cable was terminated into an Ethernet switch at time of testing. The EUT was connected to a laptop remotely via a USB extension cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

Ossia, Inc. WO\#: 100740 Sequence\#f: 23 Date: 4/30/2019
18.305(b) ISM Frequencies $<500 \mathrm{~W}$ Test Distance: 3 Meters $\mathrm{H}+\mathrm{V}$

- Readings

\times QP Readings

- Ambient
-1-18.305(b) ISM Frequencies <500W

O Peak Readings
* Average Readings
Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 3 / 2017$	$11 / 3 / 2019$
T1	AN02742	Active Horn Antenna	AMFW-5F-	$10 / 16 / 2018$	$10 / 16 / 2020$
			$18002650-20-10 P$		$4 / 23 / 2020$
T2	AN02763-69	Waveguide	Multiple	$4 / 23 / 2018$	$3 / 13 / 2020$
T3	AN03122	Cable	$32026-2-29801-$	$3 / 13 / 2018$	
			36		$3 / 13 / 2020$
T4	ANP06678	Cable	$32026-29801-$	$3 / 13 / 2018$	
			$29801-144$		

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

| Freq
 MHz | Rdng
 $\mathrm{dB} \mu \mathrm{V}$ | T 1
 dB | T 2
 dB | T 3
 dB | T 4
 dB | Dist
 Table | Corr
 $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ | Spec
 $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ | Margin
 dB | Polar
 Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19599.935
 M | 49.3 | -13.0 | +1.9 | +2.3 | +8.5 | -40.0 | 9.0 | 28.0 | -19.0 | Vert |
| Ave | | | | | | | | | | |

Test Setup Photo(s)

18.307 AC Conducted Emissions

Test Notes: Conducted Disturbances at Mains Terminals, LISN method.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification: Work Order \#: Test Type: Tested By:
Software:

Ossia, Inc.
18.307(b) AC Mains - Average

102580
Conducted Emissions
Michael Atkinson
EMITest 5.03.12

Date: 12/20/2017
Time: 18:37:32
Sequence\#: 28
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

Temperature: $23^{\circ} \mathrm{C}$
Humidity: 30\%
Pressure: 102.5 kPa

Frequency: $0.15-30 \mathrm{MHz}$
Method: FCC/OET MP-5 (February 1986)
Client 1 m away on table. 16 dBm , no RSSI.
Ferrite (Fair-Rite Brand) PN 0475164181 installed on power cord by the manufacturer prior to testing.
The manufacturer declares the power cord is permanently installed and that the ferrite bead will be installed at the time of manufacturing.

The manufacturer declares the setup used for this test is representative of worst case conducted emissions.

Ossia, Inc. WO\#: 102580 Sequence\#: 28 Date: 12/20/2017 18.307 (b) AC Mains - Average Test Lead: 115 VAC 60 Hz Line

	Sweep Data
	Peak Readings
*	Readings
	\times QP Readings
	Software Readings Version: 5.03 .12
	$2-18.307$ (b) AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$2 / 24 / 2017$	$2 / 24 / 2019$
T2	AN02611	High Pass Filter	HE9615-150K-	$2 / 18 / 2016$	$2 / 18 / 2018$
			Cable	Heliax	$10 / 30 / 2017$
T3	ANP06540	Cable	Heliax	$1 / 21 / 2016$	$1 / 21 / 2018$
T4	ANP06515	Attenuator	$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$
T5	ANP06219	50uH LISN-Line1	$3816 / 2$	$3 / 7 / 2016$	$3 / 7 / 2018$
	AN01311	(N)			
T6	AN01311	50uH LISN-Line2 (L)	$3816 / 2$	$3 / 7 / 2016$	$3 / 7 / 2018$

Measurement Data: \quad Reading listed by margin. \quad Test Lead: Line

15	$1.091 \mathrm{M}$	25.3	$\begin{aligned} & +0.0 \\ & +9.1 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.0	34.6	46.0	-11.4	Line
\wedge	1.091 M	41.9	+0.0	+0.2	+0.0	+0.0	+0.0	51.2	46.0	+5.2	Line
			+9.1	+0.0							
17	1.737 M	24.8	+0.0	+0.2	+0.0	+0.1	+0.0	34.3	46.0	-11.7	Line
Ave			+9.1	+0.1							
\wedge	1.737 M	41.9	+0.0	+0.2	+0.0	+0.1	+0.0	51.4	46.0	+5.4	Line
			+9.1	+0.1							
19	3.349 M	24.1	+0.0	+0.1	+0.0	+0.1	+0.0	33.5	46.0	-12.5	Line
Ave			+9.1	+0.1							
\wedge	3.349M	36.2	+0.0	+0.1	+0.0	+0.1	+0.0	45.6	46.0	-0.4	Line
			+9.1	+0.1							
21	766.523 k	24.1	+0.0	+0.2	+0.0	+0.1	+0.0	33.5	46.0	-12.5	Line
Ave			+9.1	+0.0							
\wedge	766.523 k	42.4	+0.0	+0.2	+0.0	+0.1	+0.0	51.8	46.0	+5.8	Line
			+9.1	+0.0							
23	2.340M	23.4	+0.0	+0.1	+0.0	+0.1	+0.0	32.8	46.0	-13.2	Line
Ave			+9.1	+0.1							
\wedge	2.340 M	38.4	+0.0	+0.1	+0.0	+0.1	+0.0	47.8	46.0	+1.8	Line
			+9.1	+0.1							
25	2.431 M	23.0	+0.0	+0.1	+0.0	+0.1	+0.0	32.4	46.0	-13.6	Line
Ave			+9.1	+0.1							
\wedge	2.431 M	39.0	+0.0	+0.1	+0.0	+0.1	+0.0	48.4	46.0	+2.4	Line
			+9.1	+0.1							
27	2.724 M	22.4	+0.0	+0.1	+0.0	+0.1	+0.0	31.8	46.0	-14.2	Line
Ave			+9.1	+0.1							
\wedge	2.724 M	37.7	+0.0	+0.1	+0.0	+0.1	+0.0	47.1	46.0	+1.1	Line
			+9.1	+0.1							
29	2.203 M	21.5	+0.0	+0.1	+0.0	+0.1	+0.0	30.9	46.0	-15.1	Line
Ave			+9.1	+0.1							
\wedge	2.203 M	41.5	+0.0	+0.1	+0.0	+0.1	+0.0	50.9	46.0	+4.9	Line
			+9.1	+0.1							
31	1.681 M	20.5	+0.0	+0.2	+0.0	+0.1	+0.0	30.0	46.0	-16.0	Line
Ave			+9.1	+0.1							
\wedge	1.681 M	42.9	+0.0	+0.2	+0.0	+0.1	+0.0	52.4	46.0	+6.4	Line
			+9.1	+0.1							
33	1.447 M	20.6	+0.0	+0.2	+0.0	+0.0	+0.0	29.9	46.0	-16.1	Line
Ave			+9.1	+0.0							
\wedge	1.447 M	41.6	+0.0	+0.2	+0.0	+0.0	+0.0	50.9	46.0	+4.9	Line
			+9.1	+0.0							
35	1.574 M	18.9	+0.0	+0.2	+0.0	+0.0	+0.0	28.2	46.0	-17.8	Line
Ave			+9.1	+0.0							
\wedge	1.574 M	40.8	+0.0	+0.2	+0.0	+0.0	+0.0	50.1	46.0	+4.1	Line
			+9.1	+0.0							
37	3.176M	18.3	+0.0	+0.1	+0.0	+0.1	+0.0	27.7	46.0	-18.3	Line
Ave			+9.1	+0.1							

Page 32 of 43

38	$1.138 \mathrm{M}$	18.4	$\begin{aligned} & +0.0 \\ & +9.1 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.0	27.7	46.0	-18.3	Line
\wedge	1.138 M	41.4	+0.0	+0.2	+0.0	+0.0	+0.0	50.7	46.0	+4.7	Line
			+9.1	+0.0							
40	1.070 M	18.3	+0.0	+0.2	+0.0	+0.0	+0.0	27.6	46.0	-18.4	Line
Ave			+9.1	+0.0							
\wedge	1.070 M	40.7	+0.0	+0.2	+0.0	+0.0	+0.0	50.0	46.0	+4.0	Line
			+9.1	+0.0							
42	2.863 M	17.8	+0.0	+0.1	+0.0	+0.1	+0.0	27.2	46.0	-18.8	Line
Ave			+9.1	+0.1							
\wedge	2.863 M	34.8	+0.0	+0.1	+0.0	+0.1	+0.0	44.2	46.0	-1.8	Line
			+9.1	+0.1							
44	858.978 k	17.5	+0.0	+0.2	+0.0	+0.1	+0.0	26.9	46.0	-19.1	Line
Ave			+9.1	+0.0							
\wedge	858.978 k	40.3	+0.0	+0.2	+0.0	+0.1	+0.0	49.7	46.0	+3.7	Line
			+9.1	+0.0							
46	1.871 M	16.7	+0.0	+0.2	+0.0	+0.1	+0.0	26.2	46.0	-19.8	Line
Ave			+9.1	+0.1							
\wedge	1.871 M	40.8	+0.0	+0.2	+0.0	+0.1	+0.0	50.3	46.0	+4.3	Line
			+9.1	+0.1							
48	3.178 M	16.4	+0.0	+0.1	+0.0	+0.1	+0.0	25.8	46.0	-20.2	Line
Ave			+9.1	+0.1							
\wedge	3.176 M	34.5	+0.0	+0.1	+0.0	+0.1	+0.0	43.9	46.0	-2.1	Line
			+9.1	+0.1							
\wedge	3.178 M	33.8	+0.0	+0.1	+0.0	+0.1	+0.0	43.2	46.0	-2.8	Line
			+9.1	+0.1							
51	958.111 k	15.0	+0.0	+0.2	+0.0	+0.1	+0.0	24.4	46.0	-21.6	Line
Ave			+9.1	+0.0							
\wedge	958.110 k	40.4	+0.0	+0.2	+0.0	+0.1	+0.0	49.8	46.0	+3.8	Line
			+9.1	+0.0							
53	734.285k	14.9	+0.0	+0.2	+0.0	+0.1	+0.0	24.3	46.0	-21.7	Line
Ave			+9.1	+0.0							
\wedge	734.284k	40.5	+0.0	+0.2	+0.0	+0.1	+0.0	49.9	46.0	+3.9	Line
			+9.1	+0.0							
55	806.073 k	14.3	+0.0	+0.2	+0.0	+0.1	+0.0	23.7	46.0	-22.3	Line
Ave			+9.1	+0.0							
\wedge	806.073 k	41.7	+0.0	+0.2	+0.0	+0.1	+0.0	51.1	46.0	+5.1	Line
			+9.1	+0.0							
57	1.226 M	14.3	+0.0	+0.2	+0.0	+0.0	+0.0	23.6	46.0	-22.4	Line
Ave			+9.1	+0.0							
\wedge	1.226 M	41.0	+0.0	+0.2	+0.0	+0.0	+0.0	50.3	46.0	+4.3	Line
			+9.1	+0.0							
59	631.000k	12.4	+0.0	+0.2	+0.0	+0.0	+0.0	21.7	46.0	-24.3	Line
Ave			+9.1	+0.0							
60	504.800 k	11.3	+0.0	+0.2	+0.0	+0.0	+0.0	20.6	46.0	-25.4	Line
Ave			+9.1	+0.0							
\wedge	504.800 k	36.6	+0.0	+0.2	+0.0	+0.0	+0.0	45.9	46.0	-0.1	Line
			+9.1	+0.0							
62	414.800k	10.6	+0.0	+0.2	+0.0	+0.0	+0.0	19.9	47.6	-27.7	Line
Ave			+9.1	+0.0							
414.800k		38.6	+0.0	+0.2	+0.0	+0.0	+0.0	47.9	47.6	+0.3	Line
			+9.1	+0.0							

Page 33 of 43

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Ossia, Inc.
18.307(b) AC Mains - Average

102580
Conducted Emissions
Michael Atkinson
EMITest 5.03.12

Date: 12/20/2017
Time: 18:20:28
Sequence\#: 27
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $23^{\circ} \mathrm{C}$
Humidity: 30\%
Pressure: 102.5 kPa

Frequency: $0.15-30 \mathrm{MHz}$
Method: FCC/OET MP-5 (February 1986)
Client 1 m away on table. 16 dBm , no RSSI.

Ferrite (Fair-Rite Brand) PN 0475164181 installed on power cord by the manufacturer prior to testing.
The manufacturer declares the power cord is permanently installed and that the ferrite bead will be installed at the time of manufacturing.

The manufacturer declares the setup used for this test is representative of worst case conducted emissions.

Ossia, Inc. WO\#: 102580 Sequence\#: 27 Date: $12 / 20 / 2017$ 18.307 (b) AC Mains - Average Test Lead: 115 VAC 60 Hz Return

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	$2 / 24 / 2017$	$2 / 24 / 2019$
T1	AN02611	High Pass Filter	HE9615-150K- $50-720 B$	$2 / 18 / 2016$	$2 / 18 / 2018$
T2	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T3	ANP06515	Cable	Heliax	$1 / 21 / 2016$	$1 / 21 / 2018$
T4	ANP06219	Attenuator	$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$
T5	AN01311	50uH LISN-Line1 (N)	$3816 / 2$	$3 / 7 / 2016$	$3 / 7 / 2018$
	AN01311	50uH LISN-Line2 (L)	$3816 / 2$	$3 / 7 / 2016$	$3 / 7 / 2018$

Measurement Data	Reading listed by margin.				Test Lead: Return					
\# Freq	Rdng	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \end{aligned}$	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	dB	Ant
$\begin{aligned} & 1.996 \mathrm{M} \\ & \text { Ave } \end{aligned}$	30.6	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	39.9	46.0	-6.1	Retur
$\wedge 1.996 \mathrm{M}$	40.7	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.0	46.0	+4.0	Retur
$\begin{aligned} & 3 \quad 1.938 \mathrm{M} \\ & \text { Ave } \end{aligned}$	28.6	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	38.0	46.0	-8.0	Retur
$\wedge 1.938 \mathrm{M}$	40.5	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	49.9	46.0	+3.9	Retur
$\begin{aligned} & 5 \quad 1.469 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	28.5	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	37.8	46.0	-8.2	Retur
$\wedge 1.469 \mathrm{M}$	41.9	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	51.2	46.0	+5.2	Retur
$\begin{aligned} & 7 \quad 1.117 \mathrm{M} \\ & \text { Ave } \end{aligned}$	26.5	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	35.8	46.0	-10.2	Retur
$\wedge 1.117 \mathrm{M}$	42.4	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	51.7	46.0	+5.7	Retur
$\begin{aligned} & 9 \quad 1.646 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	25.8	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	35.2	46.0	-10.8	Retur
$\begin{gathered} 10 \quad 1.765 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	25.8	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	35.1	46.0	-10.9	Retur
$\wedge 1.765 \mathrm{M}$	40.5	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	49.8	46.0	+3.8	Retur
$\begin{gathered} 12586.760 \mathrm{k} \\ \text { Ave } \\ \hline \end{gathered}$	25.6	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	34.9	46.0	-11.1	Retur
$\begin{aligned} & 13 \begin{array}{l} 585.960 \mathrm{k} \\ \text { Ave } \end{array} \end{aligned}$	25.6	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	34.9	46.0	-11.1	Retur
$\wedge \quad 585.960 \mathrm{k}$	39.8	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	49.1	46.0	+3.1	Retur
$\wedge \quad 586.760 \mathrm{k}$	39.7	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	49.0	46.0	+3.0	Retur
$\begin{gathered} 16{ }^{2.014 \mathrm{M}} \\ \text { Ave } \end{gathered}$	24.2	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	33.5	46.0	-12.5	Retur
$\wedge \quad 2.014 \mathrm{M}$	41.9	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.2	46.0	+5.2	Retur

	$e^{1.744 \mathrm{M}}$	23.7	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	33.1	46.0	-12.9	Retur
\wedge	1.744M	41.4	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.8	46.0	+4.8	Retur
20	$1.638 \mathrm{M}$	23.3	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	32.7	46.0	-13.3	Retur
\wedge	1.646M	40.3	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	49.7	46.0	+3.7	Retur
\wedge	1.638 M	40.3	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	49.7	46.0	+3.7	Retur
	$2.455 \mathrm{M}$	22.8	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	32.1	46.0	-13.9	Retur
\wedge	2.455 M	37.7	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.0	46.0	+1.0	Retur
	$1.912 \mathrm{M}$	22.3	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	31.7	46.0	-14.3	Retur
\wedge	1.912 M	41.5	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	50.9	46.0	+4.9	Retur
	$1.828 \mathrm{M}$	22.2	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	31.5	46.0	-14.5	Retur
\wedge	1.828 M	40.4	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	49.7	46.0	+3.7	Retur
	$1.355 \mathrm{M}$	22.2	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	31.5	46.0	-14.5	Retur
\wedge	1.355 M	40.6	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	49.9	46.0	+3.9	Retur
	$1.434 \mathrm{M}$	22.0	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$+0.0$	+0.0	+9.1	$+0.0$	31.3	46.0	-14.7	Retur
\wedge	1.434 M	40.7	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	50.0	46.0	+4.0	Retur
	$\begin{aligned} & 2.201 \mathrm{M} \\ & \hline \end{aligned}$	21.9	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	31.2	46.0	-14.8	Retur
\wedge	2.201 M	40.8	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.1	46.0	+4.1	Retur
	$1.158 \mathrm{M}$	21.3	$\begin{array}{r} +0.2 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	30.6	46.0	-15.4	Retur
\wedge	1.158 M	40.8	$\begin{array}{r} +0.2 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	50.1	46.0	+4.1	Retur
	$\mathrm{e}^{2.322 \mathrm{M}}$	20.9	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	30.2	46.0	-15.8	Retur
\wedge	2.322 M	40.2	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	49.5	46.0	+3.5	Retur
	$1.960 \mathrm{M}$	20.7	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	30.0	46.0	-16.0	Retur
\wedge	1.960 M	39.7	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	49.0	46.0	+3.0	Retur

	$3.226 \mathrm{M}$ ve	20.7	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	30.0	46.0	-16.0	Retur
\wedge	3.226 M	36.2	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	45.5	46.0	-0.5	Retur
	$1.662 \mathrm{M}$	20.5	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	29.9	46.0	-16.1	Retur
\wedge	1.662 M	40.3	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	49.7	46.0	+3.7	Retur
	2.643M	20.2	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	29.5	46.0	-16.5	Retur
\wedge	2.643 M	36.1	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	45.4	46.0	-0.6	Retur
	$1.041 \mathrm{M}$	19.2	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	28.5	46.0	-17.5	Retur
\wedge	1.041 M	40.2	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	49.5	46.0	+3.5	Retur
	$548.400 \mathrm{k}$ ve	19.1	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	28.4	46.0	-17.6	Retur
\wedge	548.400 k	37.4	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+9.1	$+0.0$	46.7	46.0	+0.7	Retur
	$1.204 \mathrm{M}$	18.6	$\begin{array}{r} +0.2 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	+9.1	$+0.0$	27.9	46.0	-18.1	Retur
\wedge	1.204 M	40.5	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	$+0.0$	49.8	46.0	+3.8	Retur
	$855.896 \mathrm{k}$	17.6	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	27.0	46.0	-19.0	Retur
\wedge	855.896k	39.9	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	49.3	46.0	+3.3	Retur
	$1.005 \mathrm{M}$ ve	16.1	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	25.5	46.0	-20.5	Retur
\wedge	1.005 M	39.8	$\begin{array}{r} +0.2 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	49.2	46.0	+3.2	Retur
	$717.351 \mathrm{k}$	14.0	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	23.4	46.0	-22.6	Retur
\wedge	717.351k	40.4	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	49.8	46.0	+3.8	Retur
	$751.627 \mathrm{k}$	12.4	$\begin{aligned} & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	$+0.0$	21.8	46.0	-24.2	Retur
\wedge	751.627k	41.2	$\begin{array}{r} +0.2 \\ +0.0 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	$+0.0$	50.6	46.0	+4.6	Retur
	$636.060 \mathrm{k}$	10.0	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$+0.0$	+0.0	+9.1	+0.0	19.3	46.0	-26.7	Retur
\wedge	636.060k	39.3	$\begin{array}{r} +0.2 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	+9.1	+0.0	48.6	46.0	+2.6	Retur

Test Setup Photos)

Appendix A: Manufacturer Declaration

At time of testing for the AC Conducted Emissions, the EUT was identified as:
Device: Venus Tile 14.
Model: OL-10212

At time of testing for the Radiated Emissions, the EUT was identified as:
Device: Cota WPT Source
Model: Venus v1

The manufacturer has chosen to use the following model name in its place.
The manufacturer declares that any differences between the names does not affect their EMC characteristics and therefore meets the level of testing equivalent to the tested model name:

Device: Cota WPT Source

Model: Venus V2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" \wedge ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

[^0]: - Readings
 \times QP Readings
 - Ambient

 1-18.305(b) ISM Frequencies <500W

[^1]: - Readings
 \times QP Readings
 - Ambient

 1-18.305(b) ISM Frequencies <500W

