Ossia, Inc.

REVISED EMC TEST REPORT TO 102450-2

Cota WPT Source
 Model: Venus v2

Tested to The Following Standards:

FCC Part 15 Subpart B Section 15.107 \& 15.109

Report No.: 102450-2A

Date of issue: May 7, 2019

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate \# 803.05

TABLE OF CONTENTS

Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
FCC Part 15 Subpart B 7
15.107 AC Conducted Emissions 7
15.109 Radiated Emissions 16
Supplemental Information 32
Measurement Uncertainty 32
Emissions Test Details 32

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Ossa, Inc.
1100 112 ${ }^{\text {th }}$ Ave NE Suite 301
Bellevue, WA 98004

Representative: Bob McDonald
Customer Reference Number: 13042

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Darcy Thompson
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 102450

April 4, 2019
April 4-5, 2019

Revision History

Original: Testing of the Cora WPT Source, Model: Venus v2 to FCC Part 15 Subpart B Section 15.107 \& 15.109. Revision A: To update the customer address.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .12
EMITest Immunity	5.03 .10

Site Registration \& Accreditation Information

Location	${ }^{*}$ NIST CB \#	FCC	JAPAN
Canyon Park, Bothell, WA	USO081	US1022	A-0148

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart B

Test Procedure	Description	Modifications	Results
15.107 Class A	Conducted Emissions	Mod \#1, 2, and 3	Pass
15.109 Class A	Radiated Emissions		
	Below 1 GHz	Mod \#1 and 3	Pass
	Above 1 GHz	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
Modification \#1: Ferrite added On DC power lines internal to EUT.
Modification \#2: Ferrite added to AC power line at EUT.
Modification \#3: Internal WiFi router removed.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Cota WPT Source	Ossia, Inc.	Venus v2	33
Support Equipment:			
Device	Manufacturer	Model \#	S/N
Laptop (Programming)	Apple	MacBook Pro A1398	NA
USB Charger	Belkin	F8M670	NA

LABORATORIES, INC.

FCC PART 15 SUBPART B

15.107 AC Conducted Emissions

Test Notes: Conducted Disturbances at Mains Terminals, LISN method.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification: Work Order \#: Test Type: Tested By: Software: Ossia, Inc.
15.107 AC Mains Class A - Average

102450
Conducted Emissions
Matthew Harrison
EMITest 5.03.12

Date: 4/5/2019
Time: 10:11:50
Sequence\#: 19
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Temperature: $20-21^{\circ} \mathrm{C}$
Pressure: 101.8 kPa
Humidity: 28\%
Frequency: $150 \mathrm{kHz}-30 \mathrm{MHz}$
Test Method: ANSI 63.4 (2014)
All radios are in standby or RX mode.
Router unplugged, light ring cable plugged in \& ferrites on DC power cables and ferrite on AC line at EUT side.
Modifications \#1, 2, and 3 were in place during testing.

> | Ossia, Inc. WO\#: 102446 Sequence\#: 19 Date: $4 / 5 / 2019$ |
| :--- |
| 15.107 AC Mains Class A - Average Test Lead: 120 V 60 Hz Line |

	Sweep Data
Peak Readings	- Readings
*	Average Readings
	Software Version: 5.03 .12
	QP Readings
$2-15.107$ AC Mains Class A Quasi-peak	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	$768-10$	$4 / 13 / 2018$	$4 / 13 / 2020$
T2	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T3	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T4	AN01311	50 H LISN-Line1 (L)	$3816 / 2$	$3 / 16 / 2018$	$3 / 16 / 2020$
	AN01311	50uH LISN-Line2	$3816 / 2$	$3 / 16 / 2018$	$3 / 16 / 2020$
		(N)			
	AN02871	Spectrum Analyzer	E4440A	$1 / 9 / 2019$	$1 / 9 / 2021$
T5	AN02611	High Pass Filter	HE9615-150K- 		$1 / 15 / 2018$
			$1 / 15 / 2020$		

Measurement Data:	Reading listed by margin.				Test Lead: Line					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	dB	Ant
$\begin{aligned} & 1 \quad 2.578 \mathrm{M} \\ & \text { Ave } \end{aligned}$	34.3	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	43.9	60.0	-16.1	Line
$\wedge 2.578 \mathrm{M}$	43.5	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	53.1	60.0	-6.9	Line
$\begin{aligned} & 3{ }^{3.046 \mathrm{M}} \\ & \text { Ave } \end{aligned}$	31.9	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.3	+0.0	41.5	60.0	-18.5	Line
$\wedge 3.046 \mathrm{M}$	39.3	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.3	+0.0	48.9	60.0	-11.1	Line
$\begin{aligned} & 5 \mathrm{~A}^{3.459 \mathrm{M}} \\ & \text { Ave } \end{aligned}$	29.4	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	39.0	60.0	-21.0	Line
$\wedge 3.459 \mathrm{M}$	39.2	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.3	+0.0	48.8	60.0	-11.2	Line
$\begin{aligned} & 7{ }^{7} 2.515 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	27.3	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	36.9	60.0	-23.1	Line
$\wedge \quad 2.515 \mathrm{M}$	39.8	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.3	+0.0	49.4	60.0	-10.6	Line
$\begin{aligned} & 9 \text { Ave } \\ & \text { Avem } \\ & \hline \end{aligned}$	26.3	$\begin{aligned} & +9.1 \\ & +0.2 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.3	+0.0	35.9	60.0	-24.1	Line
$\wedge 1.290 \mathrm{M}$	39.2	$\begin{aligned} & +9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.0	+0.3	+0.0	48.8	60.0	-11.2	Line
$\begin{aligned} & 11 \begin{array}{l} 865.571 \mathrm{k} \\ \text { Ave } \end{array} \end{aligned}$	25.7	$\begin{aligned} & +9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.0	+0.3	+0.0	35.3	60.0	-24.7	Line
$\wedge \quad 865.570 \mathrm{k}$	41.1	$\begin{aligned} & \hline+9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.0	+0.3	+0.0	50.7	60.0	-9.3	Line
$\begin{gathered} 13 \quad 2.400 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	25.3	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	34.9	60.0	-25.1	Line
$\wedge 2.400 \mathrm{M}$	39.5	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.3	+0.0	49.1	60.0	-10.9	Line
$\begin{gathered} 15 \begin{array}{c} 877.205 \mathrm{k} \\ \text { Ave } \\ \hline \end{array}{ }^{2}+{ }^{2} \\ \hline \end{gathered}$	25.3	$\begin{array}{r} +9.1 \\ +0.2 \\ \hline \end{array}$	+0.0	+0.0	+0.3	+0.0	34.9	60.0	-25.1	Line
$\wedge 877.205 \mathrm{k}$	40.0	$\begin{aligned} & +9.1 \\ & +0.2 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.3	+0.0	49.6	60.0	-10.4	Line

	$2.191 \mathrm{M}$	25.1	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.3	+0.0	34.7	60.0	-25.3	Line
\wedge	2.191M	40.7	$\begin{array}{r} \hline+9.1 \\ +0.1 \end{array}$	+0.1	+0.0	+0.3	+0.0	50.3	60.0	-9.7	Line
19	$\mathrm{e}^{1.732 \mathrm{M}}$	22.7	$\begin{array}{r} +9.1 \\ +0.1 \end{array}$	+0.1	+0.0	+0.3	+0.0	32.3	60.0	-27.7	Line
\wedge	1.732M	40.8	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	50.4	60.0	-9.6	Line
	$\mathrm{e}^{2.387 \mathrm{M}}$	22.3	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.3	+0.0	31.9	60.0	-28.1	Line
\wedge	2.387M	39.2	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.3	+0.0	48.8	60.0	-11.2	Line
	$\text { e. }{ }^{5.977 \mathrm{M}}$	21.3	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	30.9	60.0	-29.1	Line
\wedge	5.977M	43.4	$\begin{array}{r} +9.1 \\ +0.1 \end{array}$	+0.1	+0.0	+0.3	+0.0	53.0	60.0	-7.0	Line
	$\mathrm{e}^{2.659 \mathrm{M}}$	19.8	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	29.4	60.0	-30.6	Line
\wedge	2.659M	38.7	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	48.3	60.0	-11.7	Line
	$\mathrm{e}^{1.111 \mathrm{M}}$	18.0	$\begin{aligned} & +9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.0	+0.3	+0.0	27.6	60.0	-32.4	Line
\wedge	1.111 M	39.0	$\begin{array}{r} +9.1 \\ +0.2 \end{array}$	+0.0	+0.0	+0.3	+0.0	48.6	60.0	-11.4	Line
	$\mathrm{e}^{2.434 \mathrm{M}}$	17.9	$\begin{array}{r} +9.1 \\ +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.3	+0.0	27.5	60.0	-32.5	Line
\wedge	2.434M	38.7	$\begin{array}{r} +9.1 \\ +0.1 \end{array}$	+0.1	+0.0	+0.3	+0.0	48.3	60.0	-11.7	Line

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Ossia, Inc.
15.107 AC Mains Class A - Average

102450
Conducted Emissions
Date: 4/5/2019

Matthew Harrison
EMITest 5.03.12

Sequence\#: 20
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $20-21^{\circ} \mathrm{C}$
Pressure: 101.8 kPa
Humidity: 28\%
Frequency: $150 \mathrm{kHz}-30 \mathrm{MHz}$
Test Method: ANSI 63.4 (2014)
All radios are in standby or RX mode.
Router unplugged, light ring cable plugged in \& ferrites on DC power cables and ferrite on AC line at EUT side.
Modifications \#1, 2, and 3 were in place during testing.

> Ossia, Inc. WO\#: 102446 Sequence\#f: 20 Date: $4 / 5 / 2019$
> 15.107 AC Mains Class A - Average Test Lead: 120 V 60 Hz Neutral

	Sweep Data
	Peak Readings
Average Readings	\times
	Readings
Software Version: 5.03 .12	QP Readings
2-15.107 AC Mains Class A - Quasi-peak	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	$768-10$	$4 / 13 / 2018$	$4 / 13 / 2020$
T2	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T3	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
	AN01311	50 H LISN-Line1 (L)	$3816 / 2$	$3 / 16 / 2018$	$3 / 16 / 2020$
T4	AN01311	50uH LISN-Line2	$3816 / 2$	$3 / 16 / 2018$	$3 / 16 / 2020$
		(N)			
	AN02871	Spectrum Analyzer	E4440A	$1 / 9 / 2019$	$1 / 9 / 2021$
T5	AN02611	High Pass Filter	HE9615-150K- 		$1 / 15 / 2018$
			$1 / 15 / 2020$		

Test Setup Photos)

15.109 Radiated Emissions

Test Notes: Radiated disturbances emanating from enclosure.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

Usia, Inc.
15.109 Radiated Emissions Class A

102450 Date: 4/4/2019
Maximized Emissions Time: 14:57:07
Matthew Harrison
EMITest 5.03.12

Sequence\#: 12

Equipment Tested:

| Device Manufacturer Model \#
 Configuration 1 S/N
 Support Equipment:
 Device Manufacturer Model \#
 Configuration 1 \mathbf{l} |
| :--- | :--- | :--- | :--- |

Test Conditions / Notes:
Temperature: $20-21^{\circ} \mathrm{C}$
Pressure: 101.8 kPa
Humidity: 28%
Frequency: $30-1000 \mathrm{MHz}$
Test Method: ANSI 63.4 (2014)
All radios are in standby or RX mode.
The EUT is investigated in X, Y \& Z Axis with only the worst case reported.
Router unplugged, light ring cable plugged in \& ferrites on DC power cables.
Modifications \#1 and 3 were in place during testing.

Ossia, Inc. WO\#: 102446 Sequence\#: 12 Date: 4/4/2019 15.109 Radiated Emissions Class A Test Distance: 3 Meters Horiz

[^0]O Peak Readings

* Average Readings

Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E444OA	$1 / 9 / 2019$	$1 / 9 / 2021$
T2	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T3	AN02307	Preamp	$8447 D$	$1 / 15 / 2018$	$1 / 15 / 2020$
T4	AN03628	Biconilog Antenna	3142E	$6 / 7 / 2017$	$6 / 7 / 2019$
T5	ANP06123	Attenuator	18N-6	$5 / 5 / 2017$	$5 / 5 / 2019$
T6	ANP05305	Cable	ETSI-50T	$10 / 24 / 2017$	$10 / 24 / 2019$
T7	ANP05360	Cable	RG214	$1 / 31 / 2018$	$1 / 31 / 2020$

14	55.022 M	54.1	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -27.9 \\ +0.4 \end{array}$	+6.5	-10.5	29.0	39.1	-10.1	Horiz
15	153.125M	52.3	+0.0	+0.2	-27.5	+9.9	-10.5	31.6	43.5	-11.9	Horiz
			+5.9	+0.6	+0.7						
16	156.969M	51.3	+0.0	+0.2	-27.5	+10.4	-10.5	31.1	43.5	-12.4	Horiz
			+5.9	+0.6	+0.7						
17	155.047 M	51.2	+0.0	+0.2	-27.5	+10.2	-10.5	30.8	43.5	-12.7	Horiz
			+5.9	+0.6	+0.7						
18	151.924 M	50.5	+0.0	+0.2	-27.5	+9.7	-10.5	29.6	43.5	-13.9	Horiz
			+5.9	+0.6	+0.7						
19	57.618 M	50.0	+0.0	+0.1	-27.9	+6.6	-10.5	25.0	39.1	-14.1	Horiz
			+5.9	+0.4	+0.4						

LABORATORIES, INC.

Test Location: CKC Laboratories • 2211623 rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Usia, Inc.
15.109 Radiated Emissions Class A

102450
Date: 4/4/2019
Maximized Emissions
Time: 15:16:47

Software:
Matthew Harrison
Sequence\#: 13
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $20-21^{\circ} \mathrm{C}$
Pressure: 101.8 kPa
Humidity: 28\%
Frequency: $30-1000 \mathrm{MHz}$
Test Method: ANSI 63.4 (2014)
All radios are in standby or RX mode.
The EUT is investigated in $\mathrm{X}, \mathrm{Y} \& \mathrm{Z}$ Axis with only the worst case reported.
Router unplugged, light ring cable plugged in \& ferrites on DC power cables.
Modifications \#1 and 3 were in place during testing.

Ossia, Inc. WO\#: 102446 Sequence\#f: 13 Date: 4/4/2019 15.109 Radiated Emissions Class A Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E444OA	$1 / 9 / 2019$	$1 / 9 / 2021$
T1	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T2	AN02307	Preamp	8447 D	$1 / 15 / 2018$	$1 / 15 / 2020$
T3	AN03628	Biconilog Antenna	3142E	$6 / 7 / 2017$	$6 / 7 / 2019$
T4	ANP06123	Attenuator	18N-6	$5 / 5 / 2017$	$5 / 5 / 2019$
T5	ANP05305	Cable	ETSI-50T	$10 / 24 / 2017$	$10 / 24 / 2019$
T6	ANP05360	Cable	RG214	$1 / 31 / 2018$	$1 / 31 / 2020$

14	55.022 M	54.3	$\begin{aligned} & \hline+0.1 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.9 \\ +0.4 \end{array}$	+6.5	+5.9	-10.5	29.2	39.1	-9.9	Vert
15	156.969 M	53.4	$\begin{aligned} & \hline+0.2 \\ & +0.6 \end{aligned}$	$\begin{array}{r} -27.5 \\ +0.7 \end{array}$	+10.4	+5.9	-10.5	33.2	43.5	-10.3	Vert
16	146.999M	54.9	$\begin{aligned} & +0.2 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.5 \\ +0.7 \end{array}$	+8.6	+5.9	-10.5	32.9	43.5	-10.6	Vert
17	765.617M	41.9	$\begin{aligned} & +0.3 \\ & +1.4 \end{aligned}$	$\begin{array}{r} -27.9 \\ +1.7 \\ \hline \end{array}$	+22.7	+5.9	-10.5	35.5	46.4	-10.9	Vert
18	153.966 M	52.8	$\begin{aligned} & \hline+0.2 \\ & +0.6 \end{aligned}$	$\begin{array}{r} -27.5 \\ +0.7 \\ \hline \end{array}$	+10.1	+5.9	-10.5	32.3	43.5	-11.2	Vert
19	918.770M	38.6	$\begin{aligned} & +0.4 \\ & +1.6 \end{aligned}$	$\begin{array}{r} -27.3 \\ +2.0 \end{array}$	+24.5	+5.9	-10.5	35.2	46.4	-11.2	Vert

LABORATORIES, INC.

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Usia, Inc.
15.109 Radiated Emissions Class A

102450
Maximized Emissions
Steven Pittsford
EMIT est 5.03.12

Date: 4/2/2019
Time: 11:21:48
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Temperature: $20-21^{\circ} \mathrm{C}$
Pressure: 101.8 kPa
Humidity: 28\%
Frequency: $1-18 \mathrm{GHz}$ (Max operating frequency $=2.48 \mathrm{GHz}$)
Test Method: ANSI 63.4 (2014)
All radios are in standby or RX mode.
The EUT is investigated in $\mathrm{X}, \mathrm{Y} \& \mathrm{Z}$ Axis with only the worst case reported.
Vertical and Horizontal polarities investigated

Ossia, Inc. WO\#: 102446 Sequence\#f: 2 Date: $4 / 2 / 2019$
15.109 Radiated Emissions Class A Test Distance: 3 Meters Vert \& Horz

[^1]O Peak Readings

* Average Readings

Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$1 / 9 / 2019$	$1 / 9 / 2021$
T2	ANP06503	Cable	$32026-29801-$ $29801-36 ~$	$3 / 13 / 2018$	$3 / 13 / 2020$
			Preamp	83017 A	$3 / 25 / 2019$
T3	AN03540	Horn Antenna-	3115	$7 / 21 / 2017$	$3 / 25 / 2021$
T4	AN01467	ANSI C63.5			
		Calibration			
T5	ANP06515	Cable	Heliax	$6 / 29 / 2018$	$6 / 29 / 2020$
T6	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \end{aligned}$	T3 dB	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 1684.380 \mathrm{M} \\ & \text { Ave } \end{aligned}$	60.5	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.5 \end{aligned}$	-34.7	+25.8	$\begin{aligned} & -10.5 \\ & 250 \end{aligned}$	44.5	$Y^{49.5}$	-5.0	$\begin{gathered} \hline \text { Vert } \\ 106 \\ \hline \end{gathered}$
$\begin{aligned} & 21684.423 \mathrm{M} \\ & \text { Ave } \end{aligned}$	58.2	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.5 \end{aligned}$	-34.7	+25.8	$\begin{gathered} -10.5 \\ 73 \end{gathered}$	42.2	$Z^{49.5}$	-7.3	Horiz 162
$\begin{aligned} & 32296.894 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	54.9	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.4 \\ & \hline \end{aligned}$	-34.2	+28.1	$\begin{aligned} & -10.5 \\ & 135 \\ & \hline \end{aligned}$	42.1	$Z^{49.5}$	-7.4	None 121
$\wedge 2296.894 \mathrm{M}$	56.1	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.4 \end{aligned}$	-34.2	+28.1	$\begin{aligned} & -10.5 \\ & 135 \end{aligned}$	43.3	$Z^{49.5}$	-6.2	$\begin{array}{r} \text { None } \\ 121 \end{array}$
$\begin{aligned} & 51684.407 \mathrm{M} \\ & \text { Ave } \end{aligned}$	57.3	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.5 \end{aligned}$	-34.7	+25.8	$\begin{gathered} \hline-10.5 \\ 189 \end{gathered}$	41.3	$\begin{aligned} & 49.5 \\ & \times \quad 4 \end{aligned}$	-8.2	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
$\wedge 1684.380 \mathrm{M}$	61.3	$\begin{aligned} & +0.0 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.5 \\ & \hline \end{aligned}$	-34.7	+25.8	$\begin{aligned} & -10.5 \\ & 250 \\ & \hline \end{aligned}$	45.3	$\begin{aligned} & 49.5 \\ & \hline \end{aligned}$	-4.2	$\begin{gathered} \hline \text { Vert } \\ 106 \\ \hline \end{gathered}$
$\wedge 1684.407 \mathrm{M}$	57.6	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.5 \end{aligned}$	-34.7	+25.8	$\begin{gathered} \hline-10.5 \\ 189 \end{gathered}$	41.6	$\begin{array}{r} 49.5 \\ \times \quad \\ \hline \end{array}$	-7.9	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
$\begin{aligned} & 81684.407 \mathrm{M} \\ & \text { Ave } \end{aligned}$	57.1	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.5 \end{aligned}$	-34.7	+25.8	$\begin{aligned} & -10.5 \\ & 267 \end{aligned}$	41.1	$\begin{aligned} & 49.5 \\ & \times \quad 4 \end{aligned}$	-8.4	$\begin{gathered} \hline \text { Horiz } \\ 123 \\ \hline \end{gathered}$
^ 1684.423M	59.2	$\begin{aligned} & +0.0 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.5 \\ & \hline \end{aligned}$	-34.7	+25.8	$\begin{gathered} \hline-10.5 \\ 73 \\ \hline \end{gathered}$	43.2	$\begin{array}{lr} & 49.5 \\ \hline \end{array}$	-6.3	$\begin{gathered} \text { Horiz } \\ 162 \\ \hline \end{gathered}$
$\wedge 1684.407 \mathrm{M}$	58.3	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.5 \end{aligned}$	-34.7	+25.8	$\begin{aligned} & \hline-10.5 \\ & 267 \end{aligned}$	42.3	$\begin{aligned} & 49.5 \\ & \times \quad \end{aligned}$	-7.2	$\begin{gathered} \text { Horiz } \\ 123 \end{gathered}$
$\begin{aligned} & 11 \text { 2296.865M } \\ & \text { Ave } \end{aligned}$	53.5	$\begin{aligned} & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.4 \end{aligned}$	-34.2	+28.1	$\begin{gathered} -10.5 \\ 271 \end{gathered}$	40.7	$\begin{aligned} & 49.5 \\ & \times \quad 4 \end{aligned}$	-8.8	Horiz 115
$\wedge 2296.865 \mathrm{M}$	55.3	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.4 \end{aligned}$	-34.2	+28.1	$\begin{aligned} & \hline-10.5 \\ & 360 \end{aligned}$	42.5	$\begin{array}{r} 49.5 \\ \times \quad \\ \hline \end{array}$	-7.0	Horiz 105
$\begin{aligned} & 13 \text { 1990.621M } \\ & \text { Ave } \\ & \hline \end{aligned}$	53.0	$\begin{aligned} & +0.0 \\ & +2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.3 \\ & \hline \end{aligned}$	-34.4	+28.1	$\begin{aligned} & -10.5 \\ & 261 \end{aligned}$	39.7	$\begin{array}{r} 49.5 \\ \times \quad \\ \hline \end{array}$	-9.8	None 109
$\wedge 1990.621 \mathrm{M}$	54.8	$\begin{aligned} & +0.0 \\ & +2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.3 \end{aligned}$	-34.4	+28.1	$\begin{aligned} & -10.5 \\ & 281 \end{aligned}$	$\overline{41.5}$	$\begin{aligned} & 49.5 \\ & \times \quad \end{aligned}$	-8.0	$\begin{gathered} \text { None } \\ 109 \end{gathered}$
$\begin{aligned} & 15 \text { 1990.621M } \\ & \text { Ave } \end{aligned}$	52.2	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.3 \end{aligned}$	-34.4	+28.1	$\begin{aligned} & -10.5 \\ & 337 \end{aligned}$	38.9	$\begin{aligned} & 49.5 \\ & \times \quad 4 \end{aligned}$	-10.6	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
$\wedge 1990.621 \mathrm{M}$	53.8	$\begin{aligned} & +0.0 \\ & +2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.3 \end{aligned}$	-34.4	+28.1	$\begin{aligned} & -10.5 \\ & 337 \end{aligned}$	40.5	$\begin{array}{r} 49.5 \\ \times \quad \\ \hline \end{array}$	-9.0	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$

Test Setup Photo(s)

Below 1GHz

Above 1GHz

X-Axis

Y-Axis

Z-Axis

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

LABORATORIES, INC.

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

[^0]: - Readings
 \times QP Readings
 - Ambient

[^1]: - Readings
 \times QP Readings
 * Ambient

