

TEST REPORT

Product Name : Smart wireless meat thermometer

Brand Mark : N/A

Model No. : Bf20,Bf40

FCC ID : 2AS4O-BF20BF40

Report Number : BLA-EMC-202206-A5602

Date of Sample Receipt : 2022/6/15

Date of Test : 2022/6/15 to 2022/6/25

Date of Issue : 2022/6/25

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Shenzhen Bfour Intelligent Technology Co.,Ltd C502, Gangshen International Center, Xinniu Road, Longhua District, ShenzhenCity, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by: Charlie
Approved by: Bhe Thong

Review by:

Report No.: BLA-EMC-202206-A5602 Page 2 of 61

REPORT REVISE RECORD

Version No. Date		Description	
00	2022/6/25	Original	

TABLE OF CONTENTS

1		TEST SUMMARY	5
2		GENERAL INFORMATION	6
3		GENERAL DESCRIPTION OF E.U.T.	6
4		TEST ENVIRONMENT	7
5		TEST MODE	7
6		MEASUREMENT UNCERTAINTY	7
7		MEASUREMENT UNCERTAINTY DESCRIPTION OF SUPPORT UNIT	Я
		LABORATORY LOCATION	
8		TEST INSTRUMENTS LIST	
9		· · · · · · · · · · · · · · · · · · ·	
9		CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	
	9	LIMITS	
	9.1		
	9.2		
	9.3		
1(0	CONDUCTED BAND EDGES MEASUREMENT	16
	10.	.1 LIMITS	16
	10.		
	10.	.3 TEST DATA	17
11	ı	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	18
	11.	.1 LIMITS	18
	11.	.2 BLOCK DIAGRAM OF TEST SETUP	19
	11.	.3 PROCEDURE	19
	11.	.4 TEST DATA	21
12	2	CONDUCTED SPURIOUS EMISSIONS	25
	12.	.1 LIMITS	25
	12.	.2 BLOCK DIAGRAM OF TEST SETUP	25
	12.	.3 TEST DATA	26
13	3	POWER SPECTRUM DENSITY	27
	13.	.1 LIMITS	27
	13.		

13.3	3 TEST DATA	27
14 C	CONDUCTED PEAK OUTPUT POWER	28
14.1	1 LIMITS	28
14.2	2 BLOCK DIAGRAM OF TEST SETUP	28
14.3	3 TEST DATA	29
15 M	MINIMUM 6DB BANDWIDTH	30
15.1	1 LIMITS	30
15.2	2 BLOCK DIAGRAM OF TEST SETUP	30
15.3		
16 A	ANTENNA REQUIREMENT	31
16.1	1 Conclusion	31
17 R	RADIATED SPURIOUS EMISSIONS	32
17.1	1 LIMITS	32
17.2	2 BLOCK DIAGRAM OF TEST SETUP	33
17.3	3 PROCEDURE	33
17.4		
18 A	APPENDIX	44
APPEN	NDIX A: PHOTOGRAPHS OF TEST SETUP	59
APPEN	NDIX B: PHOTOGRAPHS OF EUT	61

Page 5 of 61

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

Page 6 of 61

2 GENERAL INFORMATION

Applicant	Shenzhen Bfour Intelligent Technology Co., Ltd	
Address C502, Gangshen International Center, Xinniu Road, Longhua District, ShenzhenCity, China		
Manufacturer	Shenzhen Bfour Intelligent Technology Co., Ltd	
Address	C502, Gangshen International Center, Xinniu Road, Longhua District, ShenzhenCity, China	
Factory Shenzhen Bfour Intelligent Technology Co., Ltd		
Address	C502, Gangshen International Center, Xinniu Road, Longhua District, ShenzhenCity, China	
Product Name Smart wireless meat thermometer		
Test Model No.	Bf20,Bf40	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V4.0	
Software Version	V4.0	
Operation Frequency:	2402MHz-2480MHz	
Modulation Type:	GFSK	
Channel Spacing:	2MHz	
Number of Channels:	40	
Antenna Type:	PCB Antenna	
Antenna Gain:	5dBi (Provided by the customer)	

Page 7 of 61

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25°C	DC3.7V	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION					
TX	Keep the EUT in transmitting mode					
Remark:Only th	Remark:Only the data of the worst mode would be recorded in this report.					

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

Page 8 of 61

7 DESCRIPTION OF SUPPORT UNIT

	Device Type Manufacturer		Model Name	Serial No.	Remark
	AC Adapter	UGREEN	CD112	N/A	N/A
Ī	PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 9 of 61

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)						
Equipment Manufacturer Model S/N Cal.Date Cal.D						
Shield room	SKET	833	N/A	25/11/2020	24/11/2023	
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022	
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022	
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022	
EMI software	EZ	EZ-EMC	N/A	N/A	N/A	

Test Equipment Of Conducted Band Edges Measurement						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022	
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022	
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022	

Test Equipment Of Radiated Spurious Emissions								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber	SKET	966	N/A	10/11/2020	9/11/2023			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Receiver	R&S ESR7 101		101199	24/9/2021	23/9/2022			
broadband Antenna	Schwarzbeck VIII B9168			26/9/2020	25/9/2022			
Horn Antenna	Schwarzbeck	9120D	01892 P:00331 26/9/2020		25/9/2022			

Page 10 of 61

Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022	
EMI software	EZ	EZ-EMC	N/A	N/A	N/A	
Loop antenna	p antenna SCHNARZBECK		00102	26/9/2020	25/9/2022	

Test Equipment Of Radiated Emissions which fall in the restricted bands								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber	SKET	966	966 N/A		9/11/2023			
Spectrum	R&S	FSP40	FSP40 100817		23/9/2022			
Receiver	R&S	ESR7 101199		24/9/2021	23/9/2022			
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022			
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022			
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022			
EMI software	EZ	EZ-EMC	N/A	N/A	N/A			
Loop antenna	SCHNARZBECK	FMZB1519B	00102 26/9/2020		25/9/2022			

Test Equipment Of Conducted Spurious Emissions									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022				
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022				
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022				

Test Equipment Of Power Spectrum Density						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	

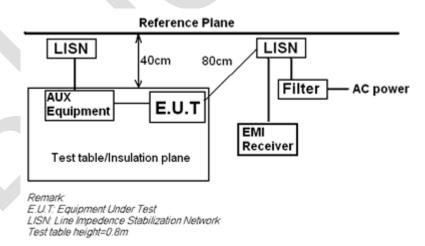
Page 11 of 61

Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Peak Output Power									
Equipment	Equipment Manufacturer		Model S/N		Cal.Due				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022				
Signal Generator	or Agilent N5182A		MY49060650	24/9/2021	23/9/2022				
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022				

Test Equipment Of Minimum 6dB Bandwidth									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022				
Signal Generator	Signal Generator Agilent N5182A		MY49060650	24/9/2021	23/9/2022				
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022				

Test Equipment Of Antenna Requirement						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	


9 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Charlie					
Temperature	25℃					
Humidity	55%					

9 LIMITS

Frequency of	Conducted limit(dBµV)							
emission(MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
*Decreases with the logarithm	*Decreases with the logarithm of the frequency.							

9.1 BLOCK DIAGRAM OF TEST SETUP

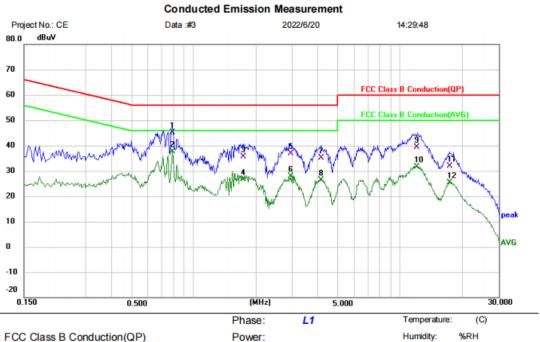
9.2 PROCEDURE

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

Page 13 of 61

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

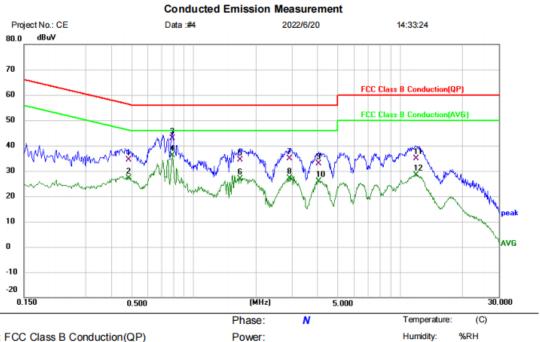
9.3 TEST DATA

[TestMode: TX]; [Line: Line];[Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP) EUT: smert wireless meat thermometer

M/N: BF20 Mode: TX mode

Note:


Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.7860	35.36	9.89	45.25	56.00	-10.75	QP	
2	*	0.7860	27.84	9.89	37.73	46.00	-8.27	AVG	
3		1.7380	25.72	9.93	35.65	56.00	-20.35	QP	
4		1.7380	16.82	9.93	26.75	46.00	-19.25	AVG	
5		2.9580	26.87	9.97	36.84	56.00	-19.16	QP	
6		2.9580	18.03	9.97	28.00	46.00	-18.00	AVG	
7		4.1420	25.15	9.90	35.05	56.00	-20.95	QP	
8		4.1420	16.48	9.90	26.38	46.00	-19.62	AVG	
9		12.0659	29.11	10.27	39.38	60.00	-20.62	QP	
10		12.0659	21.35	10.27	31.62	50.00	-18.38	AVG	
11		17.3100	21.47	10.39	31.86	60.00	-28.14	QP	
12		17.3100	15.03	10.39	25.42	50.00	-24.58	AVG	

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX]; [Line: Nutral]; [Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: smert wireless meat thermometer

M/N: BF20 Mode: TX mode

Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4820	24.57	9.79	34.36	56.30	-21.94	QP	
2		0.4820	17.44	9.79	27.23	46.30	-19.07	AVG	
3		0.7860	33.13	9.82	42.95	56.00	-13.05	QP	
4	*	0.7860	26.41	9.82	36.23	46.00	-9.77	AVG	
5		1.6740	24.52	9.85	34.37	56.00	-21.63	QP	
6		1.6740	17.15	9.85	27.00	46.00	-19.00	AVG	
7		2.9100	24.88	9.90	34.78	56.00	-21.22	QP	
8		2.9100	17.33	9.90	27.23	46.00	-18.77	AVG	
9		4.0300	23.06	9.91	32.97	56.00	-23.03	QP	
10		4.0300	16.03	9.91	25.94	46.00	-20.06	AVG	
11		11.9620	24.57	10.23	34.80	60.00	-25.20	QP	
12		11.9620	18.06	10.23	28.29	50.00	-21.71	AVG	

*:Maximum data x:Over limit !:over margin (Reference Only

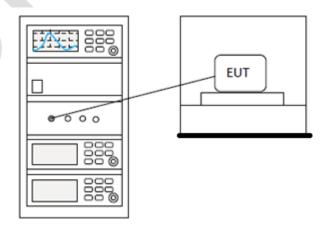
Page 16 of 61

10 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Charlie			
Temperature	25 ℃			
Humidity	55%			

10.1 LIMITS

Limit:


spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the

restricted bands, as defined in §15.205(a), must also comply with the radiated

emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread

10.2 BLOCK DIAGRAM OF TEST SETUP

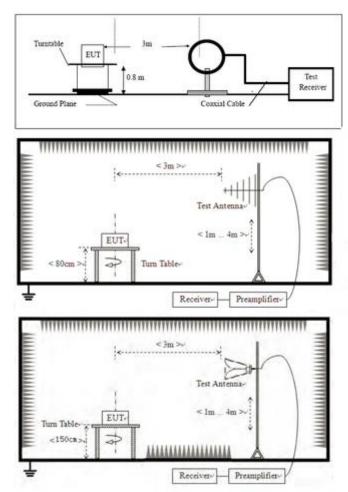
10.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 18 of 61

11 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.10.5				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Charlie				
Temperature	25℃				
Humidity	55%				


11.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

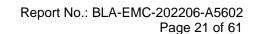
11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 20 of 61

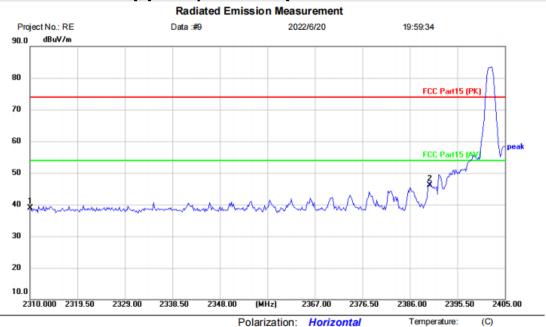
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.


i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


Humidity:

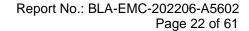
%RH

11.4 TEST DATA

[TestMode: TX low channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

EUT: smart wireless meat thermometer


M/N: BF20 Mode: TX-L Note:

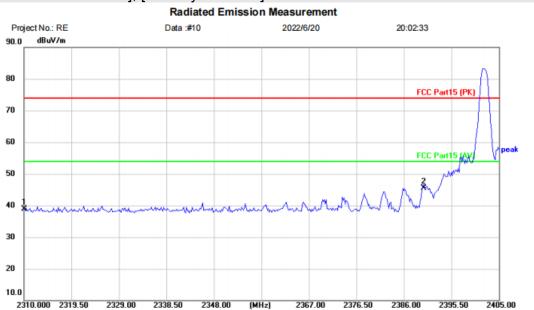
Site

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	2310.000	42.89	-3.93	38.96	74.00	-35.04	peak	
2 *	2390.000	49.65	-3.58	46.07	74.00	-27.93	peak	

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Temperature:


Humidity:

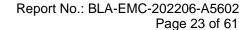
(C)

%RH

[TestMode: TX low channel]; [Polarity: Vertical]

Polarization: Vertical

Site Limit: FCC Part15 (PK)


EUT: smart wireless meat thermometer

M/N: BF20 Mode: TX-L Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	42.91	-3.93	38.98	74.00	-35.02	peak	
2	*	2390.000	49.10	-3.58	45.52	74.00	-28.48	peak	

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

2500.00

(C)

%RH

[TestMode: TX High channel]; [Polarity: Horizontal]

Radiated Emission Measurement Project No.: RE 2022/6/20 Data :#11 20:16:06 dBuV/m 90.0 80 FCC Part15 (PK) 70 60 FCC Part15 (AV) 50 40 30 20 10.0

(MHz)

Power:

Polarization: Horizontal

2491.20 2493.40

2495.60

Temperature:

Humidity:

2497.80

2486.80

Site Limit: FCC Part15 (PK)

2478.000 2480.20

EUT: smart wireless meat thermometer

2482.40

2484.60

M/N: BF20 Mode: TX-H Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	51.73	-3.14	48.59	74.00	-25.41	peak	
2		2500.000	44.89	-3.08	41.81	74.00	-32.19	peak	

*:Maximum data x:Over limit !:over margin (Reference Only

Temperature:

Humidity:

(C)

%RH

[TestMode: TX High channel]; [Polarity: Vertical]

Radiated Emission Measurement 2022/6/20 Project No.: RE Data :#12 20:25:41 dBuV/m 90.0 80 FCC Part15 (PK) 70 60 FCC Part15 (AV) 50 40 30 ž 20 10.0 2478.000 2480.20 2482.40 2484.60 2486.80 2500.00 (MHz) 2491.20 2493.40 2495.60 2497.80

Polarization: Vertical

Limit: FCC Part15 (PK)

EUT: smart wireless meat thermometer

M/N: BF20 Mode: TX-H Note:

Site

No. Mk. Freq. Reading Correct MeasureLevel Factor ment Limit Over

MHz dBuV dB/m dBuV/m dBuV/m dB Detector Comment

	NO.	IVIK.	Freq.	Level	Factor	ment	Limit	Over			
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
	1	*	2483.500	61.23	-3.14	58.09	74.00	-15.91	peak		
	2		2483.500	29.30	-3.14	26.16	54.00	-27.84	AVG		
-	3		2500.000	46.30	-3.08	43.22	74.00	-30.78	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

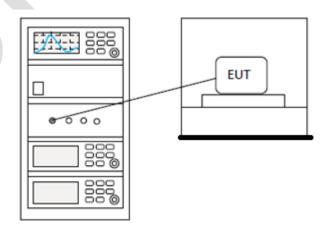
Page 25 of 61

12 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Charlie				
Temperature	25℃				
Humidity	55%				

12.1 LIMITS

frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in


emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio

§15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated

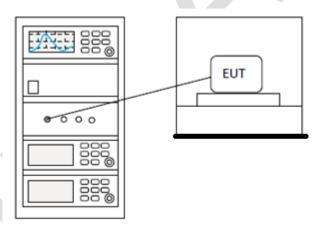
Limit:

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 TEST DATA

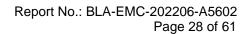
Pass: Please Refer To Appendix: Appendix1 For Details

Page 27 of 61


13 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Charlie				
Temperature	25℃				
Humidity	55%				

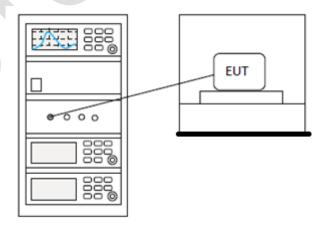
13.1 LIMITS


Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


14 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.5				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Charlie				
Temperature	25 ℃				
Humidity	55%				

14.1 LIMITS

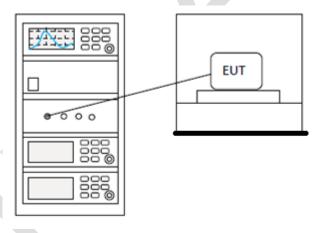
Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1 for ≥50 hopping channels			
902-928	0.25 for 25≤ hopping channels <50			
	1 for digital modulation			
	1 for ≥75 non-overlapping hopping channels			
2400-2483.5	0.125 for all other frequency hopping systems			
	1 for digital modulation			
5725 5050	1 for frequency hopping systems and digital			
5725-5850	modulation			

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA

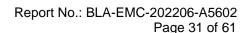
Pass: Please Refer To Appendix: Appendix1 For Details

Page 30 of 61


15 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 11.8.1					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Charlie					
Temperature	25℃					
Humidity	55%					

15.1 LIMITS


Limit:	≥500 kHz
	_500 KHZ

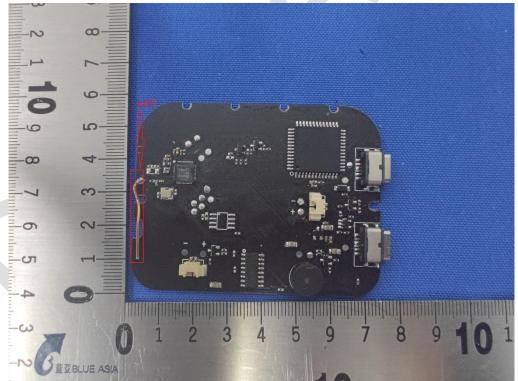
15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

16 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	N/A			


16.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

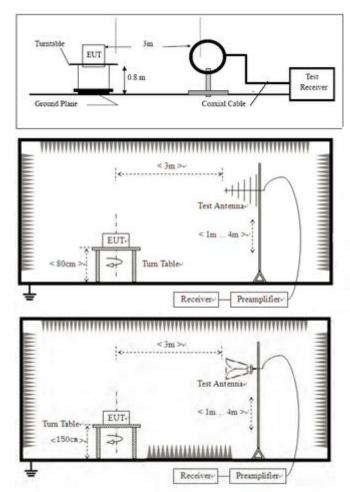
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 5dBi.

Page 32 of 61

17 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Charlie					
Temperature	25℃					
Humidity	55%					


17.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

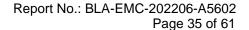
17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 34 of 61

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.


- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

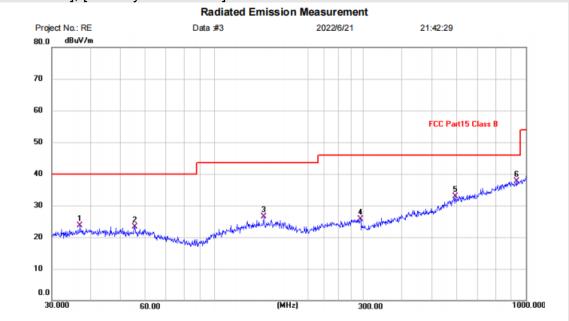
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Temperature:

Humidity:

(C)


%RH

17.4 TEST DATA

Below 1GHz

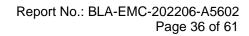
[TestMode: TX]; [Polarity: Horizontal]

Polarization: Horizontal

Limit: FCC Part15 Class B

EUT: smart wireless meat thermometer

M/N: BF20 Mode: TX mode

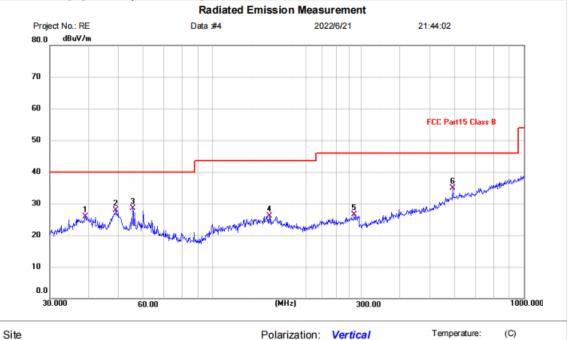

Note:

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	36.8953	0.16	23.62	23.78	40.00	-16.22	QP	Р	
	2	55.4147	-0.20	23.59	23.39	40.00	-16.61	QP	Р	
	3	143.8295	2.59	23.91	26.50	43.50	-17.00	QP	Р	
	4	294.1137	1.33	24.47	25.80	46.00	-20.20	QP	Р	
	5	593.0496	0.61	32.24	32.85	46.00	-13.15	QP	Р	
ı	6 *	935.5463	0.57	37.19	37.76	46.00	-8.24	QP	Р	

Power:

Test Result:

^{*:}Maximum data x:Over limit !:over margin



Humidity:

%RH

[TestMode: TX]; [Polarity: Vertical]

Limit: FCC Part15 Class B EUT: smart wireless meat thermometer

M/N: BF20 Mode: TX mode

Note:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	39.0245	2.04	23.84	25.88	40.00	-14.12	QP	Р	
2	48.8429	4.12	23.74	27.86	40.00	-12.14	QP	Р	
3	55.4147	4.87	23.59	28.46	40.00	-11.54	QP	Р	
4	152.1297	2.23	23.87	26.10	43.50	-17.40	QP	Р	
5	284.9767	2.15	24.36	26.51	46.00	-19.49	QP	Р	
6 *	590.9737	2.83	32.16	34.99	46.00	-11.01	QP	Р	

Power:

^{*:}Maximum data x:Over limit !:over margin

Above 1GHz

[TestMode: TX low channel]; [Polarity: Horizontal]

Radiated Emission Measurement 2022/6/20 Project No.: RE Data:#3 19:39:30 dBuV/m 90.0 80 FCC Part15 (PK) 70 60 FCC Part15 (AV) 50 40 30 20 10.0 1000.000 2175.00 3350.00 10400.00 11575.00 12750.00 4525.00 5700.00 (MHz) 8050.00 9225.00

Site Polarization: Horizontal Temperature: (C)
Limit: FCC Part15 (PK) Power: Humidity: %RH

EUT: smart wireless meat thermometer

M/N: BF20 Mode: TX-L Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2402.000	43.15	-0.93	42.22	74.00	-31.78	peak	
2		3843.500	42.72	7.12	49.84	74.00	-24.16	peak	
3		4804.000	42.48	3.71	46.19	74.00	-27.81	peak	
4		7206.000	38.71	5.96	44.67	74.00	-29.33	peak	
5		9608.000	37.82	9.29	47.11	74.00	-26.89	peak	
6	*	11716.000	38.79	11.76	50.55	74.00	-23.45	peak	

*:Maximum data x:Over limit !:over margin (Reference Only

Temperature:

Humidity:

(C)

%RH

[TestMode: TX low channel]; [Polarity: Vertical]

Radiated Emission Measurement Project No.: RE Data:#4 2022/6/20 19:42:52 dBuV/m 90.0 80 FCC Part15 (PK) 70 60 50 40 30 20 10.0 1000.000 2175.00 10400.00 11575.00 12750.00 3350.00 4525.00 5700.00 (MHz) 8050.00 9225.00

Polarization: Vertical

Limit: FCC Part15 (PK)

EUT: smart wireless meat thermometer

M/N: BF20 Mode: TX-L Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2402.000	41.97	-0.93	41.04	74.00	-32.96	peak	
2		3820.000	41.99	7.41	49.40	74.00	-24.60	peak	
3		4804.000	39.99	3.71	43.70	74.00	-30.30	peak	
4		7206.000	39.77	5.96	45.73	74.00	-28.27	peak	
5		9608.000	37.80	9.29	47.09	74.00	-26.91	peak	
6	*	11293.000	39.25	11.91	51.16	74.00	-22.84	peak	

Power:

*: Maximum data x:Over limit !:over margin (Reference Only

10400.00 11575.00 12750.00

(C)

%RH

Temperature:

Humidity:

[TestMode: TX middle channel]; [Polarity: Horizontal]

Radiated Emission Measurement 2022/6/20 Project No.: RE Data:#5 19:45:02 dBuV/m 90.0 80 FCC Part15 (PK) 70 60 50 40 30 20 10.0 (MHz)

9225.00

8050.00

Polarization: Horizontal

Limit: FCC Part15 (PK)

1000.000 2175.00

EUT: smart wireless meat thermometer

3350.00

4525.00

5700.00

M/N: BF20 Mode: TX-M

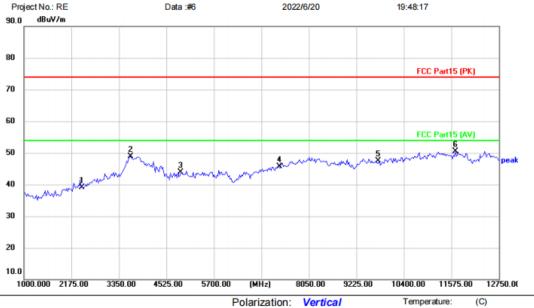
Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2442.000	42.95	-1.09	41.86	74.00	-32.14	peak	
2		3843.500	42.58	7.12	49.70	74.00	-24.30	peak	
3		4884.000	40.26	3.34	43.60	74.00	-30.40	peak	
4		7326.000	38.97	6.44	45.41	74.00	-28.59	peak	
5		9768.000	37.59	9.63	47.22	74.00	-26.78	peak	
6	*	11293.000	39.08	11.91	50.99	74.00	-23.01	peak	

Power:

*: Maximum data x:Over limit !:over margin (Reference Only


Humidity:

%RH

[TestMode: TX middle channel]; [Polarity: Vertical]

Radiated Emission Measurement 2022/6/20

Limit: FCC Part15 (PK)

EUT: smart wireless meat thermometer

M/N: BF20

Site

Mode: TX-M Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2442.000	40.18	-1.09	39.09	74.00	-34.91	peak	
2		3632.000	41.10	7.77	48.87	74.00	-25.13	peak	
3		4884.000	40.59	3.34	43.93	74.00	-30.07	peak	
4		7326.000	39.25	6.44	45.69	74.00	-28.31	peak	
5		9768.000	37.97	9.63	47.60	74.00	-26.40	peak	
6	*	11669.000	38.71	11.88	50.59	74.00	-23.41	peak	

Power:

*: Maximum data x:Over limit !:over margin (Reference Only

(C)

[TestMode: TX High channel]; [Polarity: Horizontal]

Radiated Emission Measurement 2022/6/20 Project No.: RE Data:#7 19:51:26 dBuV/m 90.0 80 FCC Part15 (PK) 70 60 FCC Part15 (AV) 50 40 30 20 10.0 (MHz) 1000.000 2175.00 3350.00 4525.00 5700.00 9225.00 10400.00 11575.00 12750.00 8050.00

EUT: smart wireless meat thermometer

M/N: BF20 Mode: TX-H Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2480.000	41.70	-1.26	40.44	74.00	-33.56	peak	
2		3796.500	41.28	7.65	48.93	74.00	-25.07	peak	
3		4960.000	38.81	3.75	42.56	74.00	-31.44	peak	
4		7440.000	38.46	6.86	45.32	74.00	-28.68	peak	
5		9920.000	37.77	10.16	47.93	74.00	-26.07	peak	
6	*	11340.000	38.44	11.85	50.29	74.00	-23.71	peak	

*:Maximum data x:Over limit !:over margin (Reference Only

Temperature:

Humidity:

(C)

%RH

[TestMode: TX High channel]; [Polarity: Vertical]

Radiated Emission Measurement 2022/6/20 Project No.: RE Data:#8 19:54:24 dBuV/m 90.0 80 FCC Part15 (PK) 70 60 50 40 30 20 10.0 (MHz) 1000.000 2175.00 3350.00 4525.00 9225.00 10400.00 11575.00 12750.00 5700.00 8050.00

Polarization: Vertical

Limit: FCC Part15 (PK)

EUT: smart wireless meat thermometer

M/N: BF20 Mode: TX-H Note:

Site

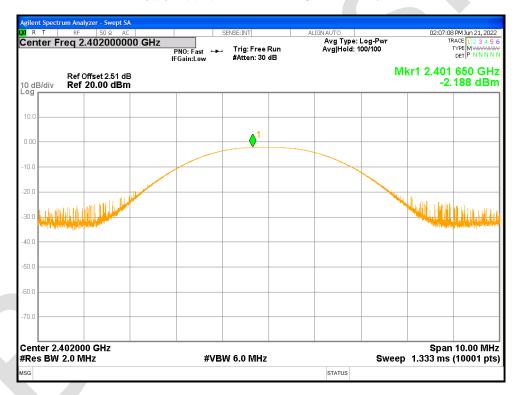
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2480.000	42.64	-1.26	41.38	74.00	-32.62	peak	
2		3867.000	42.37	6.82	49.19	74.00	-24.81	peak	
3		4960.000	39.55	3.75	43.30	74.00	-30.70	peak	
4		7440.000	39.82	6.86	46.68	74.00	-27.32	peak	
5		9920.000	37.00	10.16	47.16	74.00	-26.84	peak	
6	*	11410.500	39.10	11.78	50.88	74.00	-23.12	peak	

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

18 APPENDIX

Report No.: BLA-EMC-202206-A5602

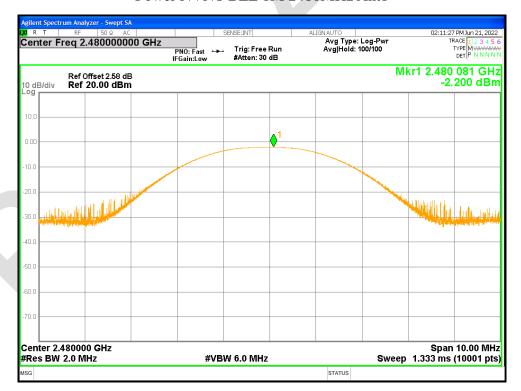

Page 44 of 61

Appendix1

Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE	2402	Ant1	-2.188	30	Pass
	1M					
NVNT	BLE	2442	Ant1	-2.602	30	Pass
	1M					
NVNT	BLE	2480	Ant1	-2.2	30	Pass
	1M					

Power NVNT BLE 1M 2402MHz Ant1



Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

Report No.: BLA-EMC-202206-A5602

Page 46 of 61

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.656	0.5	Pass
	1M					
NVNT	BLE	2442	Ant1	0.652	0.5	Pass
	1M					
NVNT	BLE	2480	Ant1	0.667	0.5	Pass
	1M					

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

Occupied Channel Bandwidth

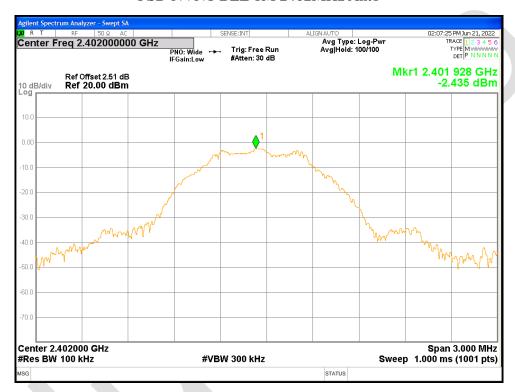
Condition	Mode	Frequency	Antenna	99% OBW
		(MHz)		(MHz)
NVNT	BLE 1M	2402	Ant1	1.0176
NVNT	BLE 1M	2442	Ant1	1.0076
NVNT	BLE 1M	2480	Ant1	1.0194

OBW NVNT BLE 1M 2402MHz Ant1



OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1



Maximum Power Spectral Density Level

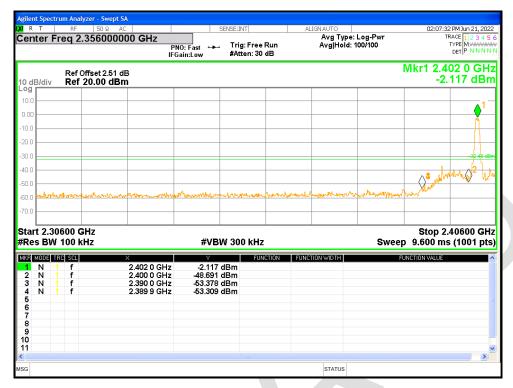
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-2.435	8	Pass
NVNT	BLE 1M	2442	Ant1	-2.703	8	Pass
NVNT	BLE 1M	2480	Ant1	-2.259	8	Pass

PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1

PSD NVNT BLE 1M 2480MHz Ant1

Band Edge


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-50.84	-30	Pass
NVNT	BLE 1M	2480	Ant1	-32.48	-30	Pass

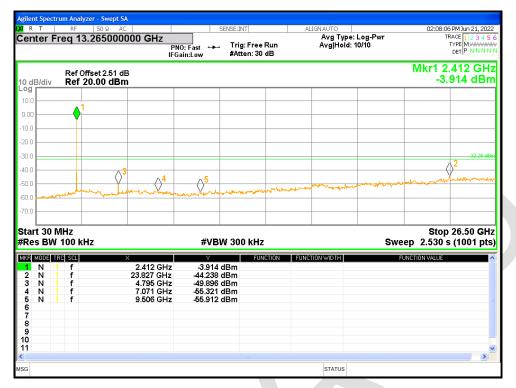
Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

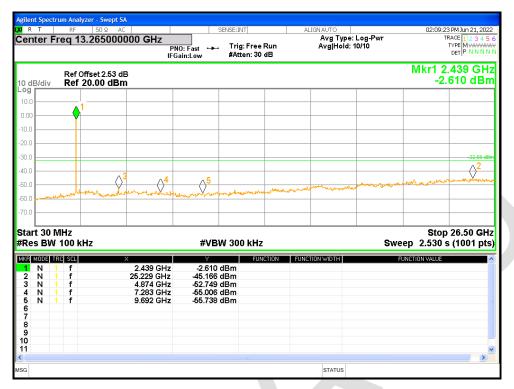
Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-41.97	-30	Pass
NVNT	BLE 1M	2442	Ant1	-42.48	-30	Pass
NVNT	BLE 1M	2480	Ant1	-42.73	-30	Pass

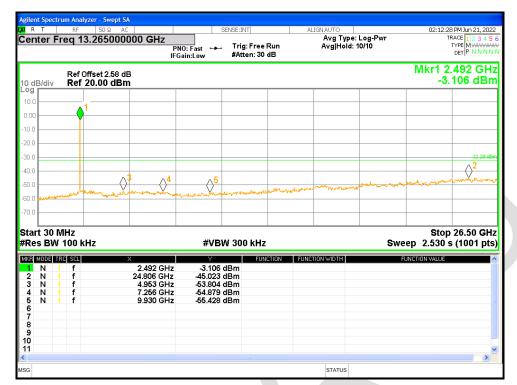
Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

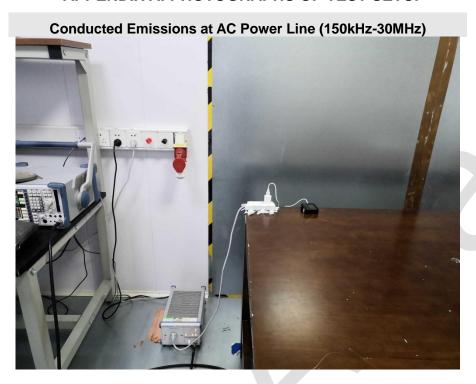


Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission



Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref


Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Report No.: BLA-EMC-202206-A5602

Page 61 of 61

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202206-A5601

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.