

CFR 47 FCC PART 15 SUBPART C(DTS) TEST REPORT

For

Azuga Safetycam

MODEL NUMBER: Gen-2 D107

FCC ID: 2AS3V-D107-1

REPORT NUMBER: E04A23030703F00201

ISSUE DATE: Sept. 09, 2023

Prepared for

Azuga Inc

42840 Christy St. #205, Fremont, CA, United States, 94508

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-1A TRF Originator: GTG TRF Date: 2022-06-29 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A23030703F00201 Page 2 of 88

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	Sept. 09, 2023	Initial Issue	Win

Summary of Test Results						
Test Item	Clause	Limit/Requirement	Result			
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass			
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207	N/A (NOTE 1, 2)			
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3)	Pass			
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2)	Pass			
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e)	Pass			
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d)	Pass			
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.205/15.209	Pass			
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass			

Note:

- 1. N/A: In this whole report not applicable.
- 2. This test is only applicable for devices which can be charged or powered by AC power cable.

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATT	ESTATION OF TEST RESULTS	5
2. TES	T METHODOLOGY	6
3. FAC	ILITIES AND ACCREDITATION	6
4. CAL	IBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. EQU	IIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	CHANNEL LIST	8
5.3.	MAXIMUM AVERAGE EIRP	9
<i>5.4.</i>	TEST CHANNEL CONFIGURATION	9
5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.7.	SUPPORT UNITS FOR SYSTEM TEST	10
5.8.	SETUP DIAGRAM	10
6. MEA	SURING EQUIPMENT AND SOFTWARE USED	12
7. ANT	ENNA PORT TEST RESULTS	12
7.1.	Conducted Output Power	14
7.2.	6dB Bandwidth LIMITS	15
7.3.	Power Spectral Density	16
7.4.	Conducted Band edge and spurious emission	17
7.5.	Duty Cycle	19
8. RAD	NATED TEST RESULTS	20
9. ANT	ENNA REQUIREMENT	37
10.	TEST DATA	38
APPEND	IX: PHOTOGRAPHS OF TEST CONFIGURATION	76
APPEND	IX: PHOTOGRAPHS OF THE EUT	77

Page 5 of 88

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Azuga Inc

Address: 42840 Christy St. #205, Fremont, CA, United States,

94508

Manufacturer Information

Company Name: SHENZHEN AONI ELECTRONIC CO.,LTD

Address: No.5 Bldg, Honghui Industrial park, 2nd liuxian Road,

Xin'an street, Bao'an District, Shenzhen

EUT Information

EUT Name: Azuga Safetycam Model: Gen-2 D107

Series Model: N/A

Brand: Azuga SafetyCam™

Sample Received Date: March 27, 2023

Sample Status: Normal

Sample ID: A23030703 001

Date of Tested: March 27, 2023 to Sept. 09, 2023

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C(DTS)	Pass			

Prepared By:

Checked By:

Win Huang

7 lic

Alan He

Project Engineer

San I G

Approved By:

Project Engineer

Shawn Wen

Laboratory Supervisor

REPORT NO.: E04A23030703F00201 Page 6 of 88

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DTS)

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01)
	Guangdong Global Testing Technology Co., Ltd.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1343)
	Guangdong Global Testing Technology Co., Ltd.
	has been recognized to perform compliance testing on equipment
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and
	Certification rules
	ISED (Company No.: 30714)
	Guangdong Global Testing Technology Co., Ltd.
	has been registered and fully described in a report filed with ISED.
	The Company Number is 30714 and the test lab Conformity
	Assessment Body Identifier (CABID) is CN0148.

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A23030703F00201 Page 7 of 88

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Measurement Frequency Range	K	U(dB)
AC Power Line Conducted	0.009 MHz ~ 0.15 MHz	2	4.00
Emission	0.15 MHz ~ 30 MHz	2	3.62
	9kHz ~ 30MHz	2	2.20
Radiated Band edge and	30 MHz ~ 1 GHz	2	3.16
Spurious Emission	1 GHz ~ 18 GHz	2	5.64
	18 GHz ~ 26.5 GHz	2	5.54
Conducted Output Power	/	2	0.73
6dB Bandwidth and 99% Occupied Bandwidth	1	2	9.2ppm
Power Spectral Density	/	2	1.84
	9kHz ~ 30MHz	2	0.95
Conducted Band edge and	30 MHz ~ 1 GHz	2	1.49
spurious emission	1 GHz ~ 18 GHz	2	1.75
	18 GHz ~ 26.5 GHz	2	2.06

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E04A23030703F00201 Page 8 of 88

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Azuga Safetycam
Model		Gen-2 D107
Series Model		N/A
Hardware Version	n	N/A
Software Version		N/A
Ratings		DC 5V, 2A
Power Supply	DC	13V

Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range:	2412 MHz to 2462 MHz		
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40		
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)		
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n: Up to MCS7		
Number of Channels:	IEEE 802.11b/g/n-HT20: 11 IEEE 802.11n-HT40: 7		
Maximum Peak Power:	IEEE 802.11b: 12.19 dBm IEEE 802.11g: 10.49 dBm IEEE 802.11n-HT20: 10.13 dBm IEEE 802.11n-HT40: 9.45 dBm		
Antenna Type:	FPC Antenna		
Antenna Gain:	2.17 dBi		
Normal Test Voltage:	13 Vdc		

5.2. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/

	Channel List for 802.11n (40 MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	/	/

REPORT NO.: E04A23030703F00201 Page 9 of 88

5.3. MAXIMUM AVERAGE EIRP

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)	Maximum AVG EIRP (dBm)
b	2412 ~ 2462	1-11[11]	12.19	14.36
g	2412 ~ 2462	1-11[11]	10.49	12.66
n HT20	2412 ~ 2462	1-11[11]	10.13	12.30
n HT40	2422 ~ 2452	3-9[7]	9.45	11.62

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency	
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz	
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz	
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz	
n HT40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz	

5.5. THE WORSE CASE POWER SETTING PARAMETER

The W	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Softw	vare			Secure (CRT 1.7.6		
	Transmit		Test Channel				
Modulation Mode	Antenna	1	NCB: 20MF	łz	N	ICB: 40MHz	
Wiode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9
802.11b	1	17	17	17			
802.11g	1	17	17	17			
802.11n HT20	1	17	17	17			
802.11n HT40	1				17	17	17

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

TRF No.: 04-E001-1A

Page 10 of 88

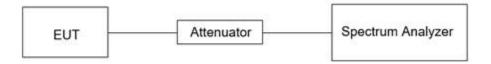
802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	FPC	2.17

Test Mode	Transmit and Receive Mode	Description				
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.				
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.				
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.				
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.				
Note: 1. WLAN 2.4	Note: 1. WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)					

Note: The value of the antenna gain was declared by customer.


5.7. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

Equipment	Manufacturer	Model No.
OBD-II Power adapter	AONI	A2-OPK-HTVP-007A
PC	Lenovo	T14

5.8. SETUP DIAGRAM

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of	Test Equipment of Conducted RF					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2022/10/08	2023/10/07	
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2022/10/08	2023/10/07	
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/03/16	2024/03/15	
RF Control box	MWRF-test	MW100-RFCB	MW220926GT G	2022/10/08	2023/10/07	
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/03/16	2024/03/15	
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2022/10/08	2023/10/07	
temperature humidity chamber	Espec	SH-241	SH-241-2014	2022/10/08	2023/10/07	
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A	

Test Equipment of Radiated emissions below 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2022/10/08	2023/10/07
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2022/10/29	2023/10/28
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA- 03A2 RE)	N/A	N/A	N/A

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2022/10/08	2023/10/07
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2022/10/29	2023/10/28
Horn antenna	A-INFO	3117	246069	2022/03/11	2023/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2022/10/29	2023/10/28
Horn antenna	ZKJC	3116C	246265	2022/03/29	2023/03/28

TRF No.: 04-E001-1A

Page 13 of 88

Test Software	Farad	EZ-EMC (Ver.FA- 03A2 RE+)	N/A	N/A	N/A
---------------	-------	------------------------------	-----	-----	-----

REPORT NO.: E04A23030703F00201 Page 14 of 88

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247(b)(3)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Page 15 of 88

7.2. 6DB BANDWIDTH LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz
VBW	For 6 dB Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Page 16 of 88

7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	PEAK	
RBW	3 kHz ≤ RBW ≤ 100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Page 17 of 88

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) Conducted Bandedge and Spurious Emissions Conducted at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power			

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

150an	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TRF No.: 04-E001-1A

REPORT NO.: E04A23030703F00201 Page 18 of 88

TEST RESULTS

Please refer to section "Test Data" - Appendix

TRF No.: 04-E001-1A

REPORT NO.: E04A23030703F00201 Page 19 of 88

7.5. DUTY CYCLE

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E04A23030703F00201 Page 20 of 88

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC $\S15.205$ and $\S15.209$.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz				
Frequency Range	Field Strength Limit	Field Stren	gth Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m		
			Peak	
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak Av		
Above 1000	500	74	54	

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made

TRF No.: 04-E001-1A

REPORT NO.: E04A23030703F00201 Page 22 of 88

to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

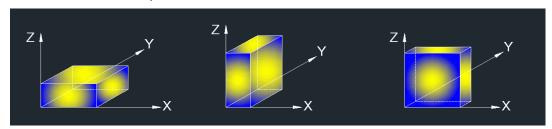
- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1G

The setting of the spectrum analyser

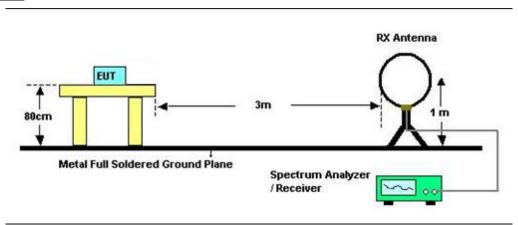
RBW	1 MHz
1\/B\/\/	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

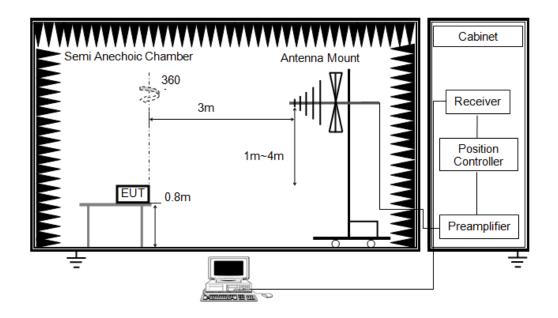
- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high

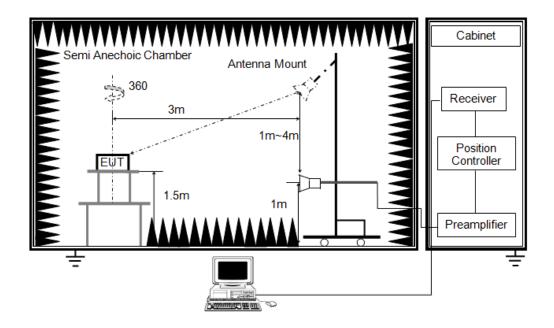

TRF No.: 04-E001-1A

REPORT NO.: E04A23030703F00201 Page 23 of 88

pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:

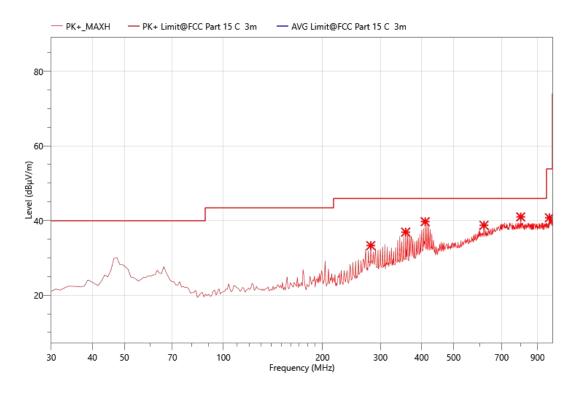


Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST SETUP

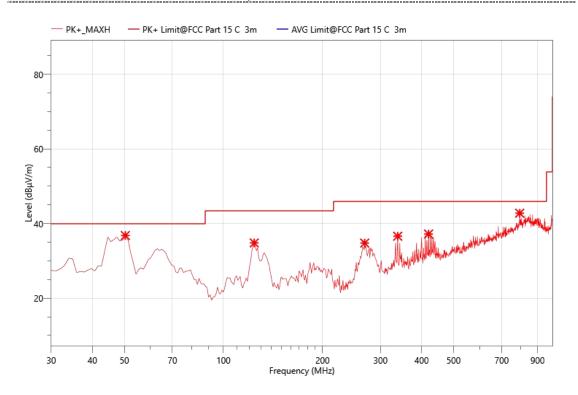
TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		


REPORT NO.: E04A23030703F00201 Page 25 of 88

TEST RESULTS

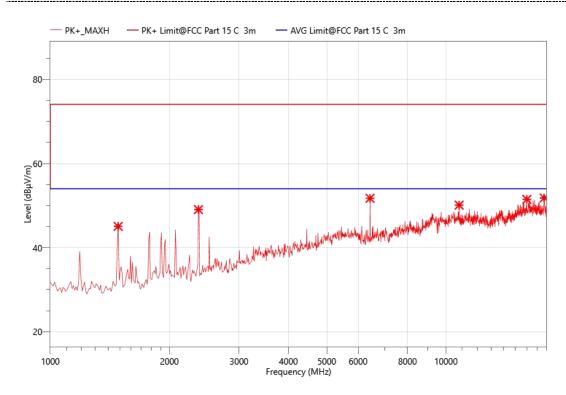
Radiated Spurious Emission:


The worst result as bellow:

Mode:	11B 2412MHz
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa

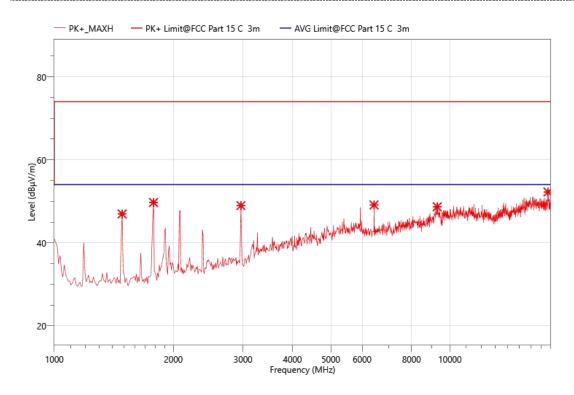
No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	280.260	34.80	33.29	46.00	12.71	PK+	Н	-1.51
2	357.860	35.67	36.90	46.00	9.10	PK+	Н	1.23
3	410.240	36.45	39.69	46.00	6.31	PK+	Н	3.24
4	618.790	30.26	38.72	46.00	7.28	PK+	Н	8.46
5	800.180	28.10	40.97	46.00	5.03	PK+	Н	12.87
6	977.690	29.59	40.75	53.90	13.15	PK+	Н	11.16

Mode:	11B 2412MHz
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa

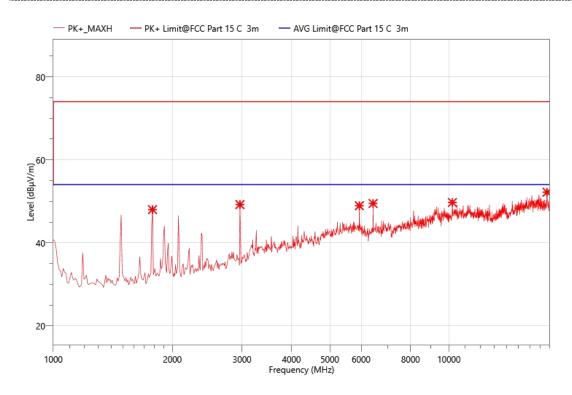


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	50.370	40.38	36.79	40.00	3.21	PK+	V	-3.59
2	124.090	40.56	34.81	43.50	8.69	PK+	V	-5.75
3	268.620	36.82	34.77	46.00	11.23	PK+	V	-2.05
4	338.460	36.01	36.60	46.00	9.40	PK+	V	0.59
5	419.940	33.74	37.19	46.00	8.81	PK+	V	3.45
6	794.360	30.30	42.77	46.00	3.23	PK+	V	12.47

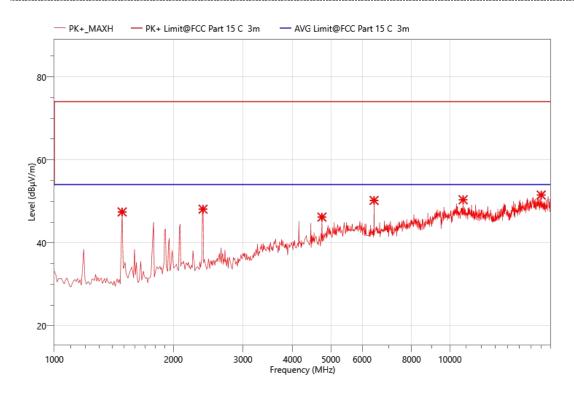
Note: 1. Result Level = Read Level+ Antenna Factor+ Cable Loss- Amp. Factor


Above 1000MHz~10th Harmonics:

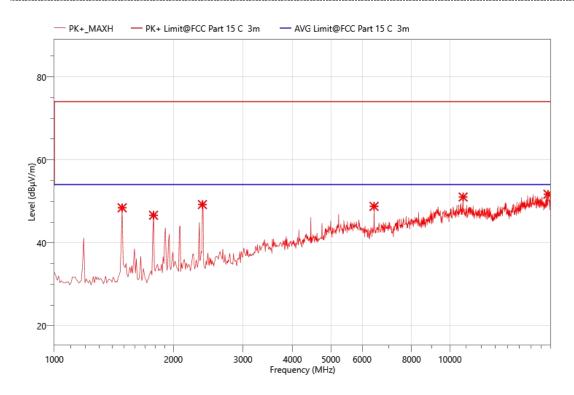
Mode:	2.4G b 2412
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	1484.500	70.93	45.05	74.00	28.95	PK+	V	-25.88
2	2368.500	69.77	49.04	74.00	24.96	PK+	V	-20.73
3	6431.500	56.57	51.72	74.00	22.28	PK+	V	-4.85
4	10800.500	50.43	50.10	74.00	23.90	PK+	V	-0.33
5	16019.500	48.23	51.47	74.00	22.53	PK+	V	3.24
6	17711.000	47.00	51.80	74.00	22.20	PK+	V	4.8

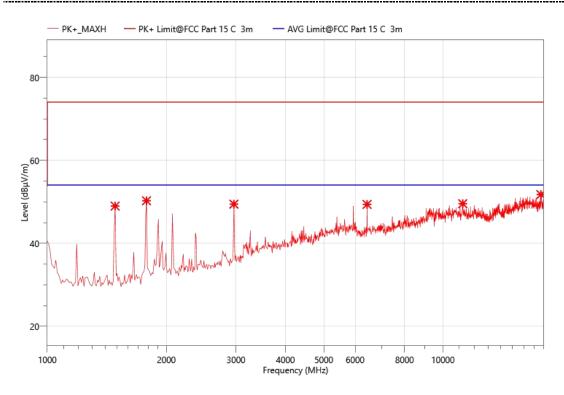
Mode:	2.4G b 2412
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	1484.500	72.85	46.97	74.00	27.03	PK+	Н	-25.88
2	1782.000	73.62	49.72	74.00	24.28	PK+	Н	-23.9
3	2963.500	66.77	48.98	74.00	25.02	PK+	Н	-17.79
4	6431.500	53.98	49.13	74.00	24.87	PK+	Н	-4.85
5	9287.500	49.43	48.68	74.00	25.32	PK+	Н	-0.75
6	17694.000	47.66	52.25	74.00	21.75	PK+	Н	4.59

Mode:	2.4G b 2437
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	1782.000	71.90	48.00	74.00	26.00	PK+	Н	-23.9
2	2963.500	67.01	49.22	74.00	24.78	PK+	Н	-17.79
3	5938.500	54.09	48.95	74.00	25.05	PK+	Н	-5.14
4	6431.500	54.34	49.49	74.00	24.51	PK+	Н	-4.85
5	10205.500	50.41	49.73	74.00	24.27	PK+	Н	-0.68
6	17702.500	47.60	52.19	74.00	21.81	PK+	Н	4.59

Mode:	2.4G b 2437
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa

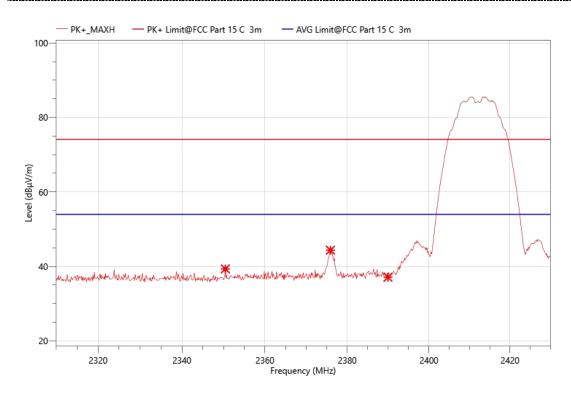

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	1484.500	73.33	47.45	74.00	26.55	PK+	V	-25.88
2	2377.000	68.85	48.11	74.00	25.89	PK+	V	-20.74
3	4748.500	56.11	46.20	74.00	27.80	PK+	V	-9.91
4	6431.500	55.07	50.22	74.00	23.78	PK+	V	-4.85
5	10800.500	50.71	50.38	74.00	23.62	PK+	V	-0.33
6	17014.000	47.04	51.53	74.00	22.47	PK+	V	4.49

Mode:	2.4G b 2462
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	1484.500	74.33	48.45	74.00	25.55	PK+	V	-25.88
2	1782.000	70.54	46.64	74.00	27.36	PK+	V	-23.9
3	2368.500	69.96	49.23	74.00	24.77	PK+	V	-20.73
4	6431.500	53.63	48.78	74.00	25.22	PK+	V	-4.85
5	10800.500	51.37	51.04	74.00	22.96	PK+	V	-0.33
6	17694.000	47.12	51.71	74.00	22.29	PK+	V	4.59

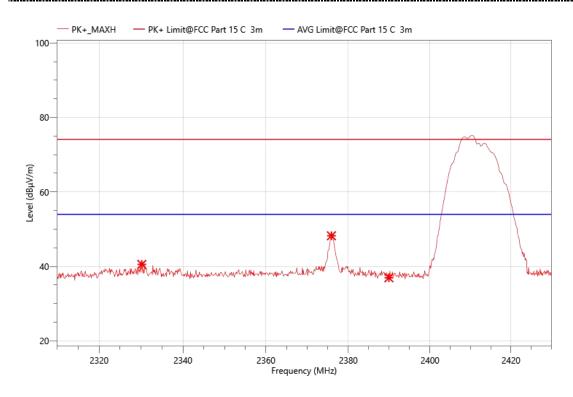
Mode:	2.4G b 2462
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	1484.500	74.86	48.98	74.00	25.02	PK+	Н	-25.88
2	1782.000	74.16	50.26	74.00	23.74	PK+	Н	-23.9
3	2963.500	67.23	49.44	74.00	24.56	PK+	Н	-17.79
4	6431.500	54.23	49.38	74.00	24.62	PK+	Н	-4.85
5	11225.500	48.18	49.55	74.00	24.45	PK+	Н	1.37
6	17685.500	47.16	51.76	74.00	22.24	PK+	Н	4.6

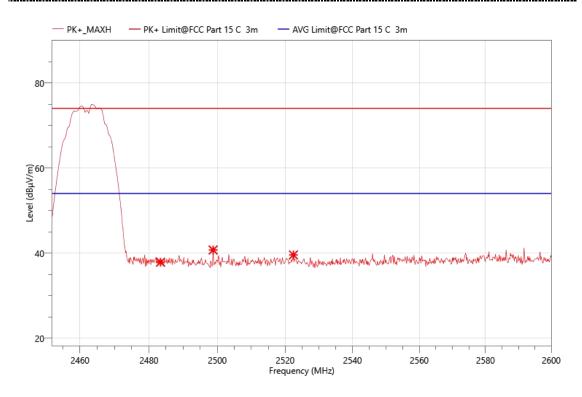

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

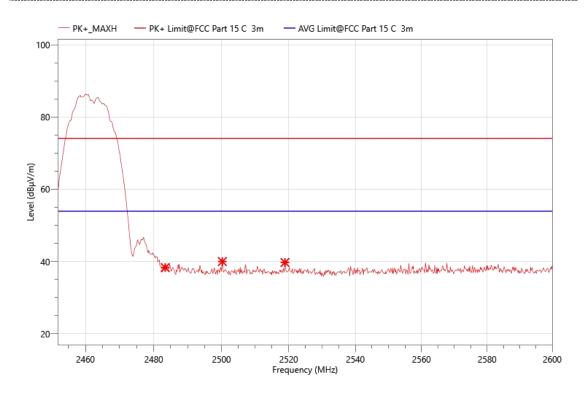
- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
 - (4) Measuring frequencies from 1GHz to 25GHz.


Band edge:

Mode:	2.4G b 2412
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2350.440	60.10	39.32	74.00	34.68	PK+	Н	-20.78
2	2375.880	65.09	44.35	74.00	29.65	PK+	Н	-20.74
3	2389.920	57.81	37.08	74.00	36.92	PK+	Н	-20.73

Mode:	2.4G b 2412
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2330.160	61.47	40.54	74.00	33.46	PK+	V	-20.93
2	2375.880	68.96	48.22	74.00	25.78	PK+	V	-20.74
3	2389.920	57.67	36.94	74.00	37.06	PK+	V	-20.73

Mode:	2.4G b 2462
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2483.376	58.18	37.88	74.00	36.12	PK+	V	-20.3
2	2498.768	61.01	40.75	74.00	33.25	PK+	V	-20.26
3	2522.448	59.75	39.59	74.00	34.41	PK+	V	-20.16

Mode:	2.4G b 2462
Power:	DC 5V
TE:	Vier
Date	2023/9/4
T/A/P	24.3°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2483.376	58.63	38.33	74.00	35.67	PK+	Η	-20.3
2	2500.248	60.25	39.99	74.00	34.01	PK+	Н	-20.26
3	2518.896	59.92	39.74	74.00	34.26	PK+	Ι	-20.18

REPORT NO.: E04A23030703F00201 Page 37 of 88

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

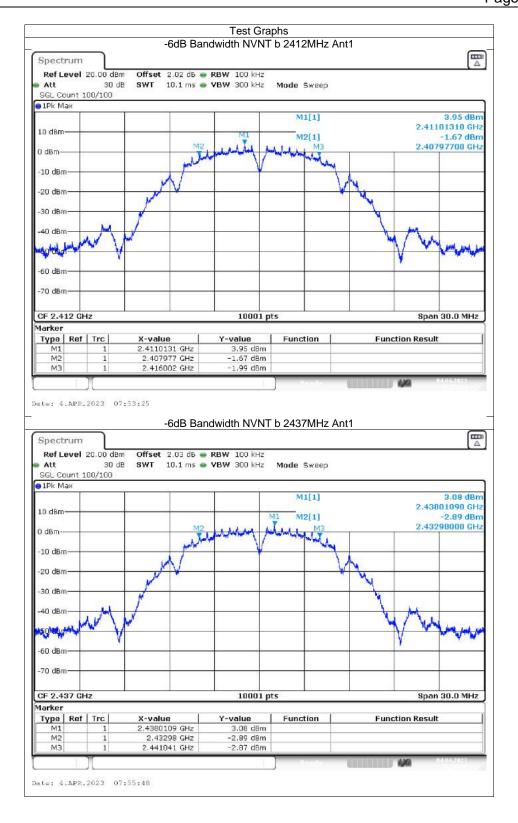
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

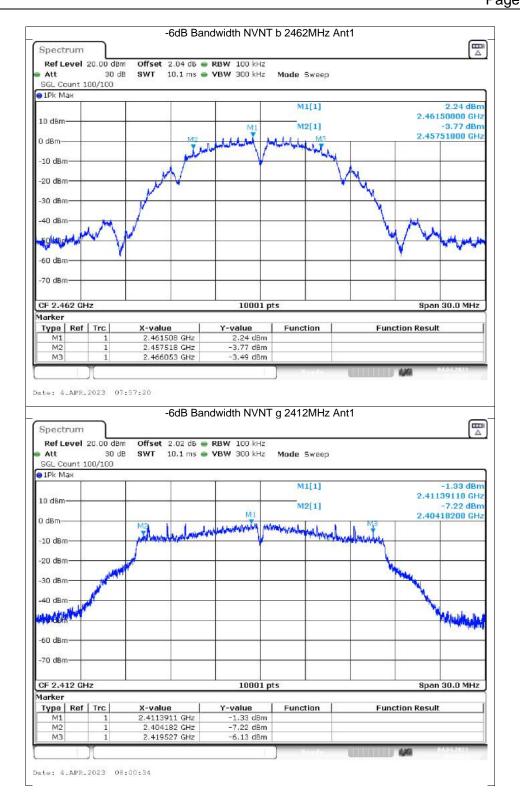
DESCRIPTION

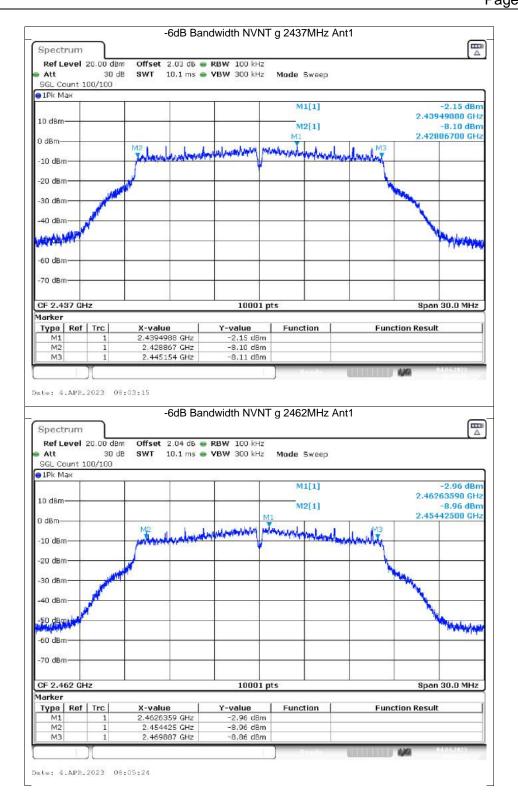
Pass

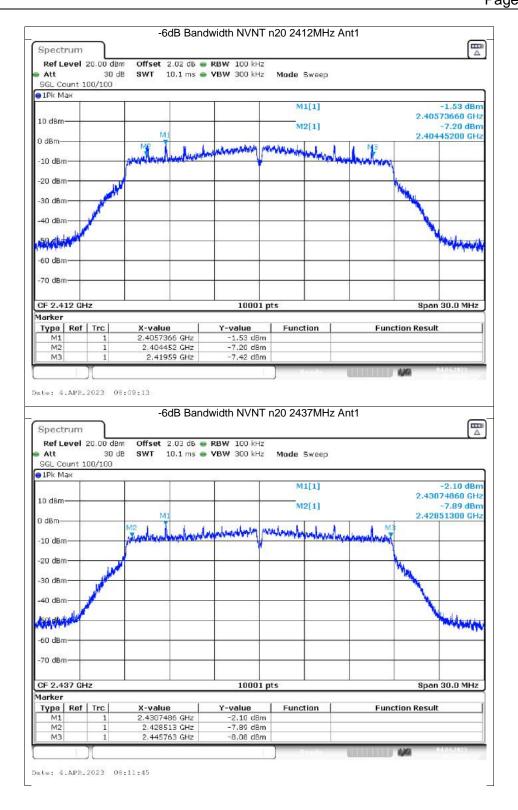
REPORT NO.: E04A23030703F00201 Page 38 of 88

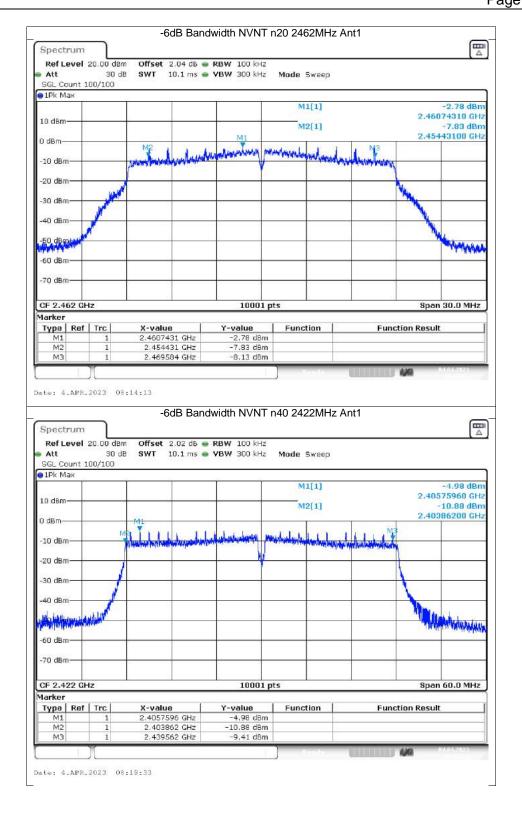
10. TEST DATA

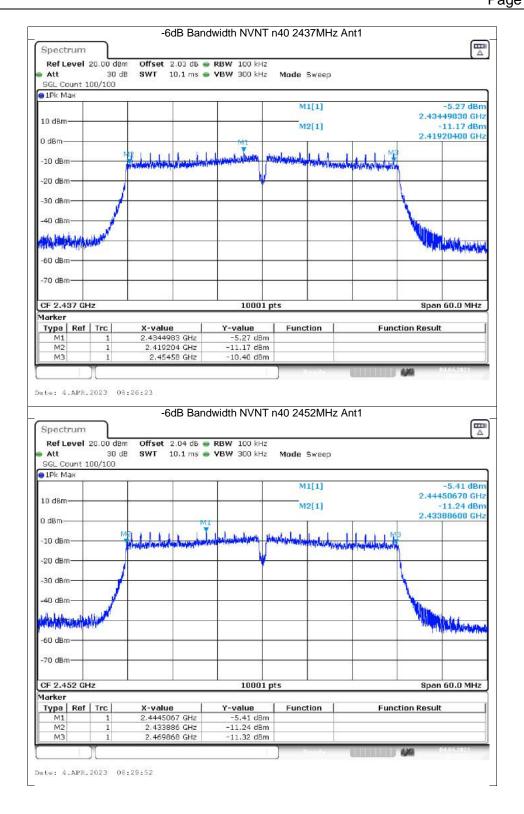

Maximum Conducted Output Power

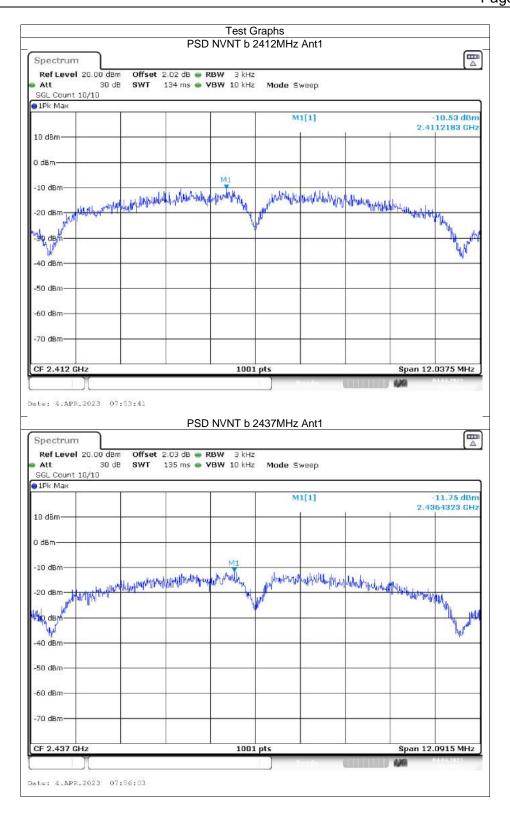

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	12.19	0	12.19	30	Pass
NVNT	b	2437	Ant1	11.67	0	11.67	30	Pass
NVNT	b	2462	Ant1	11.21	0	11.21	30	Pass
NVNT	g	2412	Ant1	10.19	0.3	10.49	30	Pass
NVNT	g	2437	Ant1	9.59	0.3	9.89	30	Pass
NVNT	g	2462	Ant1	8.93	0.3	9.23	30	Pass
NVNT	n20	2412	Ant1	9.82	0.31	10.13	30	Pass
NVNT	n20	2437	Ant1	9.37	0.31	9.68	30	Pass
NVNT	n20	2462	Ant1	8.71	0.32	9.03	30	Pass
NVNT	n40	2422	Ant1	8.84	0.61	9.45	30	Pass
NVNT	n40	2437	Ant1	8.64	0.61	9.25	30	Pass
NVNT	n40	2452	Ant1	8.38	0.62	9	30	Pass

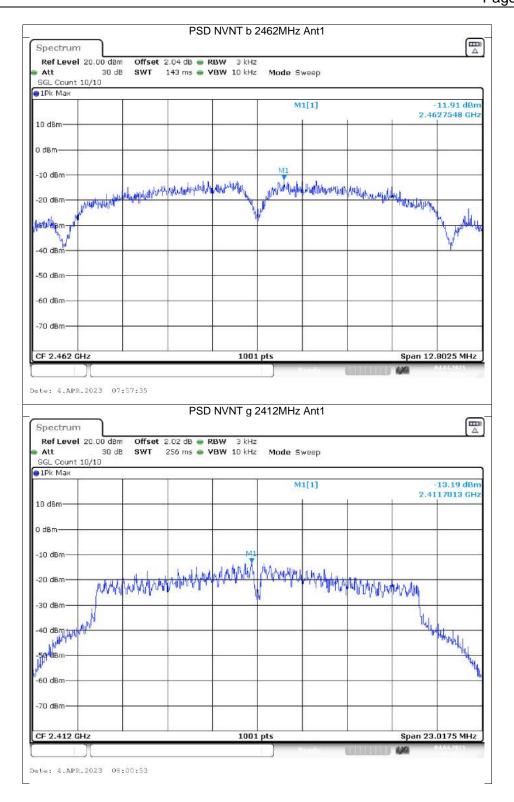

REPORT NO.: E04A23030703F00201 Page 39 of 88

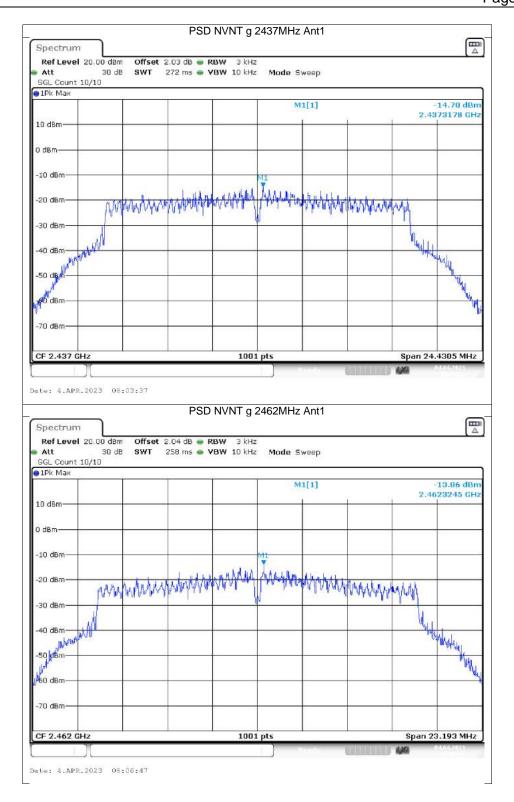

-6dB Bandwidth

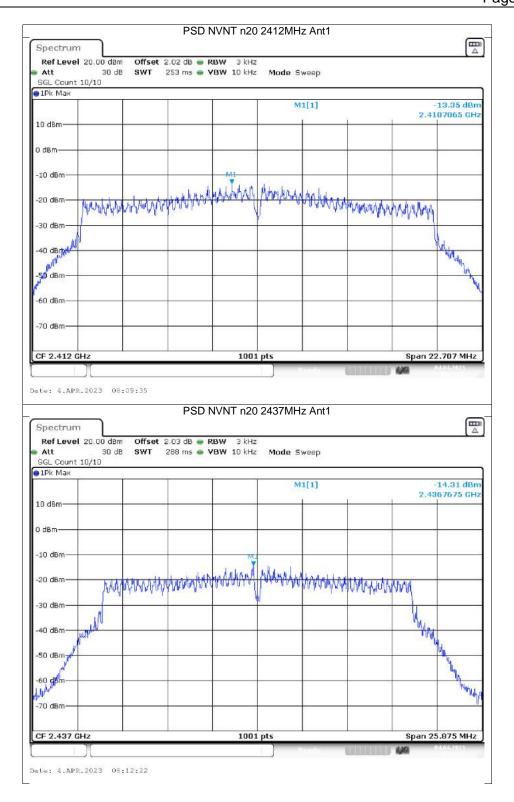

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	Ant1	8.025	0.5	Pass
NVNT	b	2437	Ant1	8.061	0.5	Pass
NVNT	b	2462	Ant1	8.535	0.5	Pass
NVNT	g	2412	Ant1	15.345	0.5	Pass
NVNT	g	2437	Ant1	16.287	0.5	Pass
NVNT	g	2462	Ant1	15.462	0.5	Pass
NVNT	n20	2412	Ant1	15.138	0.5	Pass
NVNT	n20	2437	Ant1	17.25	0.5	Pass
NVNT	n20	2462	Ant1	15.153	0.5	Pass
NVNT	n40	2422	Ant1	35.7	0.5	Pass
NVNT	n40	2437	Ant1	35.376	0.5	Pass
NVNT	n40	2452	Ant1	35.982	0.5	Pass

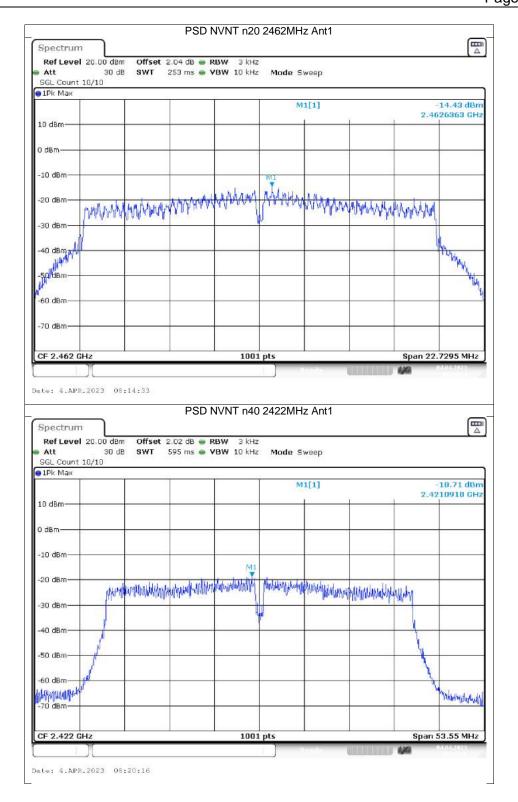


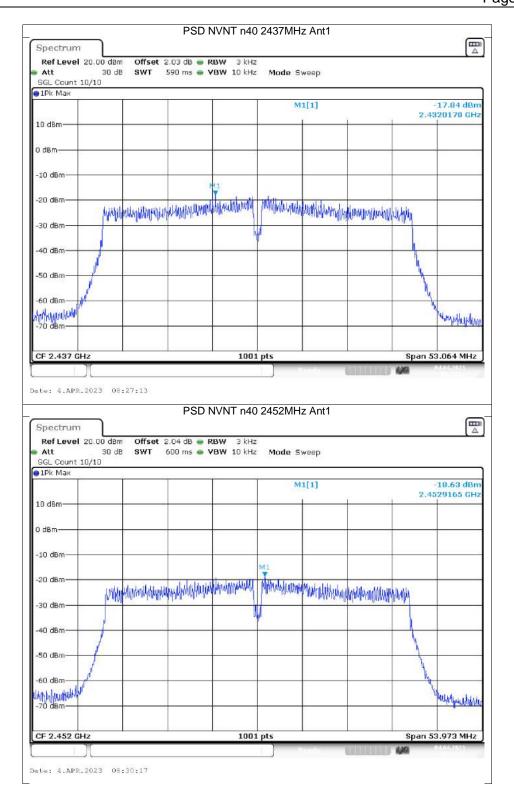


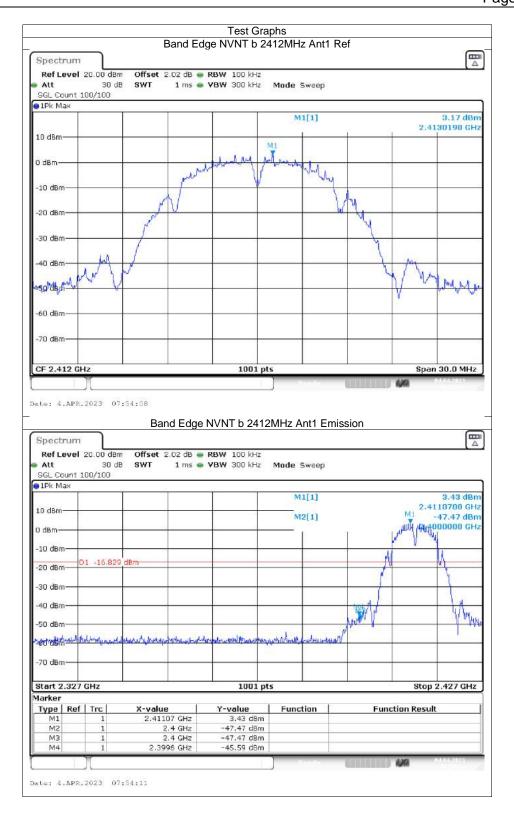


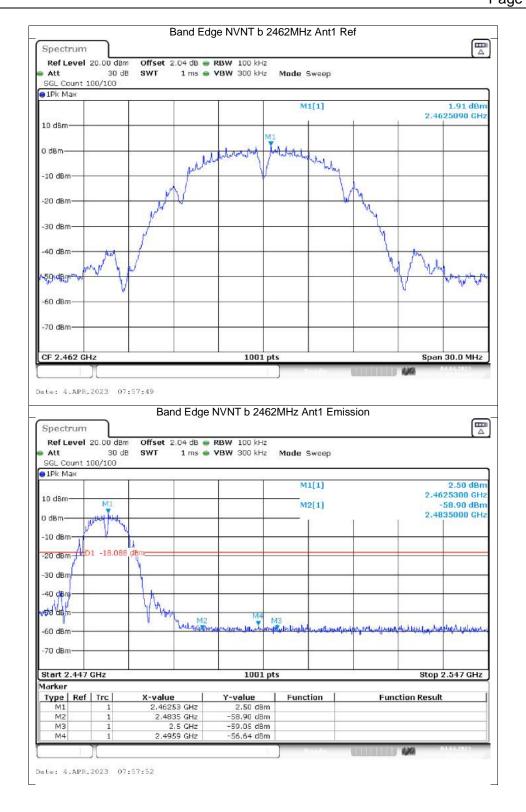

REPORT NO.: E04A23030703F00201 Page 46 of 88

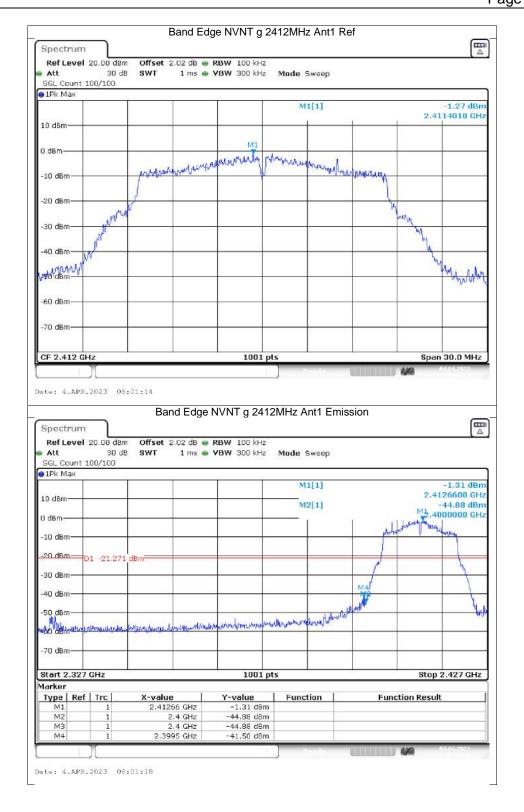

Maximum Power Spectral Density Level

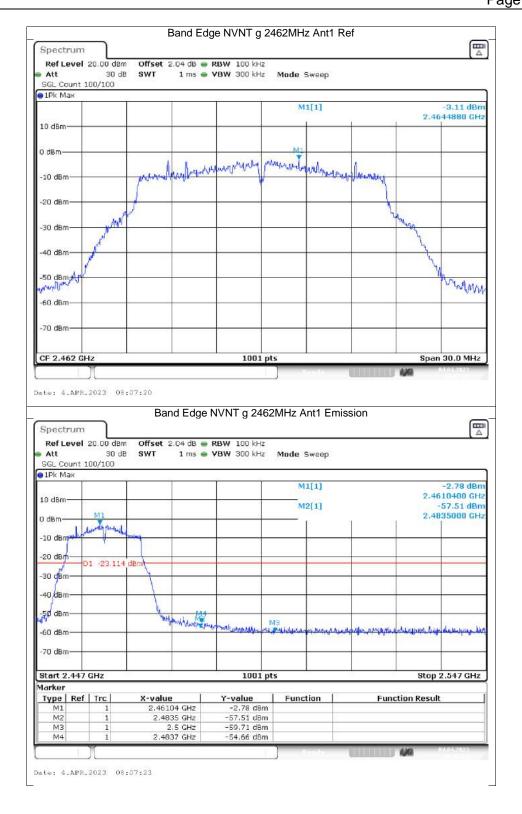

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Duty Factor (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	Ant1	-10.53	0	-10.53	8	Pass
NVNT	b	2437	Ant1	-11.75	0	-11.75	8	Pass
NVNT	b	2462	Ant1	-11.91	0	-11.91	8	Pass
NVNT	g	2412	Ant1	-13.19	0	-13.19	8	Pass
NVNT	g	2437	Ant1	-14.7	0	-14.7	8	Pass
NVNT	g	2462	Ant1	-13.86	0	-13.86	8	Pass
NVNT	n20	2412	Ant1	-13.35	0	-13.35	8	Pass
NVNT	n20	2437	Ant1	-14.31	0	-14.31	8	Pass
NVNT	n20	2462	Ant1	-14.43	0	-14.43	8	Pass
NVNT	n40	2422	Ant1	-18.71	0	-18.71	8	Pass
NVNT	n40	2437	Ant1	-17.84	0	-17.84	8	Pass
NVNT	n40	2452	Ant1	-18.63	0	-18.63	8	Pass

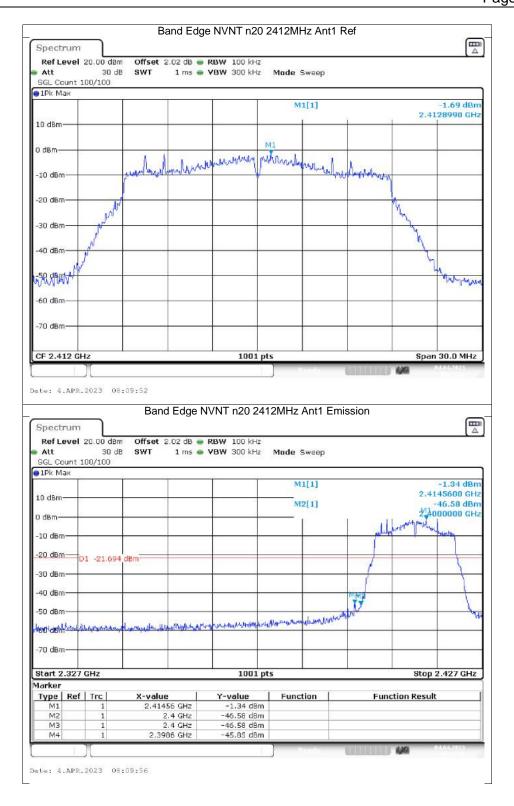


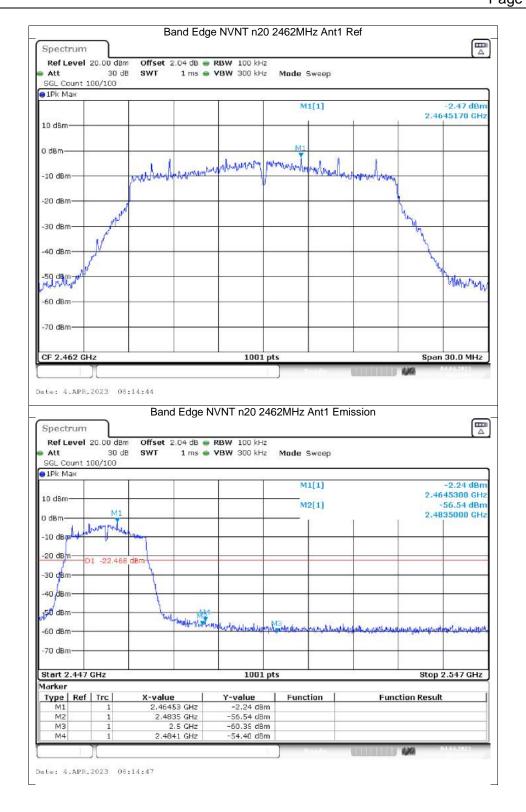


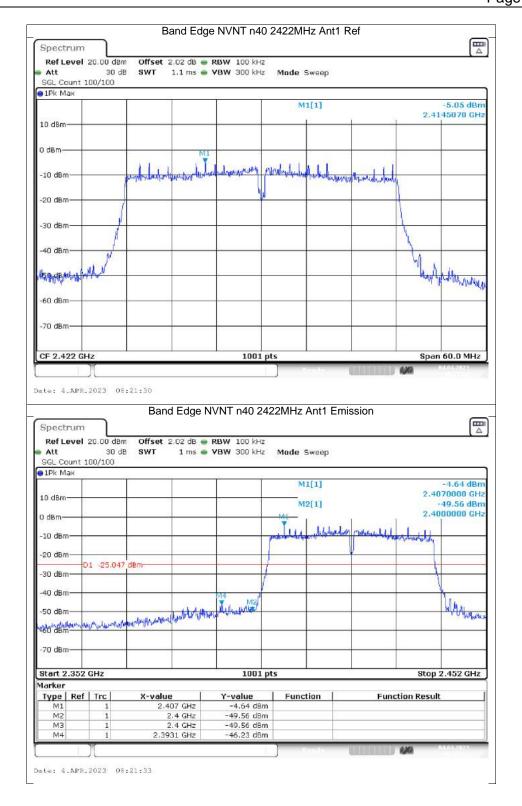


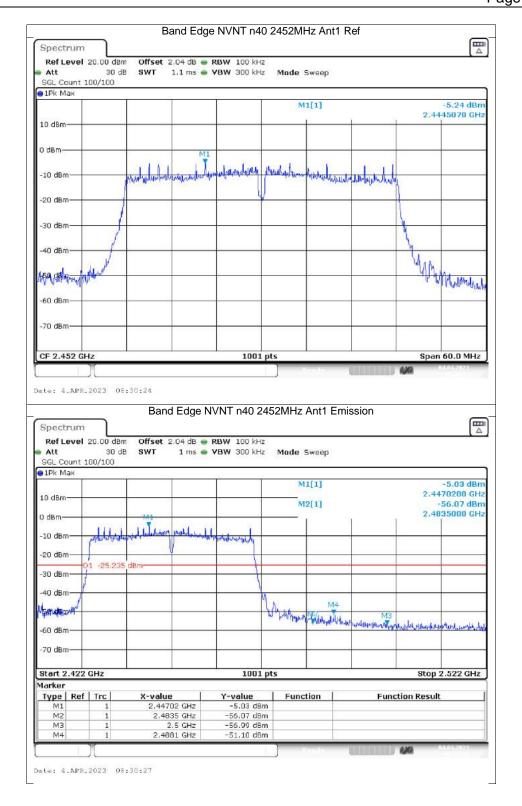

REPORT NO.: E04A23030703F00201 Page 53 of 88

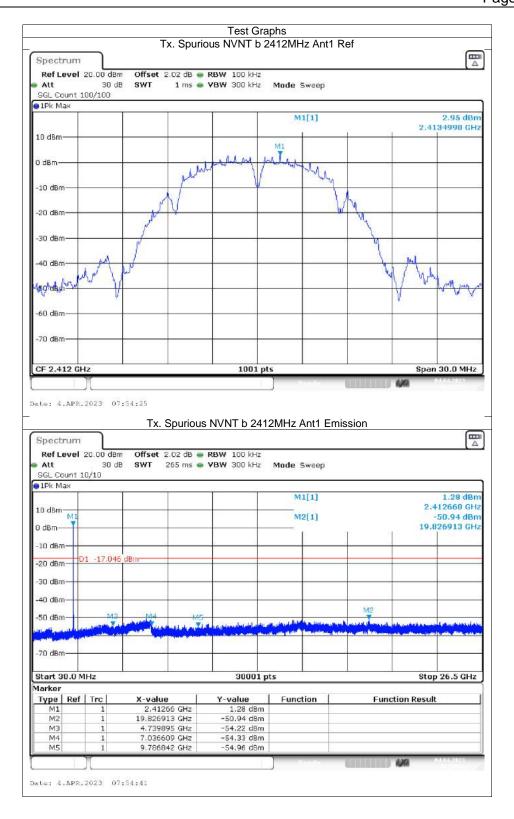

Band Edge

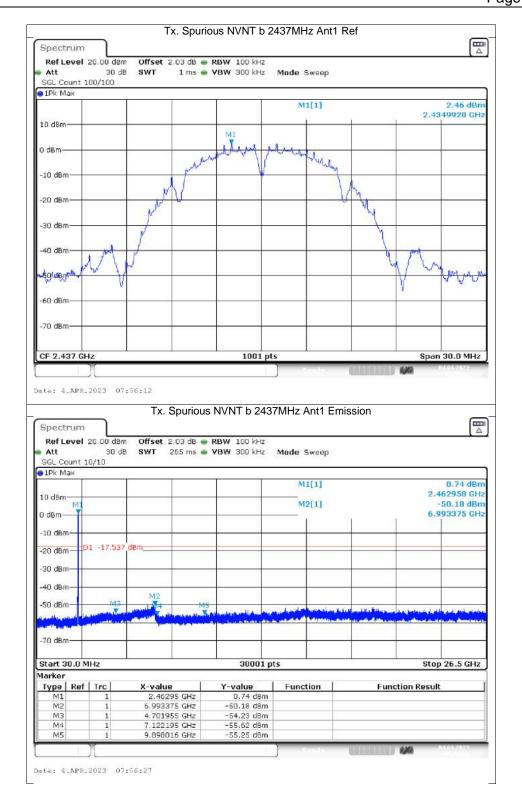

	_					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-48.75	-20	Pass
NVNT	b	2462	Ant1	-58.55	-20	Pass
NVNT	g	2412	Ant1	-40.22	-20	Pass
NVNT	g	2462	Ant1	-51.55	-20	Pass
NVNT	n20	2412	Ant1	-44.16	-20	Pass
NVNT	n20	2462	Ant1	-51.93	-20	Pass
NVNT	n40	2422	Ant1	-41.18	-20	Pass
NVNT	n40	2452	Ant1	-45.86	-20	Pass

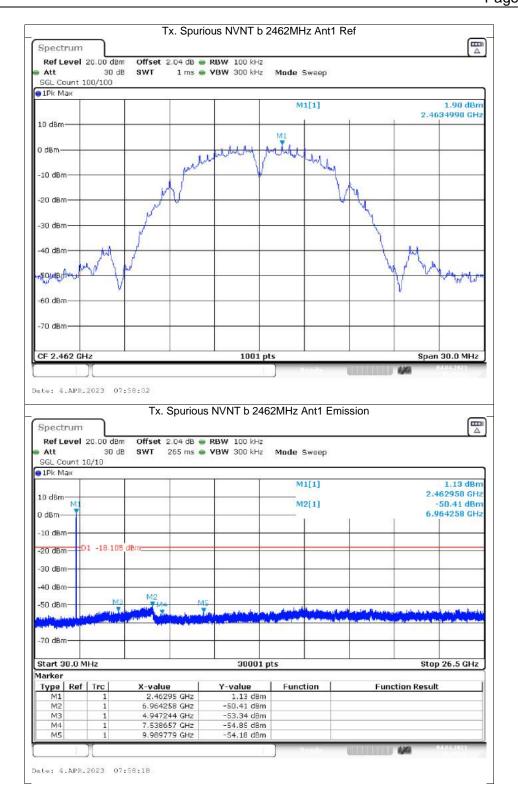


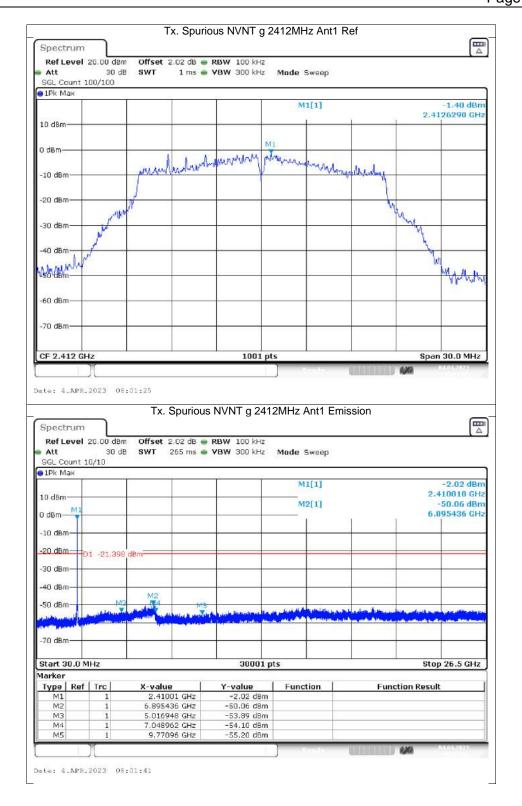


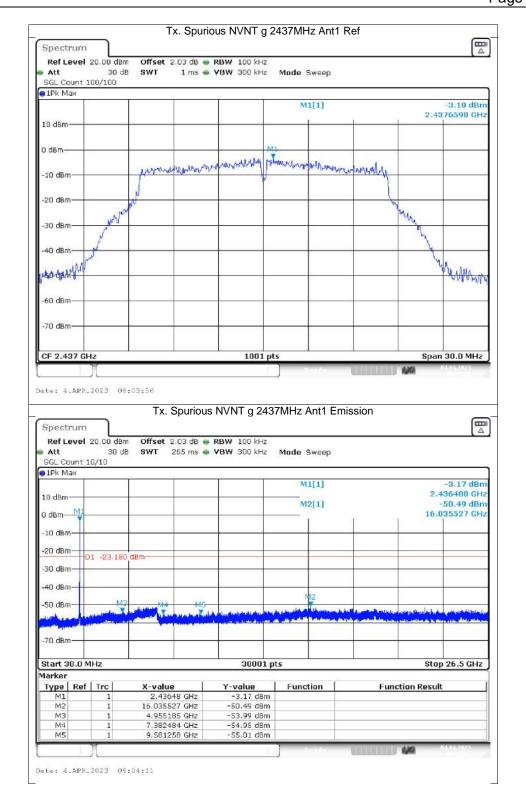


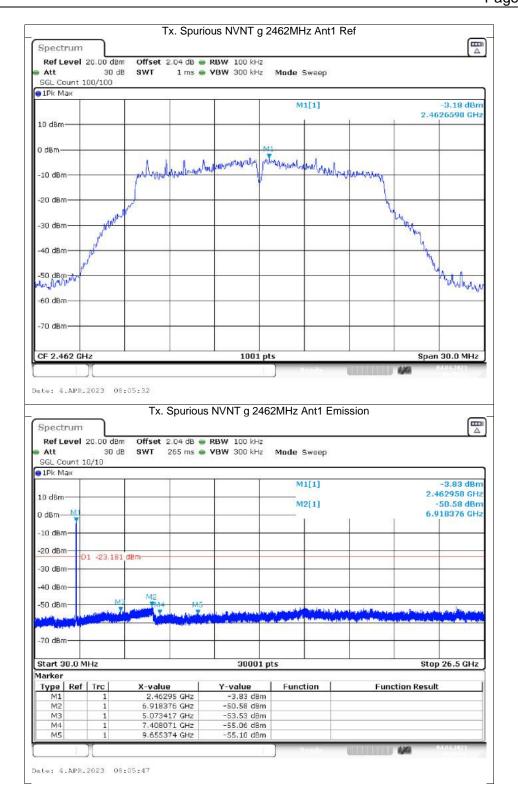


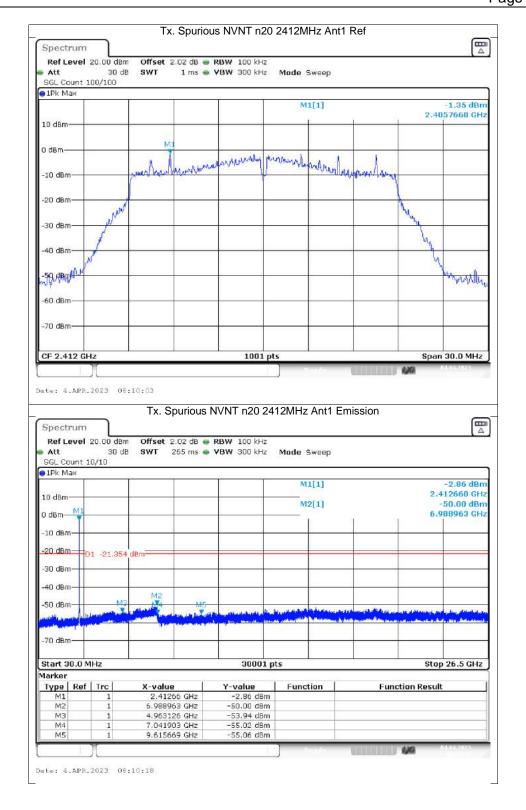


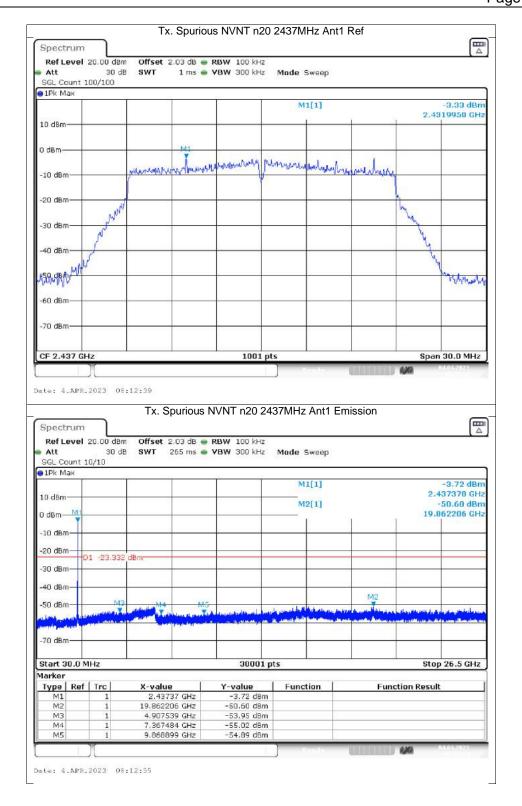

REPORT NO.: E04A23030703F00201 Page 62 of 88

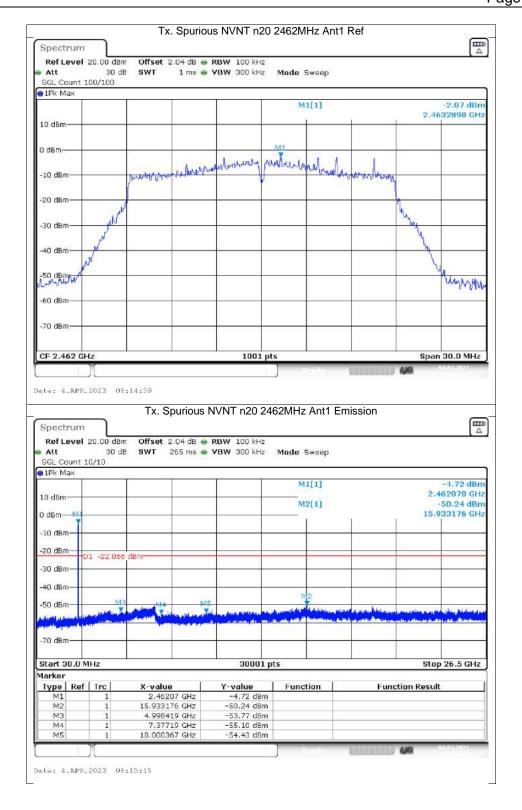

Conducted RF Spurious Emission

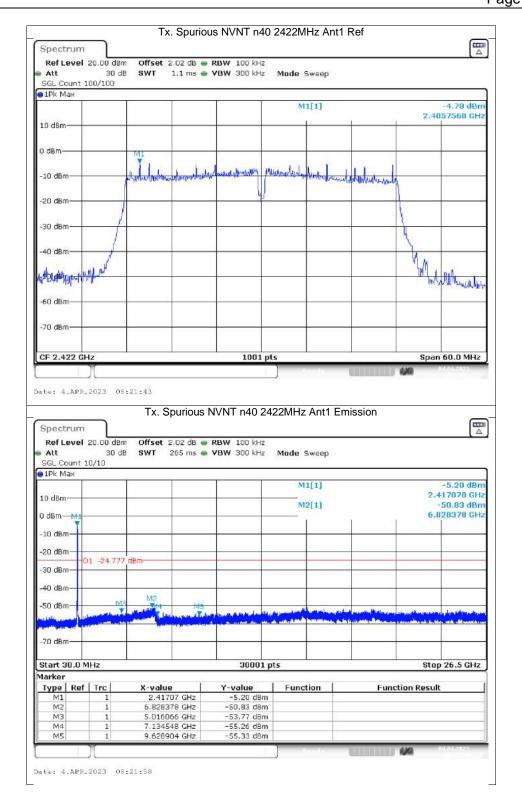

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict	
NVNT	b	2412	Ant1	-53.88	-20	Pass	
NVNT	b	2437	Ant1	-52.63	-20	Pass	
NVNT	b	2462	Ant1	-52.31	-20	Pass	
NVNT	g	2412	Ant1	-48.65	-20	Pass	
NVNT	g	2437	Ant1	-47.3	-20	Pass	
NVNT	g	2462	Ant1	-47.39	-20	Pass	
NVNT	n20	2412	Ant1	-48.65	-20	Pass	
NVNT	n20	2437	Ant1	-47.27	-20	Pass	
NVNT	n20	2462	Ant1	-47.36	-20	Pass	
NVNT	n40	2422	Ant1	-46.05	-20	Pass	
NVNT	n40	2437	Ant1	-43.91	-20	Pass	
NVNT	n40	2452	Ant1	-44 58	-20	Pass	

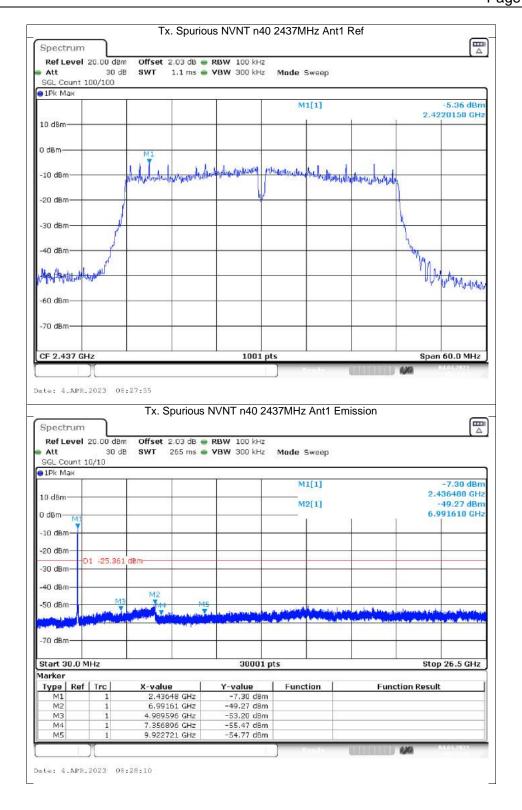


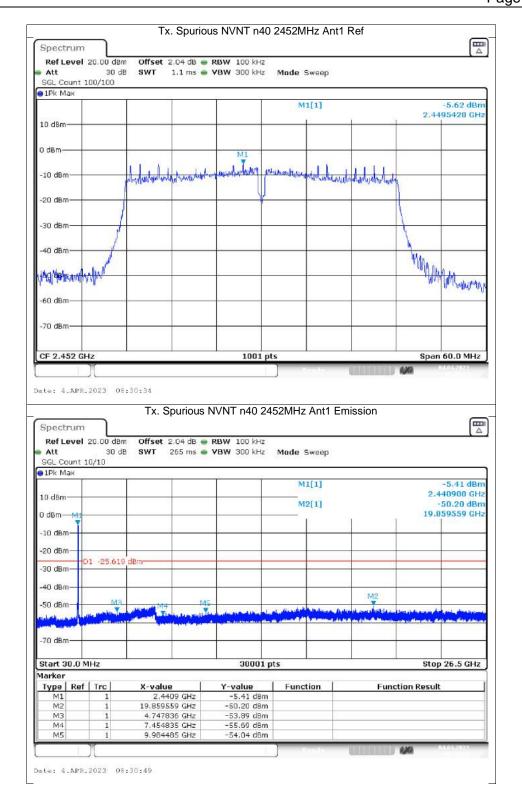




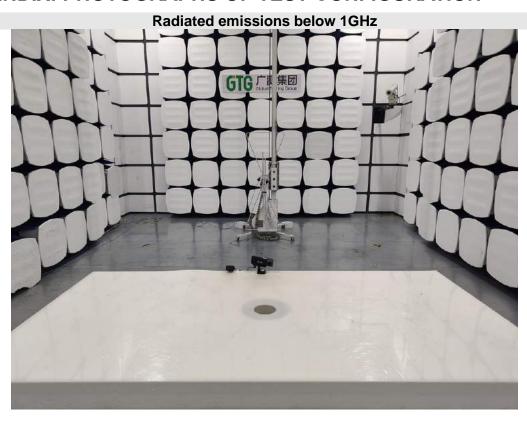


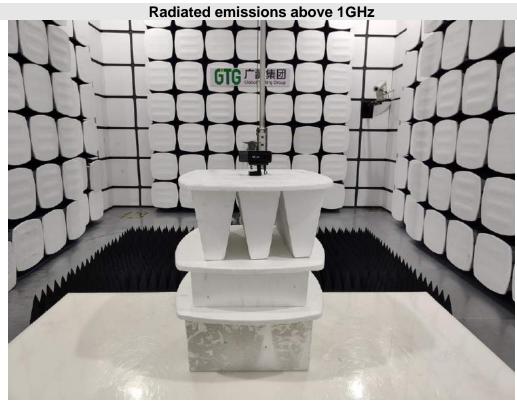






REPORT NO.: E04A23030703F00201 Page 75 of 88


Duty Cycle


Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	Ant1	98.9	0	0.12
NVNT	b	2437	Ant1	98.9	0	0.12
NVNT	b	2462	Ant1	98.92	0	0.12
NVNT	g	2412	Ant1	93.33	0.3	0.7
NVNT	g	2437	Ant1	93.33	0.3	0.7
NVNT	g	2462	Ant1	93.33	0.3	0.7
NVNT	n20	2412	Ant1	93.05	0.31	0.75
NVNT	n20	2437	Ant1	93.05	0.31	0.75
NVNT	n20	2462	Ant1	92.92	0.32	0.75
NVNT	n40	2422	Ant1	86.98	0.61	1.5
NVNT	n40	2437	Ant1	86.98	0.61	1.5
NVNT	n40	2452	Ant1	86.72	0.62	1.5

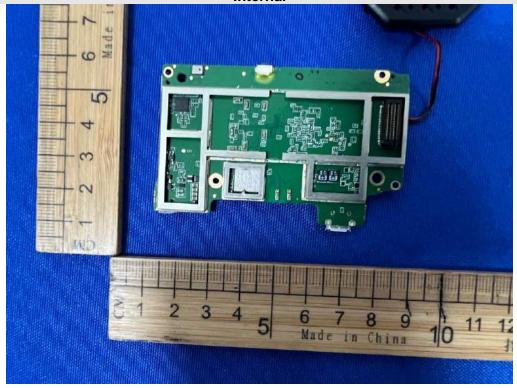
TRF No.: 04-E001-1A

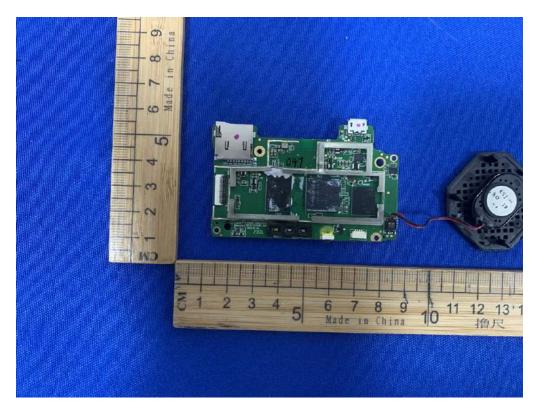
REPORT NO.: E04A23030703F00201 Page 76 of 88

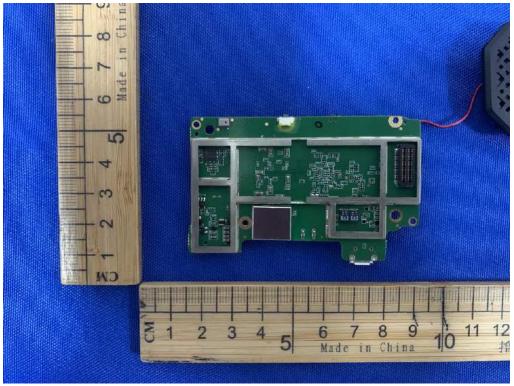
APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

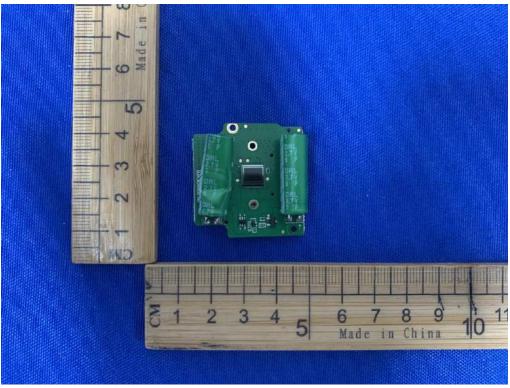
REPORT NO.: E04A23030703F00201 Page 77 of 88

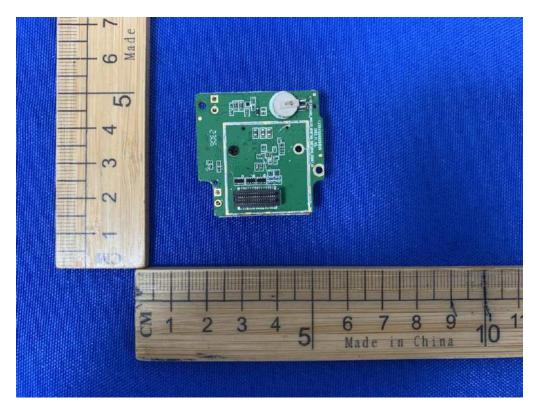
APPENDIX: PHOTOGRAPHS OF THE EUT

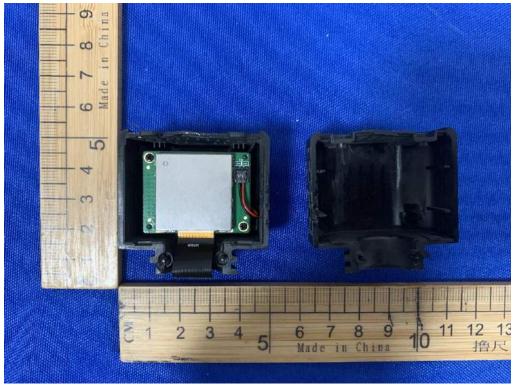


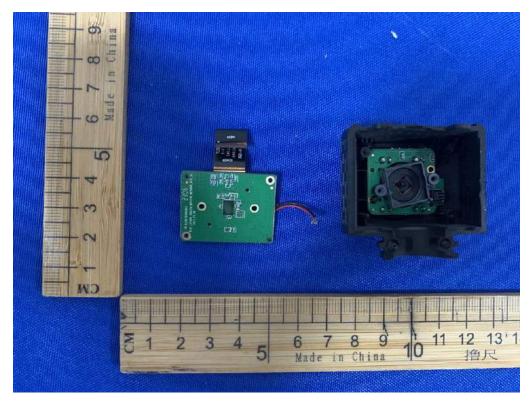


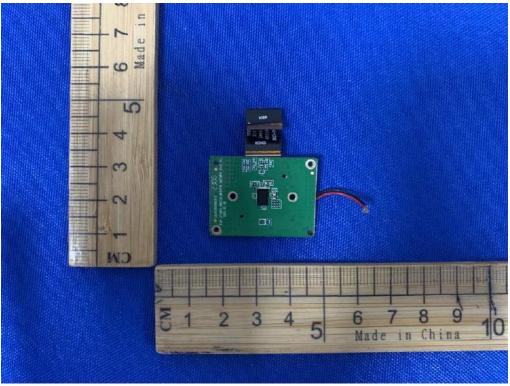


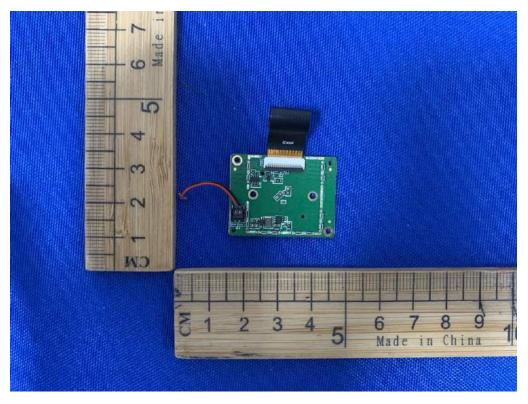


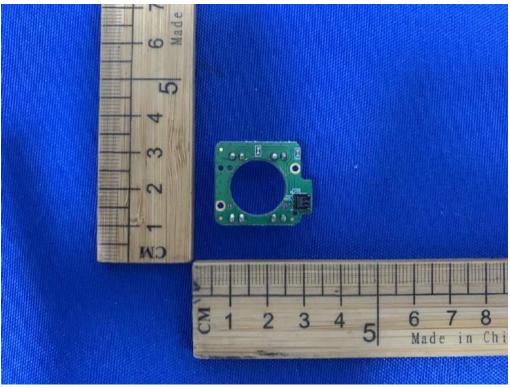


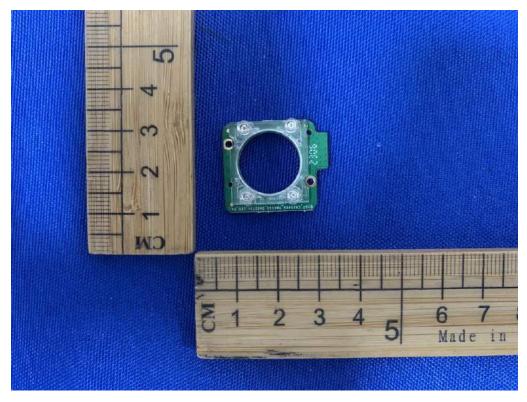


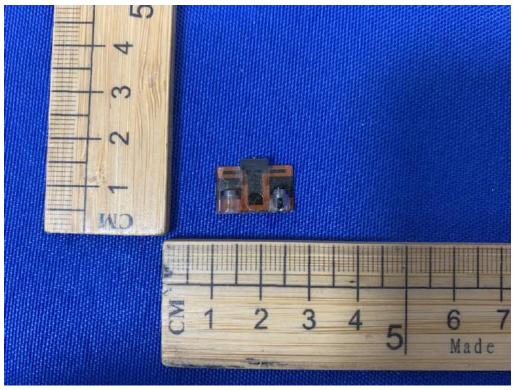


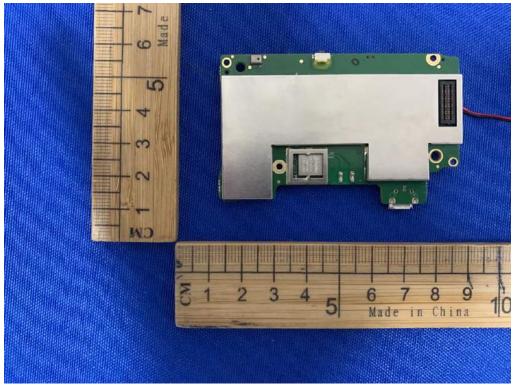


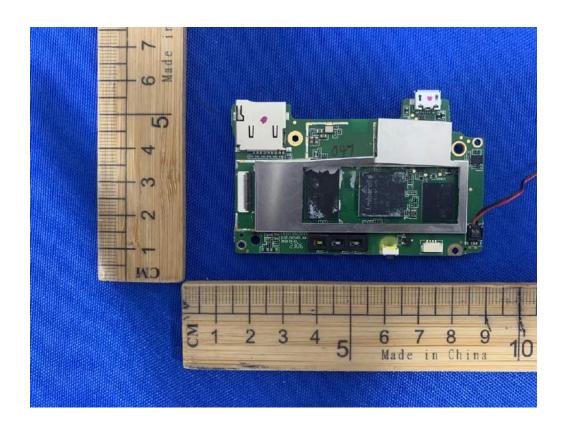












---END OF REPORT---