

	Test report No: RF Exposure
TEST REPORT	
Radio Spectrum Ma	tters (RF)
Identification of item tested	Miko Mini Auotmatic Data Processing Unit
Trademark	MIKO
Model and /or type reference	EMK401
FCC/IC ID	2AS3S-EMK401
Features	Input rating: 5,0 V; 3,0 A or 9,0 V; 2,0 A or 12,0 V; 1,5 A. Internal Li-ion battery (18650): 2400 mAh; 3,7 V; 8,88 Wh.
Applicant's name / address	RN Chidakashi Technologies Private Limited Flat No - 4, StambhTirth Building, Plot No 82, R.A. Kidwai Road Wadala, Mumbai, 400031, India
Test method requested, standard	KDB 447498 D01V06
	FCC Part 1.1310
Verdict Summary	COMPLIANCE
Tested by (name & signature)	Jazz Liang Jays Gong
Approved by (name & signature)	Tim Yan
Date of issue	2023-11-13
Report template No	TRF_EMC 2017-06- FCC_Exposure

INDEX

Gene	eral co	nditions	3		
Unce	ertainty	/	3		
Envi	ronme	ntal conditions	3		
Poss	ible te	st case verdicts	3		
Defir	nition c	of symbols used in this test report	4		
Abbr	eviatio	ns	4		
Docu	ument	History	4		
Rem	arks a	nd Comments	4		
1	Gene	ral Information	5		
	1.1	General Description of the Item(s)	5		
	1.2	Test data	9		
	1.3	The environment(s) in which the EUT is intended to be used	9		
2	Desc	ription of Test Setup	10		
	2.1	Operating mode(s) used for tests	10		
	2.2	Support / Auxiliary equipment / unit / software for the EUT	10		
	2.3	Test Configuration / Block diagram used for tests	10		
3	3 RF Exposure Evaluation				
	3.1	Limits	11		
	3.2 Test Procedure				
	3.3	Test Result	12		

GENERAL CONDITIONS

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.
- 5. This report will not be used for social proof function in China market.

UNCERTAINTY

For all measurements where guidance for the calculation of the instrumentation uncertainty of a measurement is specified in EN 55016-4-2 (CISPR 16-4-2), EN/IEC 61000-4 series or a product standard, the measurement instrumentation uncertainty has been calculated and applied in accordance with these standards.

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	15 °C – 35 °C
Relative Humidity air	30% - 60%
Atmospheric pressure	86 kPa – 106 kPa

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not measured	N/M

DEFINITION OF SYMBOLS USED IN THIS TEST REPORT

☐ Indicates that the listed condition, standard or equipment is applicable for this report/test/EUT.						
Indicates that the listed condition, standard or equipment is not applicable for this report/test/EUT.						
Decimal separator used in this report 🛛 Comma (,) 🗌 Point (.)						

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

EUT	:	Equipment Under Test
QP	:	Quasi-Peak
CAV	:	CISPR Average
AV	:	Average
CDN	:	Coupling Decoupling Network
SAC	:	Semi-Anechoic Chamber
OATS	:	Open Area Test Site
BW	:	Bandwidth
AM	:	Amplitude Modulation
PM	:	Pulse Modulation
HCP	:	Horizontal Coupling Plane
VCP	:	Vertical Coupling Plane
U _N	:	Nominal voltage
Тx	:	Transmitter
Rx	:	Receiver
N/A	:	Not Applicable
N/M	:	Not Measured

DOCUMENT HISTORY

Report nr.	Date	Description
RF Exposure	2023-11-27	First release.

REMARKS AND COMMENTS

The equipment under test (EUT) does meet the essential requirements of the stated standard(s)/test(s).

1 **GENERAL INFORMATION**

1.1 General Description of the Item(s)

Description of the item	Miko Mini Auotmatic Data Processing Unit			
Trademark	MIKO			
Model / Type number	EMK401			
FCC/IC ID:	2AS3S-EMK401			
Ratings	Input rating: 5,0 V; 3,0 A or 9,0 V; 2,0 A or 12,0 V; 1,5 A.			
	Internal Li-ion battery (18650): 2400 mAh; 3,7 V; 8,88 Wh.			
Manufacturer	Same as applicant			
Factory 1	Pacific Industries Zhongshan Limited			
	Xincun Factory Area, Baishawan Industrial Park, Eastern District, 528400, Zhongshan, Guangdong, China.			
Factory 2	Kaynes Electronics Manufacturing Private Limited			
	26-27. Bandanguppe-kellamballi Industrial Area, State Code: 29 ,571313,Chamarajanagara,India			

Rated power supply	Volta	/oltage and Erequency		Reference poles					
	Volta	voltage and Frequency			L3	N	PE		
	\square	AC: 100-240 V, 50/60 Hz	\square			\square			
		AC:							
	\square	DC: 5 V							
		Battery:							
Mounting position:	\square	Table top equipment							
		Wall/Ceiling mounted equipment							
		Floor standing equipment							
		Hand-held equipment							
		Other:							

Wireless module Characteristic

Wireless module No	SKI.WB800DS2.1_800M
Operating frequency range(s) – Tx.:	2412 – 2462 MHz for 2.4G WIFI
	WLAN 5GHz Band: 5180 MHz ~ 5320 MHz, 5500 MHz ~ 5700 MHz, 5745 MHz ~ 5825 MHz;
	2402 – 2480 MHz for Bluetooth
Operating frequency range(s) – Rx :	2412 – 2462 MHz for 2.4G WIFI
	WLAN 5GHz Band: 5180 MHz ~ 5320 MHz, 5500 MHz ~ 5700 MHz, 5745 MHz ~ 5825 MHz;
	2402 – 2480 MHz for Bluetooth
	WLAN 2.4GHz :
Type of Modulation	IEEE 802.11b: DSSS (CCK, QPSK, BPSK); IEEE 802.11g: OFDM (BPSK, QPSK, 16QAM, 64QAM);

	IEEE 802.11n HT20/40: OFDM (BPSK, QPSK, 16QAM, 64QAM)			
	IEEE 802.11ax (HE20/40): OFDMA (1024QAM, 256QAM, 64QAM,			
	16QAM, QPSK, BPSK)			
	WLAN 5GHz :			
	IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11n HT20, HT40: OFDM (64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11ac (VHT20/40): OFDM (256QAM, 64QAM, 16QAM, QPSK,			
	BPSK)			
	IEEE 802.11ax (HE20/40): OFDMA (256QAM, 64QAM, 16QAM, QPSK,			
	BPSK);			
	Bluetooth LE:GFSK			
Antenna type	FPC antenna			
Antonna gain	2,3 dBi for 2.4GHz			
	2,48 dBi for 5GHz			
Operation temperature range	-20 – 70 ℃			

Antenna List

Antenna Model No.	LJF02-23062508-R0A					
Antenna Manufacturer	Shenzhen Lejin radio frequency technology Co., LTD			requency technology Co., LTD		
Antenna Delivery		1*TX+1*RX	(2*TX+2*RX 3*TX+3*RX		
Antenna Technology		SISO				
				Basic methodology		
				Sectorized antenna systems		
				Cross-polarized antennas		
				Unequal antenna gains, with equal transmit powers		
				Spatial Multiplexing		
				Cyclic Delay Diversity (CDD)		
Antenna Type		; antenna				
Antenna Gain						
Antonna Tochnology		Ant Gain(eth1)				
Antenna rechnology		(dBi)				
		2,3 dBi for 2.4GHz 2,48 dBi for 5GHz				
Ant2		-				

The WIFI mode operating channels are:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2412	7	2447
1	2417	8	2452
2	2422	9	2457
3	2427	10	2462
4	2432	-	-
5	2437	-	-
6	2442	-	-

802.11a/n/ac/ax(20MHz) Working Frequency of Each Channel:							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz	48	5240 MHz
52	5260 MHz	56	5280 MHz	60	5300 MHz	64	5320 MHz
100	5500 MHz	104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz	149	5745 MHz
153	5765 MHz	157	5785 MHz	161	5805 MHz	165	5825 MHz
802.11n/ac/a	ax(40MHz) Wo	rking Frequei	ncy of Each Cha	annel:			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz	54	5270 MHz	62	5310 MHz
102	5510 MHz	110	5550 MHz	118	5590 MHz	126	5630 MHz
134	5670 MHz	151	5755 MHz	159	5795 MHz	N/A	N/A

The radio module (Bluetooth) operating channels are:

BLE:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5	2412	19	2440	33	2468
6	2414	20	2442	34	2470
7	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476

10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454	-	-
13	2428	27	2456	-	-

Intended use of the Equipment Under Test (EUT)

The apparatus as supplied for the test is Miko Mini Auotmatic Data Processing Unit which intended for residential use, the product contains electronic circuitry and with earth connection. It contains a Wireless module, so it would be controlled by other Wi-Fi devices through APPs.

Hence, model EMK401 which contains this certified module SKI.WB800DS2.1_800M was chosen for full test.

The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks.
Designed By
MIKO
Input Rating: 5.0V == 3.0A / 9.0V == 2.0A / 12.0V == 1.5A Model : EMK401 S/N : P/N : FCC ID: 2AS3S-EMK401 This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions : (1) this device may not cause harmful interference, & (2) this device must accept any interference received, including interference that may cause undesired operation. $\mathbf{C} \in \mathbf{E} \otimes \mathbf{E} \mathbf{E} \cdot $

The CE marking must have substantially the same vertical dimension, which shall not be less than 5 mm.
The symbol combination of WEEE logo shall have a minimum height of 7 mm.

3. The EU/EFTA importer (and manufacture, if it is different)'s ①company name, ②registered trade name or registered trademark and ③the postal address will be marked on the products before being place on the market. The contact details shall be in a language easily understood by end-users and market surveillance authorities.

1.2 **Test data**

	DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch
Test Location	Block 5, No.3, Qiyun Road, Huangpu District, Guangzhou, Guangdong, China
	FCC Designation Number: CN1324;
Date of receipt of test item	2023-09-12
Date (s) of performance of tests	2023-09-12 to 2023-11-13
	Normal sample: EMK401 (lab no.4909379-1)
Test sample	RF conducted sample: EMK401 (lab no.4909379-1)
	RF radiated sample: EMK401 (lab no.4909379-1)

1.3 **The environment(s) in which the EUT is intended to be used**

The equipment under test (EUT) is intended to be used in the following environment(s):

\boxtimes	Residential (domestic) environment.
	Commercial and light-industrial environment.
	Industrial environment.

2 DESCRIPTION OF TEST SETUP

2.1 **Operating mode(s) used for tests**

During the tests the following operating mode(s) has(have) been used.

Operating	Operating mode description	Used for	methos
mode	node Operating mode description		Radiated
1	Transmitting at BLE mode	\square	
2	Transmitting at WIFI mode	\square	
3			
Supplemen	tal information:		

2.2 Support / Auxiliary equipment / unit / software for the EUT

The EUT has been tested with the following auxiliary equipment / unit / software:

Auxiliary equipment / unit / software	Type / Version	Manufacturer	Supplied by
Laptop	Latitude 5488	DELL	DEKRA
SecureCRT (soft ware)	-	-	Client
Adaptor	-	HUAWEI	DEKRA
Supplemental information:			

2.3 **Test Configuration / Block diagram used for tests**

Refer to Annex 3.

3 **RF EXPOSURE EVALUATION**

3.1 Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposur	es	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f2)	6
30–300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	osure	
0.3–1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30

27.5

.....

0.073

0.2

1.0

f/1500

30 30

30

TABLE I-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (IVIPE	TABLE 1-LIMITS FOR	MAXIMUM	PERMISSIBLE	EXPOSURE	(MPE
--	--------------------	---------	-------------	----------	------

F= Frequency in MHz

30–300

1500-100,000

Friis Formula

300-1500 .

Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$ Power Density: $Pd(W/m^{2})=E^{2}/377$

.....

Where

Pd = power density in mW/cm2 Pout = output power to antenna in mW G = gain of antenna in linear scale Pi = 3.1416 R = distance between observation point and center of the radiator in cm E=Electric Field (V/m)

Pd is the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

3.2 **Test Procedure**

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°Cand 78% RH.

3.3 Test Result

Test Mode	Frequency Band (MHz)	Conducted RF Power Output (dBm)	Antenna Gain (dBi)	Maximum EIRP (dBm)	Maximum Power (mW)	Power Density at R = 20 cm (mW/cm ²)	Limit of Power Density S(mW/cm²)
BLE	2400 ~ 2480	4.49	2.3	6.79	4.8	0.001	1
2.4GWIFI	2412 ~ 2472	14.76	2.3	17.06	50.8	0.01	1
5GWIFI	5180 ~ 5825	10.86	2.86	13.72	23.6	0.004	1

Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

For example,: EIRP=Pout*G= 4.8 mW

E=4.8/(4*pi*202)=0.001 mW/cm2

The formula of calculate the simultaneously transmission is

 Σ (All mode Power Desity)/Limit \leq 1

Calculated:

0.001/1+0.01/1+0.004/1=0.015 <\le 1

--- END ---